1
|
Gilgenkrantz H. [Efficacy of intermittent fasting on metabolic liver disease, fibrosis and hepatocellular carcinoma]. Med Sci (Paris) 2025; 41:310-312. [PMID: 40293147 DOI: 10.1051/medsci/2025051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Affiliation(s)
- Hélène Gilgenkrantz
- Centre de recherche sur l'inflammation, Inserm UMR 1149, Université Paris Cité, Faculté de médecine Bichat, Paris, France
| |
Collapse
|
2
|
Biga PR, Duan JE, Young TE, Marks JR, Bronikowski A, Decena LP, Randolph EC, Pavuluri AG, Li G, Fang Y, Wilkinson GS, Singh G, Nigrin NT, Larschan EN, Lonski AJ, Riddle NC. Hallmarks of aging: A user's guide for comparative biologists. Ageing Res Rev 2025; 104:102616. [PMID: 39643212 DOI: 10.1016/j.arr.2024.102616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Since the first description of a set of characteristics of aging as so-called hallmarks or pillars in 2013/2014, these characteristics have served as guideposts for the research in aging biology. They have been examined in a range of contexts, across tissues, in response to disease conditions or environmental factors, and served as a benchmark for various anti-aging interventions. While the hallmarks of aging were intended to capture generalizable characteristics of aging, they are derived mostly from studies of rodents and humans. Comparative studies of aging including species from across the animal tree of life have great promise to reveal new insights into the mechanistic foundations of aging, as there is a great diversity in lifespan and age-associated physiological changes. However, it is unclear how well the defined hallmarks of aging apply across diverse species. Here, we review each of the twelve hallmarks of aging defined by Lopez-Otin in 2023 with respect to the availability of data from diverse species. We evaluate the current methods used to assess these hallmarks for their potential to be adapted for comparative studies. Not unexpectedly, we find that the data supporting the described hallmarks of aging are restricted mostly to humans and a few model systems and that no data are available for many animal clades. Similarly, not all hallmarks can be easily assessed in diverse species. However, for at least half of the hallmarks, there are methods available today that can be employed to fill this gap in knowledge, suggesting that these studies can be prioritized while methods are developed for comparative study of the remaining hallmarks.
Collapse
Affiliation(s)
- Peggy R Biga
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jingyue E Duan
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - Tristan E Young
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jamie R Marks
- Department of Integrative Biology, W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Anne Bronikowski
- Department of Integrative Biology, W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Louis P Decena
- Department of Integrative Biology, W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Eric C Randolph
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ananya G Pavuluri
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Guangsheng Li
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - Yifei Fang
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | | | - Gunjan Singh
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Nathan T Nigrin
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Erica N Larschan
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Andrew J Lonski
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Nicole C Riddle
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
3
|
Mun J, Kim S, Kim S, Kim S, Park SC, Han JY, Park K, Park CY. Dietary habits of Koreans aged 95 years and older residing in rural and metropolitan areas. Nutr Res Pract 2025; 19:66-79. [PMID: 39959752 PMCID: PMC11821780 DOI: 10.4162/nrp.2025.19.1.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/06/2024] [Accepted: 12/13/2024] [Indexed: 02/18/2025] Open
Abstract
BACKGROUND/OBJECTIVES Cultural and environmental factors may affect dietary habits and intake, regardless of age. As recent assessments of dietary habits of adults 95 yrs and older are absent, we aimed to determine dietary habits, diet quality, and intake of adults 95 yrs and older and test if they vary by region. SUBJECTS/METHODS Adults 95 yrs and older residing in rural areas (Gurye-gun, Goksung-gun, and Sunchang-gun [GuGokSun]; n = 46), a near-city area (Hwasun-gun, and Damyang-gun [HwaDam]; n = 77), and a metropolitan city (Gwangju Metropolitan City [Gwangju]; n = 32) were surveyed. Dietary habits and quality were surveyed using the Nutrition Quotient for the Elderly (NQ-E). Participants (n = 20) recorded videos of their meals, which were subsequently analyzed for food and nutrient intake and compared with intakes of participants of the Korea National Health and Nutrition Examination Survey (KNHANES) aged ≥ 80 yrs (n = 1,769), which were assessed via 24-h recall. RESULTS Most participants (85.2%) consumed similar amounts of food at meals; however, only 65.1% ingested meals at regular times. The mean NQ-E score was 48.0 ± 11.9 and did not differ among regions. In Gwangju participants, subjective income was positively associated with diet quality. The mean energy and grain intakes per meal were lower, whereas the percent energy intake from protein and intakes of seaweed, meat and poultry, and iron were higher in GuGokSun and HwaDam participants with meal recordings than in KNHANES participants. CONCLUSION Among Korean adults aged ≥ 95 yrs, few regional variations exist in dietary quality and habits, although associations with diet quality vary within regions. Adults 95 yrs and older exhibit lower energy intake but higher intakes of seaweed, meat and poultry, and iron than adults aged ≥ 80 yrs. Notwithstanding, further longitudinal studies on centenarians are warranted.
Collapse
Affiliation(s)
- Jieun Mun
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea
| | - Sein Kim
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea
| | - Suyoung Kim
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea
| | - Seunghee Kim
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea
| | - Sang Chul Park
- The Future Life & Society Research Center, Advanced Institute of Aging Science, Chonnam National University, Gwangju 61186, Korea
| | - Jae-Young Han
- Department of Physical and Rehabilitation Medicine Center for Aging and Geriatrics, Regional CardioCereboVascular Center, Research Institute of Medical Sciences, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju 61469, Korea
| | - Kwangsung Park
- Department of Urology, Chonnam National University Medical School, Gwangju 61469, Korea
- Advanced Institute of Aging Science, Chonnam National University, Gwangju 61469, Korea
| | - Clara Yongjoo Park
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
4
|
Wang J, Rang Y, Liu C. Effects of Caloric Restriction and Intermittent Fasting and Their Combined Exercise on Cognitive Functioning: A Review. Curr Nutr Rep 2024; 13:691-700. [PMID: 39240488 DOI: 10.1007/s13668-024-00570-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
PURPOSE OF REVIEW The impact of dietary habits on cognitive function is increasingly gaining attention. The review is to discuss how caloric restriction (CR) and intermittent fasting (IF) can enhance cognitive function in healthy states through multiple pathways that interact with one another. Secondly, to explore the effects of CR and IF on cognitive function in conditions of neurodegenerative diseases, obesity diabetes and aging, as well as potential synergistic effects in combination with exercise to prevent cognitively related neurodegenerative diseases. RECENT FINDINGS With age, the human brain ages and develops corresponding neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and epilepsy, which in turn trigger cognitive impairment. Recent research indicates that the impact of diet and exercise on cognitive function is increasingly gaining attention. The benefits of exercise for cognitive function and brain plasticity are numerous, and future research can examine the efficacy of particular dietary regimens during physical activity when combined with diet which can prevent cognitive decline.
Collapse
Affiliation(s)
- Junming Wang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
- The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou, 510642, China
| | - Yifeng Rang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
- The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou, 510642, China
| | - Chunhong Liu
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
- The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou, 510642, China.
| |
Collapse
|
5
|
Lim GM, Maharajan N, Cho GW. How calorie restriction slows aging: an epigenetic perspective. J Mol Med (Berl) 2024; 102:629-640. [PMID: 38456926 DOI: 10.1007/s00109-024-02430-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 01/14/2024] [Accepted: 02/07/2024] [Indexed: 03/09/2024]
Abstract
Genomic instability and epigenetic alterations are some of the prominent factors affecting aging. Age-related heterochromatin loss and decreased whole-genome DNA methylation are associated with abnormal gene expression, leading to diseases and genomic instability. Modulation of these epigenetic changes is crucial for preserving genomic integrity and controlling cellular identity is important for slowing the aging process. Numerous studies have shown that caloric restriction is the gold standard for promoting longevity and healthy aging in various species ranging from rodents to primates. It can be inferred that delaying of aging through the main effector such as calorie restriction is involved in cellular identity and epigenetic modification. Thus, an understanding of aging through calorie restriction may seek a more in-depth understanding. In this review, we discuss how caloric restriction promotes longevity and healthy aging through genomic stability and epigenetic alterations. We have also highlighted how the effectors of caloric restriction are involved in modulating the chromatin-based barriers.
Collapse
Affiliation(s)
- Gyeong Min Lim
- Department of Biological Science, College of Natural Science, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 61452, Republic of Korea
- BK21 FOUR Education Research Group for Age-Associated Disorder Control Technology, Department of Integrative Biological Science, Chosun University, Gwangju, 61452, Republic of Korea
| | - Nagarajan Maharajan
- The Department of Obstetrics & Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gwang-Won Cho
- Department of Biological Science, College of Natural Science, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 61452, Republic of Korea.
- BK21 FOUR Education Research Group for Age-Associated Disorder Control Technology, Department of Integrative Biological Science, Chosun University, Gwangju, 61452, Republic of Korea.
- The Basic Science Institute of Chosun University, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
6
|
Poulain M, Herm A. Exceptional longevity in Okinawa: Demographic trends since 1975. J Intern Med 2024; 295:387-399. [PMID: 38221516 DOI: 10.1111/joim.13764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Demographers have studied the Japanese mortality pattern since Japan became the most longevous population worldwide, half a century ago. Nutrition and lifestyle were considered by epidemiologists, gerontologists and other scientists as the most important reasons explaining the Japanese superiority. In Okinawa, the mortality pattern is even more exceptional, but few demographers have pointed out this exception. Other scientists proposed different explanations - for example some genetic characteristics, less salt and more animal protein in the food, a mild climate, a higher level of activity, a better consideration of the oldest in the population and, globally speaking, a more traditional lifestyle. At the end of the 1980s, lower improvements of mortality among young adults were identified in Okinawa. In 2002, Okinawa fell from the 4th to the 26th place in the ranking of the 47 Japanese prefectures by male life expectancy. This has been considered by the population of Okinawa as a 'shock'. Our in-depth analysis of available life tables and associated mortality rates proves that the population of Okinawa is divided into two groups of generations: those born before World War II and those born after. The older generations clearly experience a highly favourable mortality pattern, whereas the younger generations show mortality levels that are definitively higher compared to mainland Japan. This contribution considers which factors may explain such a situation, including the plausible invalidation of the age of some oldest in the population. We plea for in-depth demographic age validation that will enhance all scientific findings so far and boost the exceptional longevity in Okinawa.
Collapse
Affiliation(s)
- Michel Poulain
- Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
- Tallinn University (TLU), Tallinn, Estonia
| | - Anne Herm
- Tallinn University (TLU), Tallinn, Estonia
| |
Collapse
|
7
|
Damigou E, Kosti RI, Downs SM, Naumovski N, Panagiotakos D. Comparing The Mediterranean and The Japanese Dietary Pattern in Relation to Longevity - A Narrative Review. Endocr Metab Immune Disord Drug Targets 2024; 24:1746-1755. [PMID: 38288822 DOI: 10.2174/0118715303270869240120040514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/01/1970] [Accepted: 01/02/2024] [Indexed: 10/22/2024]
Abstract
The Mediterranean dietary pattern (MDP) and Japanese dietary pattern (JDP) have received increasing attention from the scientific community and media, predominantly due to their association with increased longevity and health. Although similarities between the two dietary patterns are evident, a detailed comparison between them is still relatively unexplored. This narrative review aimed to explore the similarities and differences between the MDP and JDP in terms of longevity while also reflecting on the adoption of these diets by other populations outside their regions of origin. Both dietary patterns are plant-based, minimally processed, and sustainable for their respective regions and have been shown to significantly prolong life expectancy in different populations. Nevertheless, these dietary patterns also differ in terms of macronutrient ratios, food preparation and consumption and individual cultural characteristics of each population. Additionally, both dietary patterns are part of broader lifestyle patterns, which include other behaviors, such as abstaining from smoking, engaging in regular physical activity, having low stress levels and a sense of community, spirituality/religiousness and purpose. The promotion of these two dietary patterns should be implemented in other regions after considering cultural and socio-economical characteristics.
Collapse
Affiliation(s)
- Evangelia Damigou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Rena Isaac Kosti
- Department of Nutrition and Dietetics, School of Physical Education, Sports and Dietetics, University of Thessaly, Trikala, Greece
| | - Shauna Mae Downs
- Department of Health Behavior, Society and Policy, Rutgers University, Newark, NJ, United States
| | - Nenad Naumovski
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Locked Bag 1, Canberra, Australia
- Functional Foods and Nutrition Research (FFNR) Laboratory, Kirinari St., Bruce, Canberra, Australia
| | - Demosthenes Panagiotakos
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| |
Collapse
|
8
|
Pélissier L, Bagot S, Miles-Chan JL, Pereira B, Boirie Y, Duclos M, Dulloo A, Isacco L, Thivel D. Is dieting a risk for higher weight gain in normal-weight individual? A systematic review and meta-analysis. Br J Nutr 2023; 130:1190-1212. [PMID: 36645258 DOI: 10.1017/s0007114523000132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
While there is an increasing prevalence of dieting in the overall population, weight loss (WL) practices could be a risk factor for weight gain (WG) in normal-weight (NW) individuals. The aim of the present work was to systematically review all the studies implicating diet restriction and body weight (BW) evolution in NW people. The literature search was registered in PROSPERO (CRD42021281442) and was performed in three databases from April 2021 to June 2022 for articles involving healthy NW adults. From a total of 1487 records initially identified, eighteen were selected in the systematic review. Of the eight dieting interventional studies, only one found a higher BW after weight recovery, but 75 % of them highlighted metabolic adaptations in response to WL favouring weight regain and persisting during/after BW recovery. Eight of the ten observational studies showed a relationship between dieting and major later WG, while the meta-analysis of observational studies results indicated that 'dieters' have a higher BW than 'non-dieters'. However, considering the high methodological heterogeneity and the publication bias of the studies, this result should be taken with caution. Moreover, the term 'diet' was poorly described, and we observed a large heterogeneity of the methods used to assess dieting status. Present results suggest that dieting could be a major risk factor for WG in the long term in NW individuals. There is, however, a real need for prospective randomised controlled studies, specifically assessing the relationship between WL induced by diet and subsequent weight in this population.
Collapse
Affiliation(s)
- Léna Pélissier
- Clermont Auvergne University, UPR 3533, Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), CRNH Auvergne, Clermont-Ferrand, France
| | - Sarah Bagot
- Clermont Auvergne University, UPR 3533, Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), CRNH Auvergne, Clermont-Ferrand, France
| | - Jennifer Lynn Miles-Chan
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Bruno Pereira
- Unit of Biostatistics (DRCI), Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Yves Boirie
- Department of Human Nutrition, Clermont-Ferrand University Hospital, G. Montpied Hospital, Clermont-Ferrand, France
| | - Martine Duclos
- Observatoire National de l'Activité Physique et de la Sédentarité (ONAPS), Faculty of Medicine, Clermont Auvergne University, Clermont-Ferrand, France
- University Hospital (CHU) Clermont-Ferrand, Hospital G. Montpied, Department of Sport Medicine and Functional Explorations, Clermont-Ferrand, France
- International Research Chair Health in Motion, Clermont Auvergne University Foundation, Clermont-Ferrand, France
| | - Abdul Dulloo
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Laurie Isacco
- Clermont Auvergne University, UPR 3533, Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), CRNH Auvergne, Clermont-Ferrand, France
| | - David Thivel
- Clermont Auvergne University, UPR 3533, Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), CRNH Auvergne, Clermont-Ferrand, France
- Observatoire National de l'Activité Physique et de la Sédentarité (ONAPS), Faculty of Medicine, Clermont Auvergne University, Clermont-Ferrand, France
- International Research Chair Health in Motion, Clermont Auvergne University Foundation, Clermont-Ferrand, France
| |
Collapse
|
9
|
Navarro C, Salazar J, Díaz MP, Chacin M, Santeliz R, Vera I, D′Marco L, Parra H, Bernal MC, Castro A, Escalona D, García-Pacheco H, Bermúdez V. Intrinsic and environmental basis of aging: A narrative review. Heliyon 2023; 9:e18239. [PMID: 37576279 PMCID: PMC10415626 DOI: 10.1016/j.heliyon.2023.e18239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Longevity has been a topic of interest since the beginnings of humanity, yet its aetiology and precise mechanisms remain to be elucidated. Aging is currently viewed as a physiological phenomenon characterized by the gradual degeneration of organic physiology and morphology due to the passage of time where both external and internal stimuli intervene. The influence of intrinsic factors, such as progressive telomere shortening, genome instability due to mutation buildup, the direct or indirect actions of age-related genes, and marked changes in epigenetic, metabolic, and mitochondrial patterns constitute a big part of its underlying endogenous mechanisms. On the other hand, several psychosocial and demographic factors, such as diet, physical activity, smoking, and drinking habits, may have an even more significant impact on shaping the aging process. Consequentially, implementing dietary and exercise patterns has been proposed as the most viable alternative strategy for attenuating the most typical degenerative aging changes, thus increasing the likelihood of prolonging lifespan and achieving successful aging.
Collapse
Affiliation(s)
- Carla Navarro
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo 4001, Venezuela
| | - Juan Salazar
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo 4001, Venezuela
| | - María P. Díaz
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo 4001, Venezuela
| | - Maricarmen Chacin
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla 080001, Colombia
| | - Raquel Santeliz
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo 4001, Venezuela
| | - Ivana Vera
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo 4001, Venezuela
| | - Luis D′Marco
- Universidad Cardenal Herrera-CEU Medicine Department, CEU Universities, 46115 Valencia, Spain
| | - Heliana Parra
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo 4001, Venezuela
| | | | - Ana Castro
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo 4001, Venezuela
| | - Daniel Escalona
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo 4001, Venezuela
| | - Henry García-Pacheco
- Universidad del Zulia, Facultad de Medicina, Departamento de Cirugía. Hospital General del Sur “Dr. Pedro Iturbe”. Maracaibo, Venezuela
- Unidad de Cirugía para la Obesidad y Metabolismo (UCOM). Maracaibo, Venezuela
| | - Valmore Bermúdez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla 080001, Colombia
| |
Collapse
|
10
|
Sawalha K, Norgard N, López-Candales A. Epigenetic Regulation and its Effects on Aging and Cardiovascular Disease. Cureus 2023; 15:e39395. [PMID: 37362531 PMCID: PMC10286850 DOI: 10.7759/cureus.39395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Cardiovascular disease (CVD), specifically coronary atherosclerosis, is regulated by an interplay between genetic and lifestyle factors. Most recently, a factor getting much attention is the role epigenetics play in atherosclerosis; particularly the development of coronary artery disease. Furthermore, it is important to understand the intricate interaction between the environment and each individual genetic material and how this interaction affects gene expression and consequently influences the development of atherosclerosis. Our main goal is to discuss epigenetic regulations; particularly, the factors contributing to coronary atherosclerosis and their role in aging and longevity. We reviewed the current literature and provided a simplified yet structured and reasonable appraisal of this topic. This role has also been recently linked to longevity and aging. Epigenetic regulations (modifications) whether through histone modifications or DNA or RNA methylation have been shown to be regulated by environmental factors such as social stress, smoking, chemical contaminants, and diet. These sensitive interactions are further aggravated by racial health disparities that ultimately impact cardiovascular disease outcomes through epigenetic interactions. Certainly, limiting our exposure to such causative events at younger ages seems our "golden opportunity" to tackle the incidence of coronary atherosclerosis and probably the answer to longevity.
Collapse
Affiliation(s)
- Khalid Sawalha
- Cardiometabolic Diseases, Truman Medical Centers - University of Missouri Kansas City, Kansas City, USA
| | - Nicholas Norgard
- Pharmacology and Therapeutics, Truman Medical Centers - University of Missouri Kansas City, Kansas City, USA
| | | |
Collapse
|
11
|
Murphy A, Vyavahare S, Kumar S, Lee TJ, Sharma A, Adusumilli S, Hamrick M, Isales CM, Fulzele S. Dietary interventions and molecular mechanisms for healthy musculoskeletal aging. Biogerontology 2022; 23:681-698. [PMID: 35727468 DOI: 10.1007/s10522-022-09970-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/18/2022] [Indexed: 12/13/2022]
Abstract
Over the past decade, extensive efforts have focused on understanding age-associated diseases and how to prolong a healthy lifespan. The induction of dietary protocols such as caloric restriction (CR) and protein restriction (PR) has positively affected a healthy lifespan. These intervention ideas (nutritional protocols) have been the subject of human cohort studies and clinical trials to evaluate their effectiveness in alleviating age-related diseases (such as type II diabetes, cardiovascular disease, obesity, and musculoskeletal fragility) and promoting human longevity. This study summarizes the literature on the nutritional protocols, emphasizing their impacts on bone and muscle biology. In addition, we analyzed several CR studies using Gene Expression Omnibus (GEO) database and identified common transcriptome changes to understand the signaling pathway involved in musculoskeletal tissue. We identified nine novel common genes, out of which five were upregulated (Emc3, Fam134b, Fbxo30, Pip5k1a, and Retsat), and four were downregulated (Gstm2, Per2, Fam78a, and Sel1l3) with CR in muscles. Gene Ontology enrichment analysis revealed that CR regulates several signaling pathways (e.g., circadian gene regulation and rhythm, energy reserve metabolic process, thermogenesis) involved in energy metabolism. In conclusion, this study summarizes the beneficiary role of CR and identifies novel genes and signaling pathways involved in musculoskeletal biology.
Collapse
Affiliation(s)
- Andrew Murphy
- Department of Medicine, Augusta University, Augusta, GA, 30912, USA
| | - Sagar Vyavahare
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - Sandeep Kumar
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, 30912, USA
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, 30912, USA
| | | | - Mark Hamrick
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA.,Center for Healthy Aging, Augusta University, Augusta, GA, USA
| | - Carlos M Isales
- Department of Medicine, Augusta University, Augusta, GA, 30912, USA.,Center for Healthy Aging, Augusta University, Augusta, GA, USA
| | - Sadanand Fulzele
- Department of Medicine, Augusta University, Augusta, GA, 30912, USA. .,Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA. .,Center for Healthy Aging, Augusta University, Augusta, GA, USA.
| |
Collapse
|
12
|
Dakic T, Jevdjovic T, Vujovic P, Mladenovic A. The Less We Eat, the Longer We Live: Can Caloric Restriction Help Us Become Centenarians? Int J Mol Sci 2022; 23:ijms23126546. [PMID: 35742989 PMCID: PMC9223351 DOI: 10.3390/ijms23126546] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
Striving for longevity is neither a recent human desire nor a novel scientific field. The first article on this topic was published in 1838, when the average human life expectancy was approximately 40 years. Although nowadays people on average live almost as twice as long, we still (and perhaps more than ever) look for new ways to extend our lifespan. During this seemingly endless journey of discovering efficient methods to prolong life, humans were enthusiastic regarding several approaches, one of which is caloric restriction (CR). Where does CR, initially considered universally beneficial for extending both lifespan and health span, stand today? Does a lifelong decrease in food consumption represent one of the secrets of centenarians’ long and healthy life? Do we still believe that if we eat less, we will live longer? This review aims to summarize the current literature on CR as a potential life-prolonging intervention in humans and discusses metabolic pathways that underlie this effect.
Collapse
Affiliation(s)
- Tamara Dakic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (T.D.); (T.J.); (P.V.)
| | - Tanja Jevdjovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (T.D.); (T.J.); (P.V.)
| | - Predrag Vujovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (T.D.); (T.J.); (P.V.)
| | - Aleksandra Mladenovic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul.D. Stefana 142, 11000 Belgrade, Serbia
- Correspondence:
| |
Collapse
|
13
|
Duan H, Pan J, Guo M, Li J, Yu L, Fan L. Dietary strategies with anti-aging potential: dietary patterns and supplements. Food Res Int 2022; 158:111501. [DOI: 10.1016/j.foodres.2022.111501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 11/04/2022]
|
14
|
Kemalasari I, Fitri NA, Sinto R, Tahapary DL, Harbuwono DS. Effect of calorie restriction diet on levels of C reactive protein (CRP) in obesity: A systematic review and meta-analysis of randomized controlled trials. Diabetes Metab Syndr 2022; 16:102388. [PMID: 35219261 DOI: 10.1016/j.dsx.2022.102388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND AIMS Chronic inflammation in obese patients can be managed through a calorie-restricted diet, characterized by reduced C - reactive protein (CRP). This study aims to assess the role of such diet on CRP. METHODS Literature searches were performed using search engines. Randomized controlled trials were included. Calorie-restricted diets in combination with non-diet interventions were excluded. RESULTS Calorie restriction decreased CRP in obese patients with a mean difference of -0.22 (95% CI -0.40 to -0.04, p 0.006). CONCLUSIONS Calorie-restricted diet reduces CRP. Diet administration >12 weeks had a beneficial effect.
Collapse
Affiliation(s)
- Indira Kemalasari
- Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Dr. Ciptomangunkusumo National General Hospital, Jakarta, Indonesia
| | | | - Robert Sinto
- Tropical Diseases and Infections Division, Department of Internal Medicine, Faculty of Medicine, University of Indonesia, Indonesia; The Center for Clinical Epidemiology and Evidence-Based Medicine (CEEBM), Faculty of Medicine, Universitas Indonesia, Indonesia
| | - Dicky L Tahapary
- Division of Endocrinology and Metabolism, Internal Medicine Department, Faculty of Medicine Universitas Indonesia, Dr. Ciptomangunkusumo National General Hospital, Jakarta, Indonesia
| | - Dante Saksono Harbuwono
- Division of Endocrinology and Metabolism, Internal Medicine Department, Faculty of Medicine Universitas Indonesia, Dr. Ciptomangunkusumo National General Hospital, Jakarta, Indonesia.
| |
Collapse
|
15
|
Oudmaijer CAJ, Berk KA, van der Louw EJTM, de Man R, van der Lelij AJ, Hoeijmakers JHJ, IJzermans J. KETOgenic diet therapy in patients with HEPatocellular adenoma: study protocol of a matched interventional cohort study. BMJ Open 2022; 12:e053559. [PMID: 35168973 PMCID: PMC8852750 DOI: 10.1136/bmjopen-2021-053559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Hepatocellular adenoma (HCA) is an uncommon, solid and benign liver lesion, mainly occurring in women using oral contraceptives. Patients are advised to stop using oral contraceptives (OC) and, as overweight is frequently observed, dietary restrictions. Metabolic changes are assumed to play a role and it has been suggested that diet may help to reduce tumour size. A low-calorie ketogenic diet (LCKD) has been shown to induce weight loss and multiple metabolic changes, including the reduction of portal insulin concentrations, which downregulates hepatic growth hormone receptors. Weight reduction and an LCKD can potentially reduce the size of HCAs. METHODS AND ANALYSIS We designed a matched, interventional cohort study to determine the effect of an LCKD on the regression of HCA. The study population consists of female subjects with an HCA, 18-50 years of age, body mass index>25 kg/m2, who are entering a surveillance period including cessation of OC. A historical control group will be matched. The intervention consists of an LCKD (approximately 35 g carbohydrate/1500 kcal/day) for 3 months, followed by a less strict LCKD for 3 months (approximately 60 g carbohydrate/1500 kcal/day). Main study endpoint is the diameter of the HCA after 6 months, as compared with the historic control group. Secondary endpoints include adherence, quality of life, change in physical activity, liver fat content, body weight, body composition and resting energy expenditure. ETHICS AND DISSEMINATION The medical ethical committee has approved the study protocol, patient information files and consent procedure and other study-related documents and procedures. TRIAL REGISTRATION NUMBER NL75014.078.20; Pre-results. https://www.trialregister.nl/trial/9092.
Collapse
Affiliation(s)
- Christiaan Albert Johan Oudmaijer
- Erasmus MC Transplant Institute, Department of Surgery, Division of Hepatobiliary and Transplantation Surgery, Erasmus MC, Rotterdam, Zuid-Holland, The Netherlands
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Kirsten Anna Berk
- Department of Internal Medicine, Division of Dietetics, Erasmus MC, Rotterdam, Zuid-Holland, The Netherlands
| | | | - Rob de Man
- Department of Hepato-Gastroenterology, Erasmus MC, Rotterdam, Zuid-Holland, The Netherlands
| | - Aart-Jan van der Lelij
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, Zuid-Holland, The Netherlands
| | - Jan Hendrik Jozef Hoeijmakers
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Erasmus MC Cancer Institute, Department of Molecular Genetics, Erasmus MC, Rotterdam, Zuid-Holland, The Netherlands
| | - Jan IJzermans
- Erasmus MC Transplant Institute, Department of Surgery, Division of Hepatobiliary and Transplantation Surgery, Erasmus MC, Rotterdam, Zuid-Holland, The Netherlands
| |
Collapse
|
16
|
Hofer SJ, Carmona‐Gutierrez D, Mueller MI, Madeo F. The ups and downs of caloric restriction and fasting: from molecular effects to clinical application. EMBO Mol Med 2022; 14:e14418. [PMID: 34779138 PMCID: PMC8749464 DOI: 10.15252/emmm.202114418] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Age-associated diseases are rising to pandemic proportions, exposing the need for efficient and low-cost methods to tackle these maladies at symptomatic, behavioral, metabolic, and physiological levels. While nutrition and health are closely intertwined, our limited understanding of how diet precisely influences disease often precludes the medical use of specific dietary interventions. Caloric restriction (CR) has approached clinical application as a powerful, yet simple, dietary modulation that extends both life- and healthspan in model organisms and ameliorates various diseases. However, due to psychological and social-behavioral limitations, CR may be challenging to implement into real life. Thus, CR-mimicking interventions have been developed, including intermittent fasting, time-restricted eating, and macronutrient modulation. Nonetheless, possible side effects of CR and alternatives thereof must be carefully considered. We summarize key concepts and differences in these dietary interventions in humans, discuss their molecular effects, and shed light on advantages and disadvantages.
Collapse
Affiliation(s)
- Sebastian J Hofer
- Institute of Molecular BiosciencesNAWI GrazUniversity of GrazGrazAustria
- BioHealth GrazGrazAustria
- BioTechMed GrazGrazAustria
| | | | - Melanie I Mueller
- Institute of Molecular BiosciencesNAWI GrazUniversity of GrazGrazAustria
| | - Frank Madeo
- Institute of Molecular BiosciencesNAWI GrazUniversity of GrazGrazAustria
- BioHealth GrazGrazAustria
- BioTechMed GrazGrazAustria
| |
Collapse
|
17
|
Pietri P, Stefanadis C. Cardiovascular Aging and Longevity: JACC State-of-the-Art Review. J Am Coll Cardiol 2021; 77:189-204. [PMID: 33446313 DOI: 10.1016/j.jacc.2020.11.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/25/2022]
Abstract
Cardiovascular aging and longevity are interrelated through many pathophysiological mechanisms. Many factors that promote atherosclerotic cardiovascular disease are also implicated in the aging process and vice versa. Indeed, cardiometabolic disorders such as hyperglycemia, insulin resistance, dyslipidemia, and arterial hypertension share common pathophysiological mechanisms with aging and longevity. Moreover, genetic modulators of longevity have a significant impact on cardiovascular aging. The current knowledge of genetic, molecular, and biochemical pathways of aging may serve as a substrate to introduce interventions that might delay cardiovascular aging, thus approaching the goal of longevity. In the present review, the authors describe pathophysiological links between cardiovascular aging and longevity and translate these mechanisms into clinical data by reporting genetic, dietary, and environmental characteristics from long-living populations.
Collapse
Affiliation(s)
- Panagiota Pietri
- Athens Medical School, University of Athens, Athens, Greece; Research Institute for Longevity and Aging-related diseases, Athens, Greece
| | - Christodoulos Stefanadis
- Athens Medical School, University of Athens, Athens, Greece; Research Institute for Longevity and Aging-related diseases, Athens, Greece.
| |
Collapse
|
18
|
Giacomello E, Toniolo L. The Potential of Calorie Restriction and Calorie Restriction Mimetics in Delaying Aging: Focus on Experimental Models. Nutrients 2021; 13:2346. [PMID: 34371855 PMCID: PMC8308705 DOI: 10.3390/nu13072346] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022] Open
Abstract
Aging is a biological process determined by multiple cellular mechanisms, such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication, that ultimately concur in the functional decline of the individual. The evidence that the old population is steadily increasing and will triplicate in the next 50 years, together with the fact the elderlies are more prone to develop pathologies such as cancer, diabetes, and degenerative disorders, stimulates an important effort in finding specific countermeasures. Calorie restriction (CR) has been demonstrated to modulate nutrient sensing mechanisms, inducing a better metabolic profile, enhanced stress resistance, reduced oxidative stress, and improved inflammatory response. Therefore, CR and CR-mimetics have been suggested as powerful means to slow aging and extend healthy life-span in experimental models and humans. Taking into consideration the difficulties and ethical issues in performing aging research and testing anti-aging interventions in humans, researchers initially need to work with experimental models. The present review reports the major experimental models utilized in the study of CR and CR-mimetics, highlighting their application in the laboratory routine, and their translation to human research.
Collapse
Affiliation(s)
- Emiliana Giacomello
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Luana Toniolo
- Laboratory of Muscle Biophysics, Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
19
|
Cyrino LG, Galpern J, Moore L, Borgi L, Riella LV. A Narrative Review of Dietary Approaches for Kidney Transplant Patients. Kidney Int Rep 2021; 6:1764-1774. [PMID: 34307973 PMCID: PMC8258457 DOI: 10.1016/j.ekir.2021.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/16/2021] [Accepted: 04/12/2021] [Indexed: 12/19/2022] Open
Abstract
A healthy eating pattern has proven to lower the risk of metabolic and cardiovascular diseases. However, there are sparse dietary recommendations for kidney transplant recipients, and the ones available focus only on single nutrients intake, such as sodium, potassium, and proteins, and not on the overall eating pattern. Considering that individuals do not typically consume nutrients in isolation, but as part of a complete dietary pattern, it is challenging for the average transplanted patient to understand and implement specific dietary recommendations. Also, single-nutrient interventions demonstrate largely inconclusive effects, and it seems improbable that they could have a strong enough impact on transplant outcomes. Dietary trends such as plant-based diets, intermittent fasting, low-carb diet/keto-diet, and juicing, have gained major attention from the media. Herein, we review the potential risks and benefits of these diets in kidney transplant recipients and provide an updated dietary recommendation for this population with consideration of current nutritional trends. Overall, the Mediterranean and DASH diets have demonstrated to be the most beneficial dietary patterns to the post kidney transplant population by focusing on less meat and processed foods, while increasing the intake of fresh foods and plant-based choices. We believe that to maintain a healthy lifestyle posttransplant, patients should be educated about the scientific evidence of different diets and choose a dietary pattern that is sustainable long-term.
Collapse
Affiliation(s)
- LG Cyrino
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jennie Galpern
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lori Moore
- Division of Nephrology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lea Borgi
- Division of Nephrology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Leonardo V. Riella
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Caputo M, Pigni S, Agosti E, Daffara T, Ferrero A, Filigheddu N, Prodam F. Regulation of GH and GH Signaling by Nutrients. Cells 2021; 10:1376. [PMID: 34199514 PMCID: PMC8227158 DOI: 10.3390/cells10061376] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
Growth hormone (GH) and insulin-like growth factor-1 (IGF-I) are pleiotropic hormones with important roles in lifespan. They promote growth, anabolic actions, and body maintenance, and in conditions of energy deprivation, favor catabolic feedback mechanisms switching from carbohydrate oxidation to lipolysis, with the aim to preserve protein storages and survival. IGF-I/insulin signaling was also the first one identified in the regulation of lifespan in relation to the nutrient-sensing. Indeed, nutrients are crucial modifiers of the GH/IGF-I axis, and these hormones also regulate the complex orchestration of utilization of nutrients in cell and tissues. The aim of this review is to summarize current knowledge on the reciprocal feedback among the GH/IGF-I axis, macro and micronutrients, and dietary regimens, including caloric restriction. Expanding the depth of information on this topic could open perspectives in nutrition management, prevention, and treatment of GH/IGF-I deficiency or excess during life.
Collapse
Affiliation(s)
- Marina Caputo
- SCDU of Endocrinology, University Hospital Maggiore della Carità, 28100 Novara, Italy; (M.C.); (S.P.); (T.D.); (A.F.)
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Stella Pigni
- SCDU of Endocrinology, University Hospital Maggiore della Carità, 28100 Novara, Italy; (M.C.); (S.P.); (T.D.); (A.F.)
| | - Emanuela Agosti
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Tommaso Daffara
- SCDU of Endocrinology, University Hospital Maggiore della Carità, 28100 Novara, Italy; (M.C.); (S.P.); (T.D.); (A.F.)
| | - Alice Ferrero
- SCDU of Endocrinology, University Hospital Maggiore della Carità, 28100 Novara, Italy; (M.C.); (S.P.); (T.D.); (A.F.)
| | - Nicoletta Filigheddu
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Flavia Prodam
- SCDU of Endocrinology, University Hospital Maggiore della Carità, 28100 Novara, Italy; (M.C.); (S.P.); (T.D.); (A.F.)
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy;
| |
Collapse
|
21
|
Acosta-Rodríguez VA, Rijo-Ferreira F, Green CB, Takahashi JS. Importance of circadian timing for aging and longevity. Nat Commun 2021; 12:2862. [PMID: 34001884 PMCID: PMC8129076 DOI: 10.1038/s41467-021-22922-6] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 03/29/2021] [Indexed: 12/21/2022] Open
Abstract
Dietary restriction (DR) decreases body weight, improves health, and extends lifespan. DR can be achieved by controlling how much and/or when food is provided, as well as by adjusting nutritional composition. Because these factors are often combined during DR, it is unclear which are necessary for beneficial effects. Several drugs have been utilized that target nutrient-sensing gene pathways, many of which change expression throughout the day, suggesting that the timing of drug administration is critical. Here, we discuss how dietary and pharmacological interventions promote a healthy lifespan by influencing energy intake and circadian rhythms. Circadian clocks link physiologic processes to environmental conditions and a mismatch between internal and external rhythms has negative effects on organismal health. In this review, the authors discuss the interactions between circadian clocks and dietary interventions targeted to promote healthy aging.
Collapse
Affiliation(s)
- Victoria A Acosta-Rodríguez
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Filipa Rijo-Ferreira
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carla B Green
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
22
|
Di Daniele N, Marrone G, Di Lauro M, Di Daniele F, Palazzetti D, Guerriero C, Noce A. Effects of Caloric Restriction Diet on Arterial Hypertension and Endothelial Dysfunction. Nutrients 2021; 13:nu13010274. [PMID: 33477912 PMCID: PMC7833363 DOI: 10.3390/nu13010274] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023] Open
Abstract
The most common manifestation of cardiovascular (CV) diseases is the presence of arterial hypertension (AH), which impacts on endothelial dysfunction. CV risk is associated with high values of systolic and diastolic blood pressure and depends on the presence of risk factors, both modifiable and not modifiable, such as overweight, obesity, physical exercise, smoking, age, family history, and gender. The main target organs affected by AH are the heart, brain, vessels, kidneys, and eye retina. AH onset can be counteracted or delayed by adopting a proper diet, characterized by a low saturated fat and sodium intake, a high fruit and vegetable intake, a moderate alcohol consumption, and achieving and maintaining over time the ideal body weight. In this review, we analyzed how a new nutritional approach, named caloric restriction diet (CRD), can provide a significant reduction in blood pressure values and an improvement of the endothelial dysfunction. In fact, CRD is able to counteract aging and delay the onset of CV and neurodegenerative diseases through the reduction of body fat mass, systolic and diastolic values, free radicals production, and oxidative stress. Currently, there are few studies on CRD effects in the long term, and it would be advisable to perform observational studies with longer follow-up.
Collapse
Affiliation(s)
- Nicola Di Daniele
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.D.D.); (D.P.); (C.G.); (A.N.)
- Correspondence: ; Tel.: +39-062090-2982; Fax: +39-062090-3362
| | - Giulia Marrone
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.D.D.); (D.P.); (C.G.); (A.N.)
- School of Applied Medical, Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Manuela Di Lauro
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.D.D.); (D.P.); (C.G.); (A.N.)
| | - Francesca Di Daniele
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.D.D.); (D.P.); (C.G.); (A.N.)
- School of Applied Medical, Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Daniela Palazzetti
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.D.D.); (D.P.); (C.G.); (A.N.)
| | - Cristina Guerriero
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.D.D.); (D.P.); (C.G.); (A.N.)
| | - Annalisa Noce
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.D.D.); (D.P.); (C.G.); (A.N.)
| |
Collapse
|
23
|
Penuelas J, Krisztin T, Obersteiner M, Huber F, Winner H, Janssens IA, Ciais P, Sardans J. Country-Level Relationships of the Human Intake of N and P, Animal and Vegetable Food, and Alcoholic Beverages with Cancer and Life Expectancy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7240. [PMID: 33022999 PMCID: PMC7579602 DOI: 10.3390/ijerph17197240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND The quantity, quality, and type (e.g., animal and vegetable) of human food have been correlated with human health, although with some contradictory or neutral results. We aimed to shed light on this association by using the integrated data at country level. METHODS We correlated elemental (nitrogen (N) and phosphorus (P)) compositions and stoichiometries (N:P ratios), molecular (proteins) and energetic traits (kilocalories) of food of animal (terrestrial or aquatic) and vegetable origin, and alcoholic beverages with cancer prevalence and mortality and life expectancy (LE) at birth at the country level. We used the official databases of United Nations (UN), Food and Agriculture Organization of the United Nations (FAO), Organization for Economic Co-operation and Development (OECD), World Bank, World Health Organization (WHO), U.S. Department of Agriculture, U.S. Department of Health, and Eurobarometer, while also considering other possibly involved variables such as income, mean age, or human development index of each country. RESULTS The per capita intakes of N, P, protein, and total intake from terrestrial animals, and especially alcohol were significantly and positively associated with prevalence and mortality from total, colon, lung, breast, and prostate cancers. In contrast, high per capita intakes of vegetable N, P, N:P, protein, and total plant intake exhibited negative relationships with cancer prevalence and mortality. However, a high LE at birth, especially in underdeveloped countries was more strongly correlated with a higher intake of food, independent of its animal or vegetable origin, than with other variables, such as higher income or the human development index. CONCLUSIONS Our analyses, thus, yielded four generally consistent conclusions. First, the excessive intake of terrestrial animal food, especially the levels of protein, N, and P, is associated with higher prevalence of cancer, whereas equivalent intake from vegetables is associated with lower prevalence. Second, no consistent relationship was found for food N:P ratio and cancer prevalence. Third, the consumption of alcoholic beverages correlates with prevalence and mortality by malignant neoplasms. Fourth, in underdeveloped countries, reducing famine has a greater positive impact on health and LE than a healthier diet.
Collapse
Affiliation(s)
- Josep Penuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08193 Cerdanyola del Vallès, Spain;
- CREAF, 08193 Cerdanyola del Vallès, Spain
| | - Tamás Krisztin
- International Institute for Applied Systems Analysis (IIASA), Ecosystems Services and Management, Schlossplatz 1, A-2361 Laxenburg, Austria; (T.K.); (M.O.)
| | - Michael Obersteiner
- International Institute for Applied Systems Analysis (IIASA), Ecosystems Services and Management, Schlossplatz 1, A-2361 Laxenburg, Austria; (T.K.); (M.O.)
| | - Florian Huber
- Paris Lodron University of Salzburg, Mönchsberg 2a, A-5020 Salzburg, Austria; (F.H.); (H.W.)
| | - Hannes Winner
- Paris Lodron University of Salzburg, Mönchsberg 2a, A-5020 Salzburg, Austria; (F.H.); (H.W.)
- Austrian Institute of Economic Research (WIFO), Arsenal Objekt 20, A-1030 Vienna, Austria
| | - Ivan A. Janssens
- Research Group Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, B-2610 Wilrijk, Belgium;
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l’Environnement, IPSL, 91191 Gif-sur-Yvette, France;
| | - Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08193 Cerdanyola del Vallès, Spain;
- CREAF, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
24
|
Speakman JR. Why does caloric restriction increase life and healthspan? The 'clean cupboards' hypothesis. Natl Sci Rev 2020; 7:1153-1156. [PMID: 34692140 PMCID: PMC8288867 DOI: 10.1093/nsr/nwaa078] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The disposable soma hypothesis explanation of the effects of caloric restriction (CR) on lifespan fails to explain why CR generates negative impacts alongside the positive effects and does not work in all species. I propose here a novel idea called the clean cupboards hypothesis which overcomes these problems.
Collapse
Affiliation(s)
- John R Speakman
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, China
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
- CAS Center of Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, China
| |
Collapse
|
25
|
Andrawus M, Sharvit L, Shekhidem HA, Roichman A, Cohen HY, Atzmon G. The effects of environmental stressors on candidate aging associated genes. Exp Gerontol 2020; 137:110952. [PMID: 32344118 DOI: 10.1016/j.exger.2020.110952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/29/2020] [Accepted: 04/09/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND Aging is defined as a biological and physical complex process that is characterized by the increase in susceptibility to diseases and eventually death. Aging may occur at different rates between and within species, especially or (it varies) among the long-lived ones. Here, we ask whether this diversity (e.g. aging phenotype) stems from genetic or environmental factors or as a combination between the two (epigenetics). Epigenetics play a central role in controlling changes in gene expression during aging. DNA methylation is the most abundant epigenetic modification among vertebrates and is essential to mammalian development. MATERIALS AND METHODS In this study, we utilized the HELPtag assay to identify five candidate genes that were significantly hyper- or hypo-methylated across four different age groups in mice. The candidate genes were annotated using ensemble and their expression was further tested in vitro using the murine RAW 264.7 cell line to examine the effect of three environmental stressors (UV radiation, Hypoxia and fasting) on their expression. RNA was extracted at different time points followed by cDNA synthesis. Changes in gene expression were evaluated using qRT-PCR. RESULTS We show that fasting and UV radiation reduced the viability of RAW264.7 cells. We also found a significant change in three candidate genes' expression levels during fasting (TOP2B, RNF13 and MRPL4). Furthermore, we found a significant change in the four candidate genes' expression levels following UVC treatment (TOP2B, RNF13, PKNOX1 and CREB5) and yet no changes were recorded in hypoxic conditions. CONCLUSION Our results suggest that the model we used was a fitting model for the assessment of environmental stressors on candidate gene expression. In addition, we established a cellular response to the environment via changes in gene expression.
Collapse
Affiliation(s)
- Mariana Andrawus
- Department of Human Biology, University of Haifa, Haifa 3498838, Israel
| | - Lital Sharvit
- Department of Human Biology, University of Haifa, Haifa 3498838, Israel
| | | | - Asael Roichman
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Haim Y Cohen
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Gil Atzmon
- Department of Human Biology, University of Haifa, Haifa 3498838, Israel.
| |
Collapse
|
26
|
Affiliation(s)
- Rafael de Cabo
- From the Translational Gerontology Branch (R.C.) and the Laboratory of Neurosciences (M.P.M.), Intramural Research Program, National Institute on Aging, National Institutes of Health, and the Department of Neuroscience, Johns Hopkins University School of Medicine (M.P.M.) - both in Baltimore
| | - Mark P Mattson
- From the Translational Gerontology Branch (R.C.) and the Laboratory of Neurosciences (M.P.M.), Intramural Research Program, National Institute on Aging, National Institutes of Health, and the Department of Neuroscience, Johns Hopkins University School of Medicine (M.P.M.) - both in Baltimore
| |
Collapse
|
27
|
Madeddu P, Avolio E, Alvino VV, Santopaolo M, Spinetti G. Personalized Cardiovascular Regenerative Medicine: Targeting the Extreme Stages of Life. Front Cardiovasc Med 2019; 6:177. [PMID: 31828079 PMCID: PMC6890607 DOI: 10.3389/fcvm.2019.00177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/14/2019] [Indexed: 12/28/2022] Open
Abstract
Cardiovascular regenerative medicine is an exciting new approach that promises to change the current care of million people world-wide. Major emphasis was given to the quality and quantities of regenerative products, but recent evidence points to the importance of a better specification of the target population that may take advantage of these advanced medical treatments. Patient stratification is an important step in drug development. Tailoring treatment to the patient's specificity allowed significant improvement in cancer therapy, but personalized regenerative medicine is still at the initial stage in the cardiovascular field. For example, new-borns with a congenital heart condition and elderly people require dedicated therapeutic approaches, which adapt to their lifetime needs. In these people, personalized treatments may overcome the benefits delivered by standard protocols. In this review, we provide insights into these extreme stages of life as potential targets for cardiovascular reconstitution.
Collapse
Affiliation(s)
- Paolo Madeddu
- Translational Health Sciences, Bristol Heart Institute, Bristol Royal Infirmary, University of Bristol, Bristol, United Kingdom
| | - Elisa Avolio
- Translational Health Sciences, Bristol Heart Institute, Bristol Royal Infirmary, University of Bristol, Bristol, United Kingdom
| | - Valeria Vincenza Alvino
- Translational Health Sciences, Bristol Heart Institute, Bristol Royal Infirmary, University of Bristol, Bristol, United Kingdom
| | - Marianna Santopaolo
- Translational Health Sciences, Bristol Heart Institute, Bristol Royal Infirmary, University of Bristol, Bristol, United Kingdom
| | - Gaia Spinetti
- Laboratory of Cardiovascular Research, IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
28
|
Ben-Haim MS, Kanfi Y, Mitchell SJ, Maoz N, Vaughan KL, Amariglio N, Lerrer B, de Cabo R, Rechavi G, Cohen HY. Breaking the Ceiling of Human Maximal Life span. J Gerontol A Biol Sci Med Sci 2019; 73:1465-1471. [PMID: 29121176 DOI: 10.1093/gerona/glx219] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Indexed: 12/11/2022] Open
Abstract
While average human life expectancy has increased dramatically in the last century, the maximum life span has only modestly increased. These observations prompted the notion that human life span might have reached its maximal natural limit of ~115 years. To evaluate this hypothesis, we conducted a systematic analysis of all-cause human mortality throughout the 20th century. Our analyses revealed that, once cause of death is accounted for, there is a proportional increase in both median age of death and maximum life span. To examine whether pathway targeted aging interventions affected both median and maximum life span, we analyzed hundreds of interventions performed in multiple organisms (yeast, worms, flies, and rodents). Three criteria: median, maximum, and last survivor life spans were all significantly extended, and to a similar extent. Altogether, these findings suggest that targeting the biological/genetic causes of aging can allow breaking the currently observed ceiling of human maximal life span.
Collapse
Affiliation(s)
- Moshe Shay Ben-Haim
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Wohl Institute for Translational Medicine, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Yariv Kanfi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Sarah J Mitchell
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland
| | - Noam Maoz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Kelli L Vaughan
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland
| | - Ninette Amariglio
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer, Israel.,The Wohl Institute for Translational Medicine, Chaim Sheba Medical Center, Tel Hashomer, Israel.,The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Batia Lerrer
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland
| | - Gideon Rechavi
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Wohl Institute for Translational Medicine, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Haim Y Cohen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
29
|
Costa D, Scognamiglio M, Fiorito C, Benincasa G, Napoli C. Genetic background, epigenetic factors and dietary interventions which influence human longevity. Biogerontology 2019; 20:605-626. [PMID: 31309340 DOI: 10.1007/s10522-019-09824-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023]
Abstract
Longevity is mainly conditioned by genetic, epigenetic and environmental factors. Different genetic modifications seem to be positively associated to longevity, including SNPs in SIRT1, APOE, FOXO3A, ACE, ATM, NOS1 and NOS2 gene. Epigenetic changes as DNA hyper- and hypo-methylation influence significantly human longevity by activating/deactivating different genes involved in physiological mechanisms. Several studies have confirmed that centenarians have a lower DNA methylation content compared to young subjects, which showed more homogeneously methylated DNA region. Also the up-regulation of miR-21 seems to be more associated with longevity in different populations of long-lived subjects, suggesting its role as potential epigenetic biomarkers. A non-pharmacological treatment that seems to contrast age-related diseases and promote longevity is represented by dietary intervention. It has been evaluated the effects of dietary restriction of both single nutrients or total calories to extend lifespan. However, in daily practice it is very difficult to guarantee adherence/compliance of the subjects to dietary restriction and at the same time avoid dangerous nutritional deficiencies. As consequence, the attention has focused on a variety of substances both drugs and natural compounds able to mime the beneficial effects of caloric restriction, including resveratrol, quercetin, rapamycin, metformin and 2-deoxy-D-glucose.
Collapse
Affiliation(s)
- Dario Costa
- U.O.C. of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Clinical Department of Internal Medicine and Specialistics, University of Campania "L. Vanvitelli", Piazza Miraglia, 2, 80138, Naples, Italy.
| | - Michele Scognamiglio
- U.O.C. of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Clinical Department of Internal Medicine and Specialistics, University of Campania "L. Vanvitelli", Piazza Miraglia, 2, 80138, Naples, Italy
| | - Carmela Fiorito
- U.O.C. of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Clinical Department of Internal Medicine and Specialistics, University of Campania "L. Vanvitelli", Piazza Miraglia, 2, 80138, Naples, Italy
| | - Giuditta Benincasa
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Claudio Napoli
- U.O.C. of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Clinical Department of Internal Medicine and Specialistics, University of Campania "L. Vanvitelli", Piazza Miraglia, 2, 80138, Naples, Italy.,Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
30
|
Kitada M, Ogura Y, Monno I, Koya D. The impact of dietary protein intake on longevity and metabolic health. EBioMedicine 2019; 43:632-640. [PMID: 30975545 PMCID: PMC6562018 DOI: 10.1016/j.ebiom.2019.04.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/13/2019] [Accepted: 04/02/2019] [Indexed: 01/09/2023] Open
Abstract
Lifespan and metabolic health are influenced by dietary nutrients. Recent studies show that a reduced protein intake or low-protein/high-carbohydrate diet plays a critical role in longevity/metabolic health. Additionally, specific amino acids (AAs), including methionine or branched-chain AAs (BCAAs), are associated with the regulation of lifespan/ageing and metabolism through multiple mechanisms. Therefore, methionine or BCAAs restriction may lead to the benefits on longevity/metabolic health. Moreover, epidemiological studies show that a high intake of animal protein, particularly red meat, which contains high levels of methionine and BCAAs, may be related to the promotion of age-related diseases. Therefore, a low animal protein diet, particularly a diet low in red meat, may provide health benefits. However, malnutrition, including sarcopenia/frailty due to inadequate protein intake, is harmful to longevity/metabolic health. Therefore, further study is necessary to elucidate the specific restriction levels of individual AAs that are most effective for longevity/metabolic health in humans.
Collapse
Affiliation(s)
- Munehiro Kitada
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Japan; Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan.
| | - Yoshio Ogura
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Japan
| | - Itaru Monno
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Japan
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Japan; Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan.
| |
Collapse
|
31
|
Vitale G, Pellegrino G, Vollery M, Hofland LJ. ROLE of IGF-1 System in the Modulation of Longevity: Controversies and New Insights From a Centenarians' Perspective. Front Endocrinol (Lausanne) 2019; 10:27. [PMID: 30774624 PMCID: PMC6367275 DOI: 10.3389/fendo.2019.00027] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 01/15/2019] [Indexed: 12/19/2022] Open
Abstract
Human aging is currently defined as a physiological decline of biological functions in the body with a continual adaptation to internal and external damaging. The endocrine system plays a major role in orchestrating cellular interactions, metabolism, growth, and aging. Several in vivo studies from worms to mice showed that downregulated activity of the GH/IGF-1/insulin pathway could be beneficial for the extension of human life span, whereas results are contradictory in humans. In the present review, we discuss the potential role of the IGF-1 system in modulation of longevity, hypothesizing that the endocrine and metabolic adaptation observed in centenarians and in mammals during caloric restriction may be a physiological strategy for extending lifespan through a slower cell growing/metabolism, a better physiologic reserve capacity, a shift of cellular metabolism from cell proliferation to repair activities and a decrease in accumulation of senescent cells. Therefore, understanding of the link between IGF-1/insulin system and longevity may have future clinical applications in promoting healthy aging and in Rehabilitation Medicine.
Collapse
Affiliation(s)
- Giovanni Vitale
- Laboratorio Sperimentale di Ricerche di Neuroendocrinologia Geriatrica ed Oncologica, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- *Correspondence: Giovanni Vitale
| | - Giuseppe Pellegrino
- Faculty of Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | | | - Leo J. Hofland
- Division Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
32
|
Abstract
Exceptional longevity represents an extreme phenotype. Current centenarians are survivors of a cohort who display delayed onset of age-related diseases and/or resistance to otherwise lethal illnesses occurring earlier in life. Characteristics of aging are heterogeneous, even among long-lived individuals. Associations between specific clinical or genetic biomarkers exist, but there is unlikely to be a single biomarker predictive of long life. Careful observations in the oldest old offer some empirical strategies that favor increased health span and life span, with implications for compression of disability, identification and implementation of lifestyle behaviors that promote independence, identification and measurement of more reliable markers associated with longevity, better guidance for appropriate health screenings, and promotion of anticipatory health discussions in the setting of more accurate prognostication. Comprehensive PubMed literature searches were performed, with an unbiased focus on mechanisms of longevity. Overall, the aggregate literature supports that the basis for exceptional longevity is multifactorial and involves disparate combinations of genes, environment, resiliency, and chance, all of which are influenced by culture and geography.
Collapse
Affiliation(s)
- Robert J Pignolo
- Division of Geriatric Medicine and Gerontology, Mayo Clinic, Rochester, MN.
| |
Collapse
|
33
|
Franceschi C, Ostan R, Santoro A. Nutrition and Inflammation: Are Centenarians Similar to Individuals on Calorie-Restricted Diets? Annu Rev Nutr 2018; 38:329-356. [DOI: 10.1146/annurev-nutr-082117-051637] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Individuals capable of reaching the extreme limit of human life such as centenarians are characterized by an exceptionally healthy phenotype—that is, a low number of diseases, low blood pressure, optimal metabolic and endocrine parameters, and increased diversity in the gut microbiota—and they are epigenetically younger than their chronological age. We present data suggesting that such a remarkable phenotype is largely similar to that found in adults following a calorie-restricted diet. Interviews with centenarians and historical data on the nutritional and lifestyle habits of Italians during the twentieth century suggest that as children and into adulthood, centenarians lived in an environment that was nonobesogenic, but at the same time the environment did not produce malnutrition. Centenarians appear to be creatures of habit, and we argue that their habit of eating meals at the same time each day favored the maintenance of circadian rhythms, including their sleep cycle. Finally, we argue that centenarians’ chronic inflammatory status, which we dubbed inflammaging, is peculiar, likely adaptive, and less detrimental than in younger people.
Collapse
Affiliation(s)
- Claudio Franceschi
- IRCCS Institute of Neurological Sciences of Bologna, 40139 Bologna, Italy
| | - Rita Ostan
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES) and Interdepartmental Centre “L. Galvani” (CIG), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;,
| | - Aurelia Santoro
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES) and Interdepartmental Centre “L. Galvani” (CIG), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;,
| |
Collapse
|
34
|
Redman LM, Smith SR, Burton JH, Martin CK, Il'yasova D, Ravussin E. Metabolic Slowing and Reduced Oxidative Damage with Sustained Caloric Restriction Support the Rate of Living and Oxidative Damage Theories of Aging. Cell Metab 2018; 27:805-815.e4. [PMID: 29576535 PMCID: PMC5886711 DOI: 10.1016/j.cmet.2018.02.019] [Citation(s) in RCA: 326] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 12/23/2017] [Accepted: 02/20/2018] [Indexed: 12/18/2022]
Abstract
Calorie restriction (CR) is a dietary intervention with potential benefits for healthspan improvement and lifespan extension. In 53 (34 CR and 19 control) non-obese adults, we tested the hypothesis that energy expenditure (EE) and its endocrine mediators are reduced with a CR diet over 2 years. Approximately 15% CR was achieved over 2 years, resulting in an average 8.7 kg weight loss, whereas controls gained 1.8 kg. In the CR group, EE measured over 24 hr or during sleep was approximately 80-120 kcal/day lower than expected on the basis of weight loss, indicating sustained metabolic adaptation over 2 years. This metabolic adaptation was accompanied by significantly reduced thyroid axis activity and reactive oxygen species (F2-isoprostane) production. Findings from this 2-year CR trial in healthy, non-obese humans provide new evidence of persistent metabolic slowing accompanied by reduced oxidative stress, which supports the rate of living and oxidative damage theories of mammalian aging.
Collapse
Affiliation(s)
- Leanne M Redman
- Division of Clinical Sciences Pennington, Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| | - Steven R Smith
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital and Sanford-Burnham Medical Research Institute, Orlando, FL 32804, USA
| | - Jeffrey H Burton
- Division of Clinical Sciences Pennington, Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Corby K Martin
- Division of Clinical Sciences Pennington, Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Dora Il'yasova
- School of Public Health, Georgia State University, Atlanta, GA 30302, USA
| | - Eric Ravussin
- Division of Clinical Sciences Pennington, Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| |
Collapse
|
35
|
Zullo A, Simone E, Grimaldi M, Musto V, Mancini FP. Sirtuins as Mediator of the Anti-Ageing Effects of Calorie Restriction in Skeletal and Cardiac Muscle. Int J Mol Sci 2018; 19:E928. [PMID: 29561771 PMCID: PMC5979282 DOI: 10.3390/ijms19040928] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/14/2018] [Accepted: 03/20/2018] [Indexed: 12/17/2022] Open
Abstract
Fighting diseases and controlling the signs of ageing are the major goals of biomedicine. Sirtuins, enzymes with mainly deacetylating activity, could be pivotal targets of novel preventive and therapeutic strategies to reach such aims. Scientific proofs are accumulating in experimental models, but, to a minor extent, also in humans, that the ancient practice of calorie restriction could prove an effective way to prevent several degenerative diseases and to postpone the detrimental signs of ageing. In the present review, we summarize the evidence about the central role of sirtuins in mediating the beneficial effects of calorie restriction in skeletal and cardiac muscle since these tissues are greatly damaged by diseases and advancing years. Moreover, we entertain the possibility that the identification of sirtuin activators that mimic calorie restriction could provide the benefits without the inconvenience of this dietary style.
Collapse
Affiliation(s)
- Alberto Zullo
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy.
- CEINGE Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy.
| | - Emanuela Simone
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy.
| | - Maddalena Grimaldi
- Department of Pediatric Oncology and Hematology, Charité University Hospital, 13353 Berlin, Germany.
| | - Vincenzina Musto
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy.
| | | |
Collapse
|
36
|
Teschke R, Xuan TD. Viewpoint: A Contributory Role of Shell Ginger (Alpinia zerumbet (Pers.) B.L. Burtt & R.M. Sm) for Human Longevity in Okinawa, Japan? Nutrients 2018; 10:nu10020166. [PMID: 29385084 PMCID: PMC5852742 DOI: 10.3390/nu10020166] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 12/17/2022] Open
Abstract
The longevity of the population in the Okinawa Islands of Japan has been ascribed to genetic factors and the traditional Okinawa cuisine, which is low in calories and high in plant content. This diet includes shell ginger (Alpinia zerumbet (Pers.) B.L. Burtt & R.M. Sm) of the ginger family (Zingiberaceae). Due to its local popularity, Alpinia zerumbet has become the subject of a good deal of study at the University of the Ryukyus in Okinawa. Personal local experience and review of the literature now suggest that culinary shell ginger may contribute to longevity among the population in Okinawa. This is supported by its abundant phytochemical content, with antioxidant and anti-obesity properties. The major bioactive phytochemicals are dihydro-5,6-dehydrokawain (DDK; 80-410 mg g-1 fresh weight), 5,6-dehydrokawain (DK; ≤100 mg g-1), and essential oils, phenols, phenolic acids, and fatty acids (≤150 mg g-1 each). Further, Alpinia zerumbet extends the lifespan in animals by 22.6%. In conclusion, culinary shell ginger may significantly contribute to human longevity in Okinawa.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, D-63450 Hanau, Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/ Main, Frankfurt/ Main, Germany.
| | - Tran Dang Xuan
- Division of Development Technology, Graduate School for International Development and Cooperation (IDEC), Hiroshima University, Higashi Hiroshima 739-8529, Japan.
| |
Collapse
|
37
|
Das SK, Balasubramanian P, Weerasekara YK. Nutrition modulation of human aging: The calorie restriction paradigm. Mol Cell Endocrinol 2017; 455:148-157. [PMID: 28412520 PMCID: PMC7153268 DOI: 10.1016/j.mce.2017.04.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 04/08/2017] [Accepted: 04/09/2017] [Indexed: 12/20/2022]
Abstract
Globally, the aging population is growing rapidly, creating an urgent need to attenuate age-related health conditions, including metabolic disease and disability. A promising strategy for healthy aging based on consistently positive results from studies with a variety of species, including non-human primates (NHP), is calorie restriction (CR), or the restriction of energy intake while maintaining intake of essential nutrients. The burgeoning evidence for this approach in humans is reviewed and the major study to date to address this question, CALERIE (Comprehensive Assessment of the Long-term Effects of Reducing Intake of Energy), is described. CALERIE findings indicate the feasibility of CR in non-obese humans, confirm observations in NHP, and are consistent with improvements in disease risk reduction and potential anti-aging effects. Finally, the mechanisms of CR in humans are reviewed which sums up the fact that evolutionarily conserved mechanisms mediate the anti-aging effects of CR. Overall, the prospect for further research in both NHP and humans is highly encouraging.
Collapse
Affiliation(s)
- Sai Krupa Das
- Jean Mayer, US Department of Agriculture, Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.
| | - Priya Balasubramanian
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison WI, USA.
| | - Yasoma K Weerasekara
- Jean Mayer, US Department of Agriculture, Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.
| |
Collapse
|
38
|
Most J, Tosti V, Redman LM, Fontana L. Calorie restriction in humans: An update. Ageing Res Rev 2017; 39:36-45. [PMID: 27544442 PMCID: PMC5315691 DOI: 10.1016/j.arr.2016.08.005] [Citation(s) in RCA: 342] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/11/2016] [Accepted: 08/11/2016] [Indexed: 12/11/2022]
Abstract
Calorie restriction (CR), a nutritional intervention of reduced energy intake but with adequate nutrition, has been shown to extend healthspan and lifespan in rodent and primate models. Accumulating data from observational and randomized clinical trials indicate that CR in humans results in some of the same metabolic and molecular adaptations that have been shown to improve health and retard the accumulation of molecular damage in animal models of longevity. In particular, moderate CR in humans ameliorates multiple metabolic and hormonal factors that are implicated in the pathogenesis of type 2 diabetes, cardiovascular diseases, and cancer, the leading causes of morbidity, disability and mortality. In this paper, we will discuss the effects of CR in non-obese humans on these physiological parameters. Special emphasis is committed to recent clinical intervention trials that have investigated the feasibility and effects of CR in young and middle-aged men and women on parameters of energy metabolism and metabolic risk factors of age-associated disease in great detail. Additionally, data from individuals who are either naturally exposed to CR or those who are self-practicing this dietary intervention allows us to speculate on longer-term effects of more severe CR in humans.
Collapse
Affiliation(s)
- Jasper Most
- Reproductive Endocrinology and Women's Health, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | - Valeria Tosti
- Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Leanne M Redman
- Reproductive Endocrinology and Women's Health, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA.
| | - Luigi Fontana
- Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Clinical and Experimental Sciences, Brescia University Medical School, Brescia, Italy; CEINGE Biotecnologie Avanzate, Napoli, Italy.
| |
Collapse
|
39
|
Cox PA, Metcalf JS. Traditional Food Items in Ogimi, Okinawa: l-Serine Content and the Potential for Neuroprotection. Curr Nutr Rep 2017; 6:24-31. [PMID: 28331770 PMCID: PMC5343079 DOI: 10.1007/s13668-017-0191-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose of Review Ogimi village is renowned for its aging population. We sought to determine if the l-serine content of their diet could account for their neurological health. Recent Findings The most frequently consumed food items, including tofu and seaweeds, are rich in the dietary amino acid l-serine. l-serine content of the Ogimi diet >8 grams/day for Ogimi women significantly exceeds the average American dietary intake of 2.5 grams/day for women >70 years old. Summary Our hypothesis that the high l-serine content of the Ogimi diet is related to the paucity of tangle diseases among villagers is buttressed by in vivo results with non-human primates where dietary l-serine slowed development of neurofibrillary tangles and β-amyloid plaques by up to 85% and a human clinical trial finding that l-serine at 15 grams/day twice daily slows functional decline in ALS patients. Analysis of the Ogimi diet suggests that l-serine should be evaluated for therapeutic potential as a neuroprotective agent.
Collapse
Affiliation(s)
- Paul Alan Cox
- Brain Chemistry Labs, Institute for Ethnomedicine, Box 3464, Jackson, WY 83001 USA
| | - James S Metcalf
- Brain Chemistry Labs, Institute for Ethnomedicine, Box 3464, Jackson, WY 83001 USA
| |
Collapse
|
40
|
Caloric restriction - A promising anti-cancer approach: From molecular mechanisms to clinical trials. Biochim Biophys Acta Rev Cancer 2016; 1867:29-41. [PMID: 27871964 DOI: 10.1016/j.bbcan.2016.11.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 02/07/2023]
Abstract
Cancer is the second leading cause of death worldwide and the morbidity is growing in developed countries. According to WHO, >14 million people per year are diagnosed with cancer and about 8 million die. Anti-cancer strategy includes chemo-, immune- and radiotherapy or their combination. Unfortunately, these widely used strategies often have insufficient efficacy and significant toxic effects on healthy cells. Consequently, the improvement of treatment approaches is an important goal. One of promising schemes to enhance the effect of therapy is the restriction of calorie intake or some nutrients. The combination of caloric restriction or its chemical mimetics along with anti-cancer drugs may suppress growth of tumor cells and enhance death of cancer cells. That will allow the dose of therapeutic drugs to be decreased and their toxic effects to be reduced. Here the possibility of using this combinatory therapy as well as the molecular mechanisms underlying this approach will be discussed.
Collapse
|
41
|
Ntsapi C, Loos B. Caloric restriction and the precision-control of autophagy: A strategy for delaying neurodegenerative disease progression. Exp Gerontol 2016; 83:97-111. [DOI: 10.1016/j.exger.2016.07.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/18/2016] [Accepted: 07/25/2016] [Indexed: 01/07/2023]
|
42
|
Abstract
The search for elixir of immortality has yielded mixed results. While some of the interventions like percutaneous coronary interventions and coronary artery bypass grafting have been a huge disappointment at least as far as prolongation of life is concerned, their absolute benefit is meager and that too in very sick patients. Cardiac specific drugs like statins and aspirin have fared slightly better, being useful in patients with manifest coronary artery disease, particularly in sicker populations although even their usefulness in primary prevention is rather low. The only strategies of proven benefit in primary/primordial prevention are pursuing a healthy life-style and its modification when appropriate, like cessation of smoking, weight reduction, increasing physical activity, eating a healthy diet and bringing blood pressure, serum cholesterol, and blood glucose under control.
Collapse
Affiliation(s)
- Sundeep Mishra
- Professor, Department of Cardiology, AIIMS, New Delhi, India.
| |
Collapse
|
43
|
Emanuele Bianchi V, 1 Clinical Center of Nutrition and Metabolism, Stella Maris, San Marino, Falcioni G. Reactive oxygen species, health and longevity. AIMS MOLECULAR SCIENCE 2016. [DOI: 10.3934/molsci.2016.4.479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
44
|
Le Bourg É. The somatotropic axis may not modulate ageing and longevity in humans. Biogerontology 2015; 17:421-9. [DOI: 10.1007/s10522-015-9632-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/22/2015] [Indexed: 01/24/2023]
|
45
|
Fukkoshi Y, Akamatsu R, Shimpo M. The relationship of eating until 80% full with types and energy values of food consumed. Eat Behav 2015; 17:153-6. [PMID: 25794479 DOI: 10.1016/j.eatbeh.2015.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/29/2015] [Accepted: 03/04/2015] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Eating until one is 80% full is considered a healthy dietary practice in Japan. This study examined the relationship between this behavior and energy intake and types and quantities of foods consumed to examine its beneficial effects. METHODS This study relied on dietary records and self-administered questionnaires completed by 330 users of a health-management website in November 2012. ANOVA was performed to examine the relationship between eating until one is 80% full and intake. RESULTS Men who always ate until they were 80% full consumed less energy than those who did not (mean [SD]; always: 1997.3 [356.7] kcal; rarely/never: 2448.9 [637.1] kcal; p<0.05). Moreover, men who ate until they were 80% full consumed fewer servings of grain dishes (always: 3.7 [0.9] servings; rarely/never: 5.1 [1.9] servings; p<0.05) and more servings of vegetable dishes (always: 5.9 [2.2] servings; rarely/never: 4.0 [2.3] servings, p<0.05) than those who did not. CONCLUSION Men who ate until they were 80% full consumed less energy and more vegetable dishes than those who did not, suggesting that eating until one is 80% full is associated with healthy dietary habits among men.
Collapse
Affiliation(s)
- Yuko Fukkoshi
- Sundaigakuen Junior & Senior High School, Oji 6-1-10, Kita-ku, Tokyo, Japan.
| | - Rie Akamatsu
- Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka 2-1-1, Bunkyo-ku, Tokyo, Japan.
| | - Misa Shimpo
- Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka 2-1-1, Bunkyo-ku, Tokyo, Japan; Research Fellow of Japan Society for the Promotion of Science, Japan.
| |
Collapse
|
46
|
Verburgh K. Nutrigerontology: why we need a new scientific discipline to develop diets and guidelines to reduce the risk of aging-related diseases. Aging Cell 2015; 14:17-24. [PMID: 25470422 PMCID: PMC4326913 DOI: 10.1111/acel.12284] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2014] [Indexed: 12/30/2022] Open
Abstract
Many diets and nutritional advice are circulating, often based on short- or medium-term clinical trials and primary outcomes, like changes in LDL cholesterol or weight. It remains difficult to assess which dietary interventions can be effective in the long term to reduce the risk of aging-related disease and increase the (healthy) lifespan. At the same time, the scientific discipline that studies the aging process has identified some important nutrient-sensing pathways that modulate the aging process, such as the mTOR and the insulin/insulin-like growth factor signaling pathway. A thorough understanding of the aging process can help assessing the efficacy of dietary interventions aimed at reducing the risk of aging-related diseases. To come to these insights, a synthesis of biogerontological, nutritional, and medical knowledge is needed, which can be framed in a new discipline called 'nutrigerontology'.
Collapse
Affiliation(s)
- Kris Verburgh
- Center Leo Apostel for Interdisciplinary Studies (CLEA) Free University of Brussels (VUB) Brussels Belgium
| |
Collapse
|
47
|
Kim DH, Park MH, Lee EK, Choi YJ, Chung KW, Moon KM, Kim MJ, An HJ, Park JW, Kim ND, Yu BP, Chung HY. The roles of FoxOs in modulation of aging by calorie restriction. Biogerontology 2014; 16:1-14. [PMID: 25146189 DOI: 10.1007/s10522-014-9519-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 07/17/2014] [Indexed: 01/29/2023]
Abstract
FoxO activity and modifications, such as its phosphorylation, acetylation, and methylation, may help drive the expression of genes involved in combating oxidative stress by causing the epigenetic modifications, and thus, preserve cellular function during aging and age-related diseases, such as diabetes, cancer, and Alzheimer disease. Insulin signaling has been postulated to influence the aging process by increasing resistance to oxidative stress, and slowing the accumulation of oxidative damage. Some antioxidative effects are mediated by a conserved family of forkhead box transcription factors (FoxOs), which in the absence of insulin signaling freely bind to promoters of antioxidant enzymes, superoxide dismutase, and catalase. On the other hand, calorie restriction (CR) extends the lifespans of several species via the insulin pathway, and extends longevity and healthspan in diverse species via a conserved mechanism. CR enhances adaptive stress responses at the cellular and organism levels and extends lifespan in a FoxO-independent manner. Thus, increased modification of FoxO is modulated via the hyperinsulinemia-induced PI3K/Akt pathway during aging, and CR reverses this process. Accordingly, FoxO plays an important role in maintenance of metabolic homeostasis and removal of oxidative stress in the aging process and in the effect of CR on lifespan.
Collapse
Affiliation(s)
- Dae Hyun Kim
- Department of Pharmacy, Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, San 30, Jangjun-dong, Gumjung-gu, Busan, 609-735, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ngo S, Steyn F, McCombe P. Body mass index and dietary intervention: Implications for prognosis of amyotrophic lateral sclerosis. J Neurol Sci 2014; 340:5-12. [DOI: 10.1016/j.jns.2014.02.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 12/12/2022]
|
49
|
Kubli DA, Gustafsson AB. Cardiomyocyte health: adapting to metabolic changes through autophagy. Trends Endocrinol Metab 2014; 25:156-64. [PMID: 24370004 PMCID: PMC3951169 DOI: 10.1016/j.tem.2013.11.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/12/2013] [Accepted: 11/22/2013] [Indexed: 12/25/2022]
Abstract
Autophagy is important in the heart for maintaining homeostasis when changes in nutrient levels occur. Autophagy is involved in the turnover of cellular components, and is rapidly upregulated during stress. Studies have found that autophagy is reduced in metabolic disorders including obesity and diabetes. This leads to accumulation of protein aggregates and dysfunctional organelles, which contributes to the pathogenesis of cardiovascular disease. Autophagy is primarily regulated by two components: the mechanistic target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK). Although mTOR integrates information about growth factors and nutrients and is a negative regulator of autophagy, AMPK is an energy sensor and activates autophagy when energy levels are low. These pathways therefore present targets for the development of autophagy-modulating therapies.
Collapse
Affiliation(s)
- Dieter A Kubli
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Asa B Gustafsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
50
|
Rodríguez-Bies E, Navas P, López-Lluch G. Age-dependent effect of every-other-day feeding and aerobic exercise in ubiquinone levels and related antioxidant activities in mice muscle. J Gerontol A Biol Sci Med Sci 2014; 70:33-43. [PMID: 24496576 DOI: 10.1093/gerona/glu002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aging affects many biochemical, cellular, and physiological processes in the organisms. Accumulation of damage based on oxidized macromolecules is found in many age-associated diseases. Coenzyme Q (Q) is one of the main molecules involved in metabolic and antioxidant activities in cells. Q-dependent antioxidant activities are importantly involved on the protection of cell membranes against oxidation. Many studies indicate that Q decay in most of the organs during aging. In our study, no changes in Q levels were found in old animals in comparison with young animals. On the other hand, the interventions, caloric restriction based on every-other-day feeding procedure, and physical exercise were able to increase Q levels in muscle, but only in old and not in young animals. Probably, this effect prevented the increase in lipid peroxidation found in aged animals and also protein carbonylation. Further, Q-dependent antioxidant activities such as NADH-cytochrome b5 reductase and NAD(P)H-quinone oxidoreductase 1 are also modulated by both exercise and every other day feeding. Taken together, we demonstrate that exercise and dietary restriction as every-other-day procedure can regulate endogenous synthesized Q levels and Q-dependent antioxidant activities in muscle, preventing oxidative damage in aged muscle.
Collapse
Affiliation(s)
- Elizabeth Rodríguez-Bies
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-CSIC, CIBERER-Instituto de Salud San Carlos III, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-CSIC, CIBERER-Instituto de Salud San Carlos III, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| | - Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-CSIC, CIBERER-Instituto de Salud San Carlos III, Carretera de Utrera Km 1, 41013, Sevilla, Spain.
| |
Collapse
|