1
|
Jofré-Madariaga D, Aguilera Moya MA, Alves-de-Souza C, Arias RM, Gutow L, Jeldres Polanco RA, Macaya EC, Kappes MM, Ortiz Arancibia LN, Pino O, Rech S, Rothäusler E, Harrod C, Thiel M. Non-indigenous species and their realized niche in tidepools along the South-East Pacific coast. MARINE ENVIRONMENTAL RESEARCH 2024; 199:106541. [PMID: 38852493 DOI: 10.1016/j.marenvres.2024.106541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024]
Abstract
Non-indigenous species (NIS) have the potential to colonize and become established in a wide range of coastal habitats. Species with broad environmental tolerances can quickly adapt to local conditions and expand their niches along environmental gradients, and even colonize habitats with extreme abiotic conditions. Here we report and document the distribution of eight marine NIS (four seaweed and four invertebrate species) found in tidepools along a 3000 km latitudinal gradient along the Pacific coast of Chile (18.4°S to 41.9°S). The seaweed NIS Codium fragile, Capreolia implexa, Schottera nicaeensis and Mastocarpus latissimus were mostly distributed towards high latitudes (i.e., more southerly locations), where temperatures in tidepools were low. The invertebrate NIS Anemonia alicemartinae, Ciona robusta, Bugula neritina and Bugulina flabellata were more common towards low latitudes, where high temperatures were registered in the tidepools. Across the intertidal gradient, seaweed NIS were mostly found in pools in the mid and low intertidal zone, while invertebrate NIS occurred mostly in pools from the mid and upper intertidal zones. The realized niche spaces of NIS (based on the Outlying Mean Index, OMI) in the study area were mainly influenced by environmental conditions of temperature and salinity (along the latitudinal and intertidal gradients), while other tidepool characteristics (depth, surface area, exposition, and complexity) only had minor effects. Five of the eight NIS exhibited a realized niche space coinciding with the average tidepool environmental conditions, while marginal niches were occupied by species with affinities for specific temperatures and salinities along the latitudinal and intertidal gradients. Our results indicate that physiological tolerances to environmental factors play a fundamental role in the distribution of seaweed and invertebrate NIS in tidepools along the Chilean coast. This study confirms that tidepools offer suitable conditions for some seaweed and invertebrate NIS, potentially facilitating their invasion into new natural habitats.
Collapse
Affiliation(s)
- David Jofré-Madariaga
- Departamento de Biologia Marina, Facultad de Ciencias del Mar, Universidad Cátolica del Norte, Larrondo 1281, Coquimbo, Chile; Doctorado en Ciencias Aplicadas mención Sistemas Marinos Costeros, Facultad de Ciencias del Mar y Recursos Biológicos, Univ. de Antofagasta, Antofagasta, Chile
| | - Moisés A Aguilera Moya
- Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Santiago, Chile, Diagonal Las Torres, 2640, Peñalolén, Santiago, Chile
| | - Catharina Alves-de-Souza
- Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción 4030000, Chile; Centro de Investigación Oceanográfica COPAS Coastal, Universidad de Concepción, Concepción, Chile
| | - Rene Matías Arias
- Departamento de Biologia Marina, Facultad de Ciencias del Mar, Universidad Cátolica del Norte, Larrondo 1281, Coquimbo, Chile
| | - Lars Gutow
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Ricardo Antonio Jeldres Polanco
- Laboratorio de Estudios Algales (ALGALAB), Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Erasmo C Macaya
- Laboratorio de Estudios Algales (ALGALAB), Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Martín Munizaga Kappes
- Departamento de Biologia Marina, Facultad de Ciencias del Mar, Universidad Cátolica del Norte, Larrondo 1281, Coquimbo, Chile
| | - Leslie Nicole Ortiz Arancibia
- Departamento de Biologia Marina, Facultad de Ciencias del Mar, Universidad Cátolica del Norte, Larrondo 1281, Coquimbo, Chile
| | - Oscar Pino
- Departamento de Biologia Marina, Facultad de Ciencias del Mar, Universidad Cátolica del Norte, Larrondo 1281, Coquimbo, Chile
| | - Sabine Rech
- Departamento de Biologia Marina, Facultad de Ciencias del Mar, Universidad Cátolica del Norte, Larrondo 1281, Coquimbo, Chile; Center for Ecology and Sustainable Management of Oceanic Island (ESMOI), Coquimbo, Chile
| | - Eva Rothäusler
- Centro de Investigaciones Costeras (CIC - UDA), Universidad de Atacama, Copiapó, Chile
| | - Chris Harrod
- Universidad de Antofagasta Stable Isotope Facility, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile; Instituto de Ciencias Naturales Alexander Von Humboldt. Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile; Núcleo Milenio INVASAL, Concepción, Chile
| | - Martin Thiel
- Departamento de Biologia Marina, Facultad de Ciencias del Mar, Universidad Cátolica del Norte, Larrondo 1281, Coquimbo, Chile; Center for Ecology and Sustainable Management of Oceanic Island (ESMOI), Coquimbo, Chile; MarineGEO Program, Smithsonian Environmental Research Center, Edgewater, Maryland, USA.
| |
Collapse
|
2
|
Arcángel AE, Rodríguez EA, Saad JF, de la Barra P, Narvarte MA, Storero LP, Pereyra PJ. Same species, different population dynamics: Spatio-temporal differences of Undaria pinnatifida (Ochrophyta, Phaeophyceae) in the intertidal of North Patagonia, Argentina. JOURNAL OF PHYCOLOGY 2023; 59:1310-1322. [PMID: 37817449 DOI: 10.1111/jpy.13395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/11/2023] [Accepted: 09/19/2023] [Indexed: 10/12/2023]
Abstract
Population dynamics can be influenced by physical and biological factors, particularly in stressful environments. Introduced species usually have great physiological plasticity, resulting in populations with different traits. Undaria pinnatifida, a macroalga originally described from northeast Asia, was introduced in Northern Patagonia, Argentina (San Matías Gulf) around 2010. To describe the spatio-temporal variability in population structure and morphometry of U. pinnatifida, we conducted monthly field samplings for 2 years at the intertidal area of two contrasting sites in the San Matías Gulf. Individuals of U. pinnatifida were classified by developmental stage, and their morpho-gravimetric variables were measured. In both intertidal sites juveniles were found in higher proportion during austral autumn and grew and matured during the autumn-winter months (from May onwards), and individuals senesced during early austral summer (December and January). Conversely, density and biomass were largely different between sites, and individuals showed slight morphological variability between sites. Environmental (e.g., nutrient concentration, available substrate) and biological factors (e.g., facilitation, competition) may explain the observed differences. Since there is not a macroalga with U. pinnatifida morphometrical characteristics in the intertidal environments of San Matías Gulf, studying this recent introduction gives us a better understanding of its potential ecological effects.
Collapse
Affiliation(s)
- Andrea Evangelina Arcángel
- Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos Almirante Storni (CIMAS), San Antonio Oeste, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Escuela Superior de Ciencias Marinas-Universidad Nacional del Comahue, San Antonio Oeste, Argentina
| | - Emiliano Alexis Rodríguez
- Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos Almirante Storni (CIMAS), San Antonio Oeste, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Escuela Superior de Ciencias Marinas-Universidad Nacional del Comahue, San Antonio Oeste, Argentina
| | - Juan Francisco Saad
- Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos Almirante Storni (CIMAS), San Antonio Oeste, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Escuela Superior de Ciencias Marinas-Universidad Nacional del Comahue, San Antonio Oeste, Argentina
| | - Paula de la Barra
- Coastal Systems Department, NIOZ Royal Netherlands Institute for Sea Research, Texel, The Netherlands
| | - Maite Andrea Narvarte
- Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos Almirante Storni (CIMAS), San Antonio Oeste, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Escuela Superior de Ciencias Marinas-Universidad Nacional del Comahue, San Antonio Oeste, Argentina
| | - Lorena Pía Storero
- Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos Almirante Storni (CIMAS), San Antonio Oeste, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Escuela Superior de Ciencias Marinas-Universidad Nacional del Comahue, San Antonio Oeste, Argentina
| | - Patricio Javier Pereyra
- Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos Almirante Storni (CIMAS), San Antonio Oeste, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
3
|
Jofré Madariaga D, González MT, Días Bórquez C, Macaya EC, Harrod C, Thiel M. Successful intertidal colonization of the invasive macroalga Codium fragile near its equatorial/warm range limit in the South-East Pacific. Biol Invasions 2023. [DOI: 10.1007/s10530-023-03015-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
4
|
Rothäusler E, Dobretsov S, Gómez MF, Jofré-Madariaga D, Thiel M, Véliz K, Tala F. Effect of UV-radiation on the physiology of the invasive green seaweed Codium fragile and its associated bacteria. MARINE ENVIRONMENTAL RESEARCH 2022; 180:105708. [PMID: 35952513 DOI: 10.1016/j.marenvres.2022.105708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Invasive species such as seaweeds often have a broad tolerance, allowing them to colonize novel habitats. During invasion, also new epibacteria can be formed on seaweeds, which have important chemo-ecological effects. Since UV-radiation (UVR) is one of the main factors affecting seaweeds and their epibacteria, we tested its effect on intertidal and subtidal thalli of the invasive seaweed Codium fragile from three sites and monitored photosynthesis, antioxidant activity and epibacteria. Exposure to UV-radiation resulted in photoinhibition with a subsequent low recovery in subtidal thalli from 23°S compared to 27°S and 30°S, which both showed a higher and almost complete recovery. However, a high antioxidant activity was present in all thalli, permitting to explain its relatively high tolerance to new environments. UV-radiation modified the composition of the epibacteria community by reducing its diversity and evenness. Our results showed that C. fragile responds plastic to variable UV-radiation (depending on site and water depth), which contributes to its high invasion potential.
Collapse
Affiliation(s)
- Eva Rothäusler
- Centro de Investigaciones Costeras - Universidad de Atacama (CIC - UDA), Avenida Copayapu 485, Copiapó, Atacama, Chile
| | - Sergey Dobretsov
- Department of Marine Science and Fisheries, Sultan Qaboos University, Muscat, Oman; Center of Excellence in Marine Biotechnology, Sultan Qaboos University, Muscat, Oman
| | - María Fernanda Gómez
- Centro de Investigación y Desarrollo Tecnológico en Algas y Otros Recursos Biológicos (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | - David Jofré-Madariaga
- Programa de Doctorado en Ciencias Aplicadas mención Sistemas Marinos Costeros, Universidad de Antofagasta, Avenida Universidad de Antofagasta, 02800, Antofagasta, Chile
| | - Martin Thiel
- Departamento de Biología Marina, Universidad Católica del Norte, Coquimbo, Chile; Millennium Nucleus of Ecology and Sustainable Management of Oceanic Island (ESMOI), Coquimbo, Chile; Centro de Estudios Avanzados en Zonas Áridas, Coquimbo, Chile
| | - Karina Véliz
- Centro de Investigación y Desarrollo Tecnológico en Algas y Otros Recursos Biológicos (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | - Fadia Tala
- Centro de Investigación y Desarrollo Tecnológico en Algas y Otros Recursos Biológicos (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile; Departamento de Biología Marina, Universidad Católica del Norte, Coquimbo, Chile; Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago, Chile.
| |
Collapse
|
5
|
Wilson ER, Murphy KJ, Wyeth RC. Ecological Review of the Ciona Species Complex. THE BIOLOGICAL BULLETIN 2022; 242:153-171. [PMID: 35580029 DOI: 10.1086/719476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
AbstractThe set of four closely related solitary ascidians Ciona spp. were once considered a single cosmopolitan species, Ciona intestinalis, but are now recognized as genetically and morphologically distinct species. The possibility of ecological differences between the species was not widely considered in studies preceding the schism of Ciona spp. Consequently, there may be an over-generalization of the ecology of Ciona spp., with potential implications for the broad range of studies targeting these species, encompassing the evolution, development, genomics, and invasion biology of Ciona spp. We completed a comprehensive review of the ecology of Ciona spp. to establish the similarities and differences between the widely distributed Ciona robusta and C. intestinalis (and what little is known of the two other species, Ciona sp. C and Ciona sp. D). When necessary, we used study locations and the species' geographic ranges to infer the species in each study in the review. As expected, ecological similarities are the norm between the two species, spanning both abiotic and biotic interactions. However, there are also important differences that have potential implications for other aspects of the biology of Ciona spp. For example, differences in temperature and salinity tolerances likely correspond with the disparities in the geographic distribution of the species. Asymmetries in topics studied in each species diminish our ability to fully compare several aspects of the ecology of Ciona spp. and are priority areas for future research. We anticipate that our clarification of common and unique aspects of each species' ecology will help to provide context for future research in many aspects of the biology of Ciona spp.
Collapse
|
6
|
Zhang Z, Capinha C, Karger DN, Turon X, MacIsaac HJ, Zhan A. Impacts of climate change on geographical distributions of invasive ascidians. MARINE ENVIRONMENTAL RESEARCH 2020; 159:104993. [PMID: 32662432 DOI: 10.1016/j.marenvres.2020.104993] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Ocean warming associated with global climate change renders marine ecosystems susceptible to biological invasions. Here, we used species distribution models to project habitat suitability for eight invasive ascidians under present-day and future climate scenarios. Distance to shore and maximum sea surface temperature were identified as the most important variables affecting species distributions. Results showed that eight ascidians might respond differently to future climate change. Alarmingly, currently colonized areas are much smaller than predicted, suggesting ascidians may expand their invasive ranges. Areas such as Americas, Europe and Western Pacific have high risks of receiving new invasions. In contrast, African coasts, excluding the Mediterranean side, are not prone to new invasions, likely due to the high sea surface temperature there. Our results highlight the importance of climate change impacts on future invasions and the need for accurate modelling of invasion risks, which can be used as guides to develop management strategies.
Collapse
Affiliation(s)
- Zhixin Zhang
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan, Minato, Tokyo, 108-8477, Japan
| | - César Capinha
- Centro de Estudos Geográficos, Instituto de Geografia e Ordenamento do Território - IGOT, Universidade de Lisboa, Rua Branca Edmée Marques, 1600-276, Lisboa, Portugal
| | - Dirk N Karger
- Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
| | - Xavier Turon
- Centre for Advanced Studies of Blanes (CEAB, CSIC), Blanes, Catalonia, Spain
| | - Hugh J MacIsaac
- School of Ecology and Environmental Science, Yunnan University, Kunming, China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Melo-Merino SM, Reyes-Bonilla H, Lira-Noriega A. Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence. Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2019.108837] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Pinochet J, Rivera R, Neill PE, Brante A, Hernández CE. Spread of the non-native anemone Anemonia alicemartinae Häussermann & Försterra, 2001 along the Humboldt-current large marine ecosystem: an ecological niche model approach. PeerJ 2019; 7:e7156. [PMID: 31308996 PMCID: PMC6612420 DOI: 10.7717/peerj.7156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/20/2019] [Indexed: 12/29/2022] Open
Abstract
The geographical expansion of invasive species depends mainly on its dispersal potential, and the abiotic and biotic factors affecting it. Knowing the invasive dynamic of non-native species, as well as its behavior at different natural or anthropogenic scenarios, is fundamental for planning conservation management policies and control plans. The invasive sea anemone Anemonia alicemartinae in habits from the north (18°S) to the south-central (36°S) coast of Chile and its distribution range has expanded by approximately 1,928 km in the last 50 years. Previous works have proposed that human-mediated southward transport associated with regional-scale maritime activities could explain its rapid spread. To evaluate this hypothesis, we used ecological niche models (ENM) to evaluate the potential colonization of the southernmost area of South America. Additionally, we conducted a post hoc analysis to evaluate the relationship between the prediction of the ENM and human activity measured as the number of landings of ships in ports. The models were built based on presence records of A. alicemartinae, and oceanographic variables. Results showed that sea surface salinity and annual sea surface temperature (variance) are the best predictor variables to explain the distribution of A. alicemartinae. There was a positive and significant relationship between the geographical distribution of the sea anemone predicted by the ENM and the number of landings, as a proxy of anthropogenic activity. The most susceptible areas to invasion were those that showed the highest variability in both oceanographic predictors. These areas included the Biobío region, Chiloé´s inland sea, Aysén, and Chacabuco regions, which together comprise two biogeographical provinces. These results sustain the proposed hypothesis and, overall, the results suggest that along with the characteristics of the life history of A. alicemartinae, oceanographic conditions and maritime transport as vector contribute to the southern range expansion of this invasive cryptogenic species in the Humboldt-current large marine ecosystem.
Collapse
Affiliation(s)
- Javier Pinochet
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Chile
| | - Reinaldo Rivera
- Ecología Evolutiva y Filoinformática, Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | | | - Antonio Brante
- Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile.,Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Cristián E Hernández
- