1
|
Wu S, Li H, Yu M, Hu X, Chao S, Yang F, Qin S. Metabolic profiling of the Chinese population with extreme longevity identifies Lysophospholipid species as potential biomarkers for the human lifespan. Maturitas 2025; 198:108379. [PMID: 40315554 DOI: 10.1016/j.maturitas.2025.108379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/06/2025] [Accepted: 04/24/2025] [Indexed: 05/04/2025]
Abstract
BACKGROUND Metabolic regulation plays a crucial role in extending the healthspan and lifespan across multiple organisms, including humans. Although numerous studies have identified the characteristics of the metabolome and potential biomarkers in long-lived populations worldwide, the metabolome landscape of Chinese centenarians remains largely unknown. This study characterised the plasma metabolic profiles of Chinese centenarians and nonagenarians and identified potential biomarkers of longevity. METHODS A global untargeted metabolomics approach was used to analyze plasma samples from 65 centenarians (average age 101.72 ± 1.46 years), 53 nonagenarians (average age 98.92 ± 0.27 years), 47 older individuals (average age 64.66 ± 3.31 years), and 35 middle-aged participants (average age 33.91 ± 3.53 years) recruited from the Lishui region, an area of China well known for the longevity of its population. RESULTS The plasma metabolic profiles of centenarians and nonagenarians differed significantly from those of the two younger populations. Specifically, 211 and 114 differentially abundant metabolites (DAMs) were identified in the centenarian and nonagenarian groups, respectively. The majority of these DAMs were glycerophosphoethanolamines, glycerophosphocholines, fatty esters, fatty alcohols, fatty acyls, and fatty acids and conjugates. For example, the circulating levels of LysoPA (20:2), LysoPA (20:3), LysoPC (16:0), LysoPC (18:2), and LysoPE (20:4) were significantly lower in centenarians than in the older and middle-aged groups. A similar pattern was also observed in the nonagenarian population. Notably, the plasma levels of five DAMs - LysoPA (20:3), LysoPC (18:2), LysoPE (20:4), PG (18:0/18:1), and PG (18:1/18:2) - were significantly and continuously reduced with the ageing process. Pearson correlation analysis revealed that the reduced abundance of LysoPA (20:3), LysoPC (18:2), LysoPE (20:4), LysoPE (24:0), PG (18:0/18:1), and PG (18:1/18:2) was significantly and negatively associated with lifespan, from middle-age to centenarian. ROC analysis indicated that LysoPA (20:3), LysoPC (18:2), LysoPE (20:4), LysoPE (24:0), PG (18:0/18:1), and PG (18:1/18:2), as well as the combination of these six DAMs (AUC = 0.9074), had high predictive power for the human longevity phenotype. CONCLUSION This study elucidated the plasma metabolic landscape of centenarians and nonagenarians in China and identified several potential biomarkers for predicting human lifespan. Our findings will aid in understanding the metabolic regulation of longevity and may promote the clinical practice of gerontology in the future.
Collapse
Affiliation(s)
- Shaochang Wu
- Department of Geriatrics, Lishui Key Laboratory of Brain Health and Severe Brain Disorders, Lishui Second People's Hospital, Lishui, China
| | - He Li
- Department of Geriatrics, Lishui Key Laboratory of Brain Health and Severe Brain Disorders, Lishui Second People's Hospital, Lishui, China
| | - Maoqiang Yu
- Department of Geriatrics, Lishui Key Laboratory of Brain Health and Severe Brain Disorders, Lishui Second People's Hospital, Lishui, China
| | - Xiaogang Hu
- Department of Geriatrics, Lishui Key Laboratory of Brain Health and Severe Brain Disorders, Lishui Second People's Hospital, Lishui, China
| | - Shan Chao
- Research Center for Lin He Academician New Medicine, Institutes for Shanghai Pudong Decoding Life, Shanghai, China
| | - Fan Yang
- Department of Geriatrics, Lishui Key Laboratory of Brain Health and Severe Brain Disorders, Lishui Second People's Hospital, Lishui, China; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Han Q, Luo S, Huang S, Yang Y, Zhang Q, Zhu L. Phosphatidylcholine and frailty: a Mendelian randomization study and immune mediation. Arch Gerontol Geriatr 2025; 135:105863. [PMID: 40344942 DOI: 10.1016/j.archger.2025.105863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/08/2025] [Accepted: 04/15/2025] [Indexed: 05/11/2025]
Abstract
OBJECTIVE Lipid metabolism plays a significant role in the aging process, and the prevalence of frailty increases with advancing age. However, few studies have employed Mendelian randomization (MR) to investigate the associations between lipids and frailty. METHODS This study utilized large-scale genome-wide association study (GWAS) and a bidirectional two-sample, two-step MR approach to explore the causal associations of 179 lipid species with the frailty index (FI) and the mediating effects of immune cells. The inverse variance weighted (IVW) method was used primarily to evaluate the MR results. Heterogeneity and horizontal pleiotropy were assessed via Cochran's Q, the MR-Egger intercept, MR-PRESSO and leave-one-out analysis. Phenome-wide MR (Phe-MR) was used to analyse the potential roles of frailty-related phosphatidylcholine species in diseases. RESULTS MR analysis revealed a causal relationship between PC species and FI. Specifically, PC (18:0_20:5), LPC (18:0_0:0), LPC (16:0_0:0), and ether-PC (O-16:0_22:5) are positively correlated with the FI, whereas PC(18:1_20:2), PC(16:0_18:3), PC(16:0_20:1), ether-PC (O-18:0_16:1), and ether-PC (O-16:1_16:0) are negatively correlated with the FI. Reverse MR analysis indicated no strong association between the FI and the nine PCs. Mediation analysis revealed that Sw mem %lymphocyte partially mediated the effect of LPC (18:0_0:0) on FI. Phe-MR analysis revealed that nine frailty-related PCs were broadly associated with various diseases. CONCLUSION This study provides novel evidence that supports the causal association between PC species and frailty, with the immune system playing a crucial role in this pathway. These findings offer new insights into potential targets for the intervention of frailty in the elderly population.
Collapse
Affiliation(s)
- Qunhua Han
- Department of Geriatrics, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Suisui Luo
- Department of Geriatrics, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shunmei Huang
- Department of Geriatrics, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunmei Yang
- Department of Geriatrics, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qin Zhang
- Department of Geriatrics, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lijun Zhu
- Department of Geriatrics, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Fernàndez‐Bernal A, Sol J, Galo‐Licona JD, Mota‐Martorell N, Mas‐Bargues C, Belenguer‐Varea Á, Obis È, Viña J, Borrás C, Jové M, Pamplona R. Phenotypic upregulation of hexocylceramides and ether-linked phosphocholines as markers of human extreme longevity. Aging Cell 2025; 24:e14429. [PMID: 39639682 PMCID: PMC11984674 DOI: 10.1111/acel.14429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/14/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Centenarians and their relatives possess a notable survival advantage, with higher longevity and reduced susceptibility to major age-related diseases. To date, characteristic omics profiles of centenarians have been described, demonstrating that these individuals with exceptional longevity regulate their metabolism to adapt and incorporate more resilient biomolecules into their cells. Among these adaptations, the lipidomic profile stands out. However, it has not yet been determined whether this lipidomic profile is specific to centenarians or is the consequence of extreme longevity genetics and is also present in centenarians' offspring. This distinction is crucial for defining potential therapeutic targets that could help delay the aging process and associated pathologies. We applied mass-spectrometry-based techniques to quantify 569 lipid species in plasma samples from 39 centenarians, 63 centenarians' offspring, and 69 noncentenarians' offspring without familial connections. Based on this profile, we calculated different indexes to characterize the functional and structural properties of plasma lipidome. Our findings demonstrate that extreme longevity genetics (centenarians and centenarians' offspring) determines a specific lipidomic signature characterized by (i) an enrichment of hexosylceramides, (ii) a decrease of specific species of ceramides and sulfatides, (iii) a global increase of ether-PC and ether-LPC, and (iv) changes in the fluidity and diversity of specific lipid classes. We point out the conversion of ceramides to hexosylceramides and the maintenance of the levels of the ether-linked PC as a phenotypic trait to guarantee extreme longevity. We propose that this molecular signature is the result of an intrinsic adaptive program that preserves protective mechanisms and cellular identity.
Collapse
Affiliation(s)
- Anna Fernàndez‐Bernal
- Department of Experimental MedicineUniversity of Lleida‐Lleida Biomedical Research Institute (UdL‐IRBLleida)LleidaSpain
| | - Joaquim Sol
- Department of Experimental MedicineUniversity of Lleida‐Lleida Biomedical Research Institute (UdL‐IRBLleida)LleidaSpain
- Catalan Health Institute (ICS), Lleida Research Support Unit (USR)Fundació Institut Universitari per a la Recerca en Atenció Primària de Salut Jordi Gol i Gurina (IDIAP JGol)LleidaSpain
| | - José Daniel Galo‐Licona
- Department of Experimental MedicineUniversity of Lleida‐Lleida Biomedical Research Institute (UdL‐IRBLleida)LleidaSpain
| | - Natàlia Mota‐Martorell
- Department of Experimental MedicineUniversity of Lleida‐Lleida Biomedical Research Institute (UdL‐IRBLleida)LleidaSpain
| | - Cristina Mas‐Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable‐Instituto de Salud Carlos III (CIBERFES‐ISCIII)Institute of Health Research‐INCLIVA, University of ValenciaValènciaSpain
| | - Ángel Belenguer‐Varea
- Division of Geriatrics, Hospital Universitario de La Ribera (Alzira, Valencia, Spain), School of DoctorateUniversidad Católica de ValenciaValenciaSpain
| | - Èlia Obis
- Department of Experimental MedicineUniversity of Lleida‐Lleida Biomedical Research Institute (UdL‐IRBLleida)LleidaSpain
| | - José Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable‐Instituto de Salud Carlos III (CIBERFES‐ISCIII)Institute of Health Research‐INCLIVA, University of ValenciaValènciaSpain
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable‐Instituto de Salud Carlos III (CIBERFES‐ISCIII)Institute of Health Research‐INCLIVA, University of ValenciaValènciaSpain
| | - Mariona Jové
- Department of Experimental MedicineUniversity of Lleida‐Lleida Biomedical Research Institute (UdL‐IRBLleida)LleidaSpain
| | - Reinald Pamplona
- Department of Experimental MedicineUniversity of Lleida‐Lleida Biomedical Research Institute (UdL‐IRBLleida)LleidaSpain
| |
Collapse
|
4
|
Li W, Schomakers BV, van Weeghel M, Grevendonk L, Vaz FM, Salomons GS, Schrauwen P, Hoeks J, Gao AW, Houtkooper RH, Janssens GE. Plasma triacylglycerol length and saturation level mark healthy aging groups in humans. GeroScience 2025; 47:2567-2580. [PMID: 39601998 PMCID: PMC11979014 DOI: 10.1007/s11357-024-01453-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024] Open
Abstract
Complex lipids, essential components in biological processes, exhibit conserved age-related changes that alter membrane properties and cellular functions and are implicated as biomarkers and contributors to longevity and age-related diseases. While physical activity alleviates age-related comorbidities and physical impairments, comprehensive exploration of the underlying biological mechanisms, particularly at the level of complex lipids, remains limited. However, clinical studies suggest that physical activity may counteract these age-related lipidomic changes, presenting a promising avenue for intervention. We performed lipidomic profiling of plasma from an extensively characterized cohort of young and aged individuals. Annotating 1446 unique lipid species across 24 lipid classes, we found the most prominent difference in older adults was an accumulation of triacylglycerols (TGs), with lower physical activity levels associated with higher TG levels in plasma and reduced physical functionality. Remarkably, lipid species in the TG class did not accumulate uniformly. Rather, our study unveiled a negative correlation between higher physical activity levels and TGs with shorter chain lengths and more double bonds in this demographic. Overall, our research highlights that plasma TG length and saturation level can help mark healthy aging groups in humans. These findings deepen our understanding of how aging affects complex lipids and the influence of physical activity on this process.
Collapse
Affiliation(s)
- Weisha Li
- Amsterdam UMC Location University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Bauke V Schomakers
- Amsterdam UMC Location University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Michel van Weeghel
- Amsterdam UMC Location University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Lotte Grevendonk
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Frédéric M Vaz
- Amsterdam UMC Location University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Gajja S Salomons
- Amsterdam UMC Location University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Patrick Schrauwen
- Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Joris Hoeks
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Arwen W Gao
- Amsterdam UMC Location University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Riekelt H Houtkooper
- Amsterdam UMC Location University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Georges E Janssens
- Amsterdam UMC Location University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands.
- Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Yao S, Marron MM, Farsijani S, Miljkovic I, Tseng GC, Shah RV, Murthy VL, Newman AB. Metabolomic characterization of unintentional weight loss among community-dwelling older Black and White men and women. Aging Cell 2025; 24:e14410. [PMID: 39544124 PMCID: PMC11896220 DOI: 10.1111/acel.14410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/27/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024] Open
Abstract
This study aims to understand the metabolic mechanisms of unintentional weight loss in older adults. We investigated plasma metabolite associations of subsequent weight change over 2 years in 1536 previously weight stable participants (mean age 74.6 years, 50% women, 35% Black) from the Health, Aging and Body Composition (Health ABC) Study. Multinomial logistic regressions were used to examine associations of the 442 metabolites with weight loss with/without an intention and weight gain >3% annually relative to weight stability. The metabolite associations of unintentional weight loss differed from those of intentional weight loss and weight gain. Lower levels of aromatic amino acids, phospholipids, long-chain poly-unsaturated triglycerides, and higher levels of amino acid derivatives, poly-unsaturated fatty acids, and carbohydrates were associated with higher odds of unintentional weight loss after adjusting for age, sex, race, and BMI categories. Prevalent diseases attenuated four and lower mid-thigh muscle mass and poorer appetite each attenuated 2 of 77 identified metabolite associations by >20%, respectively. Other factors (e.g., energy expenditure, diet, and medication) attenuated all associations by <20%. While 16 metabolite associations were attenuated by 20%-48% when adjusting for all these risk factors, 47 metabolite associations remained significant. Altered amino acid metabolism, impaired mitochondrial fatty acid oxidation, and inflammaging implicated by identified metabolites appear to precede unintentional weight loss in Health ABC older adults. Furthermore, these pathways seem to be associated with prevalent diseases especially diabetes, lower muscle mass, and poorer appetite.
Collapse
Affiliation(s)
- Shanshan Yao
- University of PittsburghPittsburghPennsylvaniaUSA
| | | | | | | | | | - Ravi V. Shah
- Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | | | | |
Collapse
|
6
|
Reicher L, Bar N, Godneva A, Reisner Y, Zahavi L, Shahaf N, Dhir R, Weinberger A, Segal E. Phenome-wide associations of human aging uncover sex-specific dynamics. NATURE AGING 2024; 4:1643-1655. [PMID: 39501126 DOI: 10.1038/s43587-024-00734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/19/2024] [Indexed: 11/16/2024]
Abstract
Aging varies significantly among individuals of the same chronological age, indicating that biological age (BA), estimated from molecular and physiological biomarkers, may better reflect aging. Prior research has often ignored sex-specific differences in aging patterns and mainly focused on aging biomarkers from a single data modality. Here we analyze a deeply phenotyped longitudinal cohort (10K project, Israel) of 10,000 healthy individuals aged 40-70 years that includes clinical, physiological, behavioral, environmental and multiomic parameters. Follow-up visits are scheduled every 2 years for a total of 25 years. We devised machine learning models of chronological age and computed biological aging scores that represented diverse physiological systems, revealing different aging patterns among sexes. Higher BA scores were associated with a higher prevalence of age-related medical conditions, highlighting the clinical relevance of these scores. Our analysis revealed system-specific aging dynamics and the potential of deeply phenotyped cohorts to accelerate improvements in our understanding of chronic diseases. Our findings present a more holistic view of the aging process, and lay the foundation for personalized medical prevention strategies.
Collapse
Affiliation(s)
- Lee Reicher
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Lis Maternity and Women's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Noam Bar
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Anastasia Godneva
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yotam Reisner
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Liron Zahavi
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Nir Shahaf
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Raja Dhir
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Adina Weinberger
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
7
|
Xiong Y, Li X, Liu J, Luo P, Zhang H, Zhou H, Ling X, Zhang M, Liang Y, Chen Q, Xing C, Li F, Miao J, Shen W, Zhou S, Wang X, Hou FF, Liu Y, Ma K, Zhao AZ, Zhou L. Omega-3 PUFAs slow organ aging through promoting energy metabolism. Pharmacol Res 2024; 208:107384. [PMID: 39209083 DOI: 10.1016/j.phrs.2024.107384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Energy metabolism disorder, mainly exhibiting the inhibition of fatty acid degradation and lipid accumulation, is highly related with aging acceleration. However, the intervention measures are deficient. Here, we reported Omega-3 polyunsaturated fatty acids (Omega-3 PUFAs), especially EPA, exerted beneficial effects on maintaining energy metabolism and lipid homeostasis to slow organ aging. As the endogenous agonist of peroxisome proliferator-activated receptor α (PPARα), Omega-3 PUFAs significantly boosted fatty acid β-oxidation and ATP production in multiple aged organs. Consequently, Omega-3 PUFAs effectively inhibited age-related pathological changes, preserved organ function, and retarded aging process. The beneficial effects of Omega-3 PUFAs were also testified in mfat-1 transgenic mice, which spontaneously generate abundant endogenous Omega-3 PUFAs. In conclusion, our study innovatively demonstrated Omega-3 PUFAs administration in diet slow aging through promoting energy metabolism. The supplement of Omega-3 PUFAs or fat-1 transgene provides a promising therapeutic approach to promote healthy aging in the elderly.
Collapse
Affiliation(s)
- Yabing Xiong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Nephrology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaolong Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiafeng Liu
- Department of Nephrology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Pei Luo
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haixia Zhang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hong Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xian Ling
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meijia Zhang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Liang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiurong Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chaofeng Xing
- Department of Endocrinology, Shunde Hospital of Southern Medical University, No.1 Jiazi Road, Foshan, Guangdong Province, China
| | - Fanghong Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Jinhua Miao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiwei Shen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shan Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxu Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kunling Ma
- Department of Nephrology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Allan Zijian Zhao
- Department of Endocrinology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Ademowo OS, Wenk MR, Maier AB. Advances in clinical application of lipidomics in healthy ageing and healthy longevity medicine. Ageing Res Rev 2024; 100:102432. [PMID: 39029802 DOI: 10.1016/j.arr.2024.102432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
It is imperative to optimise health and healthspan across the lifespan. The accumulation of reactive oxygen species (ROS) has been implicated in the hallmarks of ageing and inhibiting ROS production can potentially delay ageing whilst increasing healthy longevity. Lipids and lipid mediators (derivatives of lipids) are becoming increasingly recognized as central molecule in tissue and cellular function and are susceptible to peroxidation; hence linked with ageing. Lipid classes implicated in the ageing process include sterols, glycerophospholipids, sphingolipids and the oxidation products of polyunsaturated fatty acids but these are not yet translated into the clinic. Further mechanistic studies are required for the understanding of lipid classes in the ageing process. Lipidomics, the system level characterisation of lipid species with respect to metabolism and function, might provide a significant and useful biological age profiling tool through longitudinal studies. Lipid profiles in different ages among healthy individuals could be harnessed as lipid biomarkers of healthy ageing with potential integration for the development of lipid-based ageing clock (lipid clock). The potential of a lipid clock includes the prediction of future morbidity or mortality, which will promote precision and healthy longevity medicine.
Collapse
Affiliation(s)
- Opeyemi Stella Ademowo
- Healthy Ageing and Mental Wellbeing Research Centre, Biomedical and Clinical Sciences, University of Derby, UK
| | - Markus R Wenk
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore; Precision Medicine Translational Research Programme and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Andrea B Maier
- Healthy Longevity Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore; Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Tsugawa H, Ishihara T, Ogasa K, Iwanami S, Hori A, Takahashi M, Yamada Y, Satoh-Takayama N, Ohno H, Minoda A, Arita M. A lipidome landscape of aging in mice. NATURE AGING 2024; 4:709-726. [PMID: 38609525 DOI: 10.1038/s43587-024-00610-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 03/07/2024] [Indexed: 04/14/2024]
Abstract
Understanding the molecular mechanisms of aging is crucial for enhancing healthy longevity. We conducted untargeted lipidomics across 13 biological samples from mice at various life stages (2, 12, 19 and 24 months) to explore the potential link between aging and lipid metabolism, considering sex (male or female) and microbiome (specific pathogen-free or germ-free) dependencies. By analyzing 2,704 molecules from 109 lipid subclasses, we characterized common and tissue-specific lipidome alterations associated with aging. For example, the levels of bis(monoacylglycero)phosphate containing polyunsaturated fatty acids increased in various organs during aging, whereas the levels of other phospholipids containing saturated and monounsaturated fatty acids decreased. In addition, we discovered age-dependent sulfonolipid accumulation, absent in germ-free mice, correlating with Alistipes abundance determined by 16S ribosomal RNA gene amplicon sequencing. In the male kidney, glycolipids such as galactosylceramides, galabiosylceramides (Gal2Cer), trihexosylceramides (Hex3Cer), and mono- and digalactosyldiacylglycerols were detected, with two lipid classes-Gal2Cer and Hex3Cer-being significantly enriched in aged mice. Integrated analysis of the kidney transcriptome revealed uridine diphosphate galactosyltransferase 8A (UGT8a), alkylglycerone phosphate synthase and fatty acyl-coenzyme A reductase 1 as potential enzymes responsible for the male-specific glycolipid biosynthesis in vivo, which would be relevant to sex dependency in kidney diseases. Inhibiting UGT8 reduced the levels of these glycolipids and the expression of inflammatory cytokines in the kidney. Our study provides a valuable resource for clarifying potential links between lipid metabolism and aging.
Collapse
Affiliation(s)
- Hiroshi Tsugawa
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan.
- Metabolome Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan.
- Molecular and Cellular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.
| | - Tomoaki Ishihara
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Pharmacy, Nagasaki International University, Sasebo, Japan
| | - Kota Ogasa
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Seigo Iwanami
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Aya Hori
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Mikiko Takahashi
- Metabolome Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Yutaka Yamada
- Metabolome Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Naoko Satoh-Takayama
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Aki Minoda
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Molecular and Cellular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan.
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan.
| |
Collapse
|
10
|
Barker-Tejeda TC, Zubeldia-Varela E, Macías-Camero A, Alonso L, Martín-Antoniano IA, Rey-Stolle MF, Mera-Berriatua L, Bazire R, Cabrera-Freitag P, Shanmuganathan M, Britz-McKibbin P, Ubeda C, Francino MP, Barber D, Ibáñez-Sandín MD, Barbas C, Pérez-Gordo M, Villaseñor A. Comparative characterization of the infant gut microbiome and their maternal lineage by a multi-omics approach. Nat Commun 2024; 15:3004. [PMID: 38589361 PMCID: PMC11001937 DOI: 10.1038/s41467-024-47182-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 03/22/2024] [Indexed: 04/10/2024] Open
Abstract
The human gut microbiome establishes and matures during infancy, and dysregulation at this stage may lead to pathologies later in life. We conducted a multi-omics study comprising three generations of family members to investigate the early development of the gut microbiota. Fecal samples from 200 individuals, including infants (0-12 months old; 55% females, 45% males) and their respective mothers and grandmothers, were analyzed using two independent metabolomics platforms and metagenomics. For metabolomics, gas chromatography and capillary electrophoresis coupled to mass spectrometry were applied. For metagenomics, both 16S rRNA gene and shotgun sequencing were performed. Here we show that infants greatly vary from their elders in fecal microbiota populations, function, and metabolome. Infants have a less diverse microbiota than adults and present differences in several metabolite classes, such as short- and branched-chain fatty acids, which are associated with shifts in bacterial populations. These findings provide innovative biochemical insights into the shaping of the gut microbiome within the same generational line that could be beneficial in improving childhood health outcomes.
Collapse
Affiliation(s)
- Tomás Clive Barker-Tejeda
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Elisa Zubeldia-Varela
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Andrea Macías-Camero
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Lola Alonso
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Isabel Adoración Martín-Antoniano
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Instituto de Estudios de las Adicciones IEA-CEU, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - María Fernanda Rey-Stolle
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Leticia Mera-Berriatua
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Raphaëlle Bazire
- Department of Allergy, Hospital Infantil Niño Jesús, Fib-HNJ, Madrid, Spain
- Instituto de Investigación Sanitaria-La Princesa, Madrid, Spain
| | - Paula Cabrera-Freitag
- Pedriatic Allergy Unit, Allergy Service, Hospital General Universitario Gregorio Marañón, and Gregorio Marañón Health Research Institute, Madrid, Spain
| | - Meera Shanmuganathan
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Philip Britz-McKibbin
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Carles Ubeda
- Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO), Valencia, Spain
- CIBER en Epidemiología y Salud Pública, Madrid, Spain
| | - M Pilar Francino
- CIBER en Epidemiología y Salud Pública, Madrid, Spain
- Joint Research Unit in Genomics and Health, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO) and Institut de Biologia Integrativa de Sistemes (Universitat de València / Consejo Superior de Investigaciones Científicas), València, Spain
| | - Domingo Barber
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - María Dolores Ibáñez-Sandín
- Department of Allergy, Hospital Infantil Niño Jesús, Fib-HNJ, Madrid, Spain
- Instituto de Investigación Sanitaria-La Princesa, Madrid, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Marina Pérez-Gordo
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain.
| | - Alma Villaseñor
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain.
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain.
| |
Collapse
|
11
|
Barranco-Altirriba M, Alonso N, Weber RJM, Lloyd GR, Hernandez M, Yanes O, Capellades J, Jankevics A, Winder C, Falguera M, Franch-Nadal J, Dunn WB, Perera-Lluna A, Castelblanco E, Mauricio D. Lipidome characterisation and sex-specific differences in type 1 and type 2 diabetes mellitus. Cardiovasc Diabetol 2024; 23:109. [PMID: 38553758 PMCID: PMC10981308 DOI: 10.1186/s12933-024-02202-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND In this study, we evaluated the lipidome alterations caused by type 1 diabetes (T1D) and type 2 diabetes (T2D), by determining lipids significantly associated with diabetes overall and in both sexes, and lipids associated with the glycaemic state. METHODS An untargeted lipidomic analysis was performed to measure the lipid profiles of 360 subjects (91 T1D, 91 T2D, 74 with prediabetes and 104 controls (CT)) without cardiovascular and/or chronic kidney disease. Ultra-high performance liquid chromatography-electrospray ionization mass spectrometry (UHPLC-ESI-MS) was conducted in two ion modes (positive and negative). We used multiple linear regression models to (1) assess the association between each lipid feature and each condition, (2) determine sex-specific differences related to diabetes, and (3) identify lipids associated with the glycaemic state by considering the prediabetes stage. The models were adjusted by sex, age, hypertension, dyslipidaemia, body mass index, glucose, smoking, systolic blood pressure, triglycerides, HDL cholesterol, LDL cholesterol, alternate Mediterranean diet score (aMED) and estimated glomerular filtration rate (eGFR); diabetes duration and glycated haemoglobin (HbA1c) were also included in the comparison between T1D and T2D. RESULTS A total of 54 unique lipid subspecies from 15 unique lipid classes were annotated. Lysophosphatidylcholines (LPC) and ceramides (Cer) showed opposite effects in subjects with T1D and subjects with T2D, LPCs being mainly up-regulated in T1D and down-regulated in T2D, and Cer being up-regulated in T2D and down-regulated in T1D. Also, Phosphatidylcholines were clearly down-regulated in subjects with T1D. Regarding sex-specific differences, ceramides and phosphatidylcholines exhibited important diabetes-associated differences due to sex. Concerning the glycaemic state, we found a gradual increase of a panel of 1-deoxyceramides from normoglycemia to prediabetes to T2D. CONCLUSIONS Our findings revealed an extensive disruption of lipid metabolism in both T1D and T2D. Additionally, we found sex-specific lipidome changes associated with diabetes, and lipids associated with the glycaemic state that can be linked to previously described molecular mechanisms in diabetes.
