1
|
Lin Y, Wang B. pH-responsive paclitaxel prodrug encapsulated in a polypeptide-chitosan polymer delivery system for osteosarcoma treatment. Carbohydr Res 2025; 551:109414. [PMID: 39923605 DOI: 10.1016/j.carres.2025.109414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
Osteosarcoma, a highly invasive and metastatic primary bone malignancy, remains a significant clinical challenge due to the limited improvement in overall survival despite advances in treatment strategies. This highlights the urgent need for the development of more effective therapeutic options. In response, we have developed a novel paclitaxel (PTX)-loaded nanodrug system, PLGA-CS-1@PTX, by incorporating a synthesized epoxy-tetrapeptide derivative (compound 1) with poly(lactic-co-glycolic acid) (PLGA) and chitosan (CS), forming the PLGA-CS-1 composite system. The system was thoroughly characterized for its physicochemical properties, including morphology, particle size, and in vitro release behavior. Scanning electron microscopy (SEM) confirmed the nanostructure of the particles, with particle sizes around 170 nm and a narrow PDI (<0.15), indicating a uniform distribution. In vitro release studies showed a pH-responsive release profile, with 84.8 % of PTX released at pH 5.4 after 65 h of incubation, compared to 68.1 % at pH 6.4 and 14.8 % at pH 7.4, demonstrating good drug release control in acidic environments. Biological assays demonstrated significant inhibition of osteosarcoma cell proliferation in both HOS and U2OS cell lines, with a dose-dependent reduction in SPICE1 expression, suggesting that PLGA-CS-1@PTX can effectively suppress the proliferative activity of osteosarcoma cells by modulating SPICE1 levels. The hydrophobic segment of the peptide enhanced the drug loading capacity and minimized side effects, improving the overall safety profile of the system. This composite system effectively integrates the strengths of each component, offering a promising, safe, and efficient strategy for osteosarcoma treatment with great potential for clinical application.
Collapse
Affiliation(s)
- Yunfei Lin
- Department of Orthopaedics, Peking University First Hospital, Beijing, China
| | - Bing Wang
- Department of Orthopaedics, Peking University First Hospital, Beijing, China.
| |
Collapse
|
2
|
Song S, Wang J, Ouyang X, Huang R, Wang F, Xie J, Chen Q, Hu D. Therapeutic connections between pyroptosis and paclitaxel in anti-tumor effects: an updated review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04036-8. [PMID: 40257490 DOI: 10.1007/s00210-025-04036-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/06/2025] [Indexed: 04/22/2025]
Abstract
As a form of inflammation-associated cell death, pyroptosis has gained widespread attention in recent years. Accumulating evidence indicates that pyroptosis regulates tumor growth and is associated with autoimmune disorders and inflammatory response. Paclitaxel, a traditional Chinese medicine, usually induces death of cancer cells as a chemotherapeutic agent. Previous studies have revealed that paclitaxel can exert an anti-tumor effect through a variety of cell death mechanisms, of which pyroptosis plays a pivotal role in inhibiting tumor growth and enhancing anti-tumor immunity. In this review, we summarize the current advances in therapeutic connections between pyroptosis and paclitaxel in anti-tumor effects.
Collapse
Affiliation(s)
- Shuxin Song
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingbo Wang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaohu Ouyang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Renyin Huang
- Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fang Wang
- Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junke Xie
- Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qianyun Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- China-Russia Medical Research Center for Stress Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
3
|
Abbaspour S, Mohamadzadeh M, Shojaosadati SA. Protein-based nanocarriers for paclitaxel (PTX) delivery in cancer treatment: A review. Int J Biol Macromol 2025; 310:143068. [PMID: 40220831 DOI: 10.1016/j.ijbiomac.2025.143068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Paclitaxel (PTX) is recognized as one of the most potent chemotherapy agents and is widely used to treat various cancers, including ovarian, lung, breast, head, and neck cancer. Due to the limited solubility and high toxicity of PTX, its use in cancer treatment is challenging and limited. Hence, strategies have been devised to improve the solubility and bioavailability of paclitaxel. In recent years, biocompatible nanocarriers have garnered attention due to their desirable properties, including increased permeability, targeted delivery, extended circulatory half-life, and biological drug delivery for the delivery of chemotherapeutic drugs. Protein nanostructures have been widely studied for the delivery of paclitaxel due to their significant advantages, such as safety, low toxicity, availability, and relatively easy preparation. This review article reviews recent advances in the development of protein-based drug delivery systems for loading and releasing paclitaxel. These nanocarriers have great potential to improve paclitaxel's antitumor properties and efficacy. Therefore, in the future, the integration of the pharmaceutical industry and artificial intelligence techniques will provide more opportunities for research and development in the pharmaceutical field.
Collapse
Affiliation(s)
- Sakineh Abbaspour
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | | | - Seyed Abbas Shojaosadati
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
Dai X, Xi M, Li J. Cancer metastasis: molecular mechanisms and therapeutic interventions. MOLECULAR BIOMEDICINE 2025; 6:20. [PMID: 40192949 PMCID: PMC11977077 DOI: 10.1186/s43556-025-00261-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 04/10/2025] Open
Abstract
The metastatic cascade is a complicated process where cancer cells travel across multiple organs distant from their primary site of onset. Despite the wide acceptance of the 'seed and soil' theory, mechanisms driving metastasis organotropism remain mystery. Using breast cancer of different subtypes as the disease model, we characterized the 'metastatic profile of cancer cells' and the 'redox status of the organ microenvironment' as the primary determinants of cancer metastasis organotropism. Mechanically, we identified a positive correlation between cancer metabolic plasticity and stemness, and proposed oxidative stress as the selection power of cancer cells succeeding the metastasis cascade. Therapeutically, we proposed the use of pro-oxidative therapeutics in ablating cancer cells taking advantages of this fragile moment during metastasis. We comprehensively reviewed current pro-oxidative strategies for treating cancers that cover the first line chemo- and radio-therapies, approaches relying on naturally existing power including magnetic field, electric field, light and sound, nanoparticle-based anti-cancer composites obtained through artificial design, as well as cold atmospheric plasma as an innovative pro-oxidative multi-modal modality. We discussed possible combinations of pro-oxidative approaches with existing therapeutics in oncology prior to the forecast of future research directions. This paper identified the fundamental mechanics driving metastasis organotropism and proposed intervention strategies accordingly. Insights provided here may offer clues for the design of innovative solutions that may open a new paradigm for cancer treatment.
Collapse
Affiliation(s)
- Xiaofeng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| | - Ming Xi
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Jitian Li
- Molecular Biology Lab, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Henan Province, Zhengzhou, 450000, China
| |
Collapse
|
5
|
Rong D, Gao L, Chen Y, Gao XZ, Tang M, Tang H, Gao Y, Lu G, Ling ZQ, Shen HM. Suppression of the LKB1-AMPK-SLC7A11-GSH signaling pathway sensitizes NSCLC to albumin-bound paclitaxel via oxidative stress. Redox Biol 2025; 81:103567. [PMID: 40023979 PMCID: PMC11915006 DOI: 10.1016/j.redox.2025.103567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
Albumin-bound paclitaxel (nab-PTX) is an important chemotherapeutic drug used for the treatment of advanced and metastatic non-small cell lung cancer (NSCLC). One critical issue in its clinical application is the development of resistance; thus, a deeper understanding of the mechanisms underlying the primary resistance to nab-PTX is expected to help to develop effective therapeutic strategies to overcome resistance. In this study, we made an unexpected discovery that NSCLC with wild-type (WT) Liver kinase B1 (LKB1), an important tumor suppressor and upstream kinase of AMP-activated protein kinase (AMPK), is more resistant to nab-PTX than NSCLC with mutant LKB1. Mechanistically, LKB1 status does not alter the intracellular concentration of nab-PTX or affect its canonical pharmacological action in promoting microtubule polymerization. Instead, we found that LKB1 mediates AMPK activation, leading to increased expression of SLC7A11, a key amino acid transporter and intracellular level of glutathione (GSH), which then attenuates the production of reactive oxygen species (ROS) and apoptotic cell death induced by nab-PTX. On the other hand, genetic or pharmacological inhibition of AMPK in LKB1-WT NSCLC reduces the expression of SLC7A11 and intracellular GSH, increases ROS level, and eventually promotes the apoptotic cell death induced by nab-PTX in vitro. Consistently, the combination of nab-PTX with an AMPK inhibitor exhibits a greater therapeutic efficacy in LKB1-WT NSCLC using xenograft models in vivo. Taken together, our data reveal a novel role of LKB1-AMPK-SLC7A11-GSH signaling pathway in the primary resistance to nab-PTX, and provide a therapeutic strategy for the treatment of LKB1-WT NSCLC by targeting the LKB1-AMPK-SLC7A11-GSH pathway.
Collapse
Affiliation(s)
- Dade Rong
- Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Liangliang Gao
- Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Yiguan Chen
- Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Xiang-Zheng Gao
- Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Mingzhu Tang
- Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Haimei Tang
- Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China; Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Yuan Gao
- Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Guang Lu
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Qiang Ling
- Experimental Research Centre, The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Han-Ming Shen
- Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China.
| |
Collapse
|
6
|
Hu S, Sun D, Tang L, Kong L, Liu Y, Liu F, Tang D, Lu X, Wang Y. Follicle-stimulating hormone peptide-conjugated liposomes in the treatment of epithelial ovarian cancer through the induction of M2-to-M1 macrophage repolarization. Int J Pharm 2025; 672:125334. [PMID: 39933608 DOI: 10.1016/j.ijpharm.2025.125334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/26/2025] [Accepted: 02/07/2025] [Indexed: 02/13/2025]
Abstract
INTRODUCTION The silent killer epithelial ovarian cancer (EOC) is a lethal malignancy with high mortality rate and often diagnosed at an advanced stage. Traditional chemotherapy for EOC remains unsatisfactory as the tumor microenvironment (TME) is complicated and contains multiple factors such as tumor associated macrophages (TAMs). Therefore, a drug delivery system which codelivery chemotherapy drug and immune modulator for EOC treatment is urgently needed. METHODS Follicle-stimulating hormone peptide-conjugated paclitaxel and ginsenoside Rh2 codelivery liposomes (FSH@PTX-Rh2-Lips) were prepared in this study. FSH was decorated on the liposomal surface to enhance cellar uptake, PTX was used to kill cancer cells, and Rh2 was added to induce macrophages repolarization as well as a member material. The targeting, anti-tumor effect and impact on macrophage repolarization of FSH@PTX-Rh2-Lips were evaluated in vitro and in vivo. RESULTS With the ideal physicochemical properties, FSH@PTX-Rh2-Lips displayed increased cellular uptake, strong cytotoxicity to ID8 cells, inhibitory effect of tumor cell metastasis, and ability to induce macrophage repolarization from M2 to M1 in vitro. The tumor-bearing mice model suggested FSH@PTX-Rh2-Lips showed significant effect on antitumor and tumor recurrence, and the mechanism of FSH@PTX-Rh2-Lips in treatment of EOC was related to inhibiting tumor growth and inducing macrophage repolarization. CONCLUSION FSH@PTX-Rh2-Lips with function of affecting TAMs repolarization and altering the TME were successfully prepared and might offer an effective therapeutic strategy against EOC.
Collapse
Affiliation(s)
- Shengxia Hu
- Department of Obstetrics and Gynecology, Affiliated Zhongshan Hospital of Dalian University, Dalian, People's Republic of China
| | - Dan Sun
- Department of Obstetrics and Gynecology, Dalian Women and Children's Medical Center (Group), Dalian, People's Republic of China
| | - Ling Tang
- Department of Obstetrics and Gynecology, Affiliated Zhongshan Hospital of Dalian University, Dalian, People's Republic of China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, People's Republic of China
| | - Yang Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, People's Republic of China
| | - Fang Liu
- Department of Obstetrics and Gynecology, Affiliated Zhongshan Hospital of Dalian University, Dalian, People's Republic of China
| | - Dongmei Tang
- Department of Obstetrics and Gynecology, Affiliated Zhongshan Hospital of Dalian University, Dalian, People's Republic of China
| | - Xuhong Lu
- Department of Obstetrics and Gynecology, Affiliated Zhongshan Hospital of Dalian University, Dalian, People's Republic of China.
| | - Yuanyuan Wang
- Department of Pharmacy, Affiliated Zhongshan Hospital of Dalian University, Dalian, People's Republic of China.
| |
Collapse
|
7
|
Beretta GL, Cassinelli G, Rossi G, Azzariti A, Corbeau I, Tosi D, Perego P. Novel insights into taxane pharmacology: An update on drug resistance mechanisms, immunomodulation and drug delivery strategies. Drug Resist Updat 2025; 81:101223. [PMID: 40086175 DOI: 10.1016/j.drup.2025.101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/16/2025]
Abstract
Taxanes are effective in several solid tumors. Paclitaxel, the main clinically available taxane, was approved in the early nineties, for the treatment of ovarian cancer and later on, together with the analogs docetaxel and cabazitaxel, for other malignancies. By interfering with microtubule function and impairing the separation of sister cells at mitosis, taxanes act as antimitotic agents, thereby counteracting the high proliferation rate of cancer cells. The action of taxanes goes beyond their antimitotic function because their main cellular targets, the microtubules, participate in multiple processes such as intracellular transport and cell shape maintenance. The clinical efficacy of taxanes is limited by the development of multiple resistance mechanisms. Among these, extracellular vesicles have emerged as new players. In addition, taxane metronomic schedules shows an impact on the tumor microenvironment reflected by antiangiogenic and immunomodulatory effects, an aspect of growing interest considering their inclusion in treatment regimens with immunotherapeutics. Preclinical studies have paved the bases for synergistic combinations of taxanes both with conventional and targeted agents. A variety of drug delivery strategies have provided novel opportunities to increase the drug activity. The ability of taxanes to orchestrate different cellular effects amenable to modulation suggests novel options to improve cures in lethal malignancies.
