1
|
Liu JK. Antiaging agents: safe interventions to slow aging and healthy life span extension. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:18. [PMID: 35534591 PMCID: PMC9086005 DOI: 10.1007/s13659-022-00339-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/29/2022] [Indexed: 05/02/2023]
Abstract
Human longevity has increased dramatically during the past century. More than 20% of the 9 billion population of the world will exceed the age of 60 in 2050. Since the last three decades, some interventions and many preclinical studies have been found to show slowing aging and increasing the healthy lifespan of organisms from yeast, flies, rodents to nonhuman primates. The interventions are classified into two groups: lifestyle modifications and pharmacological/genetic manipulations. Some genetic pathways have been characterized to have a specific role in controlling aging and lifespan. Thus, all genes in the pathways are potential antiaging targets. Currently, many antiaging compounds target the calorie-restriction mimetic, autophagy induction, and putative enhancement of cell regeneration, epigenetic modulation of gene activity such as inhibition of histone deacetylases and DNA methyltransferases, are under development. It appears evident that the exploration of new targets for these antiaging agents based on biogerontological research provides an incredible opportunity for the healthcare and pharmaceutical industries. The present review focus on the properties of slow aging and healthy life span extension of natural products from various biological resources, endogenous substances, drugs, and synthetic compounds, as well as the mechanisms of targets for antiaging evaluation. These bioactive compounds that could benefit healthy aging and the potential role of life span extension are discussed.
Collapse
Affiliation(s)
- Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
2
|
Matei IV, Samukange VNC, Bunu G, Toren D, Ghenea S, Tacutu R. Knock-down of odr-3 and ife-2 additively extends lifespan and healthspan in C. elegans. Aging (Albany NY) 2021; 13:21040-21065. [PMID: 34506301 PMCID: PMC8457566 DOI: 10.18632/aging.203518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/24/2021] [Indexed: 01/04/2023]
Abstract
Genetic manipulations can ameliorate the aging process and extend the lifespan of model organisms. The aim of this research was to identify novel genetic interventions that promote both lifespan and healthspan, by combining the effects of multiple longevity-associated gene inactivations in C. elegans. For this, the individual and combined effects of the odr-3 mutation and of ife-2 and cku-70 knock-downs were studied, both in the wild type and daf-16 mutant backgrounds. We found that besides increasing the lifespan of wild type animals, the knock-down of ife-2 (starting at L4) also extends the lifespan and healthspan of long-lived odr-3 mutants. In the daf-16 background, ife-2 and odr-3 impairment exert opposing effects individually, while the daf-16; odr-3; ife-2 deficient animals show a similar lifespan and healthspan as daf-16, suggesting that the odr-3 and ife-2 effector outcomes converge downstream of DAF-16. By contrast, cku-70 knock-down did not extend the lifespan of single or double odr-3; ife-2 inactivated animals, and was slightly deleterious to healthspan. In conclusion, we report that impairment of odr-3 and ife-2 increases lifespan and healthspan in an additive and synergistic manner, respectively, and that this result is not improved by further knocking-down cku-70.
Collapse
Affiliation(s)
- Ioan Valentin Matei
- Systems Biology of Aging Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | | | - Gabriela Bunu
- Systems Biology of Aging Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Dmitri Toren
- Systems Biology of Aging Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Simona Ghenea
- Systems Biology of Aging Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Robi Tacutu
- Systems Biology of Aging Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| |
Collapse
|
3
|
Podder A, Raju A, Schork NJ. Cross-Species and Human Inter-Tissue Network Analysis of Genes Implicated in Longevity and Aging Reveal Strong Support for Nutrient Sensing. Front Genet 2021; 12:719713. [PMID: 34512728 PMCID: PMC8430347 DOI: 10.3389/fgene.2021.719713] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/10/2021] [Indexed: 12/22/2022] Open
Abstract
Intensive research efforts have been undertaken to slow human aging and therefore potentially delay the onset of age-related diseases. These efforts have generated an enormous amount of high-throughput data covering different levels in the physiologic hierarchy, e.g., genetic, epigenetic, transcriptomic, proteomic, and metabolomic, etc. We gathered 15 independent sources of information about genes potentially involved in human longevity and lifespan (N = 5836) and subjected them to various integrated analyses. Many of these genes were initially identified in non-human species, and we investigated their orthologs in three non-human species [i.e., mice (N = 967), fruit fly (N = 449), and worm (N = 411)] for further analysis. We characterized experimentally determined protein-protein interaction networks (PPIN) involving each species' genes from 9 known protein databases and studied the enriched biological pathways among the individually constructed PPINs. We observed three important signaling pathways: FoxO signaling, mTOR signaling, and autophagy to be common and highly enriched in all four species (p-value ≤ 0.001). Our study implies that the interaction of proteins involved in the mechanistic target of rapamycin (mTOR) signaling pathway is somewhat limited to each species or that a "rewiring" of specific networks has taken place over time. To corroborate our findings, we repeated our analysis in 43 different human tissues. We investigated conserved modules in various tissue-specific PPINs of the longevity-associated genes based upon their protein expression. This analysis also revealed mTOR signaling as shared biological processes across four different human tissue-specific PPINs for liver, heart, skeletal muscle, and adipose tissue. Further, we explored our results' translational potential by assessing the protein interactions with all the reported drugs and compounds that have been experimentally verified to promote longevity in the three-comparator species. We observed that the target proteins of the FDA-approved drug rapamycin (a known inhibitor of mTOR) were conserved across all four species. Drugs like melatonin and metformin exhibited shared targets with rapamycin in the human PPIN. The detailed information about the curated gene list, cross-species orthologs, PPIN, and pathways was assembled in an interactive data visualization portal using RStudio's Shiny framework (https://agingnetwork.shinyapps.io/frontiers/).
Collapse
Affiliation(s)
- Avijit Podder
- Department of Quantitative Medicine, The Translational Genomics Research Institute (TGen), Phoenix, AZ, United States
| | - Anish Raju
- Department of Quantitative Medicine, The Translational Genomics Research Institute (TGen), Phoenix, AZ, United States
| | - Nicholas J. Schork
- Department of Quantitative Medicine, The Translational Genomics Research Institute (TGen), Phoenix, AZ, United States
- Department of Population Sciences and Molecular and Cell Biology, The City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
4
|
Analysis of aging-related protein interactome and cross-network module comparisons across tissues provide new insights into aging. Comput Biol Chem 2021; 92:107506. [PMID: 34020164 DOI: 10.1016/j.compbiolchem.2021.107506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/09/2021] [Accepted: 05/05/2021] [Indexed: 11/22/2022]
Abstract
Delaying the human aging process and thus eliminating the risk factors for age-related diseases is one of the prime objectives. While various aging-associated genes and proteins have been characterized, which provide a significant understanding of the human aging process, a significant success in regulating aging is not achieved yet. Understanding how aging proteins interact with each other and also with other proteins could provide important insights into the underlying mechanisms governing the aging process. Therefore, in this work, information of gene expression was included to the static aging-related protein interactome to understand the network-based relationships among aging-related essential (AE) proteins, aging-related non-essential (ANE) proteins, and housekeeping-proteins that could regulate or influence aging. Comprehensive analyses provided various systems-level insights into the regulatory characteristics of aging; for example, (i) network-based correlation analysis predicted functional relationships among AE proteins and ANE proteins; (ii) network variability analysis predicted aging to affect different tissues in strikingly different ways by differentially regulating various regulatory interactions; (iii) cross-network comparisons identified two aging-related modules to be significantly conserved across most of the tissues. Overall, the findings obtained during this study could be helpful for researchers to delay, prevent, or even reverse various aspects of the aging.
Collapse
|
5
|
Ye Y, Gu Q, Sun X. Potential of Caenorhabditis elegans as an antiaging evaluation model for dietary phytochemicals: A review. Compr Rev Food Sci Food Saf 2020; 19:3084-3105. [PMID: 33337057 DOI: 10.1111/1541-4337.12654] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/02/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022]
Abstract
Aging is an inevitable process characterized by the accumulation of degenerative damage, leading to serious diseases that affect human health. Studies on aging aim to develop pre-protection or therapies to delay aging and age-related diseases. A preventive approach is preferable to clinical treatment not only to reduce investment but also to alleviate pain in patients. Adjusting daily diet habits to improve the aging condition is a potentially attractive strategy. Fruits and vegetables containing active compounds that can effectively delay the aging process and reduce or inhibit age-related degenerative diseases have been identified. The signaling pathways related to aging in Caenorhabditis elegans are evolutionarily conserved; thus, studying antiaging components by intervening senescence process may contribute to the prevention and treatment of age-related diseases in humans. This review focuses on the effects of food-derived extracts or purified substance on antiaging in nematodes, as well as the underlying mechanisms, on the basis of several major signaling pathways and key regulatory factors in aging. The aim is to provide references for a healthy diet guidance and the development of antiaging nutritional supplements. Finally, challenges in the use of C. elegans as the antiaging evaluation model are discussed, together with the development that potentially inspire novel strategies and research tools.
Collapse
Affiliation(s)
- Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Qingyin Gu
- State Key Laboratory of Food Science and Technology, School of Food Science, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, P. R. China
| |
Collapse
|
6
|
Ageing as a risk factor for cerebral ischemia: Underlying mechanisms and therapy in animal models and in the clinic. Mech Ageing Dev 2020; 190:111312. [PMID: 32663480 DOI: 10.1016/j.mad.2020.111312] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/24/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
Age is the only one non-modifiable risk of cerebral ischemia. Advances in stroke medicine and behavioral adaptation to stroke risk factors and comorbidities was successful in decreasing stroke incidence and increasing the number of stroke survivors in western societies. Comorbidities aggravates the outcome after cerebral ischemia. However, due to the increased in number of elderly, the incidence of stroke has increased again paralleled by an increase in the number of stroke survivors, many with severe disabilities, that has led to an increased economic and social burden in society. Animal models of stroke often ignore age and comorbidities frequently associated with senescence. This might explain why drugs working nicely in animal models fail to show efficacy in stroke survivors. Since stroke afflicts mostly the elderly comorbid patients, it is highly desirable to test the efficacy of stroke therapies in an appropriate animal stroke model. Therefore, in this review, we make parallels between animal models of stroke und clinical data and summarize the impact of ageing and age-related comorbidities on stroke outcome.
