1
|
Zharikova AA, Andrianova NV, Silachev DN, Nebogatikov VO, Pevzner IB, Makievskaya CI, Zorova LD, Maleev GV, Baydakova GV, Chistyakov DV, Goriainov SV, Sergeeva MG, Burakova IY, Gureev AP, Popkov VA, Ustyugov AA, Plotnikov EY. Analysis of the brain transcriptome, microbiome and metabolome in ketogenic diet and experimental stroke. Brain Behav Immun 2025; 123:571-585. [PMID: 39378970 DOI: 10.1016/j.bbi.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/10/2024] Open
Abstract
The ketogenic diet (KD) has been shown to be effective in treating various brain pathologies. In this study, we conducted detailed transcriptomic and metabolomic profiling of rat brains after KD and ischemic stroke in order to investigate the effects of KD and its underlying mechanisms. We evaluated the effect of a two-month KD on gene expression in intact brain tissue and after middle cerebral artery occlusion (MCAO). We analyzed the effects of KD on gut microbiome composition and blood metabolic profile as well as investigated the correlation between severity of neurological deficits and KD-induced changes. We found transcriptional reprogramming in the brain after stroke and KD treatment. The KD altered the expression of genes involved in the regulation of glucose and fatty acid metabolism, mitochondrial function, the immune response, Wnt-associated signaling, stem cell development, and neurotransmission, both in intact rats and after MCAO. The KD led to a significant change in the composition of gut microbiome and the levels of amino acids, acylcarnitines, polyunsaturated fatty acids, and oxylipins in the blood. However, the KD slightly worsened the neurological functions after MCAO, so that the therapeutic effect of the diet remained unproven.
Collapse
Affiliation(s)
- Anastasia A Zharikova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia; National Medical Research Center for Therapy and Preventive Medicine, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Nadezda V Andrianova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Denis N Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir O Nebogatikov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences, Moscow Region, Russia
| | - Irina B Pevzner
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ciara I Makievskaya
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Ljubava D Zorova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Grigoriy V Maleev
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences, Moscow Region, Russia
| | | | - Dmitry V Chistyakov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Peoples' Friendship University of Russia, (RUDN University), Moscow, Russia
| | - Sergey V Goriainov
- Peoples' Friendship University of Russia, (RUDN University), Moscow, Russia
| | - Marina G Sergeeva
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Inna Y Burakova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, Voronezh, Russia
| | - Artem P Gureev
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, Voronezh, Russia; Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Vasily A Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Aleksey A Ustyugov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences, Moscow Region, Russia
| | - Egor Y Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
2
|
Antonova VV, Silachev DN, Plotnikov EY, Pevzner IB, Ivanov ME, Boeva EA, Kalabushev SN, Yadgarov MY, Cherpakov RA, Grebenchikov OA, Kuzovlev AN. Positive Effects of Argon Inhalation After Traumatic Brain Injury in Rats. Int J Mol Sci 2024; 25:12673. [PMID: 39684384 DOI: 10.3390/ijms252312673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
The noble gas argon is one of the most promising neuroprotective agents for hypoxic-reperfusion injuries of the brain. However, its effect on traumatic injuries has been insufficiently studied. The aim of this study was to analyze the effect of the triple inhalation of the argon-oxygen mixture Ar 70%/O2 30% on physical and neurological recovery and the degree of brain damage after traumatic brain injury and to investigate the possible molecular mechanisms of the neuroprotective effect. The experiments were performed in male Wistar rats. A controlled brain injury model was used to investigate the effects of argon treatment and the underlying molecular mechanisms. The results of the study showed that animals with craniocerebral injuries that were treated with argon inhalation exhibited better physical recovery rates, better neurological status, and less brain damage. Argon treatment significantly reduced the expression of the proinflammatory markers TNFα and CD68 caused by TBI, increased the expression of phosphorylated protein kinase B (pAKT), and promoted the expression of the transcription factor Nrf2 in intact animals. Treatment with an argon-oxygen breathing mixture after traumatic brain injury has a neuroprotective effect by suppressing the inflammatory response and activating the antioxidant and anti-ischemic system.
Collapse
Affiliation(s)
- Viktoriya V Antonova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Denis N Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Egor Y Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Irina B Pevzner
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Mikhail E Ivanov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Ekaterina A Boeva
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Sergey N Kalabushev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Mikhail Ya Yadgarov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Rostislav A Cherpakov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Oleg A Grebenchikov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Artem N Kuzovlev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| |
Collapse
|
3
|
Shakova FM, Romanova GA, Khashirova SY, Vindizheva AS, Mashukov KV, Gulyaev MV, Semenova ZB. Experimental Modeling of Cranial Injury and Defect Reconstruction Using Superconstructive Polymers (PEEK). Bull Exp Biol Med 2024; 177:155-161. [PMID: 38963597 DOI: 10.1007/s10517-024-06148-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Indexed: 07/05/2024]
Abstract
Experimental model of resection craniotomy with subsequent reconstruction of the defect with a polymer implant enables comprehensive assessment of functional and ultrastructural changes during replacement of the damaged tissue. Reconstruction of a skull defect was accompanied by transient motor disturbance in the acute period and did not cause functional disorders and neurological deficits in a delayed period. Histological examination of osteal and brain tissue revealed no pathological reactions that could be associated with the response to the chemical components of the implant.
Collapse
Affiliation(s)
- F M Shakova
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia.
| | - G A Romanova
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - S Yu Khashirova
- Kabardino-Balkarian State University named after H. M. Berbekov, Nalchik, Kabardino-Balkarian Republic, Russia
| | - A S Vindizheva
- Kabardino-Balkarian State University named after H. M. Berbekov, Nalchik, Kabardino-Balkarian Republic, Russia
| | - Kh V Mashukov
- Kabardino-Balkarian State University named after H. M. Berbekov, Nalchik, Kabardino-Balkarian Republic, Russia
| | - M V Gulyaev
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Z B Semenova
- Department of Neurosurgery and Neurotrauma, Research Institute for Emergency Pediatric Surgery and Traumatology, Moscow, Russia
| |
Collapse
|
4
|
Silachev DN, Boeva EA, Yakupova EI, Milovanova MA, Varnakova LA, Kalabushev SN, Antonova VV, Cherpakov RA, Ryzhkov IA, Lapin KN, Lyubomudrov MA, Grebenchikov OA. Positive Neuroprotective Effect of Argon Inhalation after Photochemically Induced Ischemic Stroke Model in Rats. Bull Exp Biol Med 2023; 176:143-149. [PMID: 38189873 DOI: 10.1007/s10517-024-05984-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Indexed: 01/09/2024]
Abstract
We studied the effect of 2-h inhalation of argon-oxygen mixture (Ar 70%/O2 30%) after photochemically induced stroke and on days 2 and 3 after stroke modeling on the severity of neurological deficit and brain damage (by MRI data) in Wistar rats. Neurological deficit was assessed within 14 days using the limb placement test. MRI and histological study of the brain with an assessment of the size of damage were performed on day 14 after ischemia. Significant differences were obtained in limb placement scores on days 3, 7, and 14, as well as in the volume of ischemic focus by MRI in comparison with the control (ischemia+N2 70%/O2 30%). Inhalation of argon-oxygen mixture for 2 h a day over 3 days after photoinduced stroke decreased the volume of brain damage by 2 times and reduced the severity of neurological deficit.
Collapse
Affiliation(s)
- D N Silachev
- A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia.
| | - E A Boeva
- V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - E I Yakupova
- A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - M A Milovanova
- V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - L A Varnakova
- V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - S N Kalabushev
- V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - V V Antonova
- V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - R A Cherpakov
- V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - I A Ryzhkov
- V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - K N Lapin
- V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - M A Lyubomudrov
- V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - O A Grebenchikov
- V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| |
Collapse
|
5
|
Shevtsova Y, Eldarov C, Starodubtseva N, Goryunov K, Chagovets V, Ionov O, Plotnikov E, Silachev D. Identification of Metabolomic Signatures for Ischemic Hypoxic Encephalopathy Using a Neonatal Rat Model. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1693. [PMID: 37892356 PMCID: PMC10605414 DOI: 10.3390/children10101693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023]
Abstract
A study was performed to determine early metabolomic markers of ischemic hypoxic encephalopathy (HIE) using a Rice-Vannucci model for newborn rats. Dried blood spots from 7-day-old male and female rat pups, including 10 HIE-affected animals and 16 control animals, were analyzed by liquid chromatography coupled with mass spectrometry (HPLC-MS) in positive and negative ion recording modes. Multivariate statistical analysis revealed two distinct clusters of metabolites in both HPLC-MS modes. Subsequent univariate statistical analysis identified 120 positive and 54 negative molecular ions that exhibited statistically significant change in concentration, with more than a 1.5-fold difference after HIE. In the HIE group, the concentrations of steroid hormones, saturated mono- and triglycerides, and phosphatidylcholines (PCs) were significantly decreased in positive mode. On the contrary, the concentration of unsaturated PCs was increased in the HIE group. Among negatively charged molecular ions, the greatest variations were found in the categories of phosphatidylcholines, phosphatidylinositols, and triglycerides. The major metabolic pathways associated with changed metabolites were analyzed for both modes. Metabolic pathways such as steroid biosynthesis and metabolism fatty acids were most affected. These results underscored the central role of glycerophospholipid metabolism in triggering systemic responses in HIE. Therefore, lipid biomarkers' evaluation by targeted HPLC-MS research could be a promising approach for the early diagnosis of HIE.
Collapse
Affiliation(s)
- Yulia Shevtsova
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (C.E.); (N.S.); (K.G.); (V.C.); (O.I.); (E.P.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Chupalav Eldarov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (C.E.); (N.S.); (K.G.); (V.C.); (O.I.); (E.P.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Natalia Starodubtseva
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (C.E.); (N.S.); (K.G.); (V.C.); (O.I.); (E.P.)
| | - Kirill Goryunov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (C.E.); (N.S.); (K.G.); (V.C.); (O.I.); (E.P.)
| | - Vitaliy Chagovets
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (C.E.); (N.S.); (K.G.); (V.C.); (O.I.); (E.P.)
| | - Oleg Ionov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (C.E.); (N.S.); (K.G.); (V.C.); (O.I.); (E.P.)
| | - Egor Plotnikov
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (C.E.); (N.S.); (K.G.); (V.C.); (O.I.); (E.P.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Denis Silachev
- V.I. Kulakov National Medical Research Center for Obstetrics Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (Y.S.); (C.E.); (N.S.); (K.G.); (V.C.); (O.I.); (E.P.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
6
|
Changes in Brain Electrical Activity after Transient Middle Cerebral Artery Occlusion in Rats. Neurol Int 2022; 14:547-560. [PMID: 35893279 PMCID: PMC9326608 DOI: 10.3390/neurolint14030044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023] Open
Abstract
Objectives. Ischemic stroke is a leading cause of death and disability worldwide. To search for new therapeutic and pharmacotherapeutic strategies, numerous models of this disease have been proposed, the most popular being transient middle cerebral artery occlusion. Behavioral and sensorimotor testing, biochemical, and histological methods are traditionally used in conjunction with this model to assess the effectiveness of potential treatment options. Despite its wide overall popularity, electroencephalography/electrocorticography is quite rarely used in such studies. Materials and methods. In the present work, we explored the changes in brain electrical activity at days 3 and 7 after 30- and 45-min of transient middle cerebral artery occlusion in rats. Results. Cerebral ischemia altered the amplitude and spectral electrocorticogram characteristics, and led to a reorganization of inter- and intrahemispheric functional connections. Ischemia duration affected the severity as well as the nature of the observed changes. Conclusions. The dynamics of changes in brain electrical activity may indicate a spontaneous partial recovery of impaired cerebral functions at post-surgery day 7. Our results suggest that electrocorticography can be used successfully to assess the functional status of the brain following ischemic stroke in rats as well as to investigate the dynamics of functional recovery.
Collapse
|
7
|
Effects of Traumatic Brain Injury on the Gut Microbiota Composition and Serum Amino Acid Profile in Rats. Cells 2022; 11:cells11091409. [PMID: 35563713 PMCID: PMC9102408 DOI: 10.3390/cells11091409] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
Traumatic brain injury (TBI) heavily impacts the body: it damages the brain tissue and the peripheral nervous system and shifts homeostasis in many types of tissue. An acute brain injury compromises the “brain–gut-microbiome axis”, a well-balanced network formed by the brain, gastrointestinal tract, and gut microbiome, which has a complex effect: damage to the brain alters the composition of the microbiome; the altered microbiome affects TBI severity, neuroplasticity, and metabolic pathways through various bacterial metabolites. We modeled TBI in rats. Using a bioinformatics approach, we sought to identify correlations between the gut microbiome composition, TBI severity, the rate of neurological function recovery, and blood metabolome. We found that the TBI caused changes in the abundance of 26 bacterial genera. The most dramatic change was observed in the abundance of Agathobacter species. The TBI also altered concentrations of several metabolites, specifically citrulline and tryptophan. We found no significant correlations between TBI severity and the pre-existing gut microbiota composition or blood metabolites. However, we discovered some differences between the two groups of subjects that showed high and low rates of neurological function recovery, respectively. The present study highlights the role of the brain–gut-microbiome axis in TBI.
Collapse
|
8
|
Age-Related Changes in Bone-Marrow Mesenchymal Stem Cells. Cells 2021; 10:cells10061273. [PMID: 34063923 PMCID: PMC8223980 DOI: 10.3390/cells10061273] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
The use of stem cells is part of a strategy for the treatment of a large number of diseases. However, the source of the original stem cells for use is extremely important and determines their therapeutic potential. Mesenchymal stromal cells (MSC) have proven their therapeutic effectiveness when used in a number of pathological models. However, it remains an open question whether the chronological age of the donor organism affects the effectiveness of the use of MSC. The asymmetric division of stem cells, the result of which is some residential stem cells acquiring a non-senile phenotype, means that stem cells possess an intrinsic ability to preserve juvenile characteristics, implying an absence or at least remarkable retardation of senescence in stem cells. To test whether residential MSC senesce, we evaluated the physiological changes in the MSC from old rats, with a further comparison of the neuroprotective properties of MSC from young and old animals in a model of traumatic brain injury. We found that, while the effect of administration of MSC on lesion volume was minimal, functional recovery was remarkable, with the highest effect assigned to fetal cells; the lowest effect was recorded for cells isolated from adult rats and postnatal cells, having intermediate potency. MSC from the young rats were characterized by a faster growth than adult MSC, correlating with levels of proliferating cell nuclear antigen (PCNA). However, there were no differences in respiratory activity of MSC from young and old rats, but young cells showed much higher glucose utilization than old ones. Autophagy flux was almost the same in both types of cells, but there were remarkable ultrastructural differences in old and young cells.
Collapse
|
9
|
Sysoev YI, Uzuegbunam BC, Okovityi SV. Attenuation of neurological deficit by a novel ethanolamine derivative in rats after brain trauma. J Exp Pharmacol 2019; 11:53-63. [PMID: 31354367 PMCID: PMC6590625 DOI: 10.2147/jep.s199464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 02/13/2019] [Indexed: 11/23/2022] Open
Abstract
Objectives: To prove that our novel ethanolamine derivative (FDES) can normalize overall movement and exploratory activity of rats with traumatic brain injury (TBI) owing to its peculiar properties. Materials and methods: TBI was modeled using controlled cortical impact injury (CCI) model method. The resulting neurological deficit, efficacy of the novel agent and other reference agents used were assayed in tests which evaluated overall movements and exploratory behavior of the rats. Finally, scopolamine in equimolar dose was used to estimate the role of cholinergic system in the efficacy of our agent. The tests included: limb-placing, open field, elevated plus maze, cylinder, and beam walking tests. Results: Intraperitoneal administration of FDES at a dose of 10 mg/kg led to improvement of fore- and hind-limb functions of rats with traumatic brain injury as was shown in “Limb placing”, “Open field” “Cylinder” and “Beam walking” tests. The new agent had no effects on traumatized rats behavior in the “Elevated Plus Maze” test. Simultaneous co-administration of scopolamine with FDES reduced the beneficial effects of the latter in rats with trauma. Conclusion: The neuroprotective effects of new agent were manifested in the reduction of motor deficiencies, and exploratory activity in the CCI model rats. In comparison with choline alfoscerate and citicoline, FDES showed more beneficial effects as were observed in most of the tests, and did not negatively influence the traumatized rats psychologically. Notably, it is possible that the neuroprotective influence of the new agent is mediated by its actions on the cholinergic system.
Collapse
Affiliation(s)
- Yuriy Igorevich Sysoev
- Department of Pharmacology and Clinical Pharmacology, Saint-Petersburg State Chemical-Pharmaceutical University, St. Petersburg, Russia.,Institute of Translational Biomedicine (ITBM), Saint-Peterburg State University, St. Petersburg, Russia
| | - Bright Chukwunwike Uzuegbunam
- Department of Pharmacology and Clinical Pharmacology, Saint-Petersburg State Chemical-Pharmaceutical University, St. Petersburg, Russia
| | - Sergey Vladimirovich Okovityi
- Department of Pharmacology and Clinical Pharmacology, Saint-Petersburg State Chemical-Pharmaceutical University, St. Petersburg, Russia
| |
Collapse
|
10
|
Moisenovich MM, Plotnikov EY, Moysenovich AM, Silachev DN, Danilina TI, Savchenko ES, Bobrova MM, Safonova LA, Tatarskiy VV, Kotliarova MS, Agapov II, Zorov DB. Effect of Silk Fibroin on Neuroregeneration After Traumatic Brain Injury. Neurochem Res 2018; 44:2261-2272. [PMID: 30519983 DOI: 10.1007/s11064-018-2691-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/25/2018] [Accepted: 11/28/2018] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury is one of the leading causes of disability among the working-age population worldwide. Despite attempts to develop neuroprotective therapeutic approaches, including pharmacological or cellular technologies, significant advances in brain regeneration have not yet been achieved. Development of silk fibroin-based biomaterials represents a new frontier in neuroregenerative therapies after brain injury. In this study, we estimated the short and long-term effects of silk fibroin scaffold transplantation on traumatic brain injury and biocompatibility of this biomaterial within rat neuro-vascular cells. Silk fibroin microparticles were injected into a brain damage area 1 day after the injury. Silk fibroin affords neuroprotection as judged by diminished brain damage and recovery of long-term neurological functions. We did not detect considerable toxicity to neuro-vascular cells cultured on fibroin/fibroin-gelatin microparticles in vitro. Cultivation of primary cell cultures of neurons and astrocytes on silk fibroin matrices demonstrated their higher viability under oxygen-glucose deprivation compared to 2D conditions on plastic plates. Thus, we conclude that scaffolds based on silk fibroin can become the basis for the creation of constructs aimed to treat brain regeneration after injury.
Collapse
Affiliation(s)
- M M Moisenovich
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - E Y Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - A M Moysenovich
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - D N Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - T I Danilina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - E S Savchenko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - M M Bobrova
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia.,Bionanotechnology Laboratory, V.I.Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russia
| | - L A Safonova
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia.,Bionanotechnology Laboratory, V.I.Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russia
| | - V V Tatarskiy
- N.N. Blokhin Russian Cancer Research Center, Moscow, Russia
| | - M S Kotliarova
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - I I Agapov
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia.,Bionanotechnology Laboratory, V.I.Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russia
| | - D B Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
11
|
Neuroprotective Effects of Mitochondria-Targeted Plastoquinone in a Rat Model of Neonatal Hypoxic⁻Ischemic Brain Injury. Molecules 2018; 23:molecules23081871. [PMID: 30060443 PMCID: PMC6222533 DOI: 10.3390/molecules23081871] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/13/2018] [Accepted: 07/25/2018] [Indexed: 12/29/2022] Open
Abstract
Neonatal hypoxia⁻ischemia is one of the main causes of mortality and disability of newborns. To study the mechanisms of neonatal brain cell damage, we used a model of neonatal hypoxia⁻ischemia in seven-day-old rats, by annealing of the common carotid artery with subsequent hypoxia of 8% oxygen. We demonstrate that neonatal hypoxia⁻ischemia causes mitochondrial dysfunction associated with high production of reactive oxygen species, which leads to oxidative stress. Targeted delivery of antioxidants to the mitochondria can be an effective therapeutic approach to treat the deleterious effects of brain hypoxia⁻ischemia. We explored the neuroprotective properties of the mitochondria-targeted antioxidant SkQR1, which is the conjugate of a plant plastoquinone and a penetrating cation, rhodamine 19. Being introduced before or immediately after hypoxia⁻ischemia, SkQR1 affords neuroprotection as judged by the diminished brain damage and recovery of long-term neurological functions. Using vital sections of the brain, SkQR1 has been shown to reduce the development of oxidative stress. Thus, the mitochondrial-targeted antioxidant derived from plant plastoquinone can effectively protect the brain of newborns both in pre-ischemic and post-stroke conditions, making it a promising candidate for further clinical studies.
Collapse
|
12
|
Babenko VA, Silachev DN, Popkov VA, Zorova LD, Pevzner IB, Plotnikov EY, Sukhikh GT, Zorov DB. Miro1 Enhances Mitochondria Transfer from Multipotent Mesenchymal Stem Cells (MMSC) to Neural Cells and Improves the Efficacy of Cell Recovery. Molecules 2018; 23:molecules23030687. [PMID: 29562677 PMCID: PMC6017474 DOI: 10.3390/molecules23030687] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/13/2018] [Accepted: 03/17/2018] [Indexed: 01/08/2023] Open
Abstract
A recently discovered key role of reactive oxygen species (ROS) in mitochondrial traffic has opened a wide alley for studying the interactions between cells, including stem cells. Since its discovery in 2006, intercellular mitochondria transport has been intensively studied in different cellular models as a basis for cell therapy, since the potential of replacing malfunctioning organelles appears to be very promising. In this study, we explored the transfer of mitochondria from multipotent mesenchymal stem cells (MMSC) to neural cells and analyzed its efficacy under normal conditions and upon induction of mitochondrial damage. We found that mitochondria were transferred from the MMSC to astrocytes in a more efficient manner when the astrocytes were exposed to ischemic damage associated with elevated ROS levels. Such transport of mitochondria restored the bioenergetics of the recipient cells and stimulated their proliferation. The introduction of MMSC with overexpressed Miro1 in animals that had undergone an experimental stroke led to significantly improved recovery of neurological functions. Our data suggest that mitochondrial impairment in differentiated cells can be compensated by receiving healthy mitochondria from MMSC. We demonstrate a key role of Miro1, which promotes the mitochondrial transfer from MMSC and suggest that the genetic modification of stem cells can improve the therapies for the injured brain.
Collapse
Affiliation(s)
- Valentina A Babenko
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia.
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia.
| | - Denis N Silachev
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia.
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia.
| | - Vasily A Popkov
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia.
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia.
| | - Ljubava D Zorova
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia.
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia.
| | - Irina B Pevzner
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia.
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia.
| | - Egor Y Plotnikov
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia.
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia.
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia.
| | - Gennady T Sukhikh
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia.
- Department of obstetrics, gynecology, perinatology and reproduction, Sechenov First Moscow State Medical University, 119991 Moscow, Russia.
| | - Dmitry B Zorov
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia.
- V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia.
| |
Collapse
|
13
|
Focal Unilateral Traumatic brain injury Causes Delayed Neurodegenerative Changes in the Brain of Rats. Bull Exp Biol Med 2017; 164:211-213. [DOI: 10.1007/s10517-017-3960-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Indexed: 10/18/2022]
|
14
|
Silachev DN, Usatikova EA, Pevzner IB, Zorova LD, Babenko VA, Gulyaev MV, Pirogov YA, Plotnikov EY, Zorov DB. Effect of Anesthetics on Efficiency of Remote Ischemic Preconditioning. BIOCHEMISTRY (MOSCOW) 2017; 82:1006-1016. [PMID: 28988529 DOI: 10.1134/s0006297917090036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Remote ischemic preconditioning of hind limbs (RIPC) is an effective method for preventing brain injury resulting from ischemia. However, in numerous studies RIPC has been used on the background of administered anesthetics, which also could exhibit neuroprotective properties. Therefore, investigation of the signaling pathways triggered by RIPC and the effect of anesthetics is important. In this study, we explored the effect of anesthetics (chloral hydrate and Zoletil) on the ability of RIPC to protect the brain from injury caused by ischemia and reperfusion. We found that RIPC without anesthesia resulted in statistically significant decrease in neurological deficit 24 h after ischemia, but did not affect the volume of brain injury. Administration of chloral hydrate or Zoletil one day prior to brain ischemia produced a preconditioning effect by their own, decreasing the degree of neurological deficit and lowering the volume of infarct with the use of Zoletil. The protective effects observed after RIPC with chloral hydrate or Zoletil were similar to those observed when only the respective anesthetic was used. RIPC was accompanied by significant increase in the level of brain proteins associated with the induction of ischemic tolerance such as pGSK-3β, BDNF, and HSP70. However, Zoletil did not affect the level of these proteins 24 h after injection, and chloral hydrate caused increase of only pGSK-3β. We conclude that RIPC, chloral hydrate, and Zoletil produce a significant neuroprotective effect, but the simultaneous use of anesthetics with RIPC does not enhance the degree of neuroprotection.
Collapse
Affiliation(s)
- D N Silachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Danilina TI, Silachev DN, Pevzner IB, Gulyaev MV, Pirogov YA, Zorova LD, Plotnikov EY, Sukhikh GT, Zorov DB. The Influence of Proinflammatory Factors on the Neuroprotective Efficiency of Multipotent Mesenchymal Stromal Cells in Traumatic Brain Injury. Bull Exp Biol Med 2017; 163:528-534. [PMID: 28853074 DOI: 10.1007/s10517-017-3844-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Indexed: 12/31/2022]
Abstract
We studied the neuroprotective potential of multipotent mesenchymal stromal cells in traumatic brain injury and the effect of inflammatory preconditioning on neuroprotective properties of stem cells under in vitro conditions. To this end, the effects of cell incubation with LPS or their co-culturing with leukocytes on production of cytokines IL-1α, IL-6, TNFα, and MMP-2 and MMP-9 by these cells were evaluated. Culturing under conditions simulating inflammation increased the production of all these factors by multipotent mesenchymal stromal cells. However, acquisition of the inflammatory phenotype by stromal cells did not reduce their therapeutic effectiveness in traumatic brain injury. Moreover, in some variants of inflammatory preconditioning, multipotent mesenchymal stromal cells exhibited more pronounced neuroprotective properties reducing the volume of brain lesion and promoting recovery of neurological functions after traumatic brain injury.
Collapse
Affiliation(s)
- T I Danilina
- Faculty of Bioengineering and Bioinformatics, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - D N Silachev
- A. N. Belozersky Institute of Physicochemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
- V. I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - I B Pevzner
- A. N. Belozersky Institute of Physicochemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
- V. I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - M V Gulyaev
- Laboratory of Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Yu A Pirogov
- Laboratory of Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - L D Zorova
- A. N. Belozersky Institute of Physicochemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
- V. I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
- International Laser Research Center, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - E Yu Plotnikov
- A. N. Belozersky Institute of Physicochemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia.
- V. I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - G T Sukhikh
- V. I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - D B Zorov
- A. N. Belozersky Institute of Physicochemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
- V. I. Kulakov Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
16
|
Shakova FM, Barskov IV, Gulyaev MV, Prokhorenko SV, Romanova GA, Grechko AV. Relationship between Morphofunctional Changes in Open Traumatic Brain Injury and the Severity of Brain Damage in Rats. Bull Exp Biol Med 2016; 161:419-24. [PMID: 27496035 DOI: 10.1007/s10517-016-3429-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Indexed: 11/24/2022]
Abstract
A correlation between the severity of morphofunctional disturbances and the volume of brain tissue injury determined by MRT was demonstrated on the model of open traumatic brain injury in rats. A relationship between the studied parameters (limb placing and beam walking tests and histological changes) and impact force (the height of load fell onto exposed brain surface) was revealed.
Collapse
Affiliation(s)
- F M Shakova
- Hospital for Incurable Patients, Research Medical and Rehabilitation Center, Moscow, Russia. .,Institute of Pathology and Pathomorphology, Moscow, Russia.
| | - I V Barskov
- Hospital for Incurable Patients, Research Medical and Rehabilitation Center, Moscow, Russia.,Institute of Pathology and Pathomorphology, Moscow, Russia
| | - M V Gulyaev
- Hospital for Incurable Patients, Research Medical and Rehabilitation Center, Moscow, Russia.,Faculty of Fundamental Medicine, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - S V Prokhorenko
- Hospital for Incurable Patients, Research Medical and Rehabilitation Center, Moscow, Russia
| | - G A Romanova
- Hospital for Incurable Patients, Research Medical and Rehabilitation Center, Moscow, Russia.,Institute of Pathology and Pathomorphology, Moscow, Russia
| | - A V Grechko
- Hospital for Incurable Patients, Research Medical and Rehabilitation Center, Moscow, Russia
| |
Collapse
|
17
|
Antonenko YN, Denisov SS, Silachev DN, Khailova LS, Jankauskas SS, Rokitskaya TI, Danilina TI, Kotova EA, Korshunova GA, Plotnikov EY, Zorov DB. A long-linker conjugate of fluorescein and triphenylphosphonium as mitochondria-targeted uncoupler and fluorescent neuro- and nephroprotector. Biochim Biophys Acta Gen Subj 2016; 1860:2463-2473. [PMID: 27450891 DOI: 10.1016/j.bbagen.2016.07.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/16/2016] [Accepted: 07/16/2016] [Indexed: 01/05/2023]
Abstract
BACKGROUND Limited uncoupling of oxidative phosphorylation is known to be beneficial in various laboratory models of diseases. Linking a triphenyl-phosphonium cation to fluorescein through a decyl (C10) spacer yields a fluorescent uncoupler, coined mitoFluo, that selectively accumulates in energized mitochondria (Denisov et al., Chem.Commun. 2014). METHODS Proton-transport activity of mitoFluo was tested in liposomes reconstituted with bacteriorhodopsin. To examine the uncoupling action on mitochondria, we monitored mitochondrial membrane potential in parallel with oxygen consumption. Neuro- and nephroprotecting activity was detected by a limb-placing test and a kidney ischemia/reperfusion protocol, respectively. RESULTS We compared mitoFluo properties with those of its newly synthesized analog having a short (butyl) spacer (C4-mitoFluo). MitoFluo, but not C4-mitoFluo, caused collapse of mitochondrial membrane potential resulting in stimulation of mitochondrial respiration. The dramatic difference in the uncoupling activity of mitoFluo and C4-mitoFluo was in line with the difference in their protonophoric activity on a lipid membrane. The accumulation of mitoFluo in mitochondria was more pronounced than that of C4-mitoFluo. MitoFluo decreased the rate of ROS production in mitochondria. MitoFluo was effective in preventing consequences of brain trauma in rats: it suppressed trauma-induced brain swelling and reduced a neurological deficit. Besides, mitoFluo attenuated acute kidney injury after ischemia/reperfusion in rats. CONCLUSIONS A long alkyl linker was proved mandatory for mitoFluo to be a mitochondria- targeted uncoupler. MitoFluo showed high protective efficacy in certain models of oxidative stress-related diseases. GENERAL SIGNIFICANCE MitoFluo is a candidate for developing therapeutic and fluorescence imaging agents to treat brain and kidney pathologies.
Collapse
Affiliation(s)
- Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Stepan S Denisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Denis N Silachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ljudmila S Khailova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Stanislovas S Jankauskas
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Tatyana I Danilina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Elena A Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Galina A Korshunova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Egor Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Dmitry B Zorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
18
|
Silachev DN, Plotnikov EY, Babenko VA, Savchenko ES, Zorova LD, Pevzner IB, Gulyaev MV, Pirogov YA, Sukhikh GT, Zorov DB. Protection of Neurovascular Unit Cells with Lithium Chloride and Sodium Valproate Prevents Brain Damage in Neonatal Ischemia/Hypoxia. Bull Exp Biol Med 2016; 160:313-8. [PMID: 26742738 DOI: 10.1007/s10517-016-3159-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Indexed: 01/11/2023]
Abstract
Here we studied the cytoprotective effect of lithium chloride and sodium valproate in the in vivo model of neonatal cerebral ischemia/hypoxia and analyzed the influence of these substances on the death of the major neurovascular unit components in experimental ischemia in vitro. Lithium chloride and sodium valproate effectively prevented death of neurons, astrocytes, and endothelial cells in the oxygen-glucose deprivation. This treatment protected the brain of newborn rats from ischemia/hypoxia injury. The results suggest that lithium and sodium valproate can be used for the treatment of neurodegenerative pathologies associated with hypoxia and ischemia in newborns.
Collapse
Affiliation(s)
- D N Silachev
- A. N. Belozersky Institute of Physical and Chemical Biology, Moscow, Russia
| | - E Yu Plotnikov
- A. N. Belozersky Institute of Physical and Chemical Biology, Moscow, Russia
| | - V A Babenko
- Faculty of Bioengineering and Bioinformatics, Moscow, Russia.,V. I. Kulakov Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - E S Savchenko
- Faculty of Bioengineering and Bioinformatics, Moscow, Russia
| | - L D Zorova
- International Laser Research Centre, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - I B Pevzner
- A. N. Belozersky Institute of Physical and Chemical Biology, Moscow, Russia
| | - M V Gulyaev
- Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Yu A Pirogov
- Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - G T Sukhikh
- V. I. Kulakov Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - D B Zorov
- A. N. Belozersky Institute of Physical and Chemical Biology, Moscow, Russia.
| |
Collapse
|
19
|
Silachev DN, Plotnikov EY, Babenko VA, Danilina TI, Zorov LD, Pevzner IB, Zorov DB, Sukhikh GT. Intra-Arterial Administration of Multipotent Mesenchymal Stromal Cells Promotes Functional Recovery of the Brain After Traumatic Brain Injury. Bull Exp Biol Med 2015; 159:528-33. [DOI: 10.1007/s10517-015-3009-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Indexed: 12/22/2022]
|
20
|
Silachev DN, Plotnikov EY, Zorova LD, Pevzner IB, Sumbatyan NV, Korshunova GA, Gulyaev MV, Pirogov YA, Skulachev VP, Zorov DB. Neuroprotective Effects of Mitochondria-Targeted Plastoquinone and Thymoquinone in a Rat Model of Brain Ischemia/Reperfusion Injury. Molecules 2015; 20:14487-503. [PMID: 26270657 PMCID: PMC6332348 DOI: 10.3390/molecules200814487] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/03/2015] [Accepted: 08/05/2015] [Indexed: 12/12/2022] Open
Abstract
We explored the neuroprotective properties of natural plant-derived antioxidants plastoquinone and thymoquinone (2-demethylplastoquinone derivative) modified to be specifically accumulated in mitochondria. The modification was performed through chemical conjugation of the quinones with penetrating cations: Rhodamine 19 or tetraphenylphosphonium. Neuroprotective properties were evaluated in a model of middle cerebral artery occlusion. We demonstrate that the mitochondria-targeted compounds, introduced immediately after reperfusion, possess various neuroprotective potencies as judged by the lower brain damage and higher neurological status. Plastoquinone derivatives conjugated with rhodamine were the most efficient, and the least efficiency was shown by antioxidants conjugated with tetraphenylphosphonium. Antioxidants were administered intraperitoneally or intranasally with the latter demonstrating a high level of penetration into the brain tissue. The therapeutic effects of both ways of administration were similar. Long-term administration of antioxidants in low doses reduced the neurological deficit, but had no effect on the volume of brain damage. At present, cationic decylrhodamine derivatives of plastoquinone appear to be the most promising anti-ischemic mitochondria-targeted drugs of the quinone family. We suggest these antioxidants could be potentially used for a stroke treatment.
Collapse
Affiliation(s)
- Denis N Silachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 40, 119992 Moscow, Russia.
- Institute of Mitoengineering, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 73A, 119992 Moscow, Russia.
| | - Egor Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 40, 119992 Moscow, Russia.
- Institute of Mitoengineering, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 73A, 119992 Moscow, Russia.
| | - Ljubava D Zorova
- Institute of Mitoengineering, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 73A, 119992 Moscow, Russia.
- International Laser Center, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 62, 119992 Moscow, Russia.
| | - Irina B Pevzner
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 40, 119992 Moscow, Russia.
- Institute of Mitoengineering, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 73A, 119992 Moscow, Russia.
| | - Natalia V Sumbatyan
- Institute of Mitoengineering, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 73A, 119992 Moscow, Russia.
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 3, 119992 Moscow, Russia.
| | - Galina A Korshunova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 40, 119992 Moscow, Russia.
- Institute of Mitoengineering, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 73A, 119992 Moscow, Russia.
| | - Mikhail V Gulyaev
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Lomonosovsky Prospekt, House 31-5, 117192 Moscow, Russia.
| | - Yury A Pirogov
- Faculty of Physics, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 2, 119992 Moscow, Russia.
| | - Vladimir P Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 40, 119992 Moscow, Russia.
- Institute of Mitoengineering, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 73A, 119992 Moscow, Russia.
| | - Dmitry B Zorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 40, 119992 Moscow, Russia.
- Institute of Mitoengineering, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 73A, 119992 Moscow, Russia.
| |
Collapse
|
21
|
Babenko VA, Silachev DN, Zorova LD, Pevzner IB, Khutornenko AA, Plotnikov EY, Sukhikh GT, Zorov DB. Improving the Post-Stroke Therapeutic Potency of Mesenchymal Multipotent Stromal Cells by Cocultivation With Cortical Neurons: The Role of Crosstalk Between Cells. Stem Cells Transl Med 2015; 4:1011-20. [PMID: 26160961 DOI: 10.5966/sctm.2015-0010] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/26/2015] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED The goal of the present study was to maximally alleviate the negative impact of stroke by increasing the therapeutic potency of injected mesenchymal multipotent stromal cells (MMSCs). To pursue this goal, the intercellular communications of MMSCs and neuronal cells were studied in vitro. As a result of cocultivation of MMSCs and rat cortical neurons, we proved the existence of intercellular contacts providing transfer of cellular contents from one cell to another. We present evidence of intercellular exchange with fluorescent probes specifically occupied by cytosol with preferential transfer from neurons toward MMSCs. In contrast, we observed a reversed transfer of mitochondria (from MMSCs to neural cells). Intravenous injection of MMSCs in a postischemic period alleviated the pathological indexes of a stroke, expressed as a lower infarct volume in the brain and partial restoration of neurological status. Also, MMSCs after cocultivation with neurons demonstrated more profound neuroprotective effects than did unprimed MMSCs. The production of the brain-derived neurotrophic factor was slightly increased in MMSCs, and the factor itself was redistributed in these cells after cocultivation. The level of Miro1 responsible for intercellular traffic of mitochondria was increased in MMSCs after cocultivation. We conclude that the exchange by cellular compartments between neural and stem cells improves MMSCs' protective abilities for better rehabilitation after stroke. This could be used as an approach to enhance the therapeutic benefits of stem cell therapy to the damaged brain. SIGNIFICANCE The idea of priming stem cells before practical use for clinical purposes was applied. Thus, cells were preconditioned by coculturing them with the targeted cells (i.e., neurons for the treatment of brain pathological features) before the transfusion of stem cells to the organism. Such priming improved the capacity of stem cells to treat stroke. Some additional minimal study will be required to develop a detailed protocol for coculturing followed by cell separation.
Collapse
Affiliation(s)
- Valentina A Babenko
- Faculty of Bioengineering and Bioinformatics, A.N. Belozersky Institute of Physico-Chemical Biology, and International Laser Center, Lomonosov Moscow State University, Moscow, Russian Federation; Gynecology and Perinatology, Research Center of Obstetrics, Moscow, Russian Federation
| | - Denis N Silachev
- Faculty of Bioengineering and Bioinformatics, A.N. Belozersky Institute of Physico-Chemical Biology, and International Laser Center, Lomonosov Moscow State University, Moscow, Russian Federation; Gynecology and Perinatology, Research Center of Obstetrics, Moscow, Russian Federation
| | - Ljubava D Zorova
- Faculty of Bioengineering and Bioinformatics, A.N. Belozersky Institute of Physico-Chemical Biology, and International Laser Center, Lomonosov Moscow State University, Moscow, Russian Federation; Gynecology and Perinatology, Research Center of Obstetrics, Moscow, Russian Federation
| | - Irina B Pevzner
- Faculty of Bioengineering and Bioinformatics, A.N. Belozersky Institute of Physico-Chemical Biology, and International Laser Center, Lomonosov Moscow State University, Moscow, Russian Federation; Gynecology and Perinatology, Research Center of Obstetrics, Moscow, Russian Federation
| | - Anastasia A Khutornenko
- Faculty of Bioengineering and Bioinformatics, A.N. Belozersky Institute of Physico-Chemical Biology, and International Laser Center, Lomonosov Moscow State University, Moscow, Russian Federation; Gynecology and Perinatology, Research Center of Obstetrics, Moscow, Russian Federation
| | - Egor Y Plotnikov
- Faculty of Bioengineering and Bioinformatics, A.N. Belozersky Institute of Physico-Chemical Biology, and International Laser Center, Lomonosov Moscow State University, Moscow, Russian Federation; Gynecology and Perinatology, Research Center of Obstetrics, Moscow, Russian Federation
| | - Gennady T Sukhikh
- Faculty of Bioengineering and Bioinformatics, A.N. Belozersky Institute of Physico-Chemical Biology, and International Laser Center, Lomonosov Moscow State University, Moscow, Russian Federation; Gynecology and Perinatology, Research Center of Obstetrics, Moscow, Russian Federation
| | - Dmitry B Zorov
- Faculty of Bioengineering and Bioinformatics, A.N. Belozersky Institute of Physico-Chemical Biology, and International Laser Center, Lomonosov Moscow State University, Moscow, Russian Federation; Gynecology and Perinatology, Research Center of Obstetrics, Moscow, Russian Federation
| |
Collapse
|
22
|
Magnetic resonance spectroscopy of the ischemic brain under lithium treatment. Link to mitochondrial disorders under stroke. Chem Biol Interact 2015; 237:175-82. [PMID: 26079057 DOI: 10.1016/j.cbi.2015.06.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/22/2015] [Accepted: 06/05/2015] [Indexed: 11/22/2022]
Abstract
Recent evidence suggests that mitochondria are one of the main factors in the pathogenesis in different organs including brain. The pathogenesis after brain damage is caused not only by the change in bioenergetics, but also involves impairment of alternative functions of mitochondria, particularly those related to the control of cell death. In this study we evaluated partial metabolic pathways under the simulation of a stroke by using the occlusion of the middle cerebral artery in rats. The analysis shows that the induced switch to a non-oxidative energy metabolism (glycolysis) due to the block of tissue oxygen supply does not ensure the adequate supply of the tissue with ATP. Moreover, the well-known acidification of the ischemic tissue is not associated with the so-called traditionally and incorrectly considered "lactic acidosis" (the generation of lactate from glucose by itself does not lead to excessive generation of protons), but occurs because of the consumption of tissue ATP under its reduced resynthesis. Incubation of mitochondria isolated from normal rat brain at neutral and slightly acidic pH, mimicking the intracellular pH of normal and ischemic tissues correspondingly, revealed serious changes in mitochondrial bioenergetics, partially reflected in the magnitude of respiratory control and the basal and maximally stimulated respiration rates. Measurement of available metabolites by (1)H MR spectra of normal and ischemia-damaged brains showed a significant increase in lactate and myo-inositol and a moderate decrease in N-acetylaspartate 24h after reperfusion. Remarkably, the administration of lithium chloride in the reperfusion phase normalized the levels of metabolites. Moreover, the introduction of lithium salts (chloride or succinate) in the bloodstream, restored after ischemia, reduced both the size of the ischemia-induced brain damage and the degree of brain swelling. Besides, post-ischemic introduction of lithium salts largely restored the neurological status of the animal.
Collapse
|
23
|
Silachev DN, Khailova LS, Babenko VA, Gulyaev MV, Kovalchuk SI, Zorova LD, Plotnikov EY, Antonenko YN, Zorov DB. Neuroprotective effect of glutamate-substituted analog of gramicidin A is mediated by the uncoupling of mitochondria. Biochim Biophys Acta Gen Subj 2014; 1840:3434-42. [PMID: 25218694 DOI: 10.1016/j.bbagen.2014.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/05/2014] [Accepted: 09/01/2014] [Indexed: 01/25/2023]
Abstract
BACKGROUND Reactive oxygen species are grossly produced in the brain after cerebral ischemia and reperfusion causing neuronal cell death. Mitochondrial production of reactive oxygen species is nonlinearly related to the value of the mitochondrial membrane potential with significant increment at values exceeding 150mV. Therefore, limited uncoupling of oxidative phosphorylation could be beneficial for cells exposed to deleterious oxidative stress-associated conditions by preventing excessive generation of reactive oxygen species. METHODS Protonophoric and uncoupling activities of different peptides were measured using pyranine-loaded liposomes and isolated mitochondria. To evaluate the effect of glutamate-substituted analog of gramicidin A ([Glu1]gA) administration on the brain ischemic damage, we employed the in vitro model of neuronal hypoxia using primary neuronal cell cultures and the in vivo model of cerebral ischemia induced in rats by the middle cerebral artery occlusion. RESULTS [Glu1]gA was the most effective in proton-transferring activity among several N-terminally substituted analogs of gramicidin A tested in liposomes and rat brain and liver mitochondria. The peptides were found to be protective against ischemia-induced neuronal cell death and they lowered mitochondrial membrane potential in cultured neurons and diminished reactive oxygen species production in isolated brain mitochondria. The intranasal administration of [Glu1]gA remarkably diminished the infarct size indicated in MR-images of a brain at day 1 after the middle cerebral artery occlusion. In [Glu1]gA-treated rats, the ischemia-induced brain swelling and behavioral dysfunction were significantly suppressed. CONCLUSIONS The glutamate-substituted analogs of gramicidin A displaying protonophoric and uncoupling activities protect neural cells and the brain from the injury caused by ischemia/reperfusion. GENERAL SIGNIFICANCE [Glu1]gA may be potentially used as a therapeutic agent to prevent neuron damage after stroke.
Collapse
Affiliation(s)
- Denis N Silachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ljudmila S Khailova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Valentina A Babenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Mikhail V Gulyaev
- Lomonosov Moscow State University, Faculty of Fundamental Medicine, Moscow 117192, Russia
| | - Sergey I Kovalchuk
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Ljubava D Zorova
- International Laser Center, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Egor Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Dmitry B Zorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
| |
Collapse
|
24
|
Khailova LS, Silachev DN, Rokitskaya TI, Avetisyan AV, Lyamsaev KG, Severina II, Il'yasova TM, Gulyaev MV, Dedukhova VI, Trendeleva TA, Plotnikov EY, Zvyagilskaya RA, Chernyak BV, Zorov DB, Antonenko YN, Skulachev VP. A short-chain alkyl derivative of Rhodamine 19 acts as a mild uncoupler of mitochondria and a neuroprotector. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1739-47. [PMID: 25038514 DOI: 10.1016/j.bbabio.2014.07.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/20/2014] [Accepted: 07/09/2014] [Indexed: 02/02/2023]
Abstract
Limited uncoupling of oxidative phosphorylation is known to be beneficial in various laboratory models of diseases. The search for cationic uncouplers is promising as their protonophorous effect is self-limiting because these uncouplers lower membrane potential which is the driving force for their accumulation in mitochondria. In this work, the penetrating cation Rhodamine 19 butyl ester (C4R1) was found to decrease membrane potential and to stimulate respiration of mitochondria, appearing to be a stronger uncoupler than its more hydrophobic analog Rhodamine 19 dodecyl ester (C12R1). Surprisingly, C12R1 increased H(+) conductance of artificial bilayer lipid membranes or induced mitochondria swelling in potassium acetate with valinomycin at concentrations lower than C4R1. This paradox might be explained by involvement of mitochondrial proteins in the uncoupling action of C4R1. In experiments with HeLa cells, C4R1 rapidly and selectively accumulated in mitochondria and stimulated oligomycin-sensitive respiration as a mild uncoupler. C4R1 was effective in preventing oxidative stress induced by brain ischemia and reperfusion in rats: it suppressed stroke-induced brain swelling and prevented the decline in neurological status more effectively than C12R1. Thus, C4R1 seems to be a promising example of a mild uncoupler efficient in treatment of brain pathologies related to oxidative stress.
Collapse
Affiliation(s)
- Ljudmila S Khailova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Denis N Silachev
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Tatyana I Rokitskaya
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Armine V Avetisyan
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Konstantin G Lyamsaev
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Inna I Severina
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Tatyana M Il'yasova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Mikhail V Gulyaev
- Lomonosov Moscow State University, Faculty of Fundamental Medicine, Lomonosovsky Prospect 31/5, Moscow 117192, Russia
| | - Vera I Dedukhova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Tatyana A Trendeleva
- A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky Prospect 33/2, 119071 Moscow, Russia
| | - Egor Y Plotnikov
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Renata A Zvyagilskaya
- Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia; A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky Prospect 33/2, 119071 Moscow, Russia
| | - Boris V Chernyak
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Dmitry B Zorov
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia
| | - Yuri N Antonenko
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia.
| | - Vladimir P Skulachev
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Vorobyevy Gory 1, Moscow 119991, Russia; Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Vorobyevy Gory 1, Moscow 119991, Russia.
| |
Collapse
|
25
|
Plotnikov EY, Silachev DN, Jankauskas SS, Rokitskaya TI, Chupyrkina AA, Pevzner IB, Zorova LD, Isaev NK, Antonenko YN, Skulachev VP, Zorov DB. Mild uncoupling of respiration and phosphorylation as a mechanism providing nephro- and neuroprotective effects of penetrating cations of the SkQ family. BIOCHEMISTRY (MOSCOW) 2014; 77:1029-37. [PMID: 23157263 DOI: 10.1134/s0006297912090106] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
It is generally accepted that mitochondrial production of reactive oxygen species is nonlinearly related to the value of the mitochondrial membrane potential with significant increment at values exceeding 150 mV. Due to this, high values of the membrane potential are highly dangerous, specifically under pathological conditions associated with oxidative stress. Mild uncoupling of oxidative phosphorylation is an approach to preventing hyperpolarization of the mitochondrial membrane. We confirmed data obtained earlier in our group that dodecylrhodamine 19 (C(12)R1) (a penetrating cation from SkQ family not possessing a plastoquinone group) has uncoupling properties, this fact making it highly potent for use in prevention of pathologies associated with oxidative stress induced by mitochondrial hyperpolarization. Further experiments showed that C(12)R1 provided nephroprotection under ischemia/reperfusion of the kidney as well as under rhabdomyolysis through diminishing of renal dysfunction manifested by elevated level of blood creatinine and urea. Similar nephroprotective properties were observed for low doses (275 nmol/kg) of the conventional uncoupler 2,4-dinitrophenol. Another penetrating cation that did not demonstrate protonophorous activity (SkQR4) had no effect on renal dysfunction. In experiments with induced ischemic stroke, C(12)R1 did not have any effect on the area of ischemic damage, but it significantly lowered neurological deficit. We conclude that beneficial effects of penetrating cation derivatives of rhodamine 19 in renal pathologies and brain ischemia may be at least partially explained by uncoupling of oxidation and phosphorylation.
Collapse
Affiliation(s)
- E Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Isaev NK, Novikova SV, Stelmashook EV, Barskov IV, Silachev DN, Khaspekov LG, Skulachev VP, Zorov DB. Mitochondria-targeted plastoquinone antioxidant SkQR1 decreases trauma-induced neurological deficit in rat. BIOCHEMISTRY (MOSCOW) 2014; 77:996-9. [PMID: 23157258 DOI: 10.1134/s0006297912090052] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A protective effect of a mitochondria-targeted antioxidant, a cationic rhodamine derivative linked to a plastoquinone molecule (10-(6'-plastoquinonyl)decylrhodamine-19, SkQR1) was studied in the model of open focal trauma of rat brain sensorimotor cortex. It was found that daily intraperitoneal injections of SkQR1 (100 nmol/kg) for 4 days after the trauma improved performance in a test characterizing neurological deficit and decreased the volume of the damaged cortical area. Our results suggest that SkQR1 exhibits profound neuroprotective effect, which may be explained by its antioxidative activity.
Collapse
Affiliation(s)
- N K Isaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
The mitochondria-targeted antioxidants and remote kidney preconditioning ameliorate brain damage through kidney-to-brain cross-talk. PLoS One 2012; 7:e51553. [PMID: 23272118 PMCID: PMC3522699 DOI: 10.1371/journal.pone.0051553] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 11/01/2012] [Indexed: 01/03/2023] Open
Abstract
Background Many ischemia-induced neurological pathologies including stroke are associated with high oxidative stress. Mitochondria-targeted antioxidants could rescue the ischemic organ by providing specific delivery of antioxidant molecules to the mitochondrion, which potentially suffers from oxidative stress more than non-mitochondrial cellular compartments. Besides direct antioxidative activity, these compounds are believed to activate numerous protective pathways. Endogenous anti-ischemic defense may involve the very powerful neuroprotective agent erythropoietin, which is mainly produced by the kidney in a redox-dependent manner, indicating an important role of the kidney in regulation of brain ischemic damage. The goal of this study is to track the relations between the kidney and the brain in terms of the amplification of defense mechanisms during SkQR1 treatment and remote renal preconditioning and provide evidence that the kidney can generate signals inducing a tolerance to oxidative stress-associated brain pathologies. Methodology/Principal Findings We used the cationic plastoquinone derivative, SkQR1, as a mitochondria-targeted antioxidant to alleviate the deleterious consequences of stroke. A single injection of SkQR1 before cerebral ischemia in a dose-dependent manner reduces infarction and improves functional recovery. Concomitantly, an increase in the levels of erythropoietin in urine and phosphorylated glycogen synthase kinase-3β (GSK-3β) in the brain was detected 24 h after SkQR1 injection. However, protective effects of SkQR1 were not observed in rats with bilateral nephrectomy and in those treated with the nephrotoxic antibiotic gentamicin, indicating the protective role of humoral factor(s) which are released from functional kidneys. Renal preconditioning also induced brain protection in rats accompanied by an increased erythropoietin level in urine and kidney tissue and P-GSK-3β in brain. Co-cultivation of SkQR1-treated kidney cells with cortical neurons resulted in enchanced phosphorylation of GSK-3β in neuronal cells. Conclusion The results indicate that renal preconditioning and SkQR1-induced brain protection may be mediated through the release of EPO from the kidney.
Collapse
|
28
|
Seredenin SB, Silachev DN, Gudasheva TA, Pirogov YA, Isaev NK. Neuroprotective effect of GK-2, a dipeptide mimetic of nerve growth factor, during experimental focal ischemia in middle cerebral artery basin. Bull Exp Biol Med 2012; 151:584-7. [PMID: 22462051 DOI: 10.1007/s10517-011-1388-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Magnetic resonance tomography, staining with triphenyltetrazolium chloride, and tests for evaluation of functional disturbances "cylinder" and "limb stimulation" showed that daily intraperitoneal injection of dipeptide mimetic of nerve growth factor GK-2 (1 mg/kg) for 6 days to rats with experimental focal ischemia provoked by unilateral intravascular occlusion of a branch of the middle cerebral artery significantly improved neurological deficit and decreased the infarction area.
Collapse
Affiliation(s)
- S B Seredenin
- V. V. Zakusov Institute of Pharmacology, Russian Academy of Medical Sciences, Moscow, Russia
| | | | | | | | | |
Collapse
|
29
|
Plotnikov EY, Silachev DN, Chupyrkina AA, Danshina MI, Jankauskas SS, Morosanova MA, Stelmashook EV, Vasileva AK, Goryacheva ES, Pirogov YA, Isaev NK, Zorov DB. New-generation Skulachev ions exhibiting nephroprotective and neuroprotective properties. BIOCHEMISTRY (MOSCOW) 2010; 75:145-50. [PMID: 20367601 DOI: 10.1134/s0006297910020045] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A mitochondria-targeted chimeric compound consisting of a rhodamine derivative linked to a plastoquinone molecule (10-(6'-plastoquinonyl)decylrhodamine, SkQR1) was studied under conditions of acute brain or kidney damage. A protective effect of this compound was demonstrated in a model of focal brain ischemia, rat kidney ischemia/reperfusion, myoglobinuria (rhabdomyolysis, or crush syndrome), and pyelonephritis. We found that a single intraperitoneal injection of SkQR1 diminishes the size of the ischemic zone in the brain and improves performance of a test characterizing neurological deficit in ischemic animals. Control substance not containing plastoquinone appeared to be not neuroprotective. The data show that SkQR1 is a nephroprotectant and neuroprotectant, which can be due to the antioxidative action of this Skulachev cation.
Collapse
Affiliation(s)
- E Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|