Collapse
Affiliation(s)
- Giovanni Luca Beretta
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133, Italy.
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133, Italy.
| | - Giacomina Rossi
- Unit of Neurology 8, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy.
| | - Amalia Azzariti
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, Bari 70124, Italy.
| | - Iléana Corbeau
- Early Clinical Trial Unit, Medical Oncology Department, Institut régional du Cancer de Montpellier, Inserm U1194, Montpellier University, 208, rue de Apothicaires, 34298 Montpellier, France; Fondazione Gianni Bonadonna, via Bertani, 14, Milan 20154, Italy.
| | - Diego Tosi
- Early Clinical Trial Unit, Medical Oncology Department, Institut régional du Cancer de Montpellier, Inserm U1194, Montpellier University, 208, rue de Apothicaires, 34298 Montpellier, France; Fondazione Gianni Bonadonna, via Bertani, 14, Milan 20154, Italy.
| | - Paola Perego
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133, Italy.
| |
Collapse
|
8
|
Bayar I, Erzurumlu Y, Akkoc S, Bulut Z, Nizamlioglu M. Investigation of the sensitivity of human A549 cells to paclitaxel and sesquiterpene lactone alantolactone via apoptosis induction. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03947-w. [PMID: 40019527 DOI: 10.1007/s00210-025-03947-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/17/2025] [Indexed: 03/01/2025]
Abstract
Alantolactone (ALA), a sesquiterpene lactone compound obtained from Inula helenium root, is known to have anticancer activity in many types of cancer. Paclitaxel (PAX) is an effective first-line chemotherapeutic drug and is widely used in the treatment of lung cancer. The in vitro anticancer efficacy of combined treatment of ALA with PAX was investigated in the A549 human lung cancer cell line. The results show that ALA potentiated the effect of PAX-induced growth restriction and apoptosis in A549 cells. The combined administration more effectively decreased the Bcl-2 expression and increased Bax gene expression in cells compared to ALA or PAX alone. Also, co-treatment of ALA and PAX caused apoptotic nuclear formations. Additionally, coadministration increased the caspase-3 and caspase-9 levels more than PAX or ALA alone. The increase in NF-κB gene expression levels suggests that an NF-κB-independent apoptotic trigger mechanism operates in cells. Together, the present in vitro findings suggest that ALA may contribute as a potential therapeutic strategy in the treatment of lung cancer.
Collapse
Affiliation(s)
- Irem Bayar
- Department of Biochemistry, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey.
- Department of Pharmaceutical Research and Development, Institute of Health Sciences, Suleyman Demirel University, Isparta, Turkey.
| | - Yalcin Erzurumlu
- Department of Pharmaceutical Research and Development, Institute of Health Sciences, Suleyman Demirel University, Isparta, Turkey
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
| | - Senem Akkoc
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
- Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey
| | - Zafer Bulut
- Department of Biochemistry, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
- Department of Biochemistry, Faculty of Veterinary Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Mehmet Nizamlioglu
- Department of Biochemistry, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| |
Collapse
|
9
|
Zhao Y, Wu Z, Li J, Qi Y, Zhang X, Shen C. The key role of cytochrome P450s in the biosynthesis of plant derived natural products. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109695. [PMID: 40015195 DOI: 10.1016/j.plaphy.2025.109695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/05/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
Cytochrome P450 (CYP450 or CYP450, abbreviated as CYP450) represents a large family of self-oxidizable heme proteins, belonging to the class of monooxygenases, and is named because of the specific absorption peak at 450 nm in its ferrous/CO-bound complex. Cytochrome P450 has a wide spectrum of substrates and a rich variety of catalytic reactions, plays an important role in drug metabolism, natural product biosynthesis, and biocatalysis industry. In the biosynthesis of plant natural products, it plays an important role, especially in the downstream synthesis pathway and structural modification after skeleton synthesis. There are abundant natural products from plants, including terpenes, alkaloids, flavonoids, steroidal saponins, etc., which have great development value in the medical field. In the biosynthetic pathways of these natural products, cytochrome P450 enzymes often play an important role. They can serve as rate-limiting enzymes in the biosynthetic pathways or as modifying enzymes for the structural diversity of compounds. So, a deeper understanding of cytochrome P450 enzymes in the natural product synthesis pathway will enhance the development of natural products and advance the study of their synthetic biology. This review offers an overview of the biosynthesis of key medicinal natural products, with a particular focus on the critical role of cytochrome P450 enzymes in key catalytic steps. It also highlights recent advancements in the research of natural product biosynthesis and synthetic biology.
Collapse
Affiliation(s)
- Yawen Zhao
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, China
| | - Zhenzhen Wu
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, China
| | - Jiayao Li
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, China
| | - Yaoxing Qi
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, China
| | - Xiaoxiao Zhang
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, China
| | - Chen Shen
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, China; State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science & Technology, Shijiazhuang, China.
| |
Collapse
|
10
|
Gui Y, Xue G, Yuan Y, Wang J, Deng S, Gao F, Tian Y, Zhao Z, Fan H. Stachydrine targeting tumor-associated macrophages inhibit colorectal cancer liver metastasis by regulating the JAK2/STAT3 pathway. Front Pharmacol 2025; 16:1514158. [PMID: 39974738 PMCID: PMC11835834 DOI: 10.3389/fphar.2025.1514158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/17/2025] [Indexed: 02/21/2025] Open
Abstract
Introduction Colorectal cancer (CRC) represents the third most prevalent form of cancer worldwide, with liver metastasis representing a significant contributor to mortality. The interaction between tumor-associated macrophages (TAMs) and tumor cells plays a pivotal role in the development of colorectal cancer liver metastases (CRLM) and represents a promising avenue for therapeutic intervention. Stachydrine (STA), a compound derived from the Leonurus heterophyllus plant, has been shown to effectively inhibit tumor growth through a range of mechanisms. Methods The study employed imaging and histopathology to evaluate the efficacy of STA monotherapy in preventing CRLM. The inhibition of M2 macrophage polarization by STA was confirmed through the use of flow cytometry and immunofluorescence. Subsequently, a series of assays, including quantitative reverse transcription polymerase chain reaction (qRT-PCR), flow cytometry, scratch, invasion, and tube formation assays, were conducted to confirm STA's capacity to impede tumor cell migration, invasion, and angiogenesis in vitro. Western blotting and flow cytometry were employed to elucidate the mechanisms through which STA exerts its effects on tumor metastasis. Results In our research, STA has been shown to attenuate liver metastasis in CRC mouse models by inhibiting the polarization of macrophages to the M2 phenotype. This anti-metastatic effect is dependent on the presence of macrophages. In vitro, STA has been found to impede tumor cell migration, invasion, and angiogenesis by preventing TAMs from polarizing to the M2 phenotype via the JAK2/STAT3 signaling pathway. Moreover, the combination of STA with anti-PD-1 therapy has been observed to restore immune infiltration within the tumor microenvironment and inhibit tumor progression. Conclusion The findings of this study demonstrate that STA exerts an inhibitory effect on colorectal cancer liver metastasis by targeting macrophages and impeding their M2 polarization via the JAK2/STAT3 pathway. Furthermore, the combination of STA with anti-PD-1 therapy has been observed to enhance the effectiveness of immune checkpoint blockade and reduce tumor spread, indicating the potential of STA to improve the efficacy of immunotherapy for liver metastases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Chen G, Li B, Li T, Lin M, Zhong H, Xie X, Zhang Q, Chen Q, Meng X, Xiao Z, Shuai X. Core-Satellite Nanoassembly Overcomes Spatial Heterogeneity of Dendric Cell Distribution in Pancreatic Tumors for Effective Chemoimmunotherapy. ACS NANO 2025; 19:4739-4753. [PMID: 39834130 DOI: 10.1021/acsnano.4c15444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Pancreatic cancer therapies such as chemotherapy and immunotherapy are hindered by the dense extracellular matrix known as physical barriers, leading to heterogeneity impeding the effective penetration of chemotherapeutic agents and activation of antitumor immune responses. To address this challenge, we developed a hybrid nanoassembly with a distinct core-satellite-like heterostructure, PLAF@P/T-PD, which is responsive to both internal pH/redox and external ultrasound stimulations. This heterostructural nanoassembly features a polymersome core encapsulating an ultrasound contrast agent perfluoropentane and a chemotherapeutic agent Taxol (PLAF@P/T) electrostatically coated with satellite-like polyplexes carrying an immune agonist dsDNA (PD), which brings about synergistic functions inside the pancreatic tumor. The PLAF@P/T core functions as an enhancer for intratumor delivery through size enlargement and charge conversion in response to reactive oxygen species (ROS) and low pH, which triggers polyplex release and enables ultrasound-assisted tumor-penetrating Taxol delivery. Meanwhile, the released cationic polyplexes function as nucleic nanomedicine preferentially engulfed by peripheral dendritic cells (DCs) for immune modulation. Animal studies in mouse orthotopic pancreatic tumor model demonstrated exceptional therapeutic efficacy against both primary and metastatic tumors, which underlines the potential of this heterostructural nanoplatform for overcoming the therapeutic challenges associated with the heterogeneous physical barrier hindering intratumor drug delivery in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Gengjia Chen
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Department of Radiology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Bo Li
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Tan Li
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Minzhao Lin
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Huihai Zhong
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoxue Xie
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Qiaoyun Zhang
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Qi Chen
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xiaochun Meng
- Department of Radiology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Zecong Xiao
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
12
|
Zou Y, Wu S, Hu Q, Zhou H, Ge Y, Ju Z, Luo S. Sonic hedgehog restrains the ubiquitin-dependent degradation of SP1 to inhibit neuronal/glial senescence associated phenotypes in chemotherapy-induced peripheral neuropathy via the TRIM25-CXCL13 axis. J Adv Res 2025; 68:387-402. [PMID: 38479571 PMCID: PMC11785578 DOI: 10.1016/j.jare.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/22/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024] Open
Abstract
INTRODUCTION Chemotherapy-induced peripheral neuropathy (CIPN) is a common complication that affects an increasing number of cancer survivors. However, the current treatment options for CIPN are limited. Paclitaxel (PTX) is a widely used chemotherapeutic drug that induces senescence in cancer cells. While previous studies have demonstrated that Sonic hedgehog (Shh) can counteract cellular dysfunction during aging, its role in CIPN remains unknown. OBJECTIVES Herein, the aim of this study was to investigate whether Shh activation could inhibits neuronal/glial senescence and alleviates CIPN. METHODS We treated ND7/23 neuronal cells and RSC96 Schwann cells with two selective Shh activators (purmorphamine [PUR] and smoothened agonist [SAG]) in the presence of PTX. Additionally, we utilized a CIPN mouse model induced by PTX injection. To assess cellular senescence, we performed a senescence-associated β-galactosidase (SA-β-gal) assay, measured reactive oxygen species (ROS) levels, and examined the expression of P16, P21, and γH2AX. To understand the underlying mechanisms, we conducted ubiquitin assays, LC-MS/MS, H&E staining, and assessed protein expression through Western blotting and immunofluorescence staining. RESULTS In vitro, we observed that Shh activation significantly alleviated the senescence-related decline in multiple functions included SA-β-gal activity, expression of P16 and P21, cell viability, and ROS accumulation in DRG sensory neurons and Schwann cells after PTX exposure. Furthermore, our in vivo experiments demonstrated that Shh activation significantly reduced axonal degeneration, demyelination, and improved nerve conduction. Mechanistically, we discovered that PTX reduced the protein level of SP1, which was ubiquitinated by the E3 ligase TRIM25 at the lysine 694 (K694), leading to increased CXCL13 expression, and we found that Shh activation inhibited PTX-induced neuronal/glial senescence and CIPN through the TRIM25-SP1-CXCL13 axis. CONCLUSION These findings provide evidence for the role of PTX-induced senescence in DRG sensory neurons and Schwann cells, suggesting that Shh could be a potential therapeutic target for CIPN.
Collapse
Affiliation(s)
- Ying Zou
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Biology, School of Medicine, Jinan University, Guangzhou, China; Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Shu Wu
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qian Hu
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Haoxian Zhou
- Department of Cardiology, Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuanlong Ge
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Zhenyu Ju
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Biology, School of Medicine, Jinan University, Guangzhou, China; Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Shengkang Luo
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Biology, School of Medicine, Jinan University, Guangzhou, China; Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
13
|
Dwivedi AR, Kumar V, Prashar V, Jangid K, Kumar N, Devi B, Parkash J, Kumar V. Synthesis and screening of novel 2,4-bis substituted quinazolines as tubulin polymerization promoters and antiproliferative agents. RSC Med Chem 2025:d4md00755g. [PMID: 39897391 PMCID: PMC11781317 DOI: 10.1039/d4md00755g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/07/2025] [Indexed: 02/04/2025] Open
Abstract
Twelve 2,4-bis-substituted quinazoline-based compounds were synthesized and screened for antiproliferative and tubulin polymerization enhancing potential. In the series, compound A4V-3 substituted with an imidazole ring displayed IC50 values of 4.25 μM, 2.65 μM, and 9.95 μM, and A4V-5 with a benzotriazole substitution displayed IC50 values of 3.45 μM, 7.25 μM, and 8.14 μM against MCF-7, HCT-116 and SHSY-5Y cancer cells, respectively. In the mechanistic studies involving cell cycle analysis, apoptosis assay and JC-1 studies, compound A4V-3 was found to arrest the cells in the G2/M phase of the cell cycle and induce mitochondria-mediated apoptosis. In addition, compound A4V-3 displayed significant tubulin polymerization-enhancing potential. 2,4-Bis-substituted quinazoline-based compounds showed appreciable drug-like characteristics and can be developed as potent anticancer agents.