Collapse
Affiliation(s)
- Maria Barranco-Altirriba
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya, B2SLab, Barcelona, Spain
- Networking Biomedical Research Centre in the subject area of Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN), Madrid, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Núria Alonso
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain
- Servicio de Endocrinología y Nutrición, Hospital Universitario e Instituto de Investigación en Ciencias de la Salud Germans Trias i Pujol, Badalona, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Ralf J M Weber
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Gavin R Lloyd
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Marta Hernandez
- Department of Endocrinology & Nutrition, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Oscar Yanes
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain
- Department of Electronic Engineering, Universitat Rovira i Virgili, IISPV, Tarragona, Spain
| | - Jordi Capellades
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain
- Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Andris Jankevics
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Catherine Winder
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L69 7ZB, Liverpool, UK
| | - Mireia Falguera
- Institut d'Investigació Biomèdica, Centre Atenció Primària Cervera, Gerència d'Atenció Primària, Universitat de Lleida, Institut Català de la Salut, Lleida, Spain
| | - Josep Franch-Nadal
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain
- DAP-Cat Group, Unitat de Suport a La Recerca Barcelona Ciutat, Institut Universitari d'Investigació en Atenció Primària Jordi Gol, Barcelona, Spain
| | - Warwick B Dunn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L69 7ZB, Liverpool, UK
| | - Alexandre Perera-Lluna
- Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya, B2SLab, Barcelona, Spain
- Networking Biomedical Research Centre in the subject area of Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN), Madrid, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Esmeralda Castelblanco
- Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, 63110, St. Louis, MO, USA.
- Unitat de Suport a la Recerca Barcelona, Institut Universitari d'Investigació en Atenció Primària Jordi Gol i Gurina, 08007, Barcelona, Spain.
| | - Didac Mauricio
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain.
- Institut d'Investigació Biomèdica Sant Pau (IR Sant Pau), 08041, Barcelona, Spain.
- Faculty of Medicine, University of Vic, Vic, Spain.
| |
Collapse
|
12
|
Gu Y, Gao L, He J, Luo M, Hu M, Lin Y, Li J, Hou T, Si J, Yu Y. β-Nicotinamide mononucleotide supplementation prolongs the lifespan of prematurely aged mice and protects colon function in ageing mice. Food Funct 2024; 15:3199-3213. [PMID: 38445897 DOI: 10.1039/d3fo05221d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Ageing is defined as the degeneration of physiological functions in numerous tissues and organs of an organism, which occurs with age. As we age, the gut undergoes a series of changes and weaknesses that may contribute to overall ageing. Emerging evidence suggests that β-nicotinamide mononucleotide (NMN) plays a role in regulating intestinal function, but there is still a lack of literature on its role in maintaining the colon health of ageing mice. In our research, Zmpste24-/- mice proved that NMN prolonged their life span and delayed senescence. This study was designed to investigate the effects of long-term intervention on regulating colon function in ageing mice. Our results indicated that NMN improved the pathology of intestinal epithelial cells and intestinal permeability by upregulating the expression of intestinal tight junction proteins and the number of goblet cells, increasing the release of anti-inflammatory factors, and increasing beneficial intestinal bacteria. NMN increased the expression of the proteins SIRT1, NMNAT2, and NMNAT3 and decreased the expression of the protein P53. It also regulated the activity of ISCs by increasing Wnt/β-catenin and Lgr5. Our findings also revealed that NMN caused a significant increase in the relative abundance of Akkermansia muciniphila and Bifidobacterium pseudolongum and notable differences in metabolic pathways related to choline metabolism in cancer. In summary, NMN supplementation can delay frailty in old age, aid healthy ageing, and delay gut ageing.
Collapse
Affiliation(s)
- Yanrou Gu
- Department of Gastroenterology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou325035, China.
| | - Lidan Gao
- Department of Scientific Research Center, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou325035, China
| | - Jiamin He
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310058, China.
- Institution of Gastroenterology, Zhejiang University, Hangzhou310058, China
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Hangzhou310058, China
| | - Man Luo
- Department of Clinical Nutrition, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou310058, China
| | - Mei Hu
- Department of Gastroenterology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou325035, China.
| | - Yuxian Lin
- Department of Gastroenterology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou325035, China.
| | - Jianxin Li
- Department of Gastroenterology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou325035, China.
| | - Tongyao Hou
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310058, China.
- Institution of Gastroenterology, Zhejiang University, Hangzhou310058, China
| | - Jianmin Si
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310058, China.
- Institution of Gastroenterology, Zhejiang University, Hangzhou310058, China
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Hangzhou310058, China
| | - Yingcong Yu
- Department of Gastroenterology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou325035, China.
| |
Collapse
|
13
|
Meyer T, Knittelfelder O, Smolnig M, Rockenfeller P. Quantifying yeast lipidomics by high-performance thin-layer chromatography (HPTLC) and comparison to mass spectrometry-based shotgun lipidomics. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:57-68. [PMID: 38384676 PMCID: PMC10879857 DOI: 10.15698/mic2024.02.815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/23/2024]
Abstract
Lipidomic analysis in diverse biological settings has become a frequent tool to increase our understanding of the processes of life. Cellular lipids play important roles not only as being the main components of cellular membranes, but also in the regulation of cell homeostasis as lipid signaling molecules. Yeast has been harnessed for biomedical research based on its good conservation of genetics and fundamental cell organisation principles and molecular pathways. Further application in so-called humanised yeast models have been developed which take advantage of yeast as providing the basics of a living cell with full control over heterologous expression. Here we present evidence that high-performance thin-layer chromatography (HPTLC) represents an effective alternative to replace cost intensive mass spectrometry-based lipidomic analyses. We provide statistical comparison of identical samples by both methods, which support the use of HPTLC for quantitative analysis of the main yeast lipid classes.
Collapse
Affiliation(s)
- Thorsten Meyer
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke (UW/H), Stockumer Str. 10, 58453 Witten, Germany
| | - Oskar Knittelfelder
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Martin Smolnig
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke (UW/H), Stockumer Str. 10, 58453 Witten, Germany
| | - Patrick Rockenfeller
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke (UW/H), Stockumer Str. 10, 58453 Witten, Germany
| |
Collapse
|
14
|
Martins C, Magalhães S, Almeida I, Neto V, Rebelo S, Nunes A. Metabolomics to Study Human Aging: A Review. Curr Mol Med 2024; 24:457-477. [PMID: 37026499 DOI: 10.2174/1566524023666230407123727] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 04/08/2023]
Abstract
In the last years, with the increase in the average life expectancy, the world's population is progressively aging, which entails social, health and economic problems. In this sense, the need to better understand the physiology of the aging process becomes an urgent need. Since the study of aging in humans is challenging, cellular and animal models are widely used as alternatives. Omics, namely metabolomics, have emerged in the study of aging, with the aim of biomarker discovering, which may help to uncomplicate this complex process. This paper aims to summarize different models used for aging studies with their advantages and limitations. Also, this review gathers the published articles referring to biomarkers of aging already discovered using metabolomics approaches, comparing the results obtained in the different studies. Finally, the most frequently used senescence biomarkers are described, along with their importance in understanding aging.
Collapse
Affiliation(s)
- Claudia Martins
- Department of Medical Sciences, iBiMED: Institute of Biomedicine, University of Aveiro, Agra do Crasto, Aveiro 3810-193, Portugal
| | - Sandra Magalhães
- Department of Surgery and Physiology, Faculty of Medicine, UnIC@RISE, Cardiovascular Research & Development Centre, University of Porto, Alameda Prof. Hernâni Monteiro, Porto 4200-319, Portugal
| | - Idália Almeida
- Department of Medical Sciences, iBiMED: Institute of Biomedicine, University of Aveiro, Agra do Crasto, Aveiro 3810-193, Portugal
- CICECO: Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Vanessa Neto
- Department of Medical Sciences, iBiMED: Institute of Biomedicine, University of Aveiro, Agra do Crasto, Aveiro 3810-193, Portugal
| | - Sandra Rebelo
- Department of Medical Sciences, iBiMED: Institute of Biomedicine, University of Aveiro, Agra do Crasto, Aveiro 3810-193, Portugal
| | - Alexandra Nunes
- Department of Medical Sciences, iBiMED: Institute of Biomedicine, University of Aveiro, Agra do Crasto, Aveiro 3810-193, Portugal
| |
Collapse
|
15
|
Ivan A, Cristea MI, Telea A, Oprean C, Galuscan A, Tatu CA, Paunescu V. Stem Cells Derived from Human Exfoliated Deciduous Teeth Functional Assessment: Exploring the Changes of Free Fatty Acids Composition during Cultivation. Int J Mol Sci 2023; 24:17249. [PMID: 38139076 PMCID: PMC10743411 DOI: 10.3390/ijms242417249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The metabolic regulation of stemness is widely recognized as a crucial factor in determining the fate of stem cells. When transferred to a stimulating and nutrient-rich environment, mesenchymal stem cells (MSCs) undergo rapid proliferation, accompanied by a change in protein expression and a significant reconfiguration of central energy metabolism. This metabolic shift, from quiescence to metabolically active cells, can lead to an increase in the proportion of senescent cells and limit their regenerative potential. In this study, MSCs from human exfoliated deciduous teeth (SHEDs) were isolated and expanded in vitro for up to 10 passages. Immunophenotypic analysis, growth kinetics, in vitro plasticity, fatty acid content, and autophagic capacity were assessed throughout cultivation to evaluate the functional characteristics of SHEDs. Our findings revealed that SHEDs exhibit distinctive patterns of cell surface marker expression, possess high self-renewal capacity, and have a unique potential for neurogenic differentiation. Aged SHEDs exhibited lower proliferation rates, reduced potential for chondrogenic and osteogenic differentiation, an increasing capacity for adipogenic differentiation, and decreased autophagic potential. Prolonged cultivation of SHEDs resulted in changes in fatty acid composition, signaling a transition from anti-inflammatory to proinflammatory pathways. This underscores the intricate connection between metabolic regulation, stemness, and aging, crucial for optimizing therapeutic applications.
Collapse
Affiliation(s)
- Alexandra Ivan
- Department of Immunology and Allergology, Biology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (C.A.T.); (V.P.)
- Center for Gene and Cellular Therapies in the Treatment of Cancer—Oncogen Center, Clinical County Hospital “Pius Brînzeu”, 300723 Timisoara, Romania; (M.I.C.); (A.T.); (C.O.)
| | - Mirabela I. Cristea
- Center for Gene and Cellular Therapies in the Treatment of Cancer—Oncogen Center, Clinical County Hospital “Pius Brînzeu”, 300723 Timisoara, Romania; (M.I.C.); (A.T.); (C.O.)
| | - Ada Telea
- Center for Gene and Cellular Therapies in the Treatment of Cancer—Oncogen Center, Clinical County Hospital “Pius Brînzeu”, 300723 Timisoara, Romania; (M.I.C.); (A.T.); (C.O.)
| | - Camelia Oprean
- Center for Gene and Cellular Therapies in the Treatment of Cancer—Oncogen Center, Clinical County Hospital “Pius Brînzeu”, 300723 Timisoara, Romania; (M.I.C.); (A.T.); (C.O.)
- Department of Drug analysis, Chemistry of the Environment and Food, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Atena Galuscan
- Translational and Experimental Clinical Research Centre in Oral Health, Department of Preventive, Community Dentistry and Oral Health, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Calin A. Tatu
- Department of Immunology and Allergology, Biology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (C.A.T.); (V.P.)
- Center for Gene and Cellular Therapies in the Treatment of Cancer—Oncogen Center, Clinical County Hospital “Pius Brînzeu”, 300723 Timisoara, Romania; (M.I.C.); (A.T.); (C.O.)
| | - Virgil Paunescu
- Department of Immunology and Allergology, Biology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (C.A.T.); (V.P.)
- Center for Gene and Cellular Therapies in the Treatment of Cancer—Oncogen Center, Clinical County Hospital “Pius Brînzeu”, 300723 Timisoara, Romania; (M.I.C.); (A.T.); (C.O.)
| |
Collapse
|
16
|
Texis T, Rivera-Mancía S, Colín-Ramírez E, Cartas-Rosado R, Koepsell D, Rubio-Carrasco K, Rodríguez-Dorantes M, Gonzalez-Covarrubias V. Genetic Determinants of Atherogenic Indexes. Genes (Basel) 2023; 14:1214. [PMID: 37372394 DOI: 10.3390/genes14061214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Atherogenesis and dyslipidemia increase the risk of cardiovascular disease, which is the leading cause of death in developed countries. While blood lipid levels have been studied as disease predictors, their accuracy in predicting cardiovascular risk is limited due to their high interindividual and interpopulation variability. The lipid ratios, atherogenic index of plasma (AIP = log TG/HDL-C) and the Castelli risk index 2 (CI2 = LDL-C/HDL-C), have been proposed as better predictors of cardiovascular risk, but the genetic variability associated with these ratios has not been investigated. This study aimed to identify genetic associations with these indexes. The study population (n = 426) included males (40%) and females (60%) aged 18-52 years (mean 39 years); the Infinium GSA array was used for genotyping. Regression models were developed using R and PLINK. AIP was associated with variation on APOC3, KCND3, CYBA, CCDC141/TTN, and ARRB1 (p-value < 2.1 × 10-6). The three former were previously associated with blood lipids, while CI2 was associated with variants on DIPK2B, LIPC, and 10q21.3 rs11251177 (p-value 1.1 × 10-7). The latter was previously linked to coronary atherosclerosis and hypertension. KCND3 rs6703437 was associated with both indexes. This study is the first to characterize the potential link between genetic variation and atherogenic indexes, AIP, and CI2, highlighting the relationship between genetic variation and dyslipidemia predictors. These results also contribute to consolidating the genetics of blood lipid and lipid indexes.