Collapse
|
7
|
Yarmolinsky L, Budovsky A, Yarmolinsky L, Khalfin B, Glukhman V, Ben-Shabat S. Effect of Bioactive Phytochemicals from Phlomis viscosa Poiret on Wound Healing. PLANTS (BASEL, SWITZERLAND) 2019; 8:E609. [PMID: 31888128 PMCID: PMC6963389 DOI: 10.3390/plants8120609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 11/30/2022]
Abstract
Phlomis viscosa Poiret is an evergreen shrub growing in Israel, Turkey, Lebanon, and Syria with acknowledged pro-wound healing (WH) properties. In this study, we evaluated the pro-WH potential of selected compounds found in this plant. Among the pro-WH compounds (identified by us) was a combination of three chemicals-diosmin, 1-octen-3-ol, and himachala-2,4-diene which enhanced WH significantly both in in vitro and in vivo models. The determined phytochemicals combination could be used for the treatment of chronic wounds. The effect of the extracts, diosmin, 1-octen-3-ol on the secretion of pro-inflammatory cytokines, IL-6 (A) and IL-8 (B) by human dermal fibroblasts was significant (p < 0.001). In addition, the beneficial effect of extracts of P. viscosa and its phytochemicals on WH was evidenced by inhibiting the growth of several WH delaying microorganisms.
Collapse
Affiliation(s)
| | - Arie Budovsky
- Barzilai University Medical Center, Ashkelon 7830604, Israel;
| | | | - Boris Khalfin
- Eastern R&D Center, Kiryat Arba 9010000, Israel; (L.Y.); (B.K.)
- Department of Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | | | - Shimon Ben-Shabat
- Department of Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
8
|
Naive extrapolations, overhyped claims and empty promises in ageing research and interventions need avoidance. Biogerontology 2019; 21:415-421. [PMID: 31773357 DOI: 10.1007/s10522-019-09851-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022]
Abstract
Most proclamations about another wonder breakthrough and another imminent miracle treatment of ageing are usually overhyped claims and empty promises. It is not that the experimental science behind those claims is totally wrong or fake. But it is often a case of being ahistorical and ignoring the cumulated knowledge and understanding of the evolutionary and biological principles of ageing and longevity. Furthermore, remaining stuck to the body-as-a-machine viewpoint reduces ageing and its associated health challenges to a mere problem of engineering and design. However, highly dynamic nature of the living systems with properties of interaction, interdependence, tolerance, adaptation and constant remodelling requires wholistic and interactive modes of understanding and maintaining health. The physiological relevance and significance of progressively accumulating molecular damage remains to be fully understood. As for ageing interventions, the three pillars of health-food, physical activity, and social and mental engagement-which actually show health-promoting effect, cannot simply be reduced to a single or a limited number of molecular targets with hopes of creating an exercise pill, a fasting pill, a happiness pill and so on. If we want to increase the credibility and socio-political-economic support of ageing research and interventions, we need to resist the temptation to overhype the claims or to make far-fetched promises, which undermine the theoretical and practical significance of new discoveries in biogerontology.
Collapse
|
9
|
Talwar P, Gupta R, Kushwaha S, Agarwal R, Saso L, Kukreti S, Kukreti R. Viral Induced Oxidative and Inflammatory Response in Alzheimer's Disease Pathogenesis with Identification of Potential Drug Candidates: A Systematic Review using Systems Biology Approach. Curr Neuropharmacol 2019; 17:352-365. [PMID: 29676229 PMCID: PMC6482477 DOI: 10.2174/1570159x16666180419124508] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/19/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is genetically complex with multifactorial etiology. Here, we aim to identify the potential viral pathogens leading to aberrant inflammatory and oxidative stress response in AD along with potential drug candidates using systems biology approach. We retrieved protein interactions of amyloid precursor protein (APP) and tau protein (MAPT) from NCBI and genes for oxidative stress from NetAge, for inflammation from NetAge and InnateDB databases. Genes implicated in aging were retrieved from GenAge database and two GEO expression datasets. These genes were individually used to create protein-protein interaction network using STRING database (score≥0.7). The interactions of candidate genes with known viruses were mapped using virhostnet v2.0 database. Drug molecules targeting candidate genes were retrieved using the Drug- Gene Interaction Database (DGIdb). Data mining resulted in 2095 APP, 116 MAPT, 214 oxidative stress, 1269 inflammatory genes. After STRING PPIN analysis, 404 APP, 109 MAPT, 204 oxidative stress and 1014 inflammation related high confidence proteins were identified. The overlap among all datasets yielded eight common markers (AKT1, GSK3B, APP, APOE, EGFR, PIN1, CASP8 and SNCA). These genes showed association with hepatitis C virus (HCV), Epstein- Barr virus (EBV), human herpes virus 8 and Human papillomavirus (HPV). Further, screening of drugs targeting candidate genes, and possessing anti-inflammatory property, antiviral activity along with a suggested role in AD pathophysiology yielded 12 potential drug candidates. Our study demonstrated the role of viral etiology in AD pathogenesis by elucidating interaction of oxidative stress and inflammation causing candidate genes with common viruses along with the identification of potential AD drug candidates.
Collapse
Affiliation(s)
- Puneet Talwar
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Renu Gupta
- Institute of Human Behaviour & Allied Sciences (IHBAS), Dilshad Garden, Delhi 110 095, India
| | - Suman Kushwaha
- Institute of Human Behaviour & Allied Sciences (IHBAS), Dilshad Garden, Delhi 110 095, India
| | - Rachna Agarwal
- Institute of Human Behaviour & Allied Sciences (IHBAS), Dilshad Garden, Delhi 110 095, India
| | - Luciano Saso
- Department of Physiology and Pharmacology, Sapienza University of Rome, Italy
| | | | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India
| |
Collapse
|
10
|
Tacutu R, Thornton D, Johnson E, Budovsky A, Barardo D, Craig T, Diana E, Lehmann G, Toren D, Wang J, Fraifeld VE, de Magalhães JP. Human Ageing Genomic Resources: new and updated databases. Nucleic Acids Res 2019; 46:D1083-D1090. [PMID: 29121237 PMCID: PMC5753192 DOI: 10.1093/nar/gkx1042] [Citation(s) in RCA: 465] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/18/2017] [Indexed: 12/17/2022] Open
Abstract
In spite of a growing body of research and data, human ageing remains a poorly understood process. Over 10 years ago we developed the Human Ageing Genomic Resources (HAGR), a collection of databases and tools for studying the biology and genetics of ageing. Here, we present HAGR’s main functionalities, highlighting new additions and improvements. HAGR consists of six core databases: (i) the GenAge database of ageing-related genes, in turn composed of a dataset of >300 human ageing-related genes and a dataset with >2000 genes associated with ageing or longevity in model organisms; (ii) the AnAge database of animal ageing and longevity, featuring >4000 species; (iii) the GenDR database with >200 genes associated with the life-extending effects of dietary restriction; (iv) the LongevityMap database of human genetic association studies of longevity with >500 entries; (v) the DrugAge database with >400 ageing or longevity-associated drugs or compounds; (vi) the CellAge database with >200 genes associated with cell senescence. All our databases are manually curated by experts and regularly updated to ensure a high quality data. Cross-links across our databases and to external resources help researchers locate and integrate relevant information. HAGR is freely available online (http://genomics.senescence.info/).
Collapse
Affiliation(s)
- Robi Tacutu
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK.,Computational Biology of Aging Group, Institute of Biochemistry, Romanian Academy, Bucharest 060031, Romania
| | - Daniel Thornton
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Emily Johnson
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Arie Budovsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.,Judea Regional Research & Development Center, Carmel 90404, Israel
| | - Diogo Barardo
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City 117597, Singapore.,Science Division, Yale-NUS College, Singapore City 138527, Singapore
| | - Thomas Craig
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Eugene Diana
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Gilad Lehmann
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Dmitri Toren
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Jingwei Wang
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Vadim E Fraifeld
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - João P de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| |
Collapse
|
11
|
Abstract
One of the most important resources for researchers of noncoding RNAs is the information available in public databases spread over the internet. However, the effective exploration of this data can represent a daunting task, given the large amount of databases available and the variety of stored data. This chapter describes a classification of databases based on information source, type of RNA, source organisms, data formats, and the mechanisms for information retrieval, detailing the relevance of each of these classifications and its usability by researchers. This classification is used to update a 2012 review, indexing now more than 229 public databases. This review will include an assessment of the new trends for ncRNA research based on the information that is being offered by the databases. Additionally, we will expand the previous analysis focusing on the usability and application of these databases in pathogen and disease research. Finally, this chapter will analyze how currently available database schemas can help the development of new and improved web resources.
Collapse
|
12
|
Liu D, Duan S, Zhou C, Wei P, Chen L, Yin X, Zhang J, Wang J. Altered Brain Functional Hubs and Connectivity in Type 2 Diabetes Mellitus Patients: A Resting-State fMRI Study. Front Aging Neurosci 2018; 10:55. [PMID: 29563869 PMCID: PMC5845755 DOI: 10.3389/fnagi.2018.00055] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 02/19/2018] [Indexed: 01/23/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) affects a vast population and is closely associated with cognitive impairment. However, the mechanisms of cognitive impairment in T2DM patients have not been unraveled. Research on the basic units (nodes or hubs and edges) of the brain functional network on the basis of neuroimaging may advance our understanding of the network change pattern in T2DM patients. This study investigated the change patterns of brain functional hubs using degree centrality (DC) analysis and the connectivity among these hubs using functional connectivity and Granger causality analysis. Compared to healthy controls, the DC values were higher in the left anterior cingulate gyrus (ACG) and lower in the bilateral lateral occipital cortices (LOC) and right precentral gyrus (PreCG) in T2DM patients. The functional connectivity between the left ACG and the right PreCG was stronger in T2DM patients, whereas the functional connectivity among the right PreCG and bilateral LOC was weaker. A negative causal effect from the left ACG to left LOC and a positive effect from the left ACG to right LOC were observed in T2DM patients, while in healthy controls, the opposite occurred. Additionally, the reserve of normal brain function in T2DM patients was negatively associated with the elevated glycemic parameters. This study demonstrates that there are brain functional hubs and connectivity alterations that may reflect the aberrant information communication in the brain of T2DM patients. The findings may advance our understanding of the mechanisms of T2DM-related cognitive impairment.
Collapse
Affiliation(s)
- Daihong Liu
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shanshan Duan
- Department of Endocrinology, The Third Affiliation Hospital of Chongqing Medical University, Chongqing, China
| | - Chaoyang Zhou
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ping Wei
- Department of Endocrinology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lihua Chen
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xuntao Yin
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiuquan Zhang
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
13
|
Blankenburg H, Pramstaller PP, Domingues FS. A network-based meta-analysis for characterizing the genetic landscape of human aging. Biogerontology 2018; 19:81-94. [PMID: 29270911 PMCID: PMC5765210 DOI: 10.1007/s10522-017-9741-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 12/01/2017] [Indexed: 01/22/2023]
Abstract
Great amounts of omics data are generated in aging research, but their diverse and partly complementary nature requires integrative analysis approaches for investigating aging processes and connections to age-related diseases. To establish a broader picture of the genetic and epigenetic landscape of human aging we performed a large-scale meta-analysis of 6600 human genes by combining 35 datasets that cover aging hallmarks, longevity, changes in DNA methylation and gene expression, and different age-related diseases. To identify biological relationships between aging-associated genes we incorporated them into a protein interaction network and characterized their network neighborhoods. In particular, we computed a comprehensive landscape of more than 1000 human aging clusters, network regions where genes are highly connected and where gene products commonly participate in similar processes. In addition to clusters that capture known aging processes such as nutrient-sensing and mTOR signaling, we present a number of clusters with a putative functional role in linking different aging processes as promising candidates for follow-up studies. To enable their detailed exploration, all datasets and aging clusters are made freely available via an interactive website ( https://gemex.eurac.edu/bioinf/age/ ).
Collapse
Affiliation(s)
- Hagen Blankenburg
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Viale Druso 1, 39100 Bolzano, Italy
| | - Peter P. Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Viale Druso 1, 39100 Bolzano, Italy
- Department of Neurology, General Central Hospital, Bolzano, Italy
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Francisco S. Domingues
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Viale Druso 1, 39100 Bolzano, Italy
| |
Collapse
|
14
|
Houck AL, Seddighi S, Driver JA. At the Crossroads Between Neurodegeneration and Cancer: A Review of Overlapping Biology and Its Implications. Curr Aging Sci 2018; 11:77-89. [PMID: 29552989 PMCID: PMC6519136 DOI: 10.2174/1874609811666180223154436] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND A growing body of epidemiologic evidence suggests that neurodegenerative diseases occur less frequently in cancer survivors, and vice versa. While unusual, this inverse comorbidity is biologically plausible and could be explained, in part, by the evolutionary tradeoffs made by neurons and cycling cells to optimize the performance of their very different functions. The two cell types utilize the same proteins and pathways in different, and sometimes opposite, ways. However, cancer and neurodegeneration also share many pathophysiological features. OBJECTIVE In this review, we compare three overlapping aspects of neurodegeneration and cancer. METHOD First, we contrast the priorities and tradeoffs of dividing cells and neurons and how these manifest in disease. Second, we consider the hallmarks of biological aging that underlie both neurodegeneration and cancer. Finally, we utilize information from genetic databases to outline specific genes and pathways common to both diseases. CONCLUSION We argue that a detailed understanding of the biologic and genetic relationships between cancer and neurodegeneration can guide future efforts in designing disease-modifying therapeutic interventions. Lastly, strategies that target aging may prevent or delay both conditions.
Collapse
Affiliation(s)
- Alexander L. Houck
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sahba Seddighi
- Clinical and Translational Neuroscience Unit, Laboratory of Behavioral Neuroscience, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Jane A. Driver
- Geriatric Research Education and Clinical Center, VA Boston Healthcare System and the Division of Aging, Department of Medicine, Brigham and Women ‘s Hospital, Harvard Medical School (J.A.D.), Boston, MA, USA
| |
Collapse
|
15
|
Sandu RE, Dumbrava D, Surugiu R, Glavan DG, Gresita A, Petcu EB. Cellular and Molecular Mechanisms Underlying Non-Pharmaceutical Ischemic Stroke Therapy in Aged Subjects. Int J Mol Sci 2017; 19:ijms19010099. [PMID: 29286319 PMCID: PMC5796049 DOI: 10.3390/ijms19010099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/22/2017] [Accepted: 12/24/2017] [Indexed: 12/12/2022] Open
Abstract
The incidence of ischemic stroke in humans increases exponentially above 70 years both in men and women. Comorbidities like diabetes, arterial hypertension or co-morbidity factors such as hypercholesterolemia, obesity and body fat distribution as well as fat-rich diet and physical inactivity are common in elderly persons and are associated with higher risk of stroke, increased mortality and disability. Obesity could represent a state of chronic inflammation that can be prevented to some extent by non-pharmaceutical interventions such as calorie restriction and hypothermia. Indeed, recent results suggest that H₂S-induced hypothermia in aged, overweight rats could have a higher probability of success in treating stroke as compared to other monotherapies, by reducing post-stroke brain inflammation. Likewise, it was recently reported that weight reduction prior to stroke, in aged, overweight rats induced by caloric restriction, led to an early re-gain of weight and a significant improvement in recovery of complex sensorimotor skills, cutaneous sensitivity, or spatial memory. CONCLUSION animal models of stroke done in young animals ignore age-associated comorbidities and may explain, at least in part, the unsuccessful bench-to-bedside translation of neuroprotective strategies for ischemic stroke in aged subjects.
Collapse
Affiliation(s)
- Raluca Elena Sandu
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania.
| | - Danut Dumbrava
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania.
| | - Roxana Surugiu
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania.
| | - Daniela-Gabriela Glavan
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania.
| | - Andrei Gresita
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania.
| | - Eugen Bogdan Petcu
- Gold Coast Campus, School of Medicine, Griffith University, Southport 4222, Australia.
| |
Collapse
|
16
|
Yanai H, Budovsky A, Barzilay T, Tacutu R, Fraifeld VE. Wide-scale comparative analysis of longevity genes and interventions. Aging Cell 2017; 16:1267-1275. [PMID: 28836369 PMCID: PMC5676071 DOI: 10.1111/acel.12659] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2017] [Indexed: 12/17/2022] Open
Abstract
Hundreds of genes, when manipulated, affect the lifespan of model organisms (yeast, worm, fruit fly, and mouse) and thus can be defined as longevity-associated genes (LAGs). A major challenge is to determine whether these LAGs are model-specific or may play a universal role as longevity regulators across diverse taxa. A wide-scale comparative analysis of the 1805 known LAGs across 205 species revealed that (i) LAG orthologs are substantially overrepresented, from bacteria to mammals, compared to the entire genomes or interactomes, and this was especially noted for essential LAGs; (ii) the effects on lifespan, when manipulating orthologous LAGs in different model organisms, were mostly concordant, despite a high evolutionary distance between them; (iii) LAGs that have orthologs across a high number of phyla were enriched in translational processes, energy metabolism, and DNA repair genes; (iv) LAGs that have no orthologs out of the taxa in which they were discovered were enriched in autophagy (Ascomycota/Fungi), G proteins (Nematodes), and neuroactive ligand-receptor interactions (Chordata). The results also suggest that antagonistic pleiotropy might be a conserved principle of aging and highlight the importance of overexpression studies in the search for longevity regulators.
Collapse
Affiliation(s)
- Hagai Yanai
- The Shraga Segal Department of Microbiology, Immunology and Genetics Center for Multidisciplinary Research on Aging Ben‐Gurion University of the Negev POB 653 Beer Sheva 8410501 Israel
| | - Arie Budovsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics Center for Multidisciplinary Research on Aging Ben‐Gurion University of the Negev POB 653 Beer Sheva 8410501 Israel
- Biotechnology Unit Technological Center Beer Sheva 8489101 Israel
| | - Thomer Barzilay
- The Shraga Segal Department of Microbiology, Immunology and Genetics Center for Multidisciplinary Research on Aging Ben‐Gurion University of the Negev POB 653 Beer Sheva 8410501 Israel
| | - Robi Tacutu
- Computational Biology of Aging Group Institute of Biochemistry Romanian Academy Bucharest 060031 Romania
- Chronos Biosystems SRL Bucharest Romania
| | - Vadim E. Fraifeld
- The Shraga Segal Department of Microbiology, Immunology and Genetics Center for Multidisciplinary Research on Aging Ben‐Gurion University of the Negev POB 653 Beer Sheva 8410501 Israel
| |
Collapse
|
17
|
Yoo B, Faisal FE, Chen H, Milenkovic T. Improving Identification of Key Players in Aging via Network De-Noising and Core Inference. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2017; 14:1056-1069. [PMID: 26529776 DOI: 10.1109/tcbb.2015.2495170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Current "ground truth" knowledge about human aging has been obtained by transferring aging-related knowledge from well-studied model species via sequence homology or by studying human gene expression data. Since proteins function by interacting with each other, analyzing protein-protein interaction (PPI) networks in the context of aging is promising. Unlike existing static network research of aging, since cellular functioning is dynamic, we recently integrated the static human PPI network with aging-related gene expression data to form dynamic, age-specific networks. Then, we predicted as key players in aging those proteins whose network topologies significantly changed with age. Since current networks are noisy , here, we use link prediction to de-noise the human network and predict improved key players in aging from the de-noised data. Indeed, de-noising gives more significant overlap between the predicted data and the "ground truth" aging-related data. Yet, we obtain novel predictions, which we validate in the literature. Also, we improve the predictions by an alternative strategy: removing "redundant" edges from the age-specific networks and using the resulting age-specific network "cores" to study aging. We produce new knowledge from dynamic networks encompassing multiple data types, via network de-noising or core inference, complementing the existing knowledge obtained from sequence or expression data.
Collapse
|
18
|
Mitnitski AB, Rutenberg AD, Farrell S, Rockwood K. Aging, frailty and complex networks. Biogerontology 2017; 18:433-446. [PMID: 28255823 DOI: 10.1007/s10522-017-9684-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 02/21/2017] [Indexed: 12/21/2022]
Abstract
When people age their mortality rate increases exponentially, following Gompertz's law. Even so, individuals do not die from old age. Instead, they accumulate age-related illnesses and conditions and so become increasingly vulnerable to death from various external and internal stressors. As a measure of such vulnerability, frailty can be quantified using the frailty index (FI). Larger values of the FI are strongly associated with mortality and other adverse health outcomes. This association, and the insensitivity of the FI to the particular health variables that are included in its construction, makes it a powerful, convenient, and increasingly popular integrative health measure. Still, little is known about why the FI works so well. Our group has recently developed a theoretical network model of health deficits to better understand how changes in health are captured by the FI. In our model, health-related variables are represented by the nodes of a complex network. The network has a scale-free shape or "topology": a few nodes have many connections with other nodes, whereas most nodes have few connections. These nodes can be in two states, either damaged or undamaged. Transitions between damaged and non-damaged states are governed by the stochastic environment of individual nodes. Changes in the degree of damage of connected nodes change the local environment and make further damage more likely. Our model shows how age-dependent acceleration of the FI and of mortality emerges, even without specifying an age-damage relationship or any other time-dependent parameter. We have also used our model to assess how informative individual deficits are with respect to mortality. We find that the information is larger for nodes that are well connected than for nodes that are not. The model supports the idea that aging occurs as an emergent phenomenon, and not as a result of age-specific programming. Instead, aging reflects how damage propagates through a complex network of interconnected elements.
Collapse
Affiliation(s)
- A B Mitnitski
- Department of Medicine, Dalhousie University, Halifax, Canada.
- Geriatric Medicine Research Unit, Halifax, Canada.
| | - A D Rutenberg
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Canada
| | - S Farrell
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Canada
| | - K Rockwood
- Department of Medicine, Dalhousie University, Halifax, Canada
- Geriatric Medicine Research Unit, Halifax, Canada
| |
Collapse
|
19
|
Sandu RE, Balseanu AT, Bogdan C, Slevin M, Petcu E, Popa-Wagner A. Stem cell therapies in preclinical models of stroke. Is the aged brain microenvironment refractory to cell therapy? Exp Gerontol 2017; 94:73-77. [PMID: 28093317 DOI: 10.1016/j.exger.2017.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 01/01/2023]
Abstract
Stroke is a devastating disease demanding vigorous search for new therapies. Initial enthusiasm to stimulate restorative processes in the ischemic brain by means of cell-based therapies has meanwhile converted into a more balanced view recognizing impediments that may be related to unfavorable age-associated environments. Recent results using a variety of drug, cell therapy or combination thereof suggest that, (i) treatment with Granulocyte-Colony Stimulating Factor (G-CSF) in aged rats has primarily a beneficial effect on functional outcome most likely via supportive cellular processes such as neurogenesis; (ii) the combination therapy, G-CSF with mesenchymal cells (G-CSF+BM-MSC or G-CSF+BM-MNC) did not further improve behavioral indices, neurogenesis or infarct volume as compared to G-CSF alone in aged animals; (iii) better results with regard to integration of transplanted cells in the aged rat environment have been obtained using iPS of human origin; (iv) mesenchymal cells may be used as drug carriers for the aged post-stroke brains. CONCLUSION While the middle aged brain does not seem to impair drug and cell therapies, in a real clinical practice involving older post-stroke patients, successful regenerative therapies would have to be carried out for a much longer time.
Collapse
Affiliation(s)
- Raluca Elena Sandu
- University of Medicine and Pharmacy of Craiova, Chair of Biochemistry, Neurobiology of Aging Group, Romania
| | - Adrian Tudor Balseanu
- University of Medicine and Pharmacy of Craiova, Chair of Biochemistry, Neurobiology of Aging Group, Romania
| | - Catalin Bogdan
- University of Medicine and Pharmacy of Craiova, Chair of Biochemistry, Neurobiology of Aging Group, Romania
| | - Mark Slevin
- Department of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - Eugen Petcu
- Griffith University School of Medicine, Gold Coast Campus, QLD 4222, Australia
| | - Aurel Popa-Wagner
- Department of Psychiatry, University Hospital Rostock, Germany; University of Medicine and Pharmacy of Craiova, Chair of Biochemistry, Neurobiology of Aging Group, Romania.
| |
Collapse
|
20
|
Liu H, Guo M, Xue T, Guan J, Luo L, Zhuang Z. Screening lifespan-extending drugs in Caenorhabditis elegans via label propagation on drug-protein networks. BMC SYSTEMS BIOLOGY 2016; 10:131. [PMID: 28155715 PMCID: PMC5260106 DOI: 10.1186/s12918-016-0362-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Background One of the most challenging tasks in the exploration of anti-aging is to discover drugs that can promote longevity and delay the incidence of age-associated diseases of human. Up to date, a number of drugs, including some antioxidants, metabolites and synthetic compounds, have been found to effectively delay the aging of nematodes and insects. Results We proposed a label propagation algorithm on drug-protein network to infer drugs that can extend the lifespan of C. elegans. We collected a set of drugs of which functions on lifespan extension of C. elegans have been reliably determined, and then built a large-scale drug-protein network by collecting a set of high-confidence drugprotein interactions. A label propagation algorithm was run on the drug-protein bipartite network to predict new drugs with lifespan-extending effect on C. elegans. We calibrated the performance of the proposed method by conducting performance comparison with two classical models, kNN and SVM. We also showed that the screened drugs significantly mediate in the aging-related pathways, and have higher chemical similarities to the effective drugs than ineffective drugs in promoting longevity of C. elegans. Moreover, we carried out wet-lab experiments to verify a screened drugs, 2- Bromo-4’-nitroacetophenone, and found that it can effectively extend the lifespan of C. elegans. These results showed that our method is effective in screening lifespanextending drugs in C. elegans. Conclusions In this paper, we proposed a semi-supervised algorithm to predict drugs with lifespan-extending effects on C. elegans. In silico empirical evaluations and in vivo experiments in C. elegans have demonstrated that our method can effectively narrow down the scope of candidate drugs needed to be verified by wet lab experiments. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0362-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui Liu
- Changzhou University, Jiangsu, 213164, China.,Changzhou NO. 7 People's Hospital, Changzhou, Jiangsu, 213011, China
| | | | - Ting Xue
- Changzhou University, Jiangsu, 213164, China
| | - Jihong Guan
- Department of Computer Science and Technology, Tongji University, Shanghai, 201804, China
| | - Libo Luo
- Changzhou NO. 7 People's Hospital, Changzhou, Jiangsu, 213011, China. @fudan.edu.cn
| | - Ziheng Zhuang
- Changzhou University, Jiangsu, 213164, China. .,Changzhou NO. 7 People's Hospital, Changzhou, Jiangsu, 213011, China.
| |
Collapse
|
21
|
Calvert S, Tacutu R, Sharifi S, Teixeira R, Ghosh P, de Magalhães JP. A network pharmacology approach reveals new candidate caloric restriction mimetics in C. elegans. Aging Cell 2016; 15:256-66. [PMID: 26676933 PMCID: PMC4783339 DOI: 10.1111/acel.12432] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2015] [Indexed: 01/04/2023] Open
Abstract
Caloric restriction (CR), a reduction in calorie intake without malnutrition, retards aging in several animal models from worms to mammals. Developing CR mimetics, compounds that reproduce the longevity benefits of CR without its side effects, is of widespread interest. Here, we employed the Connectivity Map to identify drugs with overlapping gene expression profiles with CR. Eleven statistically significant compounds were predicted as CR mimetics using this bioinformatics approach. We then tested rapamycin, allantoin, trichostatin A, LY‐294002 and geldanamycin in Caenorhabditis elegans. An increase in lifespan and healthspan was observed for all drugs except geldanamycin when fed to wild‐type worms, but no lifespan effects were observed in eat‐2 mutant worms, a genetic model of CR, suggesting that life‐extending effects may be acting via CR‐related mechanisms. We also treated daf‐16 worms with rapamycin, allantoin or trichostatin A, and a lifespan extension was observed, suggesting that these drugs act via DAF‐16‐independent mechanisms, as would be expected from CR mimetics. Supporting this idea, an analysis of predictive targets of the drugs extending lifespan indicates various genes within CR and longevity networks. We also assessed the transcriptional profile of worms treated with either rapamycin or allantoin and found that both drugs use several specific pathways that do not overlap, indicating different modes of action for each compound. The current work validates the capabilities of this bioinformatic drug repositioning method in the context of longevity and reveals new putative CR mimetics that warrant further studies.
Collapse
Affiliation(s)
- Shaun Calvert
- Integrative Genomics of Ageing Group; Institute of Integrative Biology; University of Liverpool; Liverpool UK
| | - Robi Tacutu
- Integrative Genomics of Ageing Group; Institute of Integrative Biology; University of Liverpool; Liverpool UK
| | - Samim Sharifi
- Integrative Genomics of Ageing Group; Institute of Integrative Biology; University of Liverpool; Liverpool UK
| | - Rute Teixeira
- Integrative Genomics of Ageing Group; Institute of Integrative Biology; University of Liverpool; Liverpool UK
| | - Pratul Ghosh
- Integrative Genomics of Ageing Group; Institute of Integrative Biology; University of Liverpool; Liverpool UK
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group; Institute of Integrative Biology; University of Liverpool; Liverpool UK
| |
Collapse
|
22
|
Wood SH, van Dam S, Craig T, Tacutu R, O'Toole A, Merry BJ, de Magalhães JP. Transcriptome analysis in calorie-restricted rats implicates epigenetic and post-translational mechanisms in neuroprotection and aging. Genome Biol 2015; 16:285. [PMID: 26694192 PMCID: PMC4699360 DOI: 10.1186/s13059-015-0847-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/27/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Caloric restriction (CR) can increase longevity in rodents and improve memory function in humans. α-Lipoic acid (LA) has been shown to improve memory function in rats, but not longevity. While studies have looked at survival in rodents after switching from one diet to another, the underlying mechanisms of the beneficial effects of CR and LA supplementation are unknown. Here, we use RNA-seq in cerebral cortex from rats subjected to CR and LA-supplemented rats to understand how changes in diet can affect aging, neurodegeneration and longevity. RESULTS Gene expression changes during aging in ad libitum-fed rats are largely prevented by CR, and neuroprotective genes are overexpressed in response to both CR and LA diets with a strong overlap of differentially expressed genes between the two diets. Moreover, a number of genes are differentially expressed specifically in rat cohorts exhibiting diet-induced life extension. Finally, we observe that LA supplementation inhibits histone deacetylase (HDAC) protein activity in vitro in rat astrocytes. We find a single microRNA, miR-98-3p, that is overexpressed during CR feeding and LA dietary supplementation; this microRNA alters HDAC and histone acetyltransferase (HAT) activity, which suggests a role for HAT/HDAC homeostasis in neuroprotection. CONCLUSIONS This study presents extensive data on the effects of diet and aging on the cerebral cortex transcriptome, and also emphasises the importance of epigenetics and post-translational modifications in longevity and neuroprotection.
Collapse
Affiliation(s)
- Shona H Wood
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Sipko van Dam
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Thomas Craig
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Robi Tacutu
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Amy O'Toole
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Brian J Merry
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
23
|
Faisal FE, Meng L, Crawford J, Milenković T. The post-genomic era of biological network alignment. EURASIP JOURNAL ON BIOINFORMATICS & SYSTEMS BIOLOGY 2015; 2015:3. [PMID: 28194172 PMCID: PMC5270500 DOI: 10.1186/s13637-015-0022-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/18/2015] [Indexed: 11/10/2022]
Abstract
Biological network alignment aims to find regions of topological and functional (dis)similarities between molecular networks of different species. Then, network alignment can guide the transfer of biological knowledge from well-studied model species to less well-studied species between conserved (aligned) network regions, thus complementing valuable insights that have already been provided by genomic sequence alignment. Here, we review computational challenges behind the network alignment problem, existing approaches for solving the problem, ways of evaluating their alignment quality, and the approaches' biomedical applications. We discuss recent innovative efforts of improving the existing view of network alignment. We conclude with open research questions in comparative biological network research that could further our understanding of principles of life, evolution, disease, and therapeutics.
Collapse
Affiliation(s)
- Fazle E Faisal
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, 46556 USA
- Interdisciplinary Center for Network Science and Applications, University of Notre Dame, Notre Dame, IN, 46556 USA
- ECK Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556 USA
| | - Lei Meng
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, 46556 USA
| | - Joseph Crawford
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, 46556 USA
- Interdisciplinary Center for Network Science and Applications, University of Notre Dame, Notre Dame, IN, 46556 USA
- ECK Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556 USA
| | - Tijana Milenković
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, 46556 USA
- Interdisciplinary Center for Network Science and Applications, University of Notre Dame, Notre Dame, IN, 46556 USA
- ECK Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556 USA
| |
Collapse
|
24
|
Moskalev A, Zhikrivetskaya S, Shaposhnikov M, Dobrovolskaya E, Gurinovich R, Kuryan O, Pashuk A, Jellen LC, Aliper A, Peregudov A, Zhavoronkov A. Aging Chart: a community resource for rapid exploratory pathway analysis of age-related processes. Nucleic Acids Res 2015; 44:D894-9. [PMID: 26602690 PMCID: PMC4702909 DOI: 10.1093/nar/gkv1287] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/05/2015] [Indexed: 12/17/2022] Open
Abstract
Aging research is a multi-disciplinary field encompassing knowledge from many areas of basic, applied and clinical research. Age-related processes occur on molecular, cellular, tissue, organ, system, organismal and even psychological levels, trigger the onset of multiple debilitating diseases and lead to a loss of function, and there is a need for a unified knowledge repository designed to track, analyze and visualize the cause and effect relationships and interactions between the many elements and processes on all levels. Aging Chart (http://agingchart.org/) is a new, community-curated collection of aging pathways and knowledge that provides a platform for rapid exploratory analysis. Building on an initial content base constructed by a team of experts from peer-reviewed literature, users can integrate new data into biological pathway diagrams for a visible, intuitive, top-down framework of aging processes that fosters knowledge-building and collaboration. As the body of knowledge in aging research is rapidly increasing, an open visual encyclopedia of aging processes will be useful to both the new entrants and experts in the field.
Collapse
Affiliation(s)
- Alexey Moskalev
- Laboratory of molecular radiobiology and gerontology, Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, 167982, Russia Laboratory of genetics of aging and longevity, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia Laboratory of postgenomic studies, Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, 119991, Russia School of Systems Biology, George Mason University, VA, Manassas, 20110, USA Branch of N.I.Pirogov Russian State Medical University "Scientific Clinical Center of Gerontology", Moscow, 117997, Russia
| | - Svetlana Zhikrivetskaya
- Laboratory of genetics of aging and longevity, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia Laboratory of postgenomic studies, Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, 119991, Russia
| | - Mikhail Shaposhnikov
- Laboratory of molecular radiobiology and gerontology, Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, 167982, Russia
| | - Evgenia Dobrovolskaya
- Laboratory of molecular radiobiology and gerontology, Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, 167982, Russia
| | - Roman Gurinovich
- Xpansa, Conzl OU, Mustamae Tee 5, Tallinn, 10616, Estonia Infinity Sciences, Inc, 16192 Coastal Highway, Lewes, Delaware, County of Sussex, 19958, USA
| | - Oleg Kuryan
- Xpansa, Conzl OU, Mustamae Tee 5, Tallinn, 10616, Estonia Infinity Sciences, Inc, 16192 Coastal Highway, Lewes, Delaware, County of Sussex, 19958, USA
| | - Aleksandr Pashuk
- Xpansa, Conzl OU, Mustamae Tee 5, Tallinn, 10616, Estonia Infinity Sciences, Inc, 16192 Coastal Highway, Lewes, Delaware, County of Sussex, 19958, USA
| | - Leslie C Jellen
- Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Alex Aliper
- D.Rogachev FRC Center for Pediatric Hematology, Oncology and Immunology, Samory Machela 1, Moscow, 117997, Russia Insilico Medicine, Inc, Johns Hopkins University, ETC, B310, Baltimore, MD, 21218, USA
| | - Alex Peregudov
- The Biogerontology Research Foundation, 2354 Chynoweth House, Trevissome Park, Blackwater, Truro, Cornwall TR4 8UN, UK
| | - Alex Zhavoronkov
- Laboratory of genetics of aging and longevity, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia D.Rogachev FRC Center for Pediatric Hematology, Oncology and Immunology, Samory Machela 1, Moscow, 117997, Russia Insilico Medicine, Inc, Johns Hopkins University, ETC, B310, Baltimore, MD, 21218, USA The Biogerontology Research Foundation, 2354 Chynoweth House, Trevissome Park, Blackwater, Truro, Cornwall TR4 8UN, UK
| |
Collapse
|
25
|
Yang J, Huang T, Petralia F, Long Q, Zhang B, Argmann C, Zhao Y, Mobbs CV, Schadt EE, Zhu J, Tu Z. Synchronized age-related gene expression changes across multiple tissues in human and the link to complex diseases. Sci Rep 2015; 5:15145. [PMID: 26477495 PMCID: PMC4609956 DOI: 10.1038/srep15145] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 09/21/2015] [Indexed: 01/06/2023] Open
Abstract
Aging is one of the most important biological processes and is a known risk factor for many age-related diseases in human. Studying age-related transcriptomic changes in tissues across the whole body can provide valuable information for a holistic understanding of this fundamental process. In this work, we catalogue age-related gene expression changes in nine tissues from nearly two hundred individuals collected by the Genotype-Tissue Expression (GTEx) project. In general, we find the aging gene expression signatures are very tissue specific. However, enrichment for some well-known aging components such as mitochondria biology is observed in many tissues. Different levels of cross-tissue synchronization of age-related gene expression changes are observed, and some essential tissues (e.g., heart and lung) show much stronger "co-aging" than other tissues based on a principal component analysis. The aging gene signatures and complex disease genes show a complex overlapping pattern and only in some cases, we see that they are significantly overlapped in the tissues affected by the corresponding diseases. In summary, our analyses provide novel insights to the co-regulation of age-related gene expression in multiple tissues; it also presents a tissue-specific view of the link between aging and age-related diseases.
Collapse
Affiliation(s)
- Jialiang Yang
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Tao Huang
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Francesca Petralia
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Quan Long
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Bin Zhang
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Carmen Argmann
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Yong Zhao
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Charles V. Mobbs
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Medicine, Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Eric E. Schadt
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Jun Zhu
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Zhidong Tu
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| |
Collapse
|
26
|
Affiliation(s)
- Lloyd Demetrius
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02135, USA,
| | | |
Collapse
|
27
|
Faisal FE, Zhao H, Milenkovic T. Global Network Alignment in the Context of Aging. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2015; 12:40-52. [PMID: 26357077 DOI: 10.1109/tcbb.2014.2326862] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Analogous to sequence alignment, network alignment (NA) can be used to transfer biological knowledge across species between conserved network regions. NA faces two algorithmic challenges: 1) Which cost function to use to capture "similarities" between nodes in different networks? 2) Which alignment strategy to use to rapidly identify "high-scoring" alignments from all possible alignments? We "break down" existing state-of-the-art methods that use both different cost functions and different alignment strategies to evaluate each combination of their cost functions and alignment strategies. We find that a combination of the cost function of one method and the alignment strategy of another method beats the existing methods. Hence, we propose this combination as a novel superior NA method. Then, since human aging is hard to study experimentally due to long lifespan, we use NA to transfer aging-related knowledge from well annotated model species to poorly annotated human. By doing so, we produce novel human aging-related knowledge, which complements currently available knowledge about aging that has been obtained mainly by sequence alignment. We demonstrate significant similarity between topological and functional properties of our novel predictions and those of known aging-related genes. We are the first to use NA to learn more about aging.
Collapse
|
28
|
Sagi O, Budovsky A, Wolfson M, Fraifeld VE. ShcC proteins: brain aging and beyond. Ageing Res Rev 2015; 19:34-42. [PMID: 25462193 DOI: 10.1016/j.arr.2014.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/08/2014] [Accepted: 11/17/2014] [Indexed: 02/02/2023]
Abstract
To date, most studies of Shc family of signaling adaptor proteins have been focused on the near-ubiquitously expressed ShcA, indicating its relevance to age-related diseases and longevity. Although the role of the neuronal ShcC protein is much less investigated, accumulated evidence suggests its importance for neuroprotection against such aging-associated conditions as brain ischemia and oxidative stress. Here, we summarize more than decade of studies on the ShcC expression and function in normal brain, age-related brain pathologies and immune disorders with a focus on the interactions of ShcC with signaling proteins/pathways, and the possible implications of these interactions for changes associated with aging.
Collapse
Affiliation(s)
- Orli Sagi
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Arie Budovsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Judea Regional Research & Development Center, Carmel 90404, Israel
| | - Marina Wolfson
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Vadim E Fraifeld
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|
29
|
Korbolina EE, Ershov NI, Bryzgalov LO, Kolosova NG. Application of quantitative trait locus mapping and transcriptomics to studies of the senescence-accelerated phenotype in rats. BMC Genomics 2014; 15 Suppl 12:S3. [PMID: 25563673 PMCID: PMC4303943 DOI: 10.1186/1471-2164-15-s12-s3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Etiology of complex disorders, such as cataract and neurodegenerative diseases including age-related macular degeneration (AMD), remains poorly understood due to the paucity of animal models, fully replicating the human disease. Previously, two quantitative trait loci (QTLs) associated with early cataract, AMD-like retinopathy, and some behavioral aberrations in senescence-accelerated OXYS rats were uncovered on chromosome 1 in a cross between OXYS and WAG rats. To confirm the findings, we generated interval-specific congenic strains, WAG/OXYS-1.1 and WAG/OXYS-1.2, carrying OXYS-derived loci of chromosome 1 in the WAG strain. Both congenic strains displayed early cataract and retinopathy but differed clinically from OXYS rats. Here we applied a high-throughput RNA sequencing (RNA-Seq) strategy to facilitate nomination of the candidate genes and functional pathways that may be responsible for these differences and can contribute to the development of the senescence-accelerated phenotype of OXYS rats. Results First, the size and map position of QTL-derived congenic segments were determined by comparative analysis of coding single-nucleotide polymorphisms (SNPs), which were identified for OXYS, WAG, and congenic retinal RNAs after sequencing. The transferred locus was not what we expected in WAG/OXYS-1.1 rats. In rat retina, 15442 genes were expressed. Coherent sets of differentially expressed genes were identified when we compared RNA-Seq retinal profiles of 20-day-old WAG/OXYS-1.1, WAG/OXYS-1.2, and OXYS rats. The genes most different in the average expression level between the congenic strains included those generally associated with the Wnt, integrin, and TGF-β signaling pathways, widely involved in neurodegenerative processes. Several candidate genes (including Arhgap33, Cebpg, Gtf3c1, Snurf, Tnfaip3, Yme1l1, Cbs, Car9 and Fn1) were found to be either polymorphic in the congenic loci or differentially expressed between the strains. These genes may contribute to the development of cataract and retinopathy. Conclusions This study is the first RNA-Seq analysis of the rat retinal transcriptome generated with 40 mln sequencing read depth. The integration of QTL and transcriptomic analyses in our study forms the basis of future research into the relationship between the candidate genes within the congenic regions and specific changes in the retinal transcriptome as possible causal mechanisms that underlie age-associated disorders.