Collapse
Affiliation(s)
- Ashish Ranjan Dwivedi
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Bathinda Punjab 151401 India
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab Bathinda Punjab 151401 India +911642864269
- Gitam School of Pharmacy Hyderabad Telangana 502329 India
| | - Vijay Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab Bathinda Punjab 151401 India +911642864269
| | - Vikash Prashar
- Department of Zoology, School of Biological Sciences, Central University of Punjab Bathinda Punjab 151401 India
| | - Kailash Jangid
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Bathinda Punjab 151401 India
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab Bathinda Punjab 151401 India +911642864269
| | - Naveen Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab Bathinda Punjab 151401 India +911642864269
| | - Bharti Devi
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab Bathinda Punjab 151401 India +911642864269
| | - Jyoti Parkash
- Department of Zoology, School of Biological Sciences, Central University of Punjab Bathinda Punjab 151401 India
| | - Vinod Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab Bathinda Punjab 151401 India +911642864269
| |
Collapse
|
14
|
Zhang S, Wang H. Targeting the lung tumour stroma: harnessing nanoparticles for effective therapeutic interventions. J Drug Target 2025; 33:60-86. [PMID: 39356091 DOI: 10.1080/1061186x.2024.2410462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/27/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024]
Abstract
Lung cancer remains an influential global health concern, necessitating the development of innovative therapeutic strategies. The tumour stroma, which is known as tumour microenvironment (TME) has a central impact on tumour expansion and treatment resistance. The stroma of lung tumours consists of numerous cells and molecules that shape an environment for tumour expansion. This environment not only protects tumoral cells against immune system attacks but also enables tumour stroma to attenuate the action of antitumor drugs. This stroma consists of stromal cells like cancer-associated fibroblasts (CAFs), suppressive immune cells, and cytotoxic immune cells. Additionally, the presence of stem cells, endothelial cells and pericytes can facilitate tumour volume expansion. Nanoparticles are hopeful tools for targeted drug delivery because of their extraordinary properties and their capacity to devastate biological obstacles. This review article provides a comprehensive overview of contemporary advancements in targeting the lung tumour stroma using nanoparticles. Various nanoparticle-based approaches, including passive and active targeting, and stimuli-responsive systems, highlighting their potential to improve drug delivery efficiency. Additionally, the role of nanotechnology in modulating the tumour stroma by targeting key components such as immune cells, extracellular matrix (ECM), hypoxia, and suppressive elements in the lung tumour stroma.
Collapse
Affiliation(s)
- Shushu Zhang
- Cancer Center (Oncology) Department, the Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Hui Wang
- Cancer Center (Oncology) Department, the Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
15
|
Yang Y, Ling W. Health Benefits and Future Research of Phytochemicals: A Literature Review. J Nutr 2025; 155:87-101. [PMID: 39536969 DOI: 10.1016/j.tjnut.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Phytochemicals are nonnutritive substances found in plant foods that contribute significantly to the flavor and color of foods. These substances are usually classified as polyphenols, terpenes, sulfur-containing compounds, nitrogen-containing compounds, and others. Numerous studies over the last decades have demonstrated these substances play an immeasurable role in physiological regulation, health care, and disease prevention through their actions in antioxidation, anti-inflammation, antiaging, antivirus, anticancer, antithrombosis, lipid profile regulation, cardiovascular protection, neuroprotection, immunity regulation, and improvement of metabolic functions. This article reviews the chemistry and biochemistry of phytochemicals, their classification and chemical structure, occurrence and biosynthesis in plants, and biological activities and implications for human health and various diseases. The discussions are focused on the most recent important advances in these phytochemical researches. In addition, some future research directions of phytochemicals are set forth regarding dose-response, their mechanism and targets, interactions with gut microbiota, and impact on human health and different stages of chronic diseases.
Collapse
Affiliation(s)
- Yan Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Guangdong Province, China; Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Shenzhen, Guangdong Province, China; Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Shenzhen, Guangdong Province, China; Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
16
|
Xu C, Wen S, Du X, Zou X, Leung ELH, Zhou G, Wu Q, Shen B. Targeting regulated cell death (RCD) with naturally derived sesquiterpene lactones in cancer therapy. Pharmacol Res 2025; 211:107553. [PMID: 39706282 DOI: 10.1016/j.phrs.2024.107553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Regulated cell death (RCD) is a type of cell death modulated by specific signal transduction pathways. Currently, known RCD types include apoptosis, autophagy, ferroptosis, necroptosis, cuproptosis, pyroptosis, and NETosis. Mutations in cancer cells may prevent the RCD pathway; therefore, targeting RCD in tumors has become a promising therapeutic approach. Sesquiterpene lactones represent a diverse and extensive class of plant-derived phytochemicals that serve as potential sources for developing various drugs. Recent studies have shown that sesquiterpene lactones have promising potential in cancer treatment. This review systematically summarizes recent progress in the study of sesquiterpene lactones as antitumor agents, highlighting their role in targeting various RCD pathways, including those involved in apoptosis, autophagy, ferroptosis, necroptosis, and cuproptosis. The primary purpose of the present review is to provide a clear picture of the regulation of RCD by sesquiterpene lactones against different targets in various cancers, which will facilitate the development of new strategies for cancer therapy.
Collapse
Affiliation(s)
- Cong Xu
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210000, China; State Key Laboratory of Quality Research in Chinese Medicines and Faculty of Chinese Medicine, Macau University of Science and Technology, 999078, Macao
| | - Shaodi Wen
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210000, China
| | - Xiaoyue Du
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210000, China
| | - Xinhua Zou
- Department of Vascular and Tumor Interventional Medicine, Affiliated Hospital of Jining Medical University, Jining 272000, China
| | | | - Guoren Zhou
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210000, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines and Faculty of Chinese Medicine, Macau University of Science and Technology, 999078, Macao.
| | - Bo Shen
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210000, China; DongTai People's Hospital, Dongtai, Jiangsu, China.
| |
Collapse
|
17
|
Wang X, Tian W, Wang N, Yang X, Liu Z, Li L, Zhao T, Wang C, Zhang H, Yang H, Jia Y. Transcriptome analysis reveals the anticancer effects of fenbendazole on ovarian cancer: an in vitro and in vivo study. BMC Cancer 2024; 24:1593. [PMID: 39736624 DOI: 10.1186/s12885-024-13361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/17/2024] [Indexed: 01/01/2025] Open
Abstract
New treatment strategies for ovarian cancer, which is the deadliest female reproductive tract malignancy, are urgently needed. Here, we investigated the anticancer effects of fenbendazole (FBZ), a benzimidazole compound, on the regulation of apoptosis and mitotic catastrophe in A2780 and SKOV3 human epithelial ovarian cancer cells. Functional experiments, including Cell Counting Kit 8 (CCK-8), colony formation, and flow cytometry assays, were conducted to explore the effects of FBZ on the malignant biological behavior of A2780 and SKOV3 cells. RNA sequencing and western blotting were utilized to elucidate the underlying mechanisms by which FBZ affects cell apoptosis. We found that FBZ inhibited the proliferation and promoted the apoptosis of ovarian cancer cells in a dose-dependent manner. Furthermore, we reported the transcriptome profiling of FBZ-treated SKOV3 ovarian cancer cells. In all, 1747 differentially expressed genes (DEGs) were identified, including 944 downregulated and 803 upregulated genes. KEGG enrichment and Reactome enrichment analyses revealed that the DEGs were associated mainly with mitosis- and cell cycle-related pathways. Additionally, we found that FBZ may promote apoptosis via mitotic catastrophe. Finally, oral administration of FBZ inhibited tumor growth in a mouse model of xenograft ovarian cancer. Overall, these findings suggest that FBZ has therapeutic potential for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Xin Wang
- Department of Gynecology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, 650118, Yunnan, P. R. China
| | - Wenda Tian
- Department of Gynecology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, 650118, Yunnan, P. R. China
| | - Ning Wang
- Department of Obstetrics and Gynecology, Dehong Affiliated Hospital of Kunming Medical University, Dehong People's Hospital of Yunnan Province, Kunming, 678400, Yunnan, P. R. China
| | - Xiangqun Yang
- Department of Gynecology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, 650118, Yunnan, P. R. China
| | - Zhenyan Liu
- Department of Gynecology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, 650118, Yunnan, P. R. China
| | - Lvzhou Li
- Department of Obstetrics and Gynecology, Dehong Affiliated Hospital of Kunming Medical University, Dehong People's Hospital of Yunnan Province, Kunming, 678400, Yunnan, P. R. China
| | - Taoyu Zhao
- Department of Obstetrics and Gynecology, Dehong Affiliated Hospital of Kunming Medical University, Dehong People's Hospital of Yunnan Province, Kunming, 678400, Yunnan, P. R. China
| | - Chuanlin Wang
- Department of Clinical Nutrition, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, 650118, Yunnan, P. R. China
| | - Hongping Zhang
- Department of Gynecology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, 650118, Yunnan, P. R. China.
| | - Hongying Yang
- Department of Gynecology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, 650118, Yunnan, P. R. China.
| | - Yue Jia
- Department of Gynecology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, 650118, Yunnan, P. R. China.
| |
Collapse
|
18
|
Alkhathami AG, Pallathadka H, Shah S, Ganesan S, Sharma A, Devi S, Mustafa YF, Alasheqi MQ, Kadhim AJ, Zwamel AH. LncRNAs in modulating cancer cell resistance to paclitaxel (PTX) therapy. Med Oncol 2024; 42:28. [PMID: 39671022 DOI: 10.1007/s12032-024-02577-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024]
Abstract
Paclitaxel (PTX) is widely used for treating several cancers, including breast, ovarian, lung, esophageal, gastric, pancreatic, and neck cancers. Despite its clinical utility, cancer recurrence frequently occurs in patients due to the development of resistance to PTX. Resistance mechanisms in cancer cells treated with PTX include alterations in β-tubulin, the target molecule involved in mitosis, activation of molecular pathways enabling drug efflux, and dysregulation of apoptosis-related proteins. Long non-coding RNAs (lncRNAs), which are RNA molecules longer than 200 nucleotides without protein-coding potential, serve diverse regulatory roles in cellular processes. Increasing evidence highlights the involvement of lncRNAs in cancer progression and their contribution to PTX resistance across various cancers. Consequently, lncRNAs have emerged as potential therapeutic targets for addressing drug resistance in cancer treatment. This review focuses on the current understanding of lncRNAs and their role in drug resistance mechanisms, aiming to encourage further investigation in this area. Key lncRNAs and their associated pathways linked to PTX resistance will be summarized.
Collapse
Affiliation(s)
- Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Sejal Shah
- Department of Bioinformatics, Faculty of Engineering and Technology, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Abhishek Sharma
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Seema Devi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab, 140307, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | | | - Abed J Kadhim
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
19
|
Ibrahim M, Fathalla Z, Fatease AA, Alamri AH, Abdelkader H. Breast cancer epidemiology, diagnostic barriers, and contemporary trends in breast nanotheranostics and mechanisms of targeting. Expert Opin Drug Deliv 2024; 21:1735-1754. [PMID: 39361257 DOI: 10.1080/17425247.2024.2412823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
INTRODUCTION Breast cancer is one of the main causes of mortality in women globally. Early and accurate diagnosis represents a milestone in cancer management. Several breast cancer diagnostic agents are available. Many chemotherapeutic agents in conventional dosage forms are approved; nevertheless, they lack cancer cell specificity, resulting in improper treatment and undesirable side effects. Recently, nanotheranostics has emerged as a new paradigm to achieve safe and effective cancer diagnosis and management. AREA COVERED This review provides insight into breast cancer epidemiology, barriers hindering the early diagnosis, and effective delivery of chemotherapeutics. Also, conventional diagnostic agents and recent nanotheranostic platforms have been used in breast cancer. In addition, mechanisms of cancer cell targeting and nano-carrier surface functionalization as an effective approach for chemotherapeutic targeting were reviewed along with future perspectives. EXPERT OPINION We proposed that modified nano-carriers may provide an efficacious approach for breast cancer drug targeting. These nanotheranostics need more clinical evaluations to confirm their efficacy in cancer management. In addition, we recommend the use of artificial intelligence (AI) as a promising approach for early and efficient assessment of breast lesions. AI allows better interpretation and analysis of nanotheranostic data, which minimizes misdiagnosis and avoids the belated intervention of health care providers.
Collapse
Affiliation(s)
- Mohamed Ibrahim
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Zeinab Fathalla
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ali H Alamri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Hamdy Abdelkader
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
20
|
Han J, Shen Y, Cao R, Wang W, Duan J, Duan J, Bao C. Active herbal ingredients and drug delivery design for tumor therapy: a review. Chin J Nat Med 2024; 22:1134-1162. [PMID: 39725513 DOI: 10.1016/s1875-5364(24)60741-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Indexed: 12/28/2024]
Abstract
Active herbal ingredients are gaining recognition for their potent anti-tumor efficacy, attributable to various mechanisms including tumor cell inhibition, immune system activation, and tumor angiogenesis inhibition. Recent studies have revealed that numerous anti-tumor herbal ingredients, such as ginsenosides, ursolic acid, oleanolic acid, and Angelica sinensis polysaccharides, can be utilized to develop smart drug carriers like liposomes, micelles, and nanoparticles. These carriers can deliver active herbal ingredients and co-deliver anti-tumor drugs to enhance drug accumulation at tumor sites, thereby improving anti-tumor efficacy. This study provides a comprehensive analysis of the mechanisms by which these active herbal ingredients-derived carriers enhance therapeutic outcomes. Additionally, it highlights the structural properties of these active herbal ingredients, demonstrating how their unique features can be strategically employed to design smart drug carriers with improved anti-tumor efficacy. The insights presented aim to serve as a reference and guide future innovations in the design and application of smart drug carriers for cancer therapy that leverage active herbal ingredients.
Collapse
Affiliation(s)
- Jing Han
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yanxi Shen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruiying Cao
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weiren Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jialun Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Chunjie Bao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
21
|
Rab SO, Roopashree R, Altalbawy FMA, Kumar MR, Chahar M, Singh M, Kubaev A, Alamir HTA, Mohammed F, Kadhim AJ, Alhadrawi M. Phytochemicals and Their Nanoformulations for Targeting Hepatocellular Carcinoma: Exploring Potential and Targeting Strategies. Cell Biochem Funct 2024; 42:e70013. [PMID: 39521962 DOI: 10.1002/cbf.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Hepatocellular carcinoma (HCC) continues to pose a global health concern, necessitating the exploration of innovative therapeutic approaches. In the recent decade, targeting tumor stroma consisting of extracellular matrix (ECM), immune cells, vascular system, hypoxia, and also suppressive mechanisms in HCC has attracted interest in repressing tumor growth and metastasis. Phytochemicals have attained considerable attention because of their manifold biological effects and high capacity for anticancer activities. These chemical agents have shown the capability to modulate different cells and secretions within the stroma of malignancies. In recent years, the development of nanoformulations has further enhanced the therapeutic potential of phytochemicals by improving their solubility, bioavailability, and targeted delivery to tumor tissues. This review aims to provide an encyclopedic overview of the potential of phytochemicals and their nanoformulations as promising therapeutic strategies for targeting HCC. The review initially highlights the broad array of phytochemicals exhibiting potent anticancer properties, including flavonoids, alkaloids, terpenoids, and phenolic compounds, among others. Then, the nanoformulations and modification of these agents will be reviewed. Finally, we will review the latest experiments that have examined the modulation of HCC using adjuvant phytochemicals and their nanoformulations.
Collapse
Affiliation(s)
- Safia Obaidur Rab
- Central Labs, King Khalid University, AlQura'a, Abha, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Mamata Chahar
- Department of Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | - Manmeet Singh
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, Samarkand, Uzbekistan
| | | | - Faraj Mohammed
- Department of Pharmacy, Al-Manara College for Medical Sciences, Amarah, Maysan, Iraq
| | - Abed J Kadhim
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| | - Merwa Alhadrawi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
22
|
Minisini M, Mascaro M, Brancolini C. HDAC-driven mechanisms in anticancer resistance: epigenetics and beyond. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:46. [PMID: 39624079 PMCID: PMC11609180 DOI: 10.20517/cdr.2024.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/24/2024] [Accepted: 11/07/2024] [Indexed: 01/03/2025]
Abstract
The emergence of drug resistance leading to cancer recurrence is one of the challenges in the treatment of cancer patients. Several mechanisms can lead to drug resistance, including epigenetic changes. Histone deacetylases (HDACs) play a key role in chromatin regulation through epigenetic mechanisms and are also involved in drug resistance. The control of histone acetylation and the accessibility of regulatory DNA sequences such as promoters, enhancers, and super-enhancers are known mechanisms by which HDACs influence gene expression. Other targets of HDACs that are not histones can also contribute to resistance. This review describes the contribution of HDACs to the mechanisms that, in some cases, may determine resistance to chemotherapy or other cancer treatments.
Collapse
Affiliation(s)
| | | | - Claudio Brancolini
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, Udine 33100, Italy
| |
Collapse
|
23
|
Wang J, Wang Y, Jiang X. Targeting anticancer immunity in melanoma tumour microenvironment: unleashing the potential of adjuvants, drugs, and phytochemicals. J Drug Target 2024; 32:1052-1072. [PMID: 39041142 DOI: 10.1080/1061186x.2024.2384071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Melanoma poses a challenge in oncology because of its aggressive nature and limited treatment modalities. The tumour microenvironment (TME) in melanoma contains unique properties such as an immunosuppressive and high-density environment, unusual vasculature, and a high number of stromal and immunosuppressive cells. In recent years, numerous experiments have focused on boosting the immune system to effectively remove malignant cells. Adjuvants, consisting of phytochemicals, toll-like receptor (TLR) agonists, and cytokines, have shown encouraging results in triggering antitumor immunity and augmenting the therapeutic effectiveness of anticancer therapy. These adjuvants can stimulate the maturation of dendritic cells (DCs) and infiltration of cytotoxic CD8+ T lymphocytes (CTLs). Furthermore, nanocarriers can help to deliver immunomodulators and antigens directly to the tumour stroma, thereby improving their efficacy against malignant cells. The remodelling of melanoma TME utilising phytochemicals, agonists, and other adjuvants can be combined with current modalities for improving therapy outcomes. This review article explores the potential of adjuvants, drugs, and their nanoformulations in enhancing the anticancer potency of macrophages, CTLs, and natural killer (NK) cells. Additionally, the capacity of these agents to repress the function of immunosuppressive components of melanoma TME, such as immunosuppressive subsets of macrophages, stromal and myeloid cells will be discussed.
Collapse
Affiliation(s)
- Jingping Wang
- Emergency Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| | - Yaping Wang
- Respiratory and Oncology Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| | - Xiaofang Jiang
- Respiratory and Oncology Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| |
Collapse
|
24
|
Li Q, Tong Y, Chen J, Xie T. Targeting programmed cell death via active ingredients from natural plants: a promising approach to cancer therapy. Front Pharmacol 2024; 15:1491802. [PMID: 39584140 PMCID: PMC11582395 DOI: 10.3389/fphar.2024.1491802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/09/2024] [Indexed: 11/26/2024] Open
Abstract
Cancer is a serious public health problem in humans, and prevention and control strategies are still necessary. Therefore, the development of new therapeutic drugs is urgently needed. Targeting programmed cell death, particularly via the induction of cancer cell apoptosis, is one of the cancer treatment approaches employed. Recently, an increasing number of studies have shown that compounds from natural plants can target programmed cell death and kill cancer cells, laying the groundwork for use in future anticancer treatments. In this review, we focus on the latest research progress on the role and mechanism of natural plant active ingredients in different forms of programmed cell death, such as apoptosis, autophagy, necroptosis, ferroptosis, and pyroptosis, to provide a strong theoretical basis for the clinical development of antitumor drugs.
Collapse
Affiliation(s)
- Qian Li
- School of Pharmacy and Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yan Tong
- School of Pharmacy and Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jianxiang Chen
- School of Pharmacy and Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Tian Xie
- School of Pharmacy and Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
25
|
de Almada-Vilhena AO, dos Santos OVM, Machado MDA, Nagamachi CY, Pieczarka JC. Prospecting Pharmacologically Active Biocompounds from the Amazon Rainforest: In Vitro Approaches, Mechanisms of Action Based on Chemical Structure, and Perspectives on Human Therapeutic Use. Pharmaceuticals (Basel) 2024; 17:1449. [PMID: 39598361 PMCID: PMC11597570 DOI: 10.3390/ph17111449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
The Amazon rainforest is an important reservoir of biodiversity, offering vast potential for the discovery of new bioactive compounds from plants. In vitro studies allow for the investigation of biological processes and interventions in a controlled manner, making them fundamental for pharmacological and biotechnological research. These approaches are faster and less costly than in vivo studies, providing standardized conditions that enhance the reproducibility and precision of data. However, in vitro methods have limitations, including the inability to fully replicate the complexity of a living organism and the absence of a complete physiological context. Translating results to in vivo models is not always straightforward, due to differences in pharmacokinetics and biological interactions. In this context, the aim of this literature review is to assess the advantages and disadvantages of in vitro approaches in the search for new drugs from the Amazon, identifying the challenges and limitations associated with these methods and comparing them with in vivo testing. Thus, bioprospecting in the Amazon involves evaluating plant extracts through bioassays to investigate pharmacological, antimicrobial, and anticancer activities. Phenolic compounds and terpenes are frequently identified as the main bioactive agents, exhibiting antioxidant, anti-inflammatory, and antineoplastic activities. Chemical characterization, molecular modifications, and the development of delivery systems, such as nanoparticles, are highlighted to improve therapeutic efficacy. Therefore, the Amazon rainforest offers great potential for the discovery of new drugs; however, significant challenges, such as the standardization of extraction methods and the need for in vivo studies and clinical trials, must be overcome for these compounds to become viable medications.
Collapse
Affiliation(s)
| | | | | | | | - Julio C. Pieczarka
- Center for Advanced Biodiversity Studies, Cell Culture Laboratory, Institute of Biological Sciences, Federal University of Pará/Guamá Science and Technology Park, Avenida Perimetral da Ciência Km 01—Guamá, Belém 66075-750, PA, Brazil; (A.O.d.A.-V.); (O.V.M.d.S.); (M.d.A.M.); (C.Y.N.)
| |
Collapse
|
26
|
Esfandyari-Manesh M, Morshedi B, Joolaie P, Dinarvand R. Self-assembled nanoparticles of alginate and paclitaxel-triphenylphosphonium for mitochondrial apoptosis targeting. Med Oncol 2024; 41:299. [PMID: 39443414 DOI: 10.1007/s12032-024-02540-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Paclitaxel (PTX), an antimitotic drug from the taxanes group, prevents the proliferation of breast cancer cells through mitosis arrest and activation by a cascade of signaling pathways that lead to apoptosis. Mitochondria is one of the important signaling routes for inducing apoptosis. For mitochondria targeting, triphenylphosphonium (TPP) with a delocalized charge and hydrophobic nature was utilized as a moiety to facilitate penetration through a phospholipid membrane of mitochondria. PTX-TPP was synthesized via pH-sensitive ester bond between hydroxyl groups of PTX and carboxylic acid of (4-carboxybutyl) TPP. Then PTX-TPP prodrug encapsulated in alginate nanoparticles, which were self-assembled by the ionotropic complexation technique for enhancement of mitochondrial apoptosis in breast cancer cells. The loading of PTX-TPP conjugation in self-assembled alginate nanoparticles was 16.5% and the particle size of nanoparticles was 123 nm with zeta potential around - 25.8 Mv. The in vitro cytotoxicity and IC50 of PTX-TPP nanoparticles in the growth of MCF7 cancer cell increased 6.3-fold higher than free PTX. The early apoptotic cells and the late apoptotic/necrotic cells for PTX-TPP nanoparticles were 11.6 and 3.9-fold higher than free PTX. This study indicated this mitochondrial-targeted self-assembled nanoparticles can inhibit the tumor cell growth of breast cancer.
Collapse
Affiliation(s)
- Mehdi Esfandyari-Manesh
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Bahar Morshedi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Joolaie
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Li X, Guan W, Liu H, Yuan J, Wang F, Guan B, Chen J, Lu Q, Zhang L, Xu G. Targeting PNPO to suppress tumor growth via inhibiting autophagic flux and to reverse paclitaxel resistance in ovarian cancer. Apoptosis 2024; 29:1546-1563. [PMID: 38615082 PMCID: PMC11416418 DOI: 10.1007/s10495-024-01956-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/15/2024]
Abstract
Our previous study showed that pyridoxine 5'-phosphate oxidase (PNPO) is a tissue biomarker of ovarian cancer (OC) and has a prognostic implication but detailed mechanisms remain unclear. The current study focused on PNPO-regulated lysosome/autophagy-mediated cellular processes and the potential role of PNPO in chemoresistance. We found that PNPO was overexpressed in OC cells and was a prognostic factor in OC patients. PNPO significantly promoted cell proliferation via the regulation of cyclin B1 and phosphorylated CDK1 and shortened the G2M phase in a cell cycle. Overexpressed PNPO enhanced the biogenesis and perinuclear distribution of lysosomes, promoting the degradation of autophagosomes and boosting the autophagic flux. Further, an autolysosome marker LAMP2 was upregulated in OC cells. Silencing LAMP2 suppressed cell growth and induced cell apoptosis. LAMP2-siRNA blocked PNPO action in OC cells, indicating that the function of PNPO on cellular processes was mediated by LAMP2. These data suggest the existence of the PNPO-LAMP2 axis. Moreover, silencing PNPO suppressed xenographic tumor formation. Chloroquine counteracted the promotion effect of PNPO on autophagic flux and inhibited OC cell survival, facilitating the inhibitory effect of PNPO-shRNA on tumor growth in vivo. Finally, PNPO was overexpressed in paclitaxel-resistant OC cells. PNPO-siRNA enhanced paclitaxel sensitivity in vitro and in vivo. In conclusion, PNPO has a regulatory effect on lysosomal biogenesis that in turn promotes autophagic flux, leading to OC cell proliferation, and tumor formation, and is a paclitaxel-resistant factor. These data imply a potential application by targeting PNPO to suppress tumor growth and reverse PTX resistance in OC.
Collapse
Affiliation(s)
- Xin Li
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wencai Guan
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China
| | - Huiqiang Liu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia Yuan
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fanchen Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bin Guan
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Junyu Chen
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qi Lu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Lingyun Zhang
- Department of Medical Oncology, Shanghai Geriatric Medical Center, Shanghai, China.
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
28
|
Xue T, Wang X, Pan X, Liu M, Xu F. PTX promotes breast cancer migration and invasion by recruiting ATF4 to upregulate FGF19. Cell Signal 2024; 122:111309. [PMID: 39053672 DOI: 10.1016/j.cellsig.2024.111309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/03/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Widely-spread among women, breast cancer is a malignancy with fatalities, and chemotherapy is a vital treatment option for it. Recent studies have underscored the potential of chemotherapeutic agents such as paclitaxel, adriamycin, cyclophosphamide, and gemcitabine, among others, in facilitating tumor metastasis, with paclitaxel being extensively researched in this context. The molecular mechanism of these genes and their potential relevance to breast cancer is noteworthy. METHOD Clinical tissue specimens were used to analyze the expression and clinical significance of FGF19 or P-FGFR4 in patients with breast cancer before and after chemotherapy. qRT-PCR, ELISA, immunofluorescence and Western blotting were used to detect the expression level of FGF19 in breast cancer cells. The biological impacts of paclitaxel, FGF19, and ATF4 on breast cancer cells were assessed through CCK8, Transwell, and Western blot assays. The expression of ATF4 in breast cancer cells was determined through database analysis, Western blot analysis, qRT-PCR, and immunofluorescence. The direct interaction between FGF19 and ATF4 was confirmed by a luciferase assay, and Western blotting was used to assess the levels of key proteins in the stress response pathway. To confirm the effects of PTX and FGF19 in vivo, we established a lung metastasis model in nude mice. RESULTS FGF19 expression was increased in breast cancer patients after chemotherapy. Paclitaxel can boost the migration and invasion of breast cancer cells, accompanied by an increase in FGF19 expression. ATF4 might be involved in facilitating the enhancing effect of FGF19 on breast cancer cell migration. Finally, stimulation during paclitaxel treatment could trigger a stress response, influencing the expression of FGF19 and the migration of breast cancer cells. CONCLUSION These data suggest that paclitaxel regulates FGF19 expression through ATF4 and thus promotes breast cancer cell migration and invasion.
Collapse
Affiliation(s)
- Ting Xue
- School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China
| | - Xuezhen Wang
- School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China
| | - Xianjun Pan
- Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China
| | - Mei Liu
- Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China
| | - Faliang Xu
- School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China; Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China.
| |
Collapse
|
29
|
Wang H, Wang X, Wang L, Wang H, Zhang Y. Plant‐Derived Phytochemicals and Their Nanoformulations for Inducing Programed Cell Death in Cancer. ADVANCED THERAPEUTICS 2024; 7. [DOI: 10.1002/adtp.202400197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Indexed: 01/05/2025]
Abstract
AbstractPhytochemicals are a diverse class of compounds found in various plant‐based foods and beverages that have displayed the capacity to exert powerful anticancer effects through the induction of programed cell death (PCD) in malignancies. PCD is a sophisticated process that maintains in upholding tissue homeostasis and eliminating injured or neoplastic cells. Phytochemicals have shown the potential to induce PCD in malignant cells through various mechanisms, including modulation of cell signaling pathways, regulation of reactive oxygen species (ROS), and interaction with critical targets in cells such as DNA. Moreover, recent studies have suggested that nanomaterials loaded with phytochemicals may enhance cell death in tumors, which can also stimulate antitumor immunity. In this review, a comprehensive overview of the current understanding of the anticancer effects of phytochemicals and their potential as a promising approach to cancer therapy, is provided. The impacts of phytochemicals such as resveratrol, curcumin, apigenin, quercetin, and some approved plant‐derived drugs, such as taxanes on the regulation of some types of PCD, including apoptosis, pyroptosis, anoikis, autophagic cell death, ferroptosis, and necroptosis, are discussed. The underlying mechanisms and the potential of nanomaterials loaded with phytochemicals to enhance PCD in tumors are also explained.
Collapse
Affiliation(s)
- Haoyu Wang
- Medical College Xijing University Xi'an Shaanxi 710123 China
- Department of Orthopedics The Second Affiliated Hospital Xi'an Jiaotong University Xi'an Shaanxi 710004 China
| | - Xiaoyang Wang
- Department of Orthopedics The Second Affiliated Hospital Xi'an Jiaotong University Xi'an Shaanxi 710004 China
| | - Long Wang
- Medical College Xijing University Xi'an Shaanxi 710123 China
| | - Haifan Wang
- Department of Orthopedics The Second Affiliated Hospital Xi'an Jiaotong University Xi'an Shaanxi 710004 China
| | - Yuxing Zhang
- Medical College Xijing University Xi'an Shaanxi 710123 China
| |
Collapse
|
30
|
Rashid M, Ramezani M, Molavi O, Ghesmati Z, Baradaran B, Sabzichi M, Ramezani F. Targeting hypoxia-inducible factor 1 alpha augments synergistic effects of chemo/immunotherapy via modulating tumor microenvironment in a breast cancer mouse model. BIOIMPACTS : BI 2024; 15:30424. [PMID: 40256236 PMCID: PMC12008255 DOI: 10.34172/bi.30424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 04/22/2025]
Abstract
Introduction The immunosuppressive context of the tumor microenvironment (TME) is a significant hurdle in breast cancer (BC) treatment. Combinational therapies targeting cancer core signaling pathways involved in the induction of TME immunosuppressive milieu have emerged as a potent strategy to overcome immunosuppression in TME and enhance patient therapeutic outcomes. This study presents compelling evidence that targeting hypoxia-inducible-factor-1 alpha (Hif-1α) alongside chemotherapy and immune-inducing factors leads to substantial anticancer effects through modulation of TME. Methods Chitosan (Cs)/Hif-1alpha siRNA nano-complex was synthesized by siRNA adsorption methods. Nanoparticles were fully characterized using dynamic light scattering and scanning electron microscope. Cs/Hif-1α siRNA cytotoxicity was measured by MTT assay. The anticancer effects of the combinational therapy were assessed in BALB/c bearing 4T1 tumors. qPCR and western blotting were applied to assess the expression of some key genes and proteins involved in the induction of immunosuppression in TME. Results Hif-1α siRNA was successfully loaded in chitosan nanoparticles. Hif-1α siRNA nanocomplexes significantly inhibited the expression of Hif-1α. Triple combination therapy (Paclitaxel (Ptx) + Imiquimod (Imq) + Cs/Hif-1α siRNA) inhibited tumor growth and downregulated cancer progression genes while upregulating cellular-immune-related cytokines. Mice without Cs/Hif-1α siRNA treatments revealed fewer cancer inhibitory effects and more TME immunosuppressive factors. These results suggest that the inhibition of Hif-1α effects synergize with Ptx and Imq to inhibit cancer progression more significantly than other combinational treatments. Conclusion Combining Hif-1α siRNA with Ptx and Imq is promising as a multimodality treatment. It has the potential to attenuate TME inhibitory effects and significantly enhance the immune system's ability to combat tumor cell growth, offering an inspiration of hope in the fight against BC.
Collapse
Affiliation(s)
- Mohsen Rashid
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Ramezani
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ommoleila Molavi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Ghesmati
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Sabzichi
- School of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth, United Kingdom
| | - Fatemeh Ramezani
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
Mohammed SM, Al-Saedi HFS, Mohammed AQ, Amir AA, Radi UK, Sattar R, Ahmad I, Ramadan MF, Alshahrani MY, Balasim HM, Alawadi A. Mechanisms of Bleomycin-induced Lung Fibrosis: A Review of Therapeutic Targets and Approaches. Cell Biochem Biophys 2024; 82:1845-1870. [PMID: 38955925 DOI: 10.1007/s12013-024-01384-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
Pulmonary toxicity is a serious side effect of some specific anticancer drugs. Bleomycin is a well-known anticancer drug that triggers severe reactions in the lungs. It is an approved drug that may be prescribed for the treatment of testicular cancers, Hodgkin's and non-Hodgkin's lymphomas, ovarian cancer, head and neck cancers, and cervical cancer. A large number of experimental studies and clinical findings show that bleomycin can concentrate in lung tissue, leading to massive oxidative stress, alveolar epithelial cell death, the proliferation of fibroblasts, and finally the infiltration of immune cells. Chronic release of pro-inflammatory and pro-fibrotic molecules by immune cells and fibroblasts leads to pneumonitis and fibrosis. Both fibrosis and pneumonitis are serious concerns for patients who receive bleomycin and may lead to death. Therefore, the management of lung toxicity following cancer therapy with bleomycin is a critical issue. This review explains the cellular and molecular mechanisms of pulmonary injury following treatment with bleomycin. Furthermore, we review therapeutic targets and possible promising strategies for ameliorating bleomycin-induced lung injury.
Collapse
Affiliation(s)
- Shaimaa M Mohammed
- Department of Pharmacy, Al- Mustaqbal University College, 51001, Hilla, Babylon, Iraq
| | | | | | - Ahmed Ali Amir
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| | - Usama Kadem Radi
- College of Pharmacy, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Ruaa Sattar
- Al-Hadi University College, Baghdad, 10011, Iraq
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | - Halah Majeed Balasim
- Department of Medical Laboratory Technologies, Al Rafidain University College, Bagdad, Iraq
| | - Ahmed Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq
- College of technical engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of technical engineering, the Islamic University of Babylon, Hilla, Iraq
| |
Collapse
|
32
|
Fu B, Lou Y, Wu P, Lu X, Xu C. Emerging role of necroptosis, pyroptosis, and ferroptosis in breast cancer: New dawn for overcoming therapy resistance. Neoplasia 2024; 55:101017. [PMID: 38878618 PMCID: PMC11225858 DOI: 10.1016/j.neo.2024.101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 07/08/2024]
Abstract
Breast cancer (BC) is one of the primary causes of death in women worldwide. The challenges associated with adverse outcomes have increased significantly, and the identification of novel therapeutic targets has become increasingly urgent. Regulated cell death (RCD) refers to a type of cell death that can be regulated by several different biomacromolecules, which is distinctive from accidental cell death (ACD). In recent years, apoptosis, a representative RCD pathway, has gained significance as a target for BC medications. However, tumor cells exhibit avoidance of apoptosis and result in treatment resistance, which emphasizes further studies devoted to alternative cell death processes, namely necroptosis, pyroptosis, and ferroptosis. Here, in this review, we focus on summarizing the crucial signaling pathways of these RCD in BC. We further discuss the molecular mechanism and potentiality in clinical application of several prospective drugs, nanoparticles, and other small compounds targeting different RCD subroutines of BC. We also discuss the benefits of modulating RCD processes on drug resistance and the advantages of combining RCD modulators with conventional treatments in BC. This review will deepen our understanding of the relationship between RCD and BC, and shed new light on future directions to attack cancer vulnerabilities with RCD modulators for therapeutic purposes.
Collapse
Affiliation(s)
- Bifei Fu
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China
| | - YuMing Lou
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China
| | - Pu Wu
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China
| | - Xiaofeng Lu
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China.
| | - Chaoyang Xu
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China; Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China.
| |
Collapse
|
33
|
Zeng J, Jia X. Systems Theory-Driven Framework for AI Integration into the Holistic Material Basis Research of Traditional Chinese Medicine. ENGINEERING 2024; 40:28-50. [DOI: 10.1016/j.eng.2024.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
|
34
|
He L, Tian Y, Liu Q, Bao J, Ding RB. Antidepressant Sertraline Synergistically Enhances Paclitaxel Efficacy by Inducing Autophagy in Colorectal Cancer Cells. Molecules 2024; 29:3733. [PMID: 39202813 PMCID: PMC11357241 DOI: 10.3390/molecules29163733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide. It is important to discover new therapeutic regimens for treating CRC. Depression is known to be an important complication of cancer diseases. Repurposing antidepressants into anticancer drugs and exploring the combinational efficacy of antidepressants and chemotherapy are potentially good options for developing CRC treatment regimens. In this study, sertraline, an antidepressant drug, and paclitaxel, an anticancer drug, were chosen to study their antitumor effects in the treatment of colorectal cancer, alone or in combination, and to explore their underlying mechanisms. The data showed that sertraline exerted a dose-dependent cytotoxic effect on MC38 and CT26 colorectal cancer cell lines with IC50 values of 10.53 μM and 7.47 μM, respectively. Furthermore, sertraline synergistically sensitized chemotherapeutic agent paclitaxel efficacy in CRC cells with combination index (CI) values at various concentrations consistently lower than 1. Sertraline remarkably augmented paclitaxel-induced autophagy by increasing autophagosome formation indicated by elevated LC3-II/I ratio and promoting autophagic flux by degrading autophagy cargo receptor SQSTM1/p62, which may explain the synergistically cytotoxic effect of sertraline and paclitaxel combination therapy on CRC cells. This study provides important evidence to support repurposing sertraline as an anticancer agent and suggests a novel combinational regimen for effectively treating CRC as well as in the simultaneous treatment of CRC and depression.
Collapse
Affiliation(s)
- Leping He
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (L.H.); (Y.T.); (Q.L.); (J.B.)
| | - Yuxi Tian
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (L.H.); (Y.T.); (Q.L.); (J.B.)
| | - Qingqing Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (L.H.); (Y.T.); (Q.L.); (J.B.)
| | - Jiaolin Bao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (L.H.); (Y.T.); (Q.L.); (J.B.)
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Ren-Bo Ding
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (L.H.); (Y.T.); (Q.L.); (J.B.)
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| |
Collapse
|
35
|
Chen F, Lin J, Kang R, Tang D, Liu J. Alkaliptosis induction counteracts paclitaxel-resistant ovarian cancer cells via ATP6V0D1-mediated ABCB1 inhibition. Mol Carcinog 2024; 63:1515-1527. [PMID: 38751020 DOI: 10.1002/mc.23741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/23/2024] [Accepted: 05/04/2024] [Indexed: 07/10/2024]
Abstract
Paclitaxel serves as the cornerstone chemotherapy for ovarian cancer, yet its prolonged administration frequently culminates in drug resistance, presenting a substantial challenge. Here we reported that inducing alkaliptosis, rather than apoptosis or ferroptosis, effectively overcomes paclitaxel resistance. Mechanistically, ATPase H+ transporting V0 subunit D1 (ATP6V0D1), a key regulator of alkaliptosis, plays a pivotal role by mediating the downregulation of ATP-binding cassette subfamily B member 1 (ABCB1), a multidrug resistance protein. Both ATP6V0D1 overexpression through gene transfection and pharmacological enhancement of ATP6V0D1 protein stability using JTC801 effectively inhibit ABCB1 upregulation, resulting in growth inhibition in drug-resistant cells. Additionally, increasing intracellular pH to alkaline (pH 8.5) via sodium hydroxide application suppresses ABCB1 expression, whereas reducing the pH to acidic conditions (pH 6.5) with hydrochloric acid amplifies ABCB1 expression in drug-resistant cells. Collectively, these results indicate a potentially effective therapeutic strategy for targeting paclitaxel-resistant ovarian cancer by inducing ATP6V0D1-dependent alkaliptosis.
Collapse
Affiliation(s)
- Fangquan Chen
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Junhao Lin
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
36
|
Chen T, Wei Y, Yin S, Li W, Wang Y, Pi C, Zeng M, Wang X, Chen L, Liu F, Fu S, Zhao L. Construction and Evaluation of BAL-PTX Co-Loaded Lipid Nanosystem for Promoting the Anti-Lung Cancer Efficacy of Paclitaxel and Reducing the Toxicity of Chemotherapeutic Drugs. Int J Nanomedicine 2024; 19:7775-7797. [PMID: 39099795 PMCID: PMC11297572 DOI: 10.2147/ijn.s474158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/19/2024] [Indexed: 08/06/2024] Open
Abstract
Purpose The present study aimed to develop a lipid nanoplatform, denoted as "BAL-PTX-LN", co-loaded with chiral baicalin derivatives (BAL) and paclitaxel (PTX) to promote the anti-lung cancer efficacy of paclitaxel and reduce the toxicity of chemotherapeutic drugs. Methods BAL-PTX-LN was optimized through central composite design based on a single-factor experiments. BAL-PTX-LN was evaluated by TEM, particle size, encapsulation efficiency, hemolysis rate, release kinetics and stability. And was evaluated by pharmacokinetics and the antitumor efficacy studied both in vitro and in vivo. The in vivo safety profile of the formulation was assessed using hematoxylin and eosin (HE) staining. Results BAL-PTX-LN exhibited spherical morphology with a particle size of 134.36 ± 3.18 nm, PDI of 0.24 ± 0.02, and with an encapsulation efficiency exceeding 90%, BAL-PTX-LN remained stable after 180 days storage. In vitro release studies revealed a zero-order kinetic model of PTX from the liposomal formulation. No hemolysis was observed in the preparation group. Pharmacokinetic analysis of PTX in the BAL-PTX-LN group revealed an approximately three-fold higher bioavailability and twice longer t1/2 compared to the bulk drug group. Furthermore, the IC50 of BAL-PTX-LN decreased by 2.35 times (13.48 μg/mL vs 31.722 μg/mL) and the apoptosis rate increased by 1.82 times (29.38% vs 16.13%) at 24 h compared to the PTX group. In tumor-bearing nude mice, the BAL-PTX-LN formulation exhibited a two-fold higher tumor inhibition rate compared to the PTX group (62.83% vs 29.95%), accompanied by a ten-fold decrease in Ki67 expression (4.26% vs 45.88%). Interestingly, HE staining revealed no pathological changes in tissues from the BAL-PTX-LN group, whereas tissues from the PTX group exhibited pathological changes and tumor cell infiltration. Conclusion BAL-PTX-LN improves the therapeutic effect of poorly soluble chemotherapeutic drugs on lung cancer, which is anticipated to emerge as a viable therapeutic agent for lung cancer in clinical applications.
Collapse
Affiliation(s)
- Tao Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University; Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University; Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Suyu Yin
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University; Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Wen Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University; Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Yuxiang Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University; Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University; Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Mingtang Zeng
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xiaodong Wang
- Department of Hepatobiliary Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Ligang Chen
- Department of neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Furong Liu
- Department of Oncology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Shaozhi Fu
- Department of Oncology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Ling Zhao
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University; Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| |
Collapse
|
37
|
Eluu SC, Obayemi JD, Yiporo D, Salifu AA, Oko AO, Onwudiwe K, Aina T, Oparah JC, Ezeala CC, Etinosa PO, Osafo SA, Ugwu MC, Esimone CO, Soboyejo WO. Luteinizing Hormone-Releasing Hormone (LHRH)-Conjugated Cancer Drug Delivery from Magnetite Nanoparticle-Modified Microporous Poly-Di-Methyl-Siloxane (PDMS) Systems for the Targeted Treatment of Triple Negative Breast Cancer Cells. J Funct Biomater 2024; 15:209. [PMID: 39194647 DOI: 10.3390/jfb15080209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
This study presents LHRH conjugated drug delivery via a magnetite nanoparticle-modified microporous Poly-Di-Methyl-Siloxane (PDMS) system for the targeted suppression of triple-negative breast cancer cells. First, the MNP-modified PDMS devices are fabricated before loading with targeted and untargeted cancer drugs. The release kinetics from the devices are then studied before fitting the results to the Korsmeyer-Peppas model. Cell viability and cytotoxicity assessments are then presented using results from the Alamar blue assay. Apoptosis induction is then elucidated using flow cytometry. The in vitro drug release studies demonstrated a sustained and controlled release of unconjugated drugs (Prodigiosin and paclitaxel) and conjugated drugs [LHRH conjugated paclitaxel (PTX+LHRH) and LHRH-conjugated prodigiosin (PG+LHRH)] from the magnetite nanoparticle modified microporous PDMS devices for 30 days at 37 °C, 41 °C, and 44 °C. At 24, 48, 72, and 96 h, the groups loaded with conjugated drugs (PG+LHRH and PTX+LHRH) had a significantly higher (p < 0.05) percentage cell growth inhibition than the groups loaded with unconjugated drugs (PG and PTX). Additionally, throughout the study, the MNP+PDMS (without drug) group exhibited a steady rise in the percentage of cell growth inhibition. The flow cytometry results revealed a high incidence of early and late-stage apoptosis. The implications of the results are discussed for the development of biomedical devices for the localized and targeted release of cancer drugs that can prevent cancer recurrence following tumor resection.
Collapse
Affiliation(s)
- Stanley C Eluu
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Ifite Awka 420110, Nigeria
- Department of Biotechnology, Ebonyi State University, Abakaliki 480101, Nigeria
| | - John D Obayemi
- Department of Mechanical and Material Science Engineering, Higgins Lab, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA 01609, USA
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Gateway Park Life Sciences and Bioengineering Centre, 60 Prescott Street, Worcester, MA 01609, USA
| | - Danyuo Yiporo
- Department of Mechanical Engineering, Ashesi University, Berekuso PMB CT3, Ghana
- Department of Mechanical Engineering, Academic City University College, Haatso-Accra P.O. Box AD 421, Ghana
| | - Ali A Salifu
- Department of Engineering, Morrissey College of Arts and Science, Boston College, Chestnut Hill, MA 02467, USA
| | - Augustine O Oko
- Department of Biotechnology, Ebonyi State University, Abakaliki 480101, Nigeria
- Department of Biology and Biotechnology, David Umahi Federal University of Health Sciences, Uburu 480101, Nigeria
| | - Killian Onwudiwe
- Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Toyin Aina
- Department of Biomedical Engineering, Collage of Engineering, Afe Babalola University, KM 8.5 Afe Babalola Way, Ado-Ekiti 360001, Nigeria
| | - Josephine C Oparah
- Department of Material Science, African University of Science and Technology, Km 10 Airport Road, Abuja 900107, Nigeria
| | - Chukwudi C Ezeala
- Department of Material Science, African University of Science and Technology, Km 10 Airport Road, Abuja 900107, Nigeria
- Department of Biotechnology, Worcester State University, Worcester, MA 01602, USA
| | - Precious O Etinosa
- Department of Mechanical and Material Science Engineering, Higgins Lab, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA 01609, USA
| | - Sarah A Osafo
- Department of Material Science and Engineering, University of Ghana, Legon, Accra P.O. Box LG 1181, Ghana
- Biomaterial Science Department, Dental School, College of Health Sciences, University of Ghana, Korle bu, Accra P.O. Box KB 52, Ghana
| | - Malachy C Ugwu
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Ifite Awka 420110, Nigeria
| | - Charles O Esimone
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Ifite Awka 420110, Nigeria
| | - Winston O Soboyejo
- Department of Mechanical and Material Science Engineering, Higgins Lab, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA 01609, USA
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Gateway Park Life Sciences and Bioengineering Centre, 60 Prescott Street, Worcester, MA 01609, USA
- Department of Engineering, SUNY Polytechnic Institute,100 Seymour Rd, Utica, NY 13502, USA
| |
Collapse
|
38
|
Saadh MJ, Mustafa MA, Malathi H, Ahluwalia G, Kaur S, Al-Dulaimi MAAH, Alubiady MHS, Zain Al-Abdeen SH, Shakier HG, Ali MS, Ahmad I, Abosaoda MK. Targeting the pancreatic tumor microenvironment by plant-derived products and their nanoformulations. Med Oncol 2024; 41:201. [PMID: 39001987 DOI: 10.1007/s12032-024-02443-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/27/2024] [Indexed: 07/15/2024]
Abstract
Pancreatic cancer remains a significant health issue with limited treatment options. The tumor stroma, a complex environment made up of different cells and proteins, plays a crucial role in tumor growth and chemoresistance. Targeting tumor stroma, consisting of diverse non-tumor cells such as fibroblasts, extracellular matrix (ECM), immune cells, and also pre-vascular cells is encouraging for remodeling solid cancers, such as pancreatic cancer. Remodeling the stroma of pancreas tumors can be suggested as a strategy for reducing resistance to chemo/immunotherapy. Several studies have shown that phytochemicals from plants can affect the tumor environment and have anti-cancer properties. By targeting key pathways involved in stromal activation, phytochemicals may disrupt communication between the tumor and stroma and make tumor cells more sensitive to different treatments. Additionally, phytochemicals have immunomodulatory and anti-angiogenic properties, all of which contribute to their potential in treating pancreatic cancer. This review will provide a detailed look at how phytochemicals impact the tumor stroma and their effects on pancreatic tumor growth, spread, and response to treatment. It will also explore the potential of combining phytochemicals with other treatment options like chemotherapy, immunotherapy, and radiation.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Baghdad, Iraq
| | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Gunveen Ahluwalia
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, 303012, Rajasthan, India
| | - Sumeet Kaur
- Department of Applied Sciences, Chandigarh Engineering Colleges, Chandigarh Group of Colleges, Jhanjeri, 140307, Mohali, Punjab, India
| | | | | | | | | | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | - Munther Kadhim Abosaoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
39
|
Kankılıç NA, Küçükler S, Gür C, Akarsu SA, Akaras N, Şimşek H, İleritürk M, Kandemir FM. Naringin protects against paclitaxel-induced toxicity in rat testicular tissues by regulating genes in pro-inflammatory cytokines, oxidative stress, apoptosis, and JNK/MAPK signaling pathways. J Biochem Mol Toxicol 2024; 38:e23751. [PMID: 38879801 DOI: 10.1002/jbt.23751] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/18/2024] [Accepted: 05/31/2024] [Indexed: 10/11/2024]
Abstract
Paclitaxel (PTX), which is actively used in the treatment of many types of cancer, has a toxic effect by causing increased oxidative stress in testicular tissues. Naringin (NRG) is a natural flavonoid found in plants, and its antioxidant properties are at the forefront. This study aims to investigate the protective feature of NRG in PTX-induced testicular toxicity. Thirty-five male Sprague rats were divided into five groups: control, NRG, PTX, PTX + NRG50, and PTX + NRG100. Rats were administered PTX (2 mg/kg, BW) intraperitoneally once daily for the first 5 days. Then, between the 6th and 14th days, NRG (50 and 100 mg/kg) was administered orally once a day. NRG reduced PTX-induced lipid peroxidation and increased testicular tissue antioxidant capacity (superoxide dismutase, catalase, glutathione peroxidase, and glutathione). While NRG reduces the mRNA expression levels of nuclear factor kappa B, tumor necrosis factor-alpha, interleukin-1 beta, cyclooxygenase-2, interleukin-6, inducible-nitric oxide synthase, mitogen-activated protein kinase 14 (MAPK)14, MAPK15, c-Jun N-terminal kinase, P53, Apaf1, Caspase3, Caspase6, Caspase9, and Bax in testicular tissues; it caused an increase in Nrf2, HO-1, NQO1 and Bcl-2 levels. NRG also improved the structural and functional integrity of testicular tissue disrupted by PTX. PTX-induced sperm damage was alleviated by NRG. NRG showed a protective effect by alleviating the PTX-induced testicular toxicity by increasing oxidative stress, inflammation, apoptosis, and autophagy.