Collapse
Affiliation(s)
- Tomas Texis
- National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico
| | | | - Eloisa Colín-Ramírez
- School of Sports Sciences, Anahuac University of North Mexico, Huixquilucan 52786, Mexico
| | - Raul Cartas-Rosado
- National Institute of Cardiology Ignacio Chavez, Mexico City 14080, Mexico
| | - David Koepsell
- Conduct Research Committee, Texas A&M University, College Station, TX 77843, USA
| | - Kenneth Rubio-Carrasco
- National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico
- School of Sports Sciences, Anahuac University of North Mexico, Huixquilucan 52786, Mexico
- Faculty of Chemistry UNAM, Mexico City 04510, Mexico
| | | | | |
Collapse
|
17
|
Ağagündüz D, Icer MA, Yesildemir O, Koçak T, Kocyigit E, Capasso R. The roles of dietary lipids and lipidomics in gut-brain axis in type 2 diabetes mellitus. J Transl Med 2023; 21:240. [PMID: 37009872 PMCID: PMC10068184 DOI: 10.1186/s12967-023-04088-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/25/2023] [Indexed: 04/04/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM), one of the main types of Noncommunicable diseases (NCDs), is a systemic inflammatory disease characterized by dysfunctional pancreatic β-cells and/or peripheral insulin resistance, resulting in impaired glucose and lipid metabolism. Genetic, metabolic, multiple lifestyle, and sociodemographic factors are known as related to high T2DM risk. Dietary lipids and lipid metabolism are significant metabolic modulators in T2DM and T2DM-related complications. Besides, accumulated evidence suggests that altered gut microbiota which plays an important role in the metabolic health of the host contributes significantly to T2DM involving impaired or improved glucose and lipid metabolism. At this point, dietary lipids may affect host physiology and health via interaction with the gut microbiota. Besides, increasing evidence in the literature suggests that lipidomics as novel parameters detected with holistic analytical techniques have important roles in the pathogenesis and progression of T2DM, through various mechanisms of action including gut-brain axis modulation. A better understanding of the roles of some nutrients and lipidomics in T2DM through gut microbiota interactions will help develop new strategies for the prevention and treatment of T2DM. However, this issue has not yet been entirely discussed in the literature. The present review provides up-to-date knowledge on the roles of dietary lipids and lipidomics in gut-brain axis in T2DM and some nutritional strategies in T2DM considering lipids- lipidomics and gut microbiota interactions are given.
Collapse
Affiliation(s)
- Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490, Ankara, Turkey.
| | - Mehmet Arif Icer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Amasya University, 05100, Amasya, Turkey
| | - Ozge Yesildemir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bursa Uludag University, 16059, Bursa, Turkey
| | - Tevfik Koçak
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490, Ankara, Turkey
| | - Emine Kocyigit
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ordu University, 52200, Ordu, Turkey
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Naples, Italy.
| |
Collapse
|
18
|
Xiao Y, Liu F, Zhu X, Li S, Meng L, Jiang N, Yu C, Wang H, Qin Y, Hui J, Yu C, Liu Y. Dioscin integrates regulation of monosaturated fatty acid metabolism to extend the life span through XBP-1/SBP-1 dependent manner. iScience 2023; 26:106265. [PMID: 36936783 PMCID: PMC10014289 DOI: 10.1016/j.isci.2023.106265] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/20/2022] [Accepted: 02/17/2023] [Indexed: 03/11/2023] Open
Abstract
Delay aging, especially in healthy life extension, brought the most interest to the medical field. Searching for anti-aging drugs with relative safety profiles bring natural products in hotspot. In this study, we find that dioscin promotes the health span extension in wild-type Caenorhabditis elegans. Through the genetic screening in C. elegans, we further reveal that dioscin activates the transcription factor SBP-1/SREBP by the UPRER transcription factor XBP-1 to upregulate transcription of the Δ9 desaturase FAT-5 and FAT-7, resulting in increased monounsaturated fatty acid content which requires for healthy life span extension. Intriguingly, through tissue-specific knockdown, we find that dioscin modulates the health span by activating SBP-1 in the intestine. Unexpectedly, dietary supplementation of POA and OA rescues XBP-1, SBP-1 mutants-induced shortened life span phenotype. Considering the conservation of MUFAs metabolism, dioscin may promote health span in other species, including mammals. Our work suggests that dioscin might be a promising candidate for developing anti-aging agent.
Collapse
Affiliation(s)
- Yi Xiao
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Corresponding author
| | - Fang Liu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xinting Zhu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Sanhua Li
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Lingjie Meng
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Nian Jiang
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Changyan Yu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Haijuan Wang
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Ying Qin
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jing Hui
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Chunbo Yu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yun Liu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Corresponding author
| |
Collapse
|
19
|
A new AMPK isoform mediates glucose-restriction induced longevity non-cell autonomously by promoting membrane fluidity. Nat Commun 2023; 14:288. [PMID: 36653384 PMCID: PMC9849402 DOI: 10.1038/s41467-023-35952-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Dietary restriction (DR) delays aging and the onset of age-associated diseases. However, it is yet to be determined whether and how restriction of specific nutrients promote longevity. Previous genome-wide screens isolated several Escherichia coli mutants that extended lifespan of Caenorhabditis elegans. Here, using 1H-NMR metabolite analyses and inter-species genetics, we demonstrate that E. coli mutants depleted of intracellular glucose extend C. elegans lifespans, serving as bona fide glucose-restricted (GR) diets. Unlike general DR, GR diets don't reduce the fecundity of animals, while still improving stress resistance and ameliorating neuro-degenerative pathologies of Aβ42. Interestingly, AAK-2a, a new AMPK isoform, is necessary and sufficient for GR-induced longevity. AAK-2a functions exclusively in neurons to modulate GR-mediated longevity via neuropeptide signaling. Last, we find that GR/AAK-2a prolongs longevity through PAQR-2/NHR-49/Δ9 desaturases by promoting membrane fluidity in peripheral tissues. Together, our studies identify the molecular mechanisms underlying prolonged longevity by glucose specific restriction in the context of whole animals.
Collapse
|
20
|
Kadyrov M, Whiley L, Brown B, Erickson KI, Holmes E. Associations of the Lipidome with Ageing, Cognitive Decline and Exercise Behaviours. Metabolites 2022; 12:metabo12090822. [PMID: 36144226 PMCID: PMC9505967 DOI: 10.3390/metabo12090822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
One of the most recognisable features of ageing is a decline in brain health and cognitive dysfunction, which is associated with perturbations to regular lipid homeostasis. Although ageing is the largest risk factor for several neurodegenerative diseases such as dementia, a loss in cognitive function is commonly observed in adults over the age of 65. Despite the prevalence of normal age-related cognitive decline, there is a lack of effective methods to improve the health of the ageing brain. In light of this, exercise has shown promise for positively influencing neurocognitive health and associated lipid profiles. This review summarises age-related changes in several lipid classes that are found in the brain, including fatty acyls, glycerolipids, phospholipids, sphingolipids and sterols, and explores the consequences of age-associated pathological cognitive decline on these lipid classes. Evidence of the positive effects of exercise on the affected lipid profiles are also discussed to highlight the potential for exercise to be used therapeutically to mitigate age-related changes to lipid metabolism and prevent cognitive decline in later life.
Collapse
Affiliation(s)
- Maria Kadyrov
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Discipline of Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
- Correspondence: (M.K.); (B.B.); (E.H.)
| | - Luke Whiley
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Belinda Brown
- Discipline of Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA 6009, Australia
- Correspondence: (M.K.); (B.B.); (E.H.)
| | - Kirk I. Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- AdventHealth Research Institute, Neuroscience Institute, Orlando, FL 32804, USA
- PROFITH “PROmoting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, 18071 Granada, Spain
| | - Elaine Holmes
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, 5 Robin Warren Drive, Murdoch, WA 6150, Australia
- Division of Integrative Systems and Digestive Medicine, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
- Correspondence: (M.K.); (B.B.); (E.H.)
| |
Collapse
|
21
|
Saedi AA, Wang Z, Shah A, Brotto M, Duque G. Comparative Analysis of Fat Composition in Marrow, Serum, and Muscle from Aging C57BL6 mice. Mech Ageing Dev 2022; 206:111690. [PMID: 35752298 DOI: 10.1016/j.mad.2022.111690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 10/17/2022]
Abstract
Osteosarcopenia is an age-related condition characterized by fragile bone and low muscle mass and function. Fat infiltration concomitantly contributes to age-related bone and muscle decline. Fat-secreted factors could be locally secreted in the muscle and bone marrow milieu affecting cell function and survival. However, the specific fat-related secretory factors that may simultaneously affect those tissues remain unknown. Using targeted-lipidomics approach, we comprehensively quantified fat composition (lipid mediators [LMs]) in bone marrow flush, gastrocnemius and serum obtained from 6-, 24- and 42-week-old C57BL6 mice. Compared to young mice (6wks), all tissues in older mice showed significantly higher levels of arachidonic acid (AA) and AA-derived eicosanoids, PGA 2, TXB 2, and 11,12-EET, which are known to affect muscle and bone function. Moreover, Lipoxin B4, another AA product and an enhancer of bone turnover and negative regulator for muscle, showed significantly lower values in older mice compared to young mice in both genders. Furthermore, eicosapentaenoic acid and docosahexaenoic acid autoxidation products (20-HDoHE, 11-HDoHE, 7-HDoHE and 4-HDoHE), and omega-3 fatty acids that negatively regulate bone and muscle health, were significantly higher in older mice. In conclusion, these results suggest that LMs could play a role in modulating musculoskeletal function during aging.
Collapse
Affiliation(s)
- Ahmed Al Saedi
- Australian Institute for Musculoskeletal Science (AIMSS), Geroscience & Osteosarcopenia Research Program, The University of Melbourne and Western Health, St. Albans, VIC, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia
| | - Zhiying Wang
- Bone-Muscle Research Center, College of Nursing and Health Innovation, The University of Texas-Arlington, Arlington, TX 76019, USA
| | - Anup Shah
- Monash Bioinformatics Platform and Monash Proteomics & Metabolomics Facility, Monash University, Clayton, VIC, Australia
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing and Health Innovation, The University of Texas-Arlington, Arlington, TX 76019, USA
| | - Gustavo Duque
- Australian Institute for Musculoskeletal Science (AIMSS), Geroscience & Osteosarcopenia Research Program, The University of Melbourne and Western Health, St. Albans, VIC, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia.
| |
Collapse
|
22
|
Magalhães S, Almeida I, Pereira CD, Rebelo S, Goodfellow BJ, Nunes A. The Long-Term Culture of Human Fibroblasts Reveals a Spectroscopic Signature of Senescence. Int J Mol Sci 2022; 23:ijms23105830. [PMID: 35628639 PMCID: PMC9146002 DOI: 10.3390/ijms23105830] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/24/2022] Open
Abstract
Aging is a complex process which leads to progressive loss of fitness/capability/ability, increasing susceptibility to disease and, ultimately, death. Regardless of the organism, there are some features common to aging, namely, the loss of proteostasis and cell senescence. Mammalian cell lines have been used as models to study the aging process, in particular, cell senescence. Thus, the aim of this study was to characterize the senescence-associated metabolic profile of a long-term culture of human fibroblasts using Fourier Transform Infrared and Nuclear Magnetic Resonance spectroscopy. We sub-cultivated fibroblasts from a newborn donor from passage 4 to passage 17 and the results showed deep changes in the spectroscopic profile of cells over time. Late passage cells were characterized by a decrease in the length of fatty acid chains, triglycerides and cholesterol and an increase in lipid unsaturation. We also found an increase in the content of intermolecular β-sheets, possibly indicating an increase in protein aggregation levels in cells of later passages. Metabolic profiling by NMR showed increased levels of extracellular lactate, phosphocholine and glycine in cells at later passages. This study suggests that spectroscopy approaches can be successfully used to study changes concomitant with cell senescence and validate the use of human fibroblasts as a model to monitor the aging process.
Collapse
Affiliation(s)
- Sandra Magalhães
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193 Aveiro, Portugal; (S.M.); (I.A.); (C.D.P.); (S.R.)
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Idália Almeida
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193 Aveiro, Portugal; (S.M.); (I.A.); (C.D.P.); (S.R.)
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Cátia D. Pereira
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193 Aveiro, Portugal; (S.M.); (I.A.); (C.D.P.); (S.R.)
| | - Sandra Rebelo
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193 Aveiro, Portugal; (S.M.); (I.A.); (C.D.P.); (S.R.)
| | - Brian J. Goodfellow
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Alexandra Nunes
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193 Aveiro, Portugal; (S.M.); (I.A.); (C.D.P.); (S.R.)
- Correspondence: ; Tel.: +351-234-324-435
| |
Collapse
|
23
|
Gonzalez-Covarrubias V, Martínez-Martínez E, del Bosque-Plata L. The Potential of Metabolomics in Biomedical Applications. Metabolites 2022; 12:metabo12020194. [PMID: 35208267 PMCID: PMC8880031 DOI: 10.3390/metabo12020194] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 12/12/2022] Open
Abstract
The metabolome offers a dynamic, comprehensive, and precise picture of the phenotype. Current high-throughput technologies have allowed the discovery of relevant metabolites that characterize a wide variety of human phenotypes with respect to health, disease, drug monitoring, and even aging. Metabolomics, parallel to genomics, has led to the discovery of biomarkers and has aided in the understanding of a diversity of molecular mechanisms, highlighting its application in precision medicine. This review focuses on the metabolomics that can be applied to improve human health, as well as its trends and impacts in metabolic and neurodegenerative diseases, cancer, longevity, the exposome, liquid biopsy development, and pharmacometabolomics. The identification of distinct metabolomic profiles will help in the discovery and improvement of clinical strategies to treat human disease. In the years to come, metabolomics will become a tool routinely applied to diagnose and monitor health and disease, aging, or drug development. Biomedical applications of metabolomics can already be foreseen to monitor the progression of metabolic diseases, such as obesity and diabetes, using branched-chain amino acids, acylcarnitines, certain phospholipids, and genomics; these can assess disease severity and predict a potential treatment. Future endeavors should focus on determining the applicability and clinical utility of metabolomic-derived markers and their appropriate implementation in large-scale clinical settings.
Collapse
Affiliation(s)
| | - Eduardo Martínez-Martínez
- Laboratory of Cell Communication and Extracellular Vesicles, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
| | - Laura del Bosque-Plata
- Laboratory of Nutrigenetics and Nutrigenomics, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico
- Correspondence: ; Tel.: +52-55-53-50-1974
| |
Collapse
|
24
|
Ni X, Bai C, Nie C, Qi L, Liu Y, Yuan H, Zhu X, Sun L, Zhou Q, Li Y, Zhen H, Su H, Li R, Lan R, Pang G, Lv Y, Zhang W, Yang F, Yao Y, Chen C, Wang Z, Gao D, Zhang N, Zhang S, Zhang L, Wu Z, Hu C, Zeng Y, Yang Z. Identification and replication of novel genetic variants of ABO gene to reduce the incidence of diseases and promote longevity by modulating lipid homeostasis. Aging (Albany NY) 2021; 13:24655-24674. [PMID: 34812738 PMCID: PMC8660604 DOI: 10.18632/aging.203700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/10/2021] [Indexed: 11/29/2022]
Abstract
Genes related to human longevity have not been studied so far, and need to be investigated thoroughly. This study aims to explore the relationship among ABO gene variants, lipid levels, and longevity phenotype in individuals (≥90yrs old) without adverse outcomes. A genotype-phenotype study was performed based on 5803 longevity subjects and 7026 younger controls from the Chinese Longitudinal Healthy Longevity Survey (CLHLS). Four ABO gene variants associated with healthy longevity (rs8176719 C, rs687621 G, rs643434 A, and rs505922 C) were identified and replicated in the CLHLS GWAS data analysis and found significantly higher in longevity individuals than controls. The Bonferroni adjusted p-value and OR range were 0.013-0.020 and 1.126-1.151, respectively. According to the results of linkage disequilibrium (LD) analysis, the above four variants formed a block on the ABO gene (D’=1, r2range = 0.585-0.995). The carriers with genotypes rs687621 GG, rs643434 AX, or rs505922 CX (prange = 2.728 x 10-107-5.940 x 10-14; ORrange = 1.004-4.354) and haplotype CGAC/XGXX (p = 2.557 x 10-27; OR = 2.255) had a substantial connection with longevity, according to the results of genetic model analysis. Following the genotype and metabolic phenotype analysis, it has been shown that the longevity individuals with rs687621 GG, rs643434 AX, and rs505922 CX had a positive association with HDL-c, LDL-c, TC, TG (prange = 2.200 x 10-5-0.036, ORrange = 1.546-1.709), and BMI normal level (prange = 2.690 x 10-4-0.026, ORrange = 1.530-1.997). Finally, two pathways involving vWF/ADAMTS13 and the inflammatory markers (sE-selectin/ICAM1) that co-regulated lipid levels by glycosylation and effects on each other were speculated. In conclusion, the association between the identified longevity-associated ABO variants and better health lipid profile was elucidated, thus the findings can help in maintaining normal lipid metabolic phenotypes in the longevity population.
Collapse
Affiliation(s)
- Xiaolin Ni
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, P.R. China
| | - Chen Bai
- Center for the Study of Aging and Human Development and Geriatrics Division, Medical School of Duke University, Durham, NC 27708, USA.,Center for Healthy Aging and Development Studies, National School of Development, Peking University, Beijing 100871, P.R. China
| | - Chao Nie
- BGI-Shenzhen, Shenzhen, Guangdong 518083, P.R. China
| | - Liping Qi
- College of Science and Technology, Hebei Agricultural University, Cangzhou 061100, Hebei, P.R. China
| | - Yifang Liu
- Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Huiping Yuan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Xiaoquan Zhu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Liang Sun
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Qi Zhou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Yan Li
- BGI-Shenzhen, Shenzhen, Guangdong 518083, P.R. China
| | - Hefu Zhen
- BGI-Shenzhen, Shenzhen, Guangdong 518083, P.R. China
| | - Huabing Su
- Jiangbin Hospital, Guangxi Zhuang Autonomous Region, Nanning 530021, P.R. China
| | - Rongqiao Li
- Jiangbin Hospital, Guangxi Zhuang Autonomous Region, Nanning 530021, P.R. China
| | - Rushu Lan
- Jiangbin Hospital, Guangxi Zhuang Autonomous Region, Nanning 530021, P.R. China
| | - Guofang Pang
- Jiangbin Hospital, Guangxi Zhuang Autonomous Region, Nanning 530021, P.R. China
| | - Yuan Lv
- Jiangbin Hospital, Guangxi Zhuang Autonomous Region, Nanning 530021, P.R. China
| | - Wei Zhang
- Jiangbin Hospital, Guangxi Zhuang Autonomous Region, Nanning 530021, P.R. China
| | - Fan Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, P.R. China
| | - Yao Yao
- Center for the Study of Aging and Human Development and Geriatrics Division, Medical School of Duke University, Durham, NC 27708, USA.,Center for Healthy Aging and Development Studies, National School of Development, Peking University, Beijing 100871, P.R. China
| | - Chen Chen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Zhaoping Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Danni Gao
- Peking University Fifth School of Clinical Medicine, Beijing 100191, P.R. China
| | - Nan Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Shenqi Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, P.R. China
| | - Li Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, P.R. China
| | - Zhu Wu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Caiyou Hu
- Jiangbin Hospital, Guangxi Zhuang Autonomous Region, Nanning 530021, P.R. China
| | - Yi Zeng
- Center for the Study of Aging and Human Development and Geriatrics Division, Medical School of Duke University, Durham, NC 27708, USA.,Center for Healthy Aging and Development Studies, National School of Development, Peking University, Beijing 100871, P.R. China
| | - Ze Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, P.R. China
| |
Collapse
|
25
|
Wang Y, Huang Y, Wu P, Ye Y, Sun F, Yang X, Lu Q, Yuan J, Liu Y, Zeng H, Song X, Yan S, Qi X, Yang CX, Lv C, Wu JHY, Liu G, Pan XF, Chen D, Pan A. Plasma lipidomics in early pregnancy and risk of gestational diabetes mellitus: a prospective nested case-control study in Chinese women. Am J Clin Nutr 2021; 114:1763-1773. [PMID: 34477820 DOI: 10.1093/ajcn/nqab242] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/28/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Lipid metabolism plays an important role in the pathogenesis of diabetes. There is little evidence regarding the prospective association of the maternal lipidome with gestational diabetes mellitus (GDM), especially in Chinese populations. OBJECTIVES We aimed to identify novel lipid species associated with GDM risk in Chinese women, and assess the incremental predictive capacity of the lipids for GDM. METHODS We conducted a nested case-control study using the Tongji-Shuangliu Birth Cohort with 336 GDM cases and 672 controls, 1:2 matched on age and week of gestation. Maternal blood samples were collected at 6-15 wk, and lipidomes were profiled by targeted ultra-HPLC-tandem MS. GDM was diagnosed by oral-glucose-tolerance test at 24-28 wk. The least absolute shrinkage and selection operator is a regression analysis method that was used to select novel biomarkers. Multivariable conditional logistic regression was used to estimate the associations. RESULTS Of 366 detected lipids, 10 were selected and found to be significantly associated with GDM independently of confounders: there were positive associations with phosphatidylinositol 40:6, alkylphosphatidylcholine 36:1, phosphatidylethanolamine plasmalogen 38:6, diacylglyceride 18:0/18:1, and alkylphosphatidylethanolamine 40:5 (adjusted ORs per 1 log-SD increment range: 1.34-2.86), whereas there were inverse associations with sphingomyelin 34:1, dihexosyl ceramide 24:0, mono hexosyl ceramide 18:0, dihexosyl ceramide 24:1, and phosphatidylcholine 40:7 (adjusted ORs range: 0.48-0.68). Addition of these novel lipids to the classical GDM prediction model resulted in a significant improvement in the C-statistic (discriminatory power of the model) to 0.801 (95% CI: 0.772, 0.829). For every 1-point increase in the lipid risk score of the 10 lipids, the OR of GDM was 1.66 (95% CI: 1.50, 1.85). Mediation analysis suggested the associations between specific lipid species and GDM were partially explained by glycemic and insulin-related indicators. CONCLUSIONS Specific plasma lipid biomarkers in early pregnancy were associated with GDM in Chinese women, and significantly improved the prediction for GDM.
Collapse
Affiliation(s)
- Yi Wang
- Department of Epidemiology & Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yichao Huang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, China
| | - Ping Wu
- Department of Epidemiology & Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Ye
- Department of Epidemiology & Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fengjiang Sun
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, China
| | - Xue Yang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qi Lu
- Department of Epidemiology & Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiaying Yuan
- Department of Science and Education, Shuangliu Maternal and Child Health Hospital, Chengdu, Sichuan, China
| | - Yan Liu
- Department of Obstetrics and Gynecology, Shuangliu Maternal and Child Health Hospital, Chengdu, Sichuan, China
| | - Huayan Zeng
- Nutrition Department, Shuangliu Maternal and Child Health Hospital, Chengdu, Sichuan, China
| | - Xingyue Song
- Department of Emergency, Hainan Clinical Research Center for Acute and Critical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.,Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, Hainan, China
| | - Shijiao Yan
- Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences, Hainan Medical University, Haikou, Hainan, China.,School of Public Health, Hainan Medical University, Haikou, Hainan, China
| | - Xiaorong Qi
- Department of Gynecology and Obstetrics, West China Second Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Chun-Xia Yang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuanzhu Lv
- Department of Emergency, Hainan Clinical Research Center for Acute and Critical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.,Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, Hainan, China.,Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Jason H Y Wu
- The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Gang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiong-Fei Pan
- Department of Epidemiology & Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia.,Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, China
| | - An Pan
- Department of Epidemiology & Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
26
|
Tabibzadeh S. CircadiOmic medicine and aging. Ageing Res Rev 2021; 71:101424. [PMID: 34389481 DOI: 10.1016/j.arr.2021.101424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/22/2021] [Accepted: 08/05/2021] [Indexed: 01/15/2023]
Abstract
The earth displays daily, seasonal and annual environmental cycles that have led to evolutionarily adapted ultradian, circadian and infradian rhythmicities in the entire biosphere. All biological organisms must adapt to these cycles that synchronize the function of their circadiome. The objective of this review is to discuss the latest knowledge regarding the role of circadiomics in health and aging. The biological timekeepers are responsive to the environmental cues at microsecond to seasonal time-scales and act with precision of a clock machinery. The robustness of these rhythms is essential to normal daily function of cells, tissues and organs. Mis-alignment of circadian rhythms makes the individual prone to aging, sleep disorders, cancer, diabetes, and neuro-degenerative diseases. Circadian and CircadiOmic medicine are emerging fields that leverage our in-depth understanding of health issues, that arise as a result of disturbances in circadian rhythms, towards establishing better therapeutic approaches in personalized medicine and for geroprotection.
Collapse
Affiliation(s)
- Siamak Tabibzadeh
- Frontiers in Bioscience Research Institute in Aging and Cancer, 16471 Scientific Way, Irvine, CA 92618, United States.
| |
Collapse
|
27
|
An JN, Kim H, Kim EN, Cho A, Cho Y, Choi YW, Kim JH, Yang SH, Choi BS, Lim CS, Kim YS, Kim KP, Lee JP. Effects of periostin deficiency on kidney aging and lipid metabolism. Aging (Albany NY) 2021; 13:22649-22665. [PMID: 34607314 PMCID: PMC8544301 DOI: 10.18632/aging.203580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 08/31/2021] [Indexed: 11/25/2022]
Abstract
Periostin plays a crucial role in fibrosis, which is involved in kidney aging. A few studies have shown that lipid metabolism is involved in kidney aging. We investigated the role of periostin in lipid metabolism during kidney aging. Renal function, fibrosis, and inflammatory markers were studied using urine, blood, and tissue samples from wild-type (WT) C57BL/6 mice and Postn-null mice of 2 and 24 months of age. Lipids were quantitatively profiled using liquid chromatography-tandem mass spectrometry in the multiple reaction monitoring mode. Renal function was worse and tubular atrophy/interstitial fibrosis, periostin expression, and inflammatory and fibrotic markers were more severe in aged WT mice than in young WT mice. In aged Postn-null mice, these changes were mitigated. Thirty-five differentially regulated lipids were identified. Phosphatidylcholines, cholesteryl ester, cholesterol, ceramide-1-phosphate, and CCL5 expression were significantly higher in aged WT mice than in aged Postn-null mice. Particularly, linoleic acid, linolenic acid, arachidonic acid, and docosahexaenoic acid differed strongly between the two groups. Lysophosphatidylcholine acyltransferase 2, which converts lysophosphatidylcholine to phosphatidylcholine, was significantly higher in aged WT mice than in aged Postn-null mice. Periostin expression in the kidneys increased with age, and periostin ablation delayed aging. Changes in lipids and their metabolism were found in Postn-null mice. Further research on the precise mechanisms of and relationships between lipid expression and metabolism, kidney aging, and periostin expression is warranted.
Collapse
Affiliation(s)
- Jung Nam An
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Gyeonggi-do, Korea
| | - Hyoseon Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Korea.,Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Korea
| | - Eun Nim Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ara Cho
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Korea
| | - Yeongeun Cho
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Korea
| | - Young Wook Choi
- Department of Urology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Jin Hyuk Kim
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Korea
| | - Seung Hee Yang
- Seoul National University Kidney Research Institute, Seoul, Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Bum Soon Choi
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chun Soo Lim
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yon Su Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Korea.,Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
28
|
Carrard J, Gallart-Ayala H, Infanger D, Teav T, Wagner J, Knaier R, Colledge F, Streese L, Königstein K, Hinrichs T, Hanssen H, Ivanisevic J, Schmidt-Trucksäss A. Metabolic View on Human Healthspan: A Lipidome-Wide Association Study. Metabolites 2021; 11:metabo11050287. [PMID: 33946321 PMCID: PMC8146132 DOI: 10.3390/metabo11050287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 12/22/2022] Open
Abstract
As ageing is a major risk factor for the development of non-communicable diseases, extending healthspan has become a medical and societal necessity. Precise lipid phenotyping that captures metabolic individuality could support healthspan extension strategies. This study applied ‘omic-scale lipid profiling to characterise sex-specific age-related differences in the serum lipidome composition of healthy humans. A subset of the COmPLETE-Health study, composed of 73 young (25.2 ± 2.6 years, 43% female) and 77 aged (73.5 ± 2.3 years, 48% female) clinically healthy individuals, was investigated, using an untargeted liquid chromatography high-resolution mass spectrometry approach. Compared to their younger counterparts, aged females and males exhibited significant higher levels in 138 and 107 lipid species representing 15 and 13 distinct subclasses, respectively. Percentage of difference ranged from 5.8% to 61.7% (females) and from 5.3% to 46.0% (males), with sphingolipid and glycerophophospholipid species displaying the greatest amplitudes. Remarkably, specific sphingolipid and glycerophospholipid species, previously described as cardiometabolically favourable, were found elevated in aged individuals. Furthermore, specific ether-glycerophospholipid and lyso-glycerophosphocholine species displayed higher levels in aged females only, revealing a more favourable lipidome evolution in females. Altogether, age determined the circulating lipidome composition, while lipid species analysis revealed additional findings that were not observed at the subclass level.
Collapse
Affiliation(s)
- Justin Carrard
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, CH-1005 Lausanne, Switzerland; (H.G.-A.); (T.T.)
| | - Denis Infanger
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
| | - Tony Teav
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, CH-1005 Lausanne, Switzerland; (H.G.-A.); (T.T.)
| | - Jonathan Wagner
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
| | - Raphael Knaier
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
| | - Flora Colledge
- Division of Sports Science, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland;
| | - Lukas Streese
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
| | - Karsten Königstein
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
| | - Timo Hinrichs
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
| | - Henner Hanssen
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, CH-1005 Lausanne, Switzerland; (H.G.-A.); (T.T.)
- Correspondence: (J.I.); (A.S.-T.)
| | - Arno Schmidt-Trucksäss
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
- Correspondence: (J.I.); (A.S.-T.)
| |
Collapse
|
29
|
Abstract
Life expectancy, and longevity have been increasing in recent years. However, this is, in most cases, accompanied by age-related diseases. Thus, it became essential to better understand the mechanisms inherent to aging, and to establish biomarkers that characterize this physiological process. Among all biomolecules, lipids appear to be a good target for the study of these biomarkers. In fact, some lipids have already been associated with age-related diseases. With the development of analytical techniques such as Mass Spectrometry, and Nuclear Magnetic Resonance, Lipidomics has been increasingly used to study pathological, and physiological states of an organism. Thus, the study of serum, and plasma lipidome in centenarians, and elderly individuals without age-related diseases can be a useful tool for the identification of aging biomarkers, and to understand physiological aging, and longevity. This review focus on the importance of lipids as biomarkers of aging, and summarize the changes in the lipidome that have been associated with aging, and longevity.
Collapse
|
30
|
Sanchez LD, Pontini L, Marinozzi M, Sanchez-Aranguren LC, Reis A, Dias IHK. Cholesterol and oxysterol sulfates: Pathophysiological roles and analytical challenges. Br J Pharmacol 2020; 178:3327-3341. [PMID: 32762060 DOI: 10.1111/bph.15227] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/01/2020] [Accepted: 07/20/2020] [Indexed: 01/18/2023] Open
Abstract
Cholesterol and oxysterol sulfates are important regulators of lipid metabolism, inflammation, cell apoptosis, and cell survival. Among the sulfate-based lipids, cholesterol sulfate (CS) is the most studied lipid both quantitatively and functionally. Despite the importance, very few studies have analysed and linked the actions of oxysterol sulfates to their physiological and pathophysiological roles. Overexpression of sulfotransferases confirmed the formation of a range of oxysterol sulfates and their antagonistic effects on liver X receptors (LXRs) prompting further investigations how are the changes to oxysterol/oxysterol sulfate homeostasis can contribute to LXR activity in the physiological milieu. Here, we aim to bring together for novel roles of oxysterol sulfates, the available techniques and the challenges associated with their analysis. Understanding the oxysterol/oxysterol sulfate levels and their pathophysiological mechanisms could lead to new therapeutic targets for metabolic diseases. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
| | - Lorenzo Pontini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Maura Marinozzi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | - Ana Reis
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | | |
Collapse
|
31
|
Sênos Demarco R, Clémot M, Jones DL. The impact of ageing on lipid-mediated regulation of adult stem cell behavior and tissue homeostasis. Mech Ageing Dev 2020; 189:111278. [PMID: 32522455 DOI: 10.1016/j.mad.2020.111278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/05/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
Adult stem cells sustain tissue homeostasis throughout life and provide an important reservoir of cells capable of tissue repair in response to stress and tissue damage. Age-related changes to stem cells and/or the specialized niches that house them have been shown to negatively impact stem cell maintenance and activity. In addition, metabolic inputs have surfaced as another crucial layer in the control of stem cell behavior (Chandel et al., 2016; Folmes and Terzic, 2016; Ito and Suda, 2014; Mana et al., 2017; Shyh-Chang and Ng, 2017). Here, we will present a brief review of how lipid metabolism influences adult stem cell behavior under homeostatic conditions and speculate on how changes in lipid metabolism may impact stem cell ageing. This review considers the future of lipid metabolism research in stem cells, with the long-term goal of identifying mechanisms that could be targeted to counter or slow the age-related decline in stem cell function.
Collapse
Affiliation(s)
- Rafael Sênos Demarco
- Department of Molecular, Cell and Developmental Biology, Los Angeles, CA, 90095, USA
| | - Marie Clémot
- Department of Molecular, Cell and Developmental Biology, Los Angeles, CA, 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - D Leanne Jones
- Department of Molecular, Cell and Developmental Biology, Los Angeles, CA, 90095, USA; Molecular Biology Institute, Los Angeles, CA, 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
32
|
Characterisation of the dynamic nature of lipids throughout the lifespan of genetically identical female and male Daphnia magna. Sci Rep 2020; 10:5576. [PMID: 32221338 PMCID: PMC7101400 DOI: 10.1038/s41598-020-62476-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/24/2020] [Indexed: 01/08/2023] Open
Abstract
Lipids play a significant role in regulation of health and disease. To enhance our understanding of the role of lipids in regulation of lifespan and healthspan additional studies are required. Here, UHPLC-MS/MS lipidomics was used to measure dynamic changes in lipid composition as a function of age and gender in genetically identical male and female Daphnia magna with different average lifespans. We demonstrate statistically significant age-related changes in triglycerides (TG), diglycerides (DG), phosphatidylcholine, phosphatidylethanolamine, ceramide and sphingomyelin lipid groups, for example, in males, 17.04% of TG lipid species decline with age whilst 37.86% increase in relative intensity with age. In females, 23.16% decrease and 25.31% increase in relative intensity with age. Most interestingly, the rate and direction of change can differ between genetically identical female and male Daphnia magna, which could be the cause and/or the consequence of the different average lifespans between the two genetically identical genders. This study provides a benchmark dataset to understand how lipids alter as a function of age in genetically identical female and male species with different average lifespan and ageing rate.
Collapse
|
33
|
Clémot M, Sênos Demarco R, Jones DL. Lipid Mediated Regulation of Adult Stem Cell Behavior. Front Cell Dev Biol 2020; 8:115. [PMID: 32185173 PMCID: PMC7058546 DOI: 10.3389/fcell.2020.00115] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/11/2020] [Indexed: 12/18/2022] Open
Abstract
Adult stem cells constitute an important reservoir of self-renewing progenitor cells and are crucial for maintaining tissue and organ homeostasis. The capacity of stem cells to self-renew or differentiate can be attributed to distinct metabolic states, and it is now becoming apparent that metabolism plays instructive roles in stem cell fate decisions. Lipids are an extremely vast class of biomolecules, with essential roles in energy homeostasis, membrane structure and signaling. Imbalances in lipid homeostasis can result in lipotoxicity, cell death and diseases, such as cardiovascular disease, insulin resistance and diabetes, autoimmune disorders and cancer. Therefore, understanding how lipid metabolism affects stem cell behavior offers promising perspectives for the development of novel approaches to control stem cell behavior either in vitro or in patients, by modulating lipid metabolic pathways pharmacologically or through diet. In this review, we will first address how recent progress in lipidomics has created new opportunities to uncover stem-cell specific lipidomes. In addition, genetic and/or pharmacological modulation of lipid metabolism have shown the involvement of specific pathways, such as fatty acid oxidation (FAO), in regulating adult stem cell behavior. We will describe and compare findings obtained in multiple stem cell models in order to provide an assessment on whether unique lipid metabolic pathways may commonly regulate stem cell behavior. We will then review characterized and potential molecular mechanisms through which lipids can affect stem cell-specific properties, including self-renewal, differentiation potential or interaction with the niche. Finally, we aim to summarize the current knowledge of how alterations in lipid homeostasis that occur as a consequence of changes in diet, aging or disease can impact stem cells and, consequently, tissue homeostasis and repair.
Collapse
Affiliation(s)
- Marie Clémot
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rafael Sênos Demarco
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - D. Leanne Jones
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
34
|
Metabolomic and Lipidomic Signatures of Metabolic Syndrome and its Physiological Components in Adults: A Systematic Review. Sci Rep 2020; 10:669. [PMID: 31959772 PMCID: PMC6971076 DOI: 10.1038/s41598-019-56909-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 12/19/2019] [Indexed: 12/20/2022] Open
Abstract
The aim of this work was to conduct a systematic review of human studies on metabolite/lipid biomarkers of metabolic syndrome (MetS) and its components, and provide recommendations for future studies. The search was performed in MEDLINE, EMBASE, EMB Review, CINHAL Complete, PubMed, and on grey literature, for population studies identifying MetS biomarkers from metabolomics/lipidomics. Extracted data included population, design, number of subjects, sex/gender, clinical characteristics and main outcome. Data were collected regarding biological samples, analytical methods, and statistics. Metabolites were compiled by biochemical families including listings of their significant modulations. Finally, results from the different studies were compared. The search yielded 31 eligible studies (2005–2019). A first category of articles identified prevalent and incident MetS biomarkers using mainly targeted metabolomics. Even though the population characteristics were quite homogeneous, results were difficult to compare in terms of modulated metabolites because of the lack of methodological standardization. A second category, focusing on MetS components, allowed comparing more than 300 metabolites, mainly associated with the glycemic component. Finally, this review included also publications studying type 2 diabetes as a whole set of metabolic risks, raising the interest of reporting metabolomics/lipidomics signatures to reflect the metabolic phenotypic spectrum in systems approaches.
Collapse
|
35
|
Shiomi A, Nagao K, Kasai H, Hara Y, Umeda M. Changes in the physicochemical properties of fish cell membranes during cellular senescence. Biosci Biotechnol Biochem 2019; 84:583-593. [PMID: 31760866 DOI: 10.1080/09168451.2019.1695576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Fish cell lines are widely used for the studies of developmental biology, virology, biology of aging, and nutrition physiology. However, little is known about their physicochemical properties. Here, we report the phospholipid compositions and mechanical properties of cell membranes derived from freshwater, anadromous and marine fish species. Biophysical analyses revealed that fish cell lines have highly deformable cell membranes with significantly low membrane tensions and Young's moduli compared with those of mammalian cell lines. The induction of cellular senescence by DNA demethylation using 5-Aza-2'-deoxycytidine significantly reduced the deformability of fish cell membrane, but hydrogen peroxide-induced oxidative stress did not affect the deformability. Mass spectrometry analysis of phospholipids revealed that the level of phosphatidylethanolamine molecules containing polyunsaturated fatty acids significantly increased during the 5-Aza-2'-deoxycytidine-induced cellular senescence. Fish cell lines provide a useful model system for studying the changes in the physicochemical properties of cell membranes during cellular senescence.Abbreviations: 2D-TLC: two-dimensional thin layer chromatography; 5-Aza-dC: 5-Aza-2'-deoxycytidine; DHA: docosahexaenoic acid; EPA: eicosapentaenoic acid; FBS: fetal bovine serum; PC: phosphatidylcholine; PE: phosphatidylethanolamine; PI: phosphatidylinositol; PS: phosphatidylserine; PUFA: polyunsaturated fatty acid; SA-β-gal: senescence-associated beta-galactosidase; SM: sphingomyelin.
Collapse
Affiliation(s)
- Akifumi Shiomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kohjiro Nagao
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Hisae Kasai
- Laboratory of Marine Biotechnology and Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Yuji Hara
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Masato Umeda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| |
Collapse
|
36
|
Pradas I, Jové M, Cabré R, Ayala V, Mota-Martorell N, Pamplona R. Effects of Aging and Methionine Restriction on Rat Kidney Metabolome. Metabolites 2019; 9:E280. [PMID: 31739579 PMCID: PMC6918429 DOI: 10.3390/metabo9110280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/30/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023] Open
Abstract
Methionine restriction (MetR) in animal models extends maximum longevity and seems to promote renoprotection by attenuating kidney injury. MetR has also been proven to affect several metabolic pathways including lipid metabolism. However, there is a lack of studies about the effect of MetR at old age on the kidney metabolome. In view of this, a mass spectrometry-based high-throughput metabolomic and lipidomic profiling was undertaken of renal cortex samples of three groups of male rats-An 8-month-old Adult group, a 26-month-old Aged group, and a MetR group that also comprised of 26-month-old rats but were subjected to an 80% MetR diet for 7 weeks. Additionally, markers of mitochondrial stress and protein oxidative damage were analyzed by mass spectrometry. Our results showed minor changes during aging in the renal cortex metabolome, with less than 59 differential metabolites between the Adult and Aged groups, which represents about 4% of changes in the kidney metabolome. Among the compounds identified are glycerolipids and lipid species derived from arachidonic acid metabolism. MetR at old age preferentially induces lipid changes affecting glycerophospholipids, docosanoids, and eicosanoids. No significant differences were observed between the experimental groups in the markers of mitochondrial stress and tissue protein damage. More than rejuvenation, MetR seems to induce a metabolic reprogramming.
Collapse
Affiliation(s)
| | | | | | | | | | - Reinald Pamplona
- Department of Experimental Medicine, Lleida University-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), 25198 Lleida, Spain; (I.P.); (M.J.); (R.C.); (V.A.); (N.M.-M.)
| |
Collapse
|
37
|
Metabolic dysregulation in vitamin E and carnitine shuttle energy mechanisms associate with human frailty. Nat Commun 2019; 10:5027. [PMID: 31690722 PMCID: PMC6831565 DOI: 10.1038/s41467-019-12716-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 09/18/2019] [Indexed: 12/16/2022] Open
Abstract
Global ageing poses a substantial economic burden on health and social care costs. Enabling a greater proportion of older people to stay healthy for longer is key to the future sustainability of health, social and economic policy. Frailty and associated decrease in resilience plays a central role in poor health in later life. In this study, we present a population level assessment of the metabolic phenotype associated with frailty. Analysis of serum from 1191 older individuals (aged between 56 and 84 years old) and subsequent longitudinal validation (on 786 subjects) was carried out using liquid and gas chromatography-mass spectrometry metabolomics and stratified across a frailty index designed to quantitatively summarize vulnerability. Through multivariate regression and network modelling and mROC modeling we identified 12 significant metabolites (including three tocotrienols and six carnitines) that differentiate frail and non-frail phenotypes. Our study provides evidence that the dysregulation of carnitine shuttle and vitamin E pathways play a role in the risk of frailty. Risk of age-related chronic disorders and decrease in resilience is associated with ageing. Here the authors analyse the human blood metabolome and identify metabolites associated with frailty.
Collapse
|
38
|
Medkour Y, Mohammad K, Arlia-Ciommo A, Svistkova V, Dakik P, Mitrofanova D, Rodriguez MEL, Junio JAB, Taifour T, Escudero P, Goltsios FF, Soodbakhsh S, Maalaoui H, Simard É, Titorenko VI. Mechanisms by which PE21, an extract from the white willow Salix alba, delays chronological aging in budding yeast. Oncotarget 2019; 10:5780-5816. [PMID: 31645900 PMCID: PMC6791382 DOI: 10.18632/oncotarget.27209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/27/2019] [Indexed: 01/05/2023] Open
Abstract
We have recently found that PE21, an extract from the white willow Salix alba, slows chronological aging and prolongs longevity of the yeast Saccharomyces cerevisiae more efficiently than any of the previously known pharmacological interventions. Here, we investigated mechanisms through which PE21 delays yeast chronological aging and extends yeast longevity. We show that PE21 causes a remodeling of lipid metabolism in chronologically aging yeast, thereby instigating changes in the concentrations of several lipid classes. We demonstrate that such changes in the cellular lipidome initiate three mechanisms of aging delay and longevity extension. The first mechanism through which PE21 slows aging and prolongs longevity consists in its ability to decrease the intracellular concentration of free fatty acids. This postpones an age-related onset of liponecrotic cell death promoted by excessive concentrations of free fatty acids. The second mechanism of aging delay and longevity extension by PE21 consists in its ability to decrease the concentrations of triacylglycerols and to increase the concentrations of glycerophospholipids within the endoplasmic reticulum membrane. This activates the unfolded protein response system in the endoplasmic reticulum, which then decelerates an age-related decline in protein and lipid homeostasis and slows down an aging-associated deterioration of cell resistance to stress. The third mechanisms underlying aging delay and longevity extension by PE21 consists in its ability to change lipid concentrations in the mitochondrial membranes. This alters certain catabolic and anabolic processes in mitochondria, thus amending the pattern of aging-associated changes in several key aspects of mitochondrial functionality.
Collapse
Affiliation(s)
- Younes Medkour
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Karamat Mohammad
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | | - Veronika Svistkova
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Pamela Dakik
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Darya Mitrofanova
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | | | | - Tarek Taifour
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Paola Escudero
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Fani-Fay Goltsios
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Sahar Soodbakhsh
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Hana Maalaoui
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Éric Simard
- Idunn Technologies Inc., Rosemere, Quebec J7A 4A5, Canada
| | | |
Collapse
|
39
|
de Diego I, Peleg S, Fuchs B. The role of lipids in aging-related metabolic changes. Chem Phys Lipids 2019; 222:59-69. [DOI: 10.1016/j.chemphyslip.2019.05.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 12/30/2022]
|
40
|
Buis A, Bellemin S, Goudeau J, Monnier L, Loiseau N, Guillou H, Aguilaniu H. Coelomocytes Regulate Starvation-Induced Fat Catabolism and Lifespan Extension through the Lipase LIPL-5 in Caenorhabditis elegans. Cell Rep 2019; 28:1041-1049.e4. [PMID: 31340142 PMCID: PMC6667774 DOI: 10.1016/j.celrep.2019.06.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 02/24/2019] [Accepted: 06/17/2019] [Indexed: 12/18/2022] Open
Abstract
Dietary restriction is known to extend the lifespan and reduce fat stores in most species tested to date, but the molecular mechanisms linking these events remain unclear. Here, we found that bacterial deprivation of Caenorhabditis elegans leads to lifespan extension with concomitant mobilization of fat stores. We find that LIPL-5 expression is induced by starvation and that the LIPL-5 lipase is present in coelomocyte cells and regulates fat catabolism and longevity during the bacterial deprivation response. Either LIPL-5 or coelomocyte deficiency prevents the rapid mobilization of intestinal triacylglycerol and enhanced lifespan extension in response to bacterial deprivation, whereas the combination of both defects has no additional or synergistic effect. Thus, the capacity to mobilize fat via LIPL-5 is directly linked to an animal's capacity to withstand long-term nutrient deprivation. Our data establish a role for LIPL-5 and coelomocytes in regulating fat consumption and lifespan extension upon DR.
Collapse
Affiliation(s)
- Alexia Buis
- Institut Génomique Fonctionelle de Lyon/UMR5262, 46 Allee d'Italie, 69364 Lyon Cedex 07, France; Ecole Pratique des Hautes Etudes, Les Patios Saint-Jacques, 4-14 Rue Ferrus, 75014 Paris, France
| | - Stéphanie Bellemin
- Institut Génomique Fonctionelle de Lyon/UMR5262, 46 Allee d'Italie, 69364 Lyon Cedex 07, France
| | - Jérôme Goudeau
- Institut Génomique Fonctionelle de Lyon/UMR5262, 46 Allee d'Italie, 69364 Lyon Cedex 07, France
| | - Léa Monnier
- Institut Génomique Fonctionelle de Lyon/UMR5262, 46 Allee d'Italie, 69364 Lyon Cedex 07, France
| | - Nicolas Loiseau
- INRA Toulouse, INRA ToxAlim-Integrative Toxicology & Metabolism-UMR 1331, INRA/INP/UPS, 180 chemin de Tournefeuille-BP 93173, 31027 Toulouse Cedex 3, France
| | - Hervé Guillou
- INRA Toulouse, INRA ToxAlim-Integrative Toxicology & Metabolism-UMR 1331, INRA/INP/UPS, 180 chemin de Tournefeuille-BP 93173, 31027 Toulouse Cedex 3, France
| | - Hugo Aguilaniu
- Institut Génomique Fonctionelle de Lyon/UMR5262, 46 Allee d'Italie, 69364 Lyon Cedex 07, France; Instituto Serrapilheira, Rua Dias Ferreira 78, Leblon, Rio de Janeiro, Brazil; Detaché from CNRS, Paris, France.
| |
Collapse
|
41
|
Papsdorf K, Brunet A. Linking Lipid Metabolism to Chromatin Regulation in Aging. Trends Cell Biol 2019; 29:97-116. [PMID: 30316636 PMCID: PMC6340780 DOI: 10.1016/j.tcb.2018.09.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022]
Abstract
The lifespan of an organism is strongly influenced by environmental factors (including diet) and by internal factors (notably reproductive status). Lipid metabolism is critical for adaptation to external conditions or reproduction. Interestingly, specific lipid profiles are associated with longevity, and increased uptake of certain lipids extends longevity in Caenorhabditis elegans and ameliorates disease phenotypes in humans. How lipids impact longevity, and how lipid metabolism is regulated during aging, is just beginning to be unraveled. This review describes recent advances in the regulation and role of lipids in longevity, focusing on the interaction between lipid metabolism and chromatin states in aging and age-related diseases.
Collapse
Affiliation(s)
- Katharina Papsdorf
- Department of Genetics, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA; Glenn Laboratories for the Biology of Aging, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
42
|
Pradas I, Jové M, Huynh K, Puig J, Ingles M, Borras C, Viña J, Meikle PJ, Pamplona R. Exceptional human longevity is associated with a specific plasma phenotype of ether lipids. Redox Biol 2019; 21:101127. [PMID: 30711699 PMCID: PMC6357979 DOI: 10.1016/j.redox.2019.101127] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/09/2019] [Accepted: 01/28/2019] [Indexed: 12/15/2022] Open
Abstract
A lipid profile resistant to oxidative damage is an inherent trait associated with animal lifespan. However, there is a lack of lipidomic studies on human longevity. Here we use mass spectrometry based technologies to detect and quantify 137 ether lipids to define a phenotype of healthy humans with exceptional lifespan. Ether lipids were chosen because of their antioxidant properties and ability to modulate oxidative stress. Our results demonstrate that a specific ether lipid signature can be obtained to define the centenarian state. This profile comprises higher level of alkyl forms derived from phosphatidylcholine with shorter number of carbon atoms and double bonds; and decreased content in alkenyl forms from phosphatidylethanolamine with longer chain length and higher double bonds. This compositional pattern suggests that ether lipids from centenarians are more resistant to lipid peroxidation, and that ether lipid signature expresses an optimized feature associated with exceptional human longevity. These results are in keeping with the free radical theory of aging.
Collapse
Affiliation(s)
- I Pradas
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), Lleida 25198, Spain.
| | - M Jové
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), Lleida 25198, Spain.
| | - K Huynh
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia.
| | - J Puig
- Girona Biomedical Research Institute (IDIBGI), Hospital Universitari Dr Josep Trueta, Girona 17007, Spain.
| | - M Ingles
- Department of Physiology, University of Valencia, Valencia 46004, Spain.
| | - C Borras
- Department of Physiology, University of Valencia, Valencia 46004, Spain.
| | - J Viña
- Department of Physiology, University of Valencia, Valencia 46004, Spain.
| | - P J Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia.
| | - R Pamplona
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), Lleida 25198, Spain.
| |
Collapse
|
43
|
Pujos-Guillot E, Pétéra M, Jacquemin J, Centeno D, Lyan B, Montoliu I, Madej D, Pietruszka B, Fabbri C, Santoro A, Brzozowska A, Franceschi C, Comte B. Identification of Pre-frailty Sub-Phenotypes in Elderly Using Metabolomics. Front Physiol 2019; 9:1903. [PMID: 30733683 PMCID: PMC6353829 DOI: 10.3389/fphys.2018.01903] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 12/18/2018] [Indexed: 01/14/2023] Open
Abstract
Aging is a dynamic process depending on intrinsic and extrinsic factors and its evolution is a continuum of transitions, involving multifaceted processes at multiple levels. It is recognized that frailty and sarcopenia are shared by the major age-related diseases thus contributing to elderly morbidity and mortality. Pre-frailty is still not well understood but it has been associated with global imbalance in several physiological systems, including inflammation, and in nutrition. Due to the complex phenotypes and underlying pathophysiology, the need for robust and multidimensional biomarkers is essential to move toward more personalized care. The objective of the present study was to better characterize the complexity of pre-frailty phenotype using untargeted metabolomics, in order to identify specific biomarkers, and study their stability over time. The approach was based on the NU-AGE project (clinicaltrials.gov, NCT01754012) that regrouped 1,250 free-living elderly people (65–79 y.o., men and women), free of major diseases, recruited within five European centers. Half of the volunteers were randomly assigned to an intervention group (1-year Mediterranean type diet). Presence of frailty was assessed by the criteria proposed by Fried et al. (2001). In this study, a sub-cohort consisting in 212 subjects (pre-frail and non-frail) from the Italian and Polish centers were selected for untargeted serum metabolomics at T0 (baseline) and T1 (follow-up). Univariate statistical analyses were performed to identify discriminant metabolites regarding pre-frailty status. Predictive models were then built using linear logistic regression and ROC curve analyses were used to evaluate multivariate models. Metabolomics enabled to discriminate sub-phenotypes of pre-frailty both at the gender level and depending on the pre-frailty progression and reversibility. The best resulting models included four different metabolites for each gender. They showed very good prediction capacity with AUCs of 0.93 (95% CI = 0.87–1) and 0.94 (95% CI = 0.87–1) for men and women, respectively. Additionally, early and/or predictive markers of pre-frailty were identified for both genders and the gender specific models showed also good performance (three metabolites; AUC = 0.82; 95% CI = 0.72–0.93) for men and very good for women (three metabolites; AUC = 0.92; 95% CI = 0.86–0.99). These results open the door, through multivariate strategies, to a possibility of monitoring the disease progression over time at a very early stage.
Collapse
Affiliation(s)
- Estelle Pujos-Guillot
- Université Clermont Auvergne, Institut National de la Recherche Agronomique, Unité de Nutrition Humaine, Centre Auvergne Rhône Alpes, Clermont-Ferrand, France.,Université Clermont Auvergne, Institut National de la Recherche Agronomique, Unité de Nutrition Humaine, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Mélanie Pétéra
- Université Clermont Auvergne, Institut National de la Recherche Agronomique, Unité de Nutrition Humaine, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Jérémie Jacquemin
- Université Clermont Auvergne, Institut National de la Recherche Agronomique, Unité de Nutrition Humaine, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Delphine Centeno
- Université Clermont Auvergne, Institut National de la Recherche Agronomique, Unité de Nutrition Humaine, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Bernard Lyan
- Université Clermont Auvergne, Institut National de la Recherche Agronomique, Unité de Nutrition Humaine, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Ivan Montoliu
- Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Dawid Madej
- Department of Human Nutrition, Warsaw University of Life Sciences - Szkoła Główna Gospodarstwa Wiejskiego, Warsaw, Poland
| | - Barbara Pietruszka
- Department of Human Nutrition, Warsaw University of Life Sciences - Szkoła Główna Gospodarstwa Wiejskiego, Warsaw, Poland
| | - Cristina Fabbri
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,Interdepartmental Center "L. Galvani", University of Bologna, Bologna, Italy
| | - Anna Brzozowska
- Department of Human Nutrition, Warsaw University of Life Sciences - Szkoła Główna Gospodarstwa Wiejskiego, Warsaw, Poland
| | | | - Blandine Comte
- Université Clermont Auvergne, Institut National de la Recherche Agronomique, Unité de Nutrition Humaine, Centre Auvergne Rhône Alpes, Clermont-Ferrand, France
| |
Collapse
|
44
|
Admasu TD, Chaithanya Batchu K, Barardo D, Ng LF, Lam VYM, Xiao L, Cazenave-Gassiot A, Wenk MR, Tolwinski NS, Gruber J. Drug Synergy Slows Aging and Improves Healthspan through IGF and SREBP Lipid Signaling. Dev Cell 2018; 47:67-79.e5. [DOI: 10.1016/j.devcel.2018.09.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/18/2018] [Accepted: 08/31/2018] [Indexed: 12/12/2022]
|
45
|
Nogueira IAL, da Cruz ÉJSN, Fontenele AMM, de Figueiredo Neto JA. Alterations in postmenopausal plasmatic lipidome. PLoS One 2018; 13:e0203027. [PMID: 30180197 PMCID: PMC6122933 DOI: 10.1371/journal.pone.0203027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/14/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Menopause consists of a physiological process in women between 40 and 50 years of age, and it has substantial consequences for health, ranging from disturbances in lipid and glycidic metabolism to psychological stress and sleep alterations, thereby increasing women's risk of cardiovascular diseases. Here, we attempted to identify potential lipid alterations not identified by the classic methods. METHODS AND RESULTS We analyzed the serum lipid profile in 40 women in pre- and post-menopause using a lipidomic approach and mass spectrometry. Lipid species presented increased concentrations, with a difference of more than 25% post-menopause and with the ceramides (N.C23:0.Cer, N.C23:0(OH).Cer and N.C24:0(OH).Cer) standing out with a fold change of 1.68, 1.59, and 1.58, respectively. It was also observed that 14 metabolites presented a significant difference in the average concentrations between pre- and post-menopause, especially the ceramide species. Strong and positive correlations were identified between various metabolites and fasting glucose, glycated hemoglobin, total cholesterol, LDL, and triglycerides. Of note were the association ceramide (N.C10:0.Cer) and lysophosphatidylethanolamine (LPE.a.C18:0) between fasting glucose and glycated hemoglobin. CONCLUSION This study detected lipid alterations, especially in ceramides, post-menopause, as well as correlations with glycidic and lipid markers, which may in the future be useful to investigate diseases associated with menopause.
Collapse
Affiliation(s)
- Iara Antonia Lustosa Nogueira
- Postgraduate Program in Health Sciences, Federal University of Maranhão, São Luís/MA, Brazil
- University Hospital, Federal University of Maranhão, São Luís/MA, Brazil
| | - Érika Joseth Sousa Nogueira da Cruz
- University Hospital, Federal University of Maranhão, São Luís/MA, Brazil
- Postgraduate Program in Adult and Child Health, Federal University of Maranhão, São Luís/MA, Brazil
| | - Andréa Martins Melo Fontenele
- University Hospital, Federal University of Maranhão, São Luís/MA, Brazil
- Department of Pharmacy, Federal University of Maranhão, São Luís/MA, Brazil
| | - José Albuquerque de Figueiredo Neto
- Postgraduate Program in Health Sciences, Federal University of Maranhão, São Luís/MA, Brazil
- University Hospital, Federal University of Maranhão, São Luís/MA, Brazil
- Postgraduate Program in Adult and Child Health, Federal University of Maranhão, São Luís/MA, Brazil
- Department of Medicine I, Federal University of Maranhão, São Luís/MA, Brazil
| |
Collapse
|
46
|
Prevalence and clinical profile of metabolic syndrome in longevity: study from Guangxi Zhuang Autonomous Region, China. BMC Geriatr 2017; 17:169. [PMID: 28760137 PMCID: PMC5537925 DOI: 10.1186/s12877-017-0536-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 07/06/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) was a risk factor for cardiovascular diseases, yet the prevalence of MetS among nonagenarians and centenarians was rarely reported. Here we investigated the prevalence of MetS and its components among nonagenarians and centenarians in our Zhuang population from Bama, Guangxi Zhuang Autonomous Region, China. METHOD In Bama area, there registered 881 individuals who lived more than 90 years old in 269,800 local residents and our study involved 307 long-lived participants and 486 local younger (35-68 years) persons, as controls. MetS was defined according to the revised National Cholesterol Education Program's Adult Treatment Panel III (NCEP ATPIII) criteria. RESULTS The overall prevalence estimates of MetS among longevity group were 28.0% based on NCEP ATPIII criteria. The most common metabolic component was elevated blood pressure (61.1%), followed by raised fasting glucose (39.1%) and low high-density lipoprotein cholesterol (low HDL-C) (28.0%). The prevalence of MetS and abdominal obesity in women (33.6% and 22.1% respectively) was higher than that of men (19.8% and 3.7% respectively) (Prange < .001-0.019). Compared with controls, long-lived individuals were more likely to have two or more metabolic abnormalities (Prange < 0.001), and less likely to have zero or one metabolic abnormality (Prange < 0.001-0.020). CONCLUSION This study showed substantiality the prevalence and clinical profile of MetS in longevity population in Guangxi Zhuang Autonomous Region, China.
Collapse
|
47
|
Martin FPJ, Montoliu I, Kussmann M. Metabonomics of ageing – Towards understanding metabolism of a long and healthy life. Mech Ageing Dev 2017; 165:171-179. [DOI: 10.1016/j.mad.2016.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/21/2016] [Indexed: 12/18/2022]
|
48
|
Mechanisms Underlying the Essential Role of Mitochondrial Membrane Lipids in Yeast Chronological Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2916985. [PMID: 28593023 PMCID: PMC5448074 DOI: 10.1155/2017/2916985] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022]
Abstract
The functional state of mitochondria is vital to cellular and organismal aging in eukaryotes across phyla. Studies in the yeast Saccharomyces cerevisiae have provided evidence that age-related changes in some aspects of mitochondrial functionality can create certain molecular signals. These signals can then define the rate of cellular aging by altering unidirectional and bidirectional communications between mitochondria and other organelles. Several aspects of mitochondrial functionality are known to impact the replicative and/or chronological modes of yeast aging. They include mitochondrial electron transport, membrane potential, reactive oxygen species, and protein synthesis and proteostasis, as well as mitochondrial synthesis of iron-sulfur clusters, amino acids, and NADPH. Our recent findings have revealed that the composition of mitochondrial membrane lipids is one of the key aspects of mitochondrial functionality affecting yeast chronological aging. We demonstrated that exogenously added lithocholic bile acid can delay chronological aging in yeast because it elicits specific changes in mitochondrial membrane lipids. These changes allow mitochondria to operate as signaling platforms that delay yeast chronological aging by orchestrating an institution and maintenance of a distinct cellular pattern. In this review, we discuss molecular and cellular mechanisms underlying the essential role of mitochondrial membrane lipids in yeast chronological aging.
Collapse
|
49
|
Braun F, Rinschen MM, Bartels V, Frommolt P, Habermann B, Hoeijmakers JHJ, Schumacher B, Dollé MET, Müller RU, Benzing T, Schermer B, Kurschat CE. Altered lipid metabolism in the aging kidney identified by three layered omic analysis. Aging (Albany NY) 2017; 8:441-57. [PMID: 26886165 PMCID: PMC4833139 DOI: 10.18632/aging.100900] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Aging-associated diseases and their comorbidities affect the life of a constantly growing proportion of the population in developed countries. At the center of these comorbidities are changes of kidney structure and function as age-related chronic kidney disease predisposes to the development of cardiovascular diseases such as stroke, myocardial infarction or heart failure. To detect molecular mechanisms involved in kidney aging, we analyzed gene expression profiles of kidneys from adult and aged wild-type mice by transcriptomic, proteomic and targeted lipidomic methodologies. Interestingly, transcriptome and proteome analyses revealed differential expression of genes primarily involved in lipid metabolism and immune response. Additional lipidomic analyses uncovered significant age-related differences in the total amount of phosphatidylethanolamines, phosphatidylcholines and sphingomyelins as well as in subspecies of phosphatidylserines and ceramides with age. By integration of these datasets we identified Aldh1a1, a key enzyme in vitamin A metabolism specifically expressed in the medullary ascending limb, as one of the most prominent upregulated proteins in old kidneys. Moreover, ceramidase Asah1 was highly expressed in aged kidneys, consistent with a decrease in ceramide C16. In summary, our data suggest that changes in lipid metabolism are involved in the process of kidney aging and in the development of chronic kidney disease.
Collapse
Affiliation(s)
- Fabian Braun
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Markus M Rinschen
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Valerie Bartels
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Department of Cardiology and Angiology, University of Münster, Münster, Germany
| | - Peter Frommolt
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Bianca Habermann
- Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany.,Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jan H J Hoeijmakers
- Department of Cell Biology and Genetics, Medical Genetics Centre, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Björn Schumacher
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Institute for Genome Stability in Aging and Disease, Medical Faculty, University of Cologne, Cologne, Germany
| | - Martijn E T Dollé
- National Institute of Public Health and the Environment, Centre for Health Protection, Bilthoven, The Netherlands
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Christine E Kurschat
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
50
|
Fabbri E, Yang A, Simonsick EM, Chia CW, Zoli M, Haughey NJ, Mielke MM, Ferrucci L, Coen PM. Circulating ceramides are inversely associated with cardiorespiratory fitness in participants aged 54-96 years from the Baltimore Longitudinal Study of Aging. Aging Cell 2016; 15:825-31. [PMID: 27135629 PMCID: PMC5013023 DOI: 10.1111/acel.12491] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2016] [Indexed: 01/25/2023] Open
Abstract
Cardiorespiratory fitness (VO2 peak) declines with age and is an independent risk factor for morbidity and mortality in older adults. Identifying biomarkers of low fitness may provide insight for why some individuals experience an accelerated decline of aerobic capacity and may serve as clinically valuable prognostic indicators of cardiovascular health. We investigated the relationship between circulating ceramides and VO2 peak in 443 men and women (mean age of 69) enrolled in the Baltimore Longitudinal Study of Aging (BLSA). Individual species of ceramide were quantified by HPLC–tandem mass spectrometry. VO2 peak was measured by a graded treadmill test. We applied multiple regression models to test the associations between ceramide species and VO2 peak, while adjusting for age, sex, blood pressure, serum LDL, HDL, triglycerides, and other covariates. We found that higher levels of circulating C18:0, C20:0, C24:1 ceramides and C20:0 dihydroceramides were strongly associated with lower aerobic capacity (P < 0.001, P < 0.001, P = 0.018, and P < 0.001, respectively). The associations held true for both sexes (with men having a stronger association than women, P value for sex interaction <0.05) and were unchanged after adjusting for confounders and multiple comparison correction. Interestingly, no significant association was found for C16:0, C22:0, C24:0, C26:0, and C22:1 ceramide species, C24:0 dihydroceramide, or total ceramides. Our analysis reveals that specific long‐chain ceramides strongly associate with low cardiovascular fitness in older adults and may be implicated in the pathogenesis of low fitness with aging. Longitudinal studies are needed to further validate these associations and investigate the relationship between ceramides and health outcomes.
Collapse
Affiliation(s)
- Elisa Fabbri
- Longitudinal Studies Section Translational Gerontology Branch National Institute on Aging National Institutes of Health Baltimore MD 21224 USA
- Department of Medical and Surgical Sciences University of Bologna Bologna Italy
| | - An Yang
- Laboratory of Behavioral Neuroscience, Intramural Research Program National Institute on Aging National Institutes of Health Baltimore MD 21224 USA
| | - Eleanor M. Simonsick
- Longitudinal Studies Section Translational Gerontology Branch National Institute on Aging National Institutes of Health Baltimore MD 21224 USA
| | - Chee W. Chia
- Longitudinal Studies Section Translational Gerontology Branch National Institute on Aging National Institutes of Health Baltimore MD 21224 USA
| | - Marco Zoli
- Department of Medical and Surgical Sciences University of Bologna Bologna Italy
| | - Norman J. Haughey
- Department of Neurology Johns Hopkins University School of Medicine Baltimore MD 21224 USA
| | - Michelle M. Mielke
- Department of Health Science Research and Neurology Mayo Clinic Rochester MN 55905 USA
| | - Luigi Ferrucci
- Longitudinal Studies Section Translational Gerontology Branch National Institute on Aging National Institutes of Health Baltimore MD 21224 USA
| | - Paul M. Coen
- Translational Research Institute for Metabolism and Diabetes Florida Hospital Orlando FL 32804 USA
| |
Collapse
|