Collapse
|
30
|
Demongeot J, Taramasco C. Evolution of social networks: the example of obesity. Biogerontology 2014; 15:611-26. [PMID: 25466389 DOI: 10.1007/s10522-014-9542-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 11/11/2014] [Indexed: 01/17/2023]
Abstract
The present paper deals with the effect of the social transmission of nutrition habits in a social and biological age-dependent context on obesity, and accordingly on type II diabetes and among its complications, the neurodegenerative diseases. The evolution of social networks and inside a network the healthy weight of a person are depending on the context in which this person has contacts and exchanges concerning his alimentation, physical activity and sedentary habits, inside the dominant social network in which the person lives (e.g., scholar for young, professional for adult, home or institution for elderly people). Three successive steps of evolution will be considered for social networks (like for neural one's): initial random connectivity, destruction and consolidation of links following a new transition rule called homophilic until an asymptotic architectural organization and configuration of states. The application of such a network dynamics concerns the sequence overweight/obesity/type II diabetes and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jacques Demongeot
- AGIM FRE CNRS/UJF 3405, Faculty of Medicine, University J. Fourier of Grenoble, La Tronche, 38700, France,
| | | |
Collapse
|
31
|
Paschoal AR, Maracaja-Coutinho V, Setubal JC, Simões ZLP, Verjovski-Almeida S, Durham AM. Non-coding transcription characterization and annotation. RNA Biol 2014; 9:274-82. [DOI: 10.4161/rna.19352] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
32
|
Popa-Wagner A, Buga AM, Doeppner TR, Hermann DM. Stem cell therapies in preclinical models of stroke associated with aging. Front Cell Neurosci 2014; 8:347. [PMID: 25404892 PMCID: PMC4217499 DOI: 10.3389/fncel.2014.00347] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/06/2014] [Indexed: 01/01/2023] Open
Abstract
Stroke has limited treatment options, demanding a vigorous search for new therapeutic strategies. Initial enthusiasm to stimulate restorative processes in the ischemic brain by means of cell-based therapies has meanwhile converted into a more balanced view recognizing impediments related to unfavorable environments that are in part related to aging processes. Since stroke afflicts mostly the elderly, it is highly desirable and clinically important to test the efficacy of cell therapies in aged brain microenvironments. Although widely believed to be refractory to regeneration, recent studies using both neural precursor cells and bone marrow-derived mesenchymal stem cells for stroke therapy suggest that the aged rat brain is not refractory to cell-based therapy, and that it also supports plasticity and remodeling. Yet, important differences exist in the aged compared with young brain, i.e., the accelerated progression of ischemic injury to brain infarction, the reduced rate of endogenous neurogenesis and the delayed initiation of neurological recovery. Pitfalls in the development of cell-based therapies may also be related to age-associated comorbidities, e.g., diabetes or hyperlipidemia, which may result in maladaptive or compromised brain remodeling, respectively. These age-related aspects should be carefully considered in the clinical translation of restorative therapies.
Collapse
Affiliation(s)
- Aurel Popa-Wagner
- Department of Psychiatry, Aging and Brain Disorders, University of Medicine Rostock Rostock, Germany ; Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova Craiova, Romania
| | - Ana-Maria Buga
- Department of Psychiatry, Aging and Brain Disorders, University of Medicine Rostock Rostock, Germany ; Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova Craiova, Romania
| | | | - Dirk M Hermann
- Department of Neurology, University Hospital Essen Essen, Germany
| |
Collapse
|
33
|
Are there roles for brain cell senescence in aging and neurodegenerative disorders? Biogerontology 2014; 15:643-60. [PMID: 25305051 DOI: 10.1007/s10522-014-9532-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/13/2014] [Indexed: 12/30/2022]
Abstract
The term cellular senescence was introduced more than five decades ago to describe the state of growth arrest observed in aging cells. Since this initial discovery, the phenotypes associated with cellular senescence have expanded beyond growth arrest to include alterations in cellular metabolism, secreted cytokines, epigenetic regulation and protein expression. Recently, senescence has been shown to play an important role in vivo not only in relation to aging, but also during embryonic development. Thus, cellular senescence serves different purposes and comprises a wide range of distinct phenotypes across multiple cell types. Whether all cell types, including post-mitotic neurons, are capable of entering into a senescent state remains unclear. In this review we examine recent data that suggest that cellular senescence plays a role in brain aging and, notably, may not be limited to glia but also neurons. We suggest that there is a high level of similarity between some of the pathological changes that occur in the brain in Alzheimer's and Parkinson's diseases and those phenotypes observed in cellular senescence, leading us to propose that neurons and glia can exhibit hallmarks of senescence previously documented in peripheral tissues.
Collapse
|
34
|
Inverse association between cancer and neurodegenerative disease: review of the epidemiologic and biological evidence. Biogerontology 2014; 15:547-57. [PMID: 25113739 DOI: 10.1007/s10522-014-9523-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/23/2014] [Indexed: 10/24/2022]
Abstract
Growing evidence suggests an unusual epidemiologic association between cancer and certain neurological conditions, particularly age-related neurodegenerative diseases. Cancer survivors have a 20-50% lower risk of developing Parkinson's and Alzheimer's disease, and patients with these neurodegenerative conditions have a substantially lower incidence of cancer. We review the epidemiologic evidence for this inverse co-morbidity and show that it is not simply an artifact of survival bias or under-diagnosis. We then review the potential biological explanations for this association, which is intimately linked to the very different nature of dividing cells and neurons. The known genetic and metabolic connections between cancer and neurodegeneration generally fall within two categories. The first includes shared genes and pathways such as Pin1 and the ubiquitin proteasome system that are dysregulated in different directions to cause one disease or the other. The second includes common pathophysiological mechanisms such as mitochondrial dysfunction, oxidative stress and DNA damage that drive both conditions, but with different cellular fates. We discuss examples of these biological links and their implications for developing new approaches to prevention and treatment of both diseases.
Collapse
|
35
|
Ayyadevara S, Tazearslan C, Alla R, Jiang JC, Jazwinski SM, Shmookler Reis RJ. Rec-8 dimorphism affects longevity, stress resistance and X-chromosome nondisjunction in C. elegans, and replicative lifespan in S. cerevisiae. Front Genet 2014; 5:211. [PMID: 25136348 PMCID: PMC4120681 DOI: 10.3389/fgene.2014.00211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/19/2014] [Indexed: 12/18/2022] Open
Abstract
A quantitative trait locus (QTL) in the nematode C. elegans, “lsq4,” was recently implicated by mapping longevity genes. QTLs for lifespan and three stress-resistance traits coincided within a span of <300 kbp, later narrowed to <200 kbp. A single gene in this interval is now shown to modulate all lsq4-associated traits. Full-genome analysis of transcript levels indicates that lsq4 contains a dimorphic gene governing the expression of many sperm-specific genes, suggesting an effect on spermatogenesis. Quantitative analysis of allele-specific transcripts encoded within the lsq4 interval revealed significant, 2- to 15-fold expression differences for 10 of 33 genes. Fourteen “dual-candidate” genes, implicated by both position and expression, were tested for RNA-interference effects on QTL-linked traits. In a strain carrying the shorter-lived allele, knockdown of rec-8 (encoding a meiotic cohesin) reduced its transcripts 4-fold, to a level similar to the longer-lived strain, while extending lifespan 25–26%, whether begun before fertilization or at maturity. The short-lived lsq4 allele also conferred sensitivity to oxidative and thermal stresses, and lower male frequency (reflecting X-chromosome non-disjunction), traits reversed uniquely by rec-8 knockdown. A strain bearing the longer-lived lsq4 allele, differing from the short-lived strain at <0.3% of its genome, derived no lifespan or stress-survival benefit from rec-8 knockdown. We consider two possible explanations: high rec-8 expression may include increased “leaky” expression in mitotic cells, leading to deleterious destabilization of somatic genomes; or REC-8 may act entirely in germ-line meiotic cells to reduce aberrations such as non-disjunction, thereby blunting a stress-resistance response mediated by innate immunity. Replicative lifespan was extended 20% in haploid S. cerevisiae (BY4741) by deletion of REC8, orthologous to nematode rec-8, implying that REC8 disruption of mitotic-cell survival is widespread, exemplifying antagonistic pleiotropy (opposing effects on lifespan vs. reproduction), and/or balancing selection wherein genomic disruption increases genetic variation under harsh conditions.
Collapse
Affiliation(s)
- Srinivas Ayyadevara
- Central Arkansas Veterans Healthcare System, VA Medical Center Little Rock, AR, USA ; Department of Geriatrics, University of Arkansas for Medical Sciences Little Rock, AR, USA
| | - Cagdas Tazearslan
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences Little Rock, AR, USA
| | - Ramani Alla
- Central Arkansas Veterans Healthcare System, VA Medical Center Little Rock, AR, USA ; Department of Geriatrics, University of Arkansas for Medical Sciences Little Rock, AR, USA
| | - James C Jiang
- Tulane Center for Aging and Department of Medicine, Tulane University Health Sciences Center New Orleans, LA, USA
| | - S Michal Jazwinski
- Tulane Center for Aging and Department of Medicine, Tulane University Health Sciences Center New Orleans, LA, USA
| | - Robert J Shmookler Reis
- Central Arkansas Veterans Healthcare System, VA Medical Center Little Rock, AR, USA ; Department of Geriatrics, University of Arkansas for Medical Sciences Little Rock, AR, USA ; Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences Little Rock, AR, USA
| |
Collapse
|
36
|
Abstract
Ageing occurs in spite of complex pathways of maintenance and repair. There is no "enemy within", which has the specific evolution-selected function to cause ageing and death. This understanding of ageing should transform our approach towards interventions from therapeutic "anti-ageing" to maintaining health. But what is health? Ideally, health is a state of complete physical and mental independence in activities of daily living. But in pragmatic terms, health is a state of adequate physical and mental independence in activities of daily living. In order to identify a set of measurable, evidence-based and demonstratable parameters of health, robustness and resilience at various levels, the concept of homeodynamic space can be a useful one. Age-related health problems for which there are no clear-cut causative agents, except the complex process of ageing, may be better tackled by focusing on health mechanisms and their maintenance, rather than disease management and treatment. Continuing the disease-oriented research approaches are economically, socially and psychologically unsustainable as compared with health-oriented and preventive strategies, such as hormesis. Supporting health-oriented research is the urgency of our time.