Collapse
Affiliation(s)
| | - Sefa Küçükler
- Department of Veterinary Biochemistry, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Cihan Gür
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Atatürk University, Erzurum, Turkey
| | - Serkan Ali Akarsu
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Nurhan Akaras
- Department of Histology and Embryology, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Hasan Şimşek
- Department of Physiology, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Mustafa İleritürk
- Department of Animal Science, Horasan Vocational College, Atatürk University, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| |
Collapse
|
40
|
Jiang H, Li X, Zhou F, Xi Y, Xu G. HMGA2 promotes resistance against paclitaxel by targeting the p53 signaling pathway in colorectal cancer cells. Heliyon 2024; 10:e31431. [PMID: 38845972 PMCID: PMC11154217 DOI: 10.1016/j.heliyon.2024.e31431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 04/27/2024] [Accepted: 05/15/2024] [Indexed: 06/09/2024] Open
Abstract
Colorectal cancer is one of the most common malignancies and ranks second in terms of cancer-related mortality worldwide due to its metastasis, drug resistance, and reoccurrence. High-mobility gene group A2 (HMGA2) is overexpressed in colorectal cancer, contributing to the aggressiveness of tumor malignance, and promotes drug resistance in many types of cancer. However, the underlying molecular mechanism of HMGA2 is yet to be elucidated. In this study, we showed that HMGA2 is overexpressed in colorectal cancer tissue, and knockdown of HMGA2 significantly inhibited colorectal cancer cell growth and migratory capability. HMGA2 regulates the cancer cell response to a widely used anti-cancer drug, paclitaxel (PTX). HMGA2 knockdown increased cell death, whereas HMGA2 overexpression decreased cell death after PTX treatment. Furthermore, lower reactive oxygen species (ROS) levels and mitochondrial potential were detected in HMGA2 overexpression cells after PTX treatment. However, HMGA2 knockdown produced the opposite effect. RNA sequencing showed a p53 signaling pathway-dependent regulation in HMGA2 knockdown cells. Combined with p53 inhibitors and HMGA2 knockdown, a synergetic effect of more cell death was observed in colorectal cancer cells after PTX treatment. Thus, we showed that HMGA2 can activate p53 signaling to regulate colorectal cancer cell death after PTX treatment. Altogether, our results reveal novel insights into the molecular mechanisms underlying HMGA2-mediated cancer cell resistance against PTX and highlight the potential of targeting HMGA2 and p53 signaling for the therapeutic investigation of colorectal cancer.
Collapse
Affiliation(s)
- Haizhong Jiang
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China
- Department of Gastroenterology, First Affiliated Hospital, Ningbo University, Ningbo, Zhejiang, 315000, China
| | - Xueying Li
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China
- Department of Gastroenterology, First Affiliated Hospital, Ningbo University, Ningbo, Zhejiang, 315000, China
| | - Feng Zhou
- Department of Gastroenterology, First Affiliated Hospital, Ningbo University, Ningbo, Zhejiang, 315000, China
| | - Yang Xi
- Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Guoqiang Xu
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China
| |
Collapse
|
41
|
Luo D, He F, Liu J, Dong X, Fang M, Liang Y, Chen M, Gui X, Wang W, Zeng L, Fan X, Wu Q. Pseudolaric acid B suppresses NSCLC progression through the ROS/AMPK/mTOR/autophagy signalling pathway. Biomed Pharmacother 2024; 175:116614. [PMID: 38670047 DOI: 10.1016/j.biopha.2024.116614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Pseudolaric acid B (PAB), an acid isolated from the roots of Pseudolarix kaempferi gorden, has shown antitumour effects through multiple mechanisms of action. The objective of this study was to investigate the anticancer effect of PAB on non-small cell lung cancer (NSCLC) and its underlying mechanism. In our experiments, we observed that PAB decreased cell viability, inhibited colony formation, induced cell cycle arrest, impeded scratch healing, and increased apoptosis in H1975 and H1650 cells. Additionally, PAB treatment enhanced the fluorescence intensity of MDC staining in NSCLC cells, upregulated the protein expression of microtubule-associated protein light chain 3 II (LC3 II), and downregulated the expression of sequestosome 1 (SQSTM1/P62). Combined treatment with PAB and chloroquine (CQ) increased the protein expression levels of LC3 II and P62 while decreasing the apoptosis of H1975 and H1650 cells. Moreover, treatment with PAB led to significant mTOR inhibition and AMPK activation. PAB combined with compound C (CC) inhibited autophagy and apoptosis. Furthermore, PAB treatment increased intracellular reactive oxygen species (ROS) levels in NSCLC cells, which correlated with the modulation of the AMPK/mTOR signalling pathway and was associated with autophagy and apoptosis. Finally, we validated the antitumour growth activity and mechanism of PAB in vivo using athymic nude mice bearing H1975 tumour cells. In conclusion, our findings suggest that PAB can induce apoptosis and autophagic cell death in NSCLC through the ROS-triggered AMPK/mTOR signalling pathway, making it a promising candidate for future NSCLC treatment.
Collapse
Affiliation(s)
- Dan Luo
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China; Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China; Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China
| | - Fang He
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China; Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China
| | - Jingyun Liu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China; Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China
| | - Xueting Dong
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China; Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China
| | - Mengying Fang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China; Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China
| | - Yuling Liang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China; Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China
| | - Mengqin Chen
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China; Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China
| | - Xuemei Gui
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China; Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China
| | - Wenjun Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China; Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China
| | - Li Zeng
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China.
| | - Xianming Fan
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China; Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646099, China.
| | - Qibiao Wu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong University of Technology, Guangdong, Guangzhou 510520, China; Zhuhai MUST Science and Technology Research Institute, Guangdong, Zhuhai 51900, China.
| |
Collapse
|
42
|
Bae S, Bae S, Kim HS, Lim YJ, Kim G, Park IC, So KA, Kim TJ, Lee JH. Deguelin Restores Paclitaxel Sensitivity in Paclitaxel-Resistant Ovarian Cancer Cells via Inhibition of the EGFR Signaling Pathway. Cancer Manag Res 2024; 16:507-525. [PMID: 38827785 PMCID: PMC11144006 DOI: 10.2147/cmar.s457221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
Background Ovarian cancer is one of women's malignancies with the highest mortality among gynecological cancers. Paclitaxel is used in first-line ovarian cancer chemotherapy. Research on paclitaxel-resistant ovarian cancer holds significant clinical importance. Methods Cell viability and flow cytometric assays were conducted at different time and concentration points of deguelin and paclitaxel treatment. Immunoblotting was performed to assess the activation status of key signaling molecules important for cell survival and proliferation following treatment with deguelin and paclitaxel. The fluo-3 acetoxymethyl assay for P-glycoprotein transport activity assay and cell viability assay in the presence of N-acetyl-L-cysteine were also conducted. Results Cell viability and flow cytometric assays demonstrated that deguelin resensitized paclitaxel in a dose- and time-dependent manner. Cotreatment with deguelin and paclitaxel inhibited EGFR and its downstream signaling molecules, including AKT, ERK, STAT3, and p38 MAPK, in SKOV3-TR cells. Interestingly, cotreatment with deguelin and paclitaxel suppressed the expression level of EGFR via the lysosomal degradation pathway. Cotreatment did not affect the expression and function of P-glycoprotein. N-acetyl-L-cysteine failed to restore cell cytotoxicity when used in combination with deguelin and paclitaxel in SKOV3-TR cells. The expression of BCL-2, MCL-1, and the phosphorylation of the S155 residue of BAD were downregulated. Moreover, inhibition of paclitaxel resistance by deguelin was also observed in HeyA8-MDR cells. Conclusion Our research showed that deguelin effectively suppresses paclitaxel resistance in SKOV3-TR ovarian cancer cells by downregulating the EGFR and its downstream signaling pathway and modulating the BCL-2 family proteins. Furthermore, deguelin exhibits inhibitory effects on paclitaxel resistance in HeyA8-MDR ovarian cancer cells, suggesting a potential mechanism for paclitaxel resensitization that may not be cell-specific. These findings suggest that deguelin holds promise as an anticancer therapeutic agent for overcoming chemoresistance in ovarian cancer.
Collapse
Affiliation(s)
- Seunghee Bae
- Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sowon Bae
- Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hee Su Kim
- Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ye Jin Lim
- Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Gyeongmi Kim
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, 01812, Republic of Korea
| | - In-Chul Park
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, 01812, Republic of Korea
| | - Kyeong A So
- Department of Obstetrics and Gynecology, Konkuk University School of Medicine, Seoul, 05030, Republic of Korea
| | - Tae Jin Kim
- Department of Obstetrics and Gynecology, Konkuk University School of Medicine, Seoul, 05030, Republic of Korea
| | - Jae Ho Lee
- Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| |
Collapse
|
43
|
Yang R, Zhang H, Chen Z, Zhang T, Wei P, Liang H, He Y, Zheng C, Wang X, Zhang Y. Drug resistance‑related gene targets and molecular mechanisms in the A2780/Taxol‑resistant epithelial ovarian cancer cell line. Oncol Lett 2024; 27:232. [PMID: 38586210 PMCID: PMC10996034 DOI: 10.3892/ol.2024.14365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/08/2024] [Indexed: 04/09/2024] Open
Abstract
Epithelial ovarian cancer (EOC) is a fatal gynecological malignant tumor with a low 5-year survival rate. The use of the first-line chemotherapeutic drug, paclitaxel, for the treatment of EOC is associated with resistance, often leading to treatment failure. The present study investigated the gene targets in an A2780 paclitaxel-resistant EOC cell line (A2780/Taxol), and the potential underlying mechanisms using transcriptome sequencing technology and bioinformatics analysis. The transcriptome of the A2780/Taxol cell line was sequenced, and 498 differentially expressed genes were obtained contained in the Gene Expression Omnibus dataset. Further bioinformatics analysis revealed that matrix metalloproteinase 1 (MMP1), zyxin (ZYX) and Unc-5 netrin receptor C (UNC5C) may be gene targets related to paclitaxel resistance. Moreover, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis indicated that a potential mechanism associated with paclitaxel resistance was related to cell migration. Furthermore, the expression levels of MMP1, ZYX and UNC5C were verified using western blotting, immunofluorescence and immunohistochemistry in vitro. The results revealed that the expression levels of MMP1 and ZYX were significantly increased in A2780/Taxol cells, while UNC5C expression was significantly decreased, which was consistent with the results of the transcriptome sequencing. The present study demonstrated that MMP1, ZYX and UNC5C may be the gene targets associated with paclitaxel resistance in EOC. These genes have potential to be used as molecular markers for EOC drug therapy, targeted elimination of drug resistance, and evaluation of treatment efficacy and patient prognosis.
Collapse
Affiliation(s)
- Ruihui Yang
- Department of Cell Biology and Medical Genetics, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Huainian Zhang
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zexin Chen
- Department of Cell Biology and Medical Genetics, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Tao Zhang
- Department of Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Peng Wei
- Department of Physiology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Huaguo Liang
- Department of Cell Biology and Medical Genetics, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Yaoyao He
- Department of Cell Biology and Medical Genetics, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Changtao Zheng
- Department of Cell Biology and Medical Genetics, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Xicheng Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Yongli Zhang
- Department of Cell Biology and Medical Genetics, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
44
|
Mathes D, Macedo LB, Pieta TB, Maia BC, Rodrigues OED, Leal JG, Wendt M, Rolim CMB, Mitjans M, Nogueira-Librelotto DR. Co-Delivery of an Innovative Organoselenium Compound and Paclitaxel by pH-Responsive PCL Nanoparticles to Synergistically Overcome Multidrug Resistance in Cancer. Pharmaceutics 2024; 16:590. [PMID: 38794252 PMCID: PMC11124783 DOI: 10.3390/pharmaceutics16050590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
In this study, we designed the association of the organoselenium compound 5'-Seleno-(phenyl)-3'-(ferulic-amido)-thymidine (AFAT-Se), a promising innovative nucleoside analogue, with the antitumor drug paclitaxel, in poly(ε-caprolactone) (PCL)-based nanoparticles (NPs). The nanoprecipitation method was used, adding the lysine-based surfactant, 77KS, as a pH-responsive adjuvant. The physicochemical properties presented by the proposed NPs were consistent with expectations. The co-nanoencapsulation of the bioactive compounds maintained the antioxidant activity of the association and evidenced greater antiproliferative activity in the resistant/MDR tumor cell line NCI/ADR-RES, both in the monolayer/two-dimensional (2D) and in the spheroid/three-dimensional (3D) assays. Hemocompatibility studies indicated the safety of the nanoformulation, corroborating the ability to spare non-tumor 3T3 cells and human mononuclear cells of peripheral blood (PBMCs) from cytotoxic effects, indicating its selectivity for the cancerous cells. Furthermore, the synergistic antiproliferative effect was found for both the association of free compounds and the co-encapsulated formulation. These findings highlight the antitumor potential of combining these bioactives, and the proposed nanoformulation as a potentially safe and effective strategy to overcome multidrug resistance in cancer therapy.
Collapse
Affiliation(s)
- Daniela Mathes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (D.M.); (L.B.M.); (B.C.M.); (C.M.B.R.)
- Laboratório de Testes e Ensaios Farmacêuticos In Vitro, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil;
| | - Letícia Bueno Macedo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (D.M.); (L.B.M.); (B.C.M.); (C.M.B.R.)
- Laboratório de Engenharia e Processos Químicos, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil
| | - Taís Baldissera Pieta
- Laboratório de Testes e Ensaios Farmacêuticos In Vitro, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil;
| | - Bianca Costa Maia
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (D.M.); (L.B.M.); (B.C.M.); (C.M.B.R.)
- Laboratório de Testes e Ensaios Farmacêuticos In Vitro, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil;
| | - Oscar Endrigo Dorneles Rodrigues
- Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (O.E.D.R.); (J.G.L.); (M.W.)
| | - Julliano Guerin Leal
- Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (O.E.D.R.); (J.G.L.); (M.W.)
| | - Marcelo Wendt
- Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (O.E.D.R.); (J.G.L.); (M.W.)
| | - Clarice Madalena Bueno Rolim
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (D.M.); (L.B.M.); (B.C.M.); (C.M.B.R.)
- Laboratório de Testes e Ensaios Farmacêuticos In Vitro, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil;
| | - Montserrat Mitjans
- Departament de Bioquimica i Fisiologia, Facultat de Farmacia i Ciències de l’Alimentaciò, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Daniele Rubert Nogueira-Librelotto
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil; (D.M.); (L.B.M.); (B.C.M.); (C.M.B.R.)
- Laboratório de Testes e Ensaios Farmacêuticos In Vitro, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria 97105-900, Brazil;
| |
Collapse
|
45
|
Hsu CY, Mustafa MA, Kumar A, Pramanik A, Sharma R, Mohammed F, Jawad IA, Mohammed IJ, Alshahrani MY, Ali Khalil NAM, Shnishil AT, Abosaoda MK. Exploiting the immune system in hepatic tumor targeting: Unleashing the potential of drugs, natural products, and nanoparticles. Pathol Res Pract 2024; 256:155266. [PMID: 38554489 DOI: 10.1016/j.prp.2024.155266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 04/01/2024]
Abstract
Hepatic tumors present a formidable challenge in cancer therapeutics, necessitating the exploration of novel treatment strategies. In recent years, targeting the immune system has attracted interest to augment existing therapeutic efficacy. The immune system in hepatic tumors includes numerous cells with diverse actions. CD8+ T lymphocytes, T helper 1 (Th1) CD4+ T lymphocytes, alternative M1 macrophages, and natural killer (NK) cells provide the antitumor immunity. However, Foxp3+ regulatory CD4+ T cells (Tregs), M2-like tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs) are the key immune inhibitor cells. Tumor stroma can also affect these interactions. Targeting these cells and their secreted molecules is intriguing for eliminating malignant cells. The current review provides a synopsis of the immune system components involved in hepatic tumor expansion and highlights the molecular and cellular pathways that can be targeted for therapeutic intervention. It also overviews the diverse range of drugs, natural products, immunotherapy drugs, and nanoparticles that have been investigated to manipulate immune responses and bolster antitumor immunity. The review also addresses the potential advantages and challenges associated with these approaches.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 71710, Taiwan
| | | | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Atreyi Pramanik
- Institute of Pharma Sciences and Research, Chandigarh University, Mohali, India
| | - Rajiv Sharma
- Institute of Pharma Sciences and Research, Chandigarh University, Mohali, India
| | - Faraj Mohammed
- Department of Pharmacy, Al-Manara College for Medical Sciences, Maysan, Iraq
| | | | - Imad Jasim Mohammed
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia.
| | | | | | - Munther Kadhim Abosaoda
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| |
Collapse
|
46
|
Lozon L, Ramadan WS, Kawaf RR, Al-Shihabi AM, El-Awady R. Decoding cell death signalling: Impact on the response of breast cancer cells to approved therapies. Life Sci 2024; 342:122525. [PMID: 38423171 DOI: 10.1016/j.lfs.2024.122525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/04/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Breast cancer is a principal cause of cancer-related mortality in female worldwide. While many approved therapies have shown promising outcomes in treating breast cancer, understanding the intricate signalling pathways controlling cell death is crucial for optimizing the treatment outcome. A growing body of evidence has unveiled the aberrations in multiple cell death pathways across diverse cancer types, highlighting these pathways as appealing targets for therapeutic interventions. In this review, we provide a comprehensive overview of the current state of knowledge on the cell death signalling mechanisms with a particular focus on their impact on the response of breast cancer cells to approved therapies. Additionally, we discuss the potentials of combination therapies that exploit the synergy between approved drugs and therapeutic agents targeting modulators of cell death pathways.
Collapse
Affiliation(s)
- Lama Lozon
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Wafaa S Ramadan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Rawan R Kawaf
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Aya M Al-Shihabi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Raafat El-Awady
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
47
|
Gao F, You X, Yang L, Zou X, Sui B. Boosting immune responses in lung tumor immune microenvironment: A comprehensive review of strategies and adjuvants. Int Rev Immunol 2024; 43:280-308. [PMID: 38525925 DOI: 10.1080/08830185.2024.2333275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/12/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024]
Abstract
The immune system has a substantial impact on the growth and expansion of lung malignancies. Immune cells are encompassed by a stroma comprising an extracellular matrix (ECM) and different cells like stromal cells, which are known as the tumor immune microenvironment (TIME). TME is marked by the presence of immunosuppressive factors, which inhibit the function of immune cells and expand tumor growth. In recent years, numerous strategies and adjuvants have been developed to extend immune responses in the TIME, to improve the efficacy of immunotherapy. In this comprehensive review, we outline the present knowledge of immune evasion mechanisms in lung TIME, explain the biology of immune cells and diverse effectors on these components, and discuss various approaches for overcoming suppressive barriers. We highlight the potential of novel adjuvants, including toll-like receptor (TLR) agonists, cytokines, phytochemicals, nanocarriers, and oncolytic viruses, for enhancing immune responses in the TME. Ultimately, we provide a summary of ongoing clinical trials investigating these strategies and adjuvants in lung cancer patients. This review also provides a broad overview of the current state-of-the-art in boosting immune responses in the TIME and highlights the potential of these approaches for improving outcomes in lung cancer patients.
Collapse
Affiliation(s)
- Fei Gao
- Department of Oncology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Xiaoqing You
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Liu Yang
- Department of Oncology, Da Qing Long Nan Hospital, Daqing, Heilongjiang Province, China
| | - Xiangni Zou
- Department of Nursing, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Bowen Sui
- Department of Oncology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| |
Collapse
|
48
|
Wang ZQ, Wu ZX, Wang ZP, Bao JX, Wu HD, Xu DY, Li HF, Xu YY, Wu RX, Dai XX. Pan-cancer analysis of NUP155 and validation of its role in breast cancer cell proliferation, migration, and apoptosis. BMC Cancer 2024; 24:353. [PMID: 38504158 PMCID: PMC10953186 DOI: 10.1186/s12885-024-12039-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024] Open
Abstract
NUP155 is reported to be correlated with tumor development. However, the role of NUP155 in tumor physiology and the tumor immune microenvironment (TIME) has not been previously examined. This study comprehensively investigated the expression, immunological function, and prognostic significance of NUP155 in different cancer types. Bioinformatics analysis revealed that NUP155 was upregulated in 26 types of cancer. Additionally, NUP155 upregulation was strongly correlated with advanced pathological or clinical stages and poor prognosis in several cancers. Furthermore, NUP155 was significantly and positively correlated with DNA methylation, tumor mutational burden, microsatellite instability, and stemness score in most cancers. Additionally, NUP155 was also found to be involved in TIME and closely associated with tumor infiltrating immune cells and immunoregulation-related genes. Functional enrichment analysis revealed a strong correlation between NUP155 and immunomodulatory pathways, especially antigen processing and presentation. The role of NUP155 in breast cancer has not been examined. This study, for the first time, demonstrated that NUP155 was upregulated in breast invasive carcinoma (BRCA) cells and revealed its oncogenic role in BRCA using molecular biology experiments. Thus, our study highlights the potential value of NUP155 as a biomarker in the assessment of prognostic prediction, tumor microenvironment and immunotherapeutic response in pan-cancer.
Collapse
Affiliation(s)
- Zi-Qiong Wang
- Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, 100 Minjiang Avenue, Quzhou, Zhejiang, 324000, Zhejiang, China
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhi-Xuan Wu
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zong-Pan Wang
- Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, 100 Minjiang Avenue, Quzhou, Zhejiang, 324000, Zhejiang, China
| | - Jing-Xia Bao
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Hao-Dong Wu
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Di-Yan Xu
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Hong-Feng Li
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yi-Yin Xu
- Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, 100 Minjiang Avenue, Quzhou, Zhejiang, 324000, Zhejiang, China
| | - Rong-Xing Wu
- Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, 100 Minjiang Avenue, Quzhou, Zhejiang, 324000, Zhejiang, China.
| | - Xuan-Xuan Dai
- Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, 100 Minjiang Avenue, Quzhou, Zhejiang, 324000, Zhejiang, China.
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
49
|
Khazaei MR, Bozorgi M, Khazaei M, Moradi A, Bozorgi A. Computational and in vitro analyses on synergistic effects of paclitaxel and thymoquinone in suppressing invasive breast cancer cells. Mol Biol Rep 2024; 51:388. [PMID: 38446390 DOI: 10.1007/s11033-024-09328-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/07/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND In the present experiment, we evaluated the impact of thymoquinone (TQ) and paclitaxel (PTX) treatment on MDA-MB-231 cell line growth inhibition via controlling apoptosis/autophagy. MATERIALS AND RESULTS MDA-MB-231cells were exposed to PTX (0, 25, 50, 75, and 100 nM), TQ (0, 25, 50, 75, and 100 µM), and combinations for 48 h. After the MTT assessment, dose-response curves and IC50 values were calculated, and the combination synergism was evaluated using the Compusyn software. Following the treatment with PTX, TQ, and combinations at IC50 doses, the expression of apoptosis and autophagy genes was assessed in cells. The GraphPad Prism program was used to analyze the data, and Tukey's test at p < 0.05 was then run. PTX, TQ, and their combinations inhibited MDA-MB-231cell proliferation and viability dose-dependently. TQ reduced the effective concentration (IC50) of PTX in co-treatment groups. PTX and TQ showed antagonistic effects when cell proliferation declined above 70%. Antagonistic effects shifted into additive and synergistic effects upon increasing PTX concentration, indicated by diminished cell proliferation below 70%. PTX-TQ co-treatment significantly enhanced P53 and BAX expression while reducing Bcl-2 expression. Also, their combination increased Beclin-1, ATG-5, and ATG-7 expression in treated cells. CONCLUSION Effective concentrations of TQ and PTX had synergic effects and inhibited breast cancer cells via prompting apoptosis and autophagy in vitro.
Collapse
Affiliation(s)
- Mohammad Rsool Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Bozorgi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Moradi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Azam Bozorgi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
50
|
Jen CI, Lu MK, Lai MN, Ng LT. Sulfated polysaccharides of Laetiporus sulphureus fruiting bodies exhibit anti-breast cancer activity through cell cycle arrest, apoptosis induction, and inhibiting cell migration. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117546. [PMID: 38061441 DOI: 10.1016/j.jep.2023.117546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/26/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Laetiporus sulphureus has long been used as an edible and medicinal mushroom in Asia, America, and Europe. Its fruiting bodies are widely used in folk medicine for treating cancer, gastric diseases, cough, and rheumatism. Polysaccharides are an important bioactive component of mushrooms. In nature, sulfated polysaccharides have never been reported in mushrooms. Furthermore, there is no information on differences in physicochemical properties and anti-breast cancer activities between polysaccharides (PS) and sulfated polysaccharides (SPS) of L. sulphureus. AIM OF THE STUDY This study aimed to investigate the physicochemical properties of PS and SPS isolated from fruiting bodies of L. sulphureus and examine their anti-proliferative effects and mechanism(s) of action on MDA-MB-231 breast cancer cells. METHODS Polysaccharides (PS) were isolated using hot water and ethanol precipitation methods. Sulfated polysaccharides (SPS) were isolated by the papain-assisted hydrolysis method. Physicochemical properties comprising sugar, protein, uronic acid, and sulfate contents, and molecular weight, monosaccharide composition, and structural conformation were analyzed on PS and SPS. In the anti-cancer study, a triple-negative breast cancer cell line (MDA-MB-231) and a normal human mammary epithelial cell line (H184B5F5/M10) were used to evaluate the anti-proliferative activity of PS and SPS, and their mechanism(s) of action. RESULTS The results showed that SPS, which had higher sulfate and protein contents and diversified monosaccharide composition, exhibited more potent anti-proliferative activity against MDA-MB-231 cells than PS. Furthermore, it had a selective cytotoxic effect on breast cancer cells but not the normal cells. SPS induced cell cycle arrest at G0/G1 phase via down-regulating CDK4 and cyclin D1 and up-regulating p21 protein expression. Breast cancer cell apoptosis was not observed until 72 h after SPS treatment. In addition, SPS also markedly inhibited breast cancer cell migration. CONCLUSION This study demonstrates that SPS exhibited selective cytotoxicity and was more potent than PS in inhibiting MDA-MB-231 cell proliferation. The contents of sulfate and protein, and monosaccharide composition could be the main factors affecting the anti-breast cancer activity of L. sulphureus SPS.
Collapse
Affiliation(s)
- Chia-I Jen
- Department of Agricultural Chemistry, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Mei-Kuang Lu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan
| | - Ming-Nan Lai
- Kang Jian Biotech Co., Ltd., Nantou 54245, Taiwan
| | - Lean-Teik Ng
- Department of Agricultural Chemistry, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.
| |
Collapse
|