Collapse
Affiliation(s)
- Suresh I S Rattan
- Laboratory of Cellular Ageing, Department of Molecular Biology and Genetics, University of Aarhus, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark,
| |
Collapse
|
37
|
Zhu W, Chen YPP. Computational developments in microRNA-regulated protein-protein interactions. BMC SYSTEMS BIOLOGY 2014; 8:14. [PMID: 24507415 PMCID: PMC3922185 DOI: 10.1186/1752-0509-8-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 01/20/2014] [Indexed: 01/12/2023]
Abstract
Protein-protein interaction (PPI) is one of the most important functional components of a living cell. Recently, researchers have been interested in investigating the correlation between PPI and microRNA, which has been found to be a regulator at the post-transcriptional level. Studies on miRNA-regulated PPI networks will not only facilitate an understanding of the fine tuning role that miRNAs play in PPI networks, but will also provide potential candidates for tumor diagnosis. This review describes basic studies on the miRNA-regulated PPI network in the way of bioinformatics which includes constructing a miRNA-target protein network, describing the features of miRNA-regulated PPI networks and overviewing previous findings based on analysing miRNA-regulated PPI network features.
Collapse
Affiliation(s)
| | - Yi-Ping Phoebe Chen
- Department of Computer Science and Computer Engineering, La Trobe University, Melbourne, Australia.
| |
Collapse
|
38
|
Singh H, Ganneru S, Malakapalli V, Chalasani M, Nappanveettil G, Bhonde RR, Venkatesan V. Islet adaptation to obesity and insulin resistance in WNIN/GR-Ob rats. Islets 2014; 6:e998099. [PMID: 25833252 PMCID: PMC4398287 DOI: 10.1080/19382014.2014.998099] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
WNIN/GR-Ob mutant rat is a novel animal model to study metabolic syndrome (obesity, insulin resistance, hyperinsulinemia, impaired glucose tolerance and cardiovascular diseases). We have investigated the islet characteristics of obese mutants at different age groups (1, 6 and 12 months) to assess the islet changes in response to early and chronic metabolic stress. Our data demonstrates altered islet cell morphology and function (hypertrophy, fibrotic lesions, vacuolation, decreased stimulation index, increased TNFα, ROS and TBARS levels) in mutants as compared to controls. Furthermore, network analysis (gene-gene interaction) studied in pancreas demonstrated increased inflammation as a key factor underlying obesity/metabolic syndrome in mutants. These observations pave way to explore this model to understand islet adaptation in response to metabolic syndrome.
Collapse
Key Words
- ANOVA, one-way analysis of variance
- BM-MSCs, bone marrow derived mesenchymal stem cells
- DAPI, 4′,6-diamidino-2-phenylindol
- DTZ, Dithizone
- FBG, fasting blood glucose
- H&E, hematoxylin and eosin stain
- HI, hyperinsulinemia
- HOMA-IR, homeostatic model assessment for insulin resistance
- IGT, impaired glucose tolerance
- IHC, immunohistochemistry
- IR, insulin resistance
- KRBH, krebs ringer bicarbonate
- MS, metabolic syndrome
- NCLAS, National Center for Laboratory Animal Sciences
- NIN, National Institute of Nutrition
- PBS, phosphate buffered saline
- ROS, reactive oxygen species
- SEM, scanning electron microscope
- T2D, type 2 diabetes
- TBARS, thiobarbituric acid reactive substances
- TEM, transmission electron microscopy
- TNFα, tumor necrosis factors
- WNIN, Wistar rats raised at National Institute of Nutrition
- WNIN/GR-Ob mutant rats
- hyperinsulinemia
- hypertrophy
- insulin resistance
- islets
Collapse
Affiliation(s)
- Himadri Singh
- Biochemistry/Stem Cell Research; National
Institute of Nutrition; Indian Council of Medical Research; Hyderabad,
India
| | - Sireesha Ganneru
- Biochemistry/Stem Cell Research; National
Institute of Nutrition; Indian Council of Medical Research; Hyderabad,
India
| | - Venkata Malakapalli
- Biochemistry/Stem Cell Research; National
Institute of Nutrition; Indian Council of Medical Research; Hyderabad,
India
| | - Maniprabha Chalasani
- Biochemistry/Stem Cell Research; National
Institute of Nutrition; Indian Council of Medical Research; Hyderabad,
India
| | - Giridharan Nappanveettil
- National Center for Laboratory Animal
Sciences; National Institute of Nutrition Hyderabad,
India
| | - Ramesh R Bhonde
- School of Regenerative Medicine; Manipal
University; Bangalore, India
| | - Vijayalakshmi Venkatesan
- Biochemistry/Stem Cell Research; National
Institute of Nutrition; Indian Council of Medical Research; Hyderabad,
India
- Correspondence to: Vijayalakshmi Venkatesan;
| |
Collapse
|
39
|
Buga AM, Di Napoli M, Popa-Wagner A. Preclinical models of stroke in aged animals with or without comorbidities: role of neuroinflammation. Biogerontology 2013; 14:651-62. [PMID: 24057280 DOI: 10.1007/s10522-013-9465-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/10/2013] [Indexed: 12/31/2022]
Abstract
Age is the principal nonmodifiable risk factor for stroke. Over the past 10 years, suitable models for stroke in aged rats have been established. At genetic and cellular level there are significant differences in behavioral, cytological and genomics responses to injury in old animals as compared with the young ones. Behaviorally, the aged rats have the capacity to recover after cortical infarcts albeit to a lower extent than the younger counterparts. Similarly, the increased vulnerability of the aged brain to stroke, together with a decreased interhemisphere synchrony after stroke, assessed by different experimental methods (MRI, fMRI, in vivo microscopy, EEG) leads to unfavorable recovery of physical and cognitive functions in aged people and may have a prognostic value for the recovery of stroke patients. Furthermore, in elderly, comorbidities like diabetes or arterial hypertension are associated with higher risk of stroke, increased mortality and disability, and poorer functional status and quality of life. Aging brain reacts strongly to ischemia-reperfusion injury with an early inflammatory response. The process of cellular senescence can be an important additional contributor to chronic post-stroke by creating a "primed" inflammatory environment in the brain. Overall, these pro-inflammatory reactions promote early scar formation associated with tissue fibrosis and reduce functional recovery. A better understanding of molecular factors and signaling pathways underlying the contribution of comorbidities to stroke-induced pathological sequelae, may be translated into successful treatment or prevention therapies for age-associated diseases which would improve lifespan and quality of life.
Collapse
Affiliation(s)
- A-M Buga
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy, Craiova, Craiova, Romania
| | | | | |
Collapse
|
40
|
Gonzalez-Covarrubias V. Lipidomics in longevity and healthy aging. Biogerontology 2013; 14:663-72. [PMID: 23948799 DOI: 10.1007/s10522-013-9450-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/02/2013] [Indexed: 12/18/2022]
Abstract
The role of classical lipids in aging diseases and human longevity has been widely acknowledged. Triglyceride and cholesterol concentrations are clinically assessed to infer the risk of cardiovascular disease while larger lipoprotein particle size and low triglyceride levels have been identified as markers of human longevity. The rise of lipidomics as a branch of metabolomics has provided an additional layer of accuracy to pinpoint specific lipids and its association with aging diseases and longevity. The molecular composition and concentration of lipid species determine their cellular localization, metabolism, and consequently, their impact in disease and health. For example, low density lipoproteins are the main carriers of sphingomyelins and ceramides, while high density lipoproteins are mostly loaded with ether phosphocholines, partly explaining their opposing roles in atherogenesis. Moreover, the identification of specific lipid species in aging diseases and longevity would aid to clarify how these lipids alter health and influence longevity. For instance, ether phosphocholines PC (O-34:1) and PC (O-34:3) have been positively associated with longevity and negatively with diabetes, and hypertension, but other species of phosphocholines show no effect or an opposite association with these traits confirming the relevance of the identification of molecular lipid species to tackle our understanding of healthy aging and disease. Up-to-date, a minor fraction of the human plasma lipidome has been associated to healthy aging and longevity, further research would pinpoint toward specific lipidomic profiles as potential markers of healthy aging and metabolic diseases.
Collapse
|
41
|
Fu W, Patel A, Jhamandas JH. Amylin receptor: a common pathophysiological target in Alzheimer's disease and diabetes mellitus. Front Aging Neurosci 2013; 5:42. [PMID: 23966942 PMCID: PMC3744041 DOI: 10.3389/fnagi.2013.00042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/03/2013] [Indexed: 01/26/2023] Open
Abstract
Amylin (islet amyloid polypeptide) and amyloid-beta (Aβ) protein, which are deposited within pancreatic islets of diabetics and brains of Alzheimer’s patients respectively, share many biophysical and physiological properties. Emerging evidence indicates that the amylin receptor is a putative target receptor for the actions of human amylin and Aβ in the brain. The amylin receptor consists of the calcitonin receptor dimerized with a receptor activity-modifying protein and is widely distributed within central nervous system. Both amylin and Aβ directly activate this G protein-coupled receptor and trigger multiple common intracellular signal transduction pathways that can culminate in apoptotic cell death. Moreover, amylin receptor antagonists can block both the biological and neurotoxic effects of human amylin and Aβ. Amylin receptors thus appear to be involved in the pathophysiology of Alzheimer’s disease and diabetes, and could serve as a molecular link between the two conditions that are associated epidemiologically.
Collapse
Affiliation(s)
- Wen Fu
- Division of Neurology, Department of Medicine, Centre for Neuroscience, University of Alberta , Edmonton, AB , Canada
| | | | | |
Collapse
|
42
|
Assessing biological aging: the origin of deficit accumulation. Biogerontology 2013; 14:709-17. [PMID: 23860844 PMCID: PMC3847281 DOI: 10.1007/s10522-013-9446-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/08/2013] [Indexed: 12/22/2022]
Abstract
The health of individuals is highly heterogeneous, as is the rate at which they age. To account for such heterogeneity, we have suggested that an individual’s health status can be represented by the number of health deficits (broadly defined by biological and clinical characteristics) that they accumulate. This allows health to be expressed in a single number: the frailty index (FI) is the ratio of the deficits present in a person to the total number of deficits considered (e.g. in a given database or experimental procedure). Changes in the FI characterize the rate of individual aging. The behavior of the FI is highly characteristic: it shows an age specific, nonlinear increase, (similar to Gompertz law), higher values in females, strong associations with adverse outcomes (e.g., mortality), and a universal limit to its increase (at FI ~0.7). These features have been demonstrated in dozens of studies. Even so, little is known about the origin of deficit accumulation. Here, we apply a stochastic dynamics framework to illustrate that the average number of deficits present in an individual is the product of the average intensity of the environmental stresses and the average recovery time. The age-associated increase in recovery time results in the accumulation of deficits. This not only explains why the number of deficits can be used to estimate individual differences in aging rates, but also suggests that targeting the recovery rate (e.g. by preventive or therapeutic interventions) will decrease the number of deficits that individuals accumulate and thereby benefit life expectancy.
Collapse
|
43
|
Moskalev AA, Shaposhnikov MV, Plyusnina EN, Zhavoronkov A, Budovsky A, Yanai H, Fraifeld VE. The role of DNA damage and repair in aging through the prism of Koch-like criteria. Ageing Res Rev 2013; 12:661-84. [PMID: 22353384 DOI: 10.1016/j.arr.2012.02.001] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 01/27/2012] [Accepted: 02/06/2012] [Indexed: 12/21/2022]
Abstract
Since the first publication on Somatic Mutation Theory of Aging (Szilárd, 1959), a great volume of knowledge in the field has been accumulated. Here we attempted to organize the evidence "for" and "against" the hypothesized causal role of DNA damage and mutation accumulation in aging in light of four Koch-like criteria. They are based on the assumption that some quantitative relationship between the levels of DNA damage/mutations and aging rate should exist, so that (i) the longer-lived individuals or species would have a lower rate of damage than the shorter-lived, and (ii) the interventions that modulate the level of DNA damage and repair capacity should also modulate the rate of aging and longevity and vice versa. The analysis of how the existing data meets the proposed criteria showed that many gaps should still be filled in order to reach a clear-cut conclusion. As a perspective, it seems that the main emphasis in future studies should be put on the role of DNA damage in stem cell aging.
Collapse
|
44
|
Tacutu R, Craig T, Budovsky A, Wuttke D, Lehmann G, Taranukha D, Costa J, Fraifeld VE, de Magalhães JP. Human Ageing Genomic Resources: integrated databases and tools for the biology and genetics of ageing. Nucleic Acids Res 2012. [PMID: 23193293 PMCID: PMC3531213 DOI: 10.1093/nar/gks1155] [Citation(s) in RCA: 373] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Human Ageing Genomic Resources (HAGR, http://genomics.senescence.info) is a freely available online collection of research databases and tools for the biology and genetics of ageing. HAGR features now several databases with high-quality manually curated data: (i) GenAge, a database of genes associated with ageing in humans and model organisms; (ii) AnAge, an extensive collection of longevity records and complementary traits for >4000 vertebrate species; and (iii) GenDR, a newly incorporated database, containing both gene mutations that interfere with dietary restriction-mediated lifespan extension and consistent gene expression changes induced by dietary restriction. Since its creation about 10 years ago, major efforts have been undertaken to maintain the quality of data in HAGR, while further continuing to develop, improve and extend it. This article briefly describes the content of HAGR and details the major updates since its previous publications, in terms of both structure and content. The completely redesigned interface, more intuitive and more integrative of HAGR resources, is also presented. Altogether, we hope that through its improvements, the current version of HAGR will continue to provide users with the most comprehensive and accessible resources available today in the field of biogerontology.
Collapse
Affiliation(s)
- Robi Tacutu
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Tacutu R, Shore DE, Budovsky A, de Magalhães JP, Ruvkun G, Fraifeld VE, Curran SP. Prediction of C. elegans longevity genes by human and worm longevity networks. PLoS One 2012; 7:e48282. [PMID: 23144747 PMCID: PMC3483217 DOI: 10.1371/journal.pone.0048282] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 09/21/2012] [Indexed: 11/18/2022] Open
Abstract
Intricate and interconnected pathways modulate longevity, but screens to identify the components of these pathways have not been saturating. Because biological processes are often executed by protein complexes and fine-tuned by regulatory factors, the first-order protein-protein interactors of known longevity genes are likely to participate in the regulation of longevity. Data-rich maps of protein interactions have been established for many cardinal organisms such as yeast, worms, and humans. We propose that these interaction maps could be mined for the identification of new putative regulators of longevity. For this purpose, we have constructed longevity networks in both humans and worms. We reasoned that the essential first-order interactors of known longevity-associated genes in these networks are more likely to have longevity phenotypes than randomly chosen genes. We have used C. elegans to determine whether post-developmental inactivation of these essential genes modulates lifespan. Our results suggest that the worm and human longevity networks are functionally relevant and possess a high predictive power for identifying new longevity regulators.
Collapse
Affiliation(s)
- Robi Tacutu
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - David E. Shore
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Arie Budovsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vadim E. Fraifeld
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail: (VEF); (SPC)
| | - Sean P. Curran
- Division of Biogerontology, Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
- Department of Molecular and Computational Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail: (VEF); (SPC)
| |
Collapse
|
46
|
Kubrycht J, Sigler K, Souček P. Virtual interactomics of proteins from biochemical standpoint. Mol Biol Int 2012; 2012:976385. [PMID: 22928109 PMCID: PMC3423939 DOI: 10.1155/2012/976385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/18/2012] [Accepted: 05/18/2012] [Indexed: 12/24/2022] Open
Abstract
Virtual interactomics represents a rapidly developing scientific area on the boundary line of bioinformatics and interactomics. Protein-related virtual interactomics then comprises instrumental tools for prediction, simulation, and networking of the majority of interactions important for structural and individual reproduction, differentiation, recognition, signaling, regulation, and metabolic pathways of cells and organisms. Here, we describe the main areas of virtual protein interactomics, that is, structurally based comparative analysis and prediction of functionally important interacting sites, mimotope-assisted and combined epitope prediction, molecular (protein) docking studies, and investigation of protein interaction networks. Detailed information about some interesting methodological approaches and online accessible programs or databases is displayed in our tables. Considerable part of the text deals with the searches for common conserved or functionally convergent protein regions and subgraphs of conserved interaction networks, new outstanding trends and clinically interesting results. In agreement with the presented data and relationships, virtual interactomic tools improve our scientific knowledge, help us to formulate working hypotheses, and they frequently also mediate variously important in silico simulations.
Collapse
Affiliation(s)
- Jaroslav Kubrycht
- Department of Physiology, Second Medical School, Charles University, 150 00 Prague, Czech Republic
| | - Karel Sigler
- Laboratory of Cell Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic
| | - Pavel Souček
- Toxicogenomics Unit, National Institute of Public Health, 100 42 Prague, Czech Republic
| |
Collapse
|
47
|
Borklu Yucel E, Ulgen KO. A network-based approach on elucidating the multi-faceted nature of chronological aging in S. cerevisiae. PLoS One 2011; 6:e29284. [PMID: 22216232 PMCID: PMC3244448 DOI: 10.1371/journal.pone.0029284] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 11/23/2011] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cellular mechanisms leading to aging and therefore increasing susceptibility to age-related diseases are a central topic of research since aging is the ultimate, yet not understood mechanism of the fate of a cell. Studies with model organisms have been conducted to ellucidate these mechanisms, and chronological aging of yeast has been extensively used as a model for oxidative stress and aging of postmitotic tissues in higher eukaryotes. METHODOLOGY/PRINCIPAL FINDINGS The chronological aging network of yeast was reconstructed by integrating protein-protein interaction data with gene ontology terms. The reconstructed network was then statistically "tuned" based on the betweenness centrality values of the nodes to compensate for the computer automated method. Both the originally reconstructed and tuned networks were subjected to topological and modular analyses. Finally, an ultimate "heart" network was obtained via pooling the step specific key proteins, which resulted from the decomposition of the linear paths depicting several signaling routes in the tuned network. CONCLUSIONS/SIGNIFICANCE The reconstructed networks are of scale-free and hierarchical nature, following a power law model with γ = 1.49. The results of modular and topological analyses verified that the tuning method was successful. The significantly enriched gene ontology terms of the modular analysis confirmed also that the multifactorial nature of chronological aging was captured by the tuned network. The interplay between various signaling pathways such as TOR, Akt/PKB and cAMP/Protein kinase A was summarized in the "heart" network originated from linear path analysis. The deletion of four genes, TCB3, SNA3, PST2 and YGR130C, was found to increase the chronological life span of yeast. The reconstructed networks can also give insight about the effect of other cellular machineries on chronological aging by targeting different signaling pathways in the linear path analysis, along with unraveling of novel proteins playing part in these pathways.
Collapse
Affiliation(s)
- Esra Borklu Yucel
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey.
| | | |
Collapse
|
48
|
Tacutu R, Budovsky A, Yanai H, Fraifeld VE. Molecular links between cellular senescence, longevity and age-related diseases - a systems biology perspective. Aging (Albany NY) 2011; 3:1178-91. [PMID: 22184282 PMCID: PMC3273898 DOI: 10.18632/aging.100413] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 12/17/2011] [Indexed: 01/22/2023]
Abstract
The role of cellular senescence (CS) in age-related diseases (ARDs) is a quickly emerging topic in aging research. Our comprehensive data mining revealed over 250 genes tightly associated with CS. Using systems biology tools, we found that CS is closely interconnected with aging, longevity and ARDs, either by sharing common genes and regulators or by protein-protein interactions and eventually by common signaling pathways. The most enriched pathways across CS, ARDs and aging-associated conditions (oxidative stress and chronic inflammation) are growth-promoting pathways and the pathways responsible for cell-extracellular matrix interactions and stress response. Of note, the patterns of evolutionary conservation of CS and cancer genes showed a high degree of similarity, suggesting the co-evolution of these two phenomena. Moreover, cancer genes and microRNAs seem to stand at the crossroad between CS and ARDs. Our analysis also provides the basis for new predictions: the genes common to both cancer and other ARD(s) are highly likely candidates to be involved in CS and vice versa. Altogether, this study shows that there are multiple links between CS, aging, longevity and ARDs, suggesting a common molecular basis for all these conditions. Modulating CS may represent a potential pro-longevity and anti-ARDs therapeutic strategy.
Collapse
Affiliation(s)
- Robi Tacutu
- The Shraga Segal Department of Microbiology and Immunology, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Arie Budovsky
- The Shraga Segal Department of Microbiology and Immunology, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The Judea Regional R&D Center, Moshav Carmel, Israel
| | - Hagai Yanai
- The Shraga Segal Department of Microbiology and Immunology, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Vadim E. Fraifeld
- The Shraga Segal Department of Microbiology and Immunology, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
49
|
Rattan SIS. Biogerontology: from here to where? The Lord Cohen Medal Lecture-2011. Biogerontology 2011; 13:83-91. [DOI: 10.1007/s10522-011-9354-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/18/2011] [Indexed: 01/09/2023]
|
50
|
Understanding the biology of aging with interaction networks. Maturitas 2011; 69:126-30. [DOI: 10.1016/j.maturitas.2011.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 03/10/2011] [Indexed: 11/22/2022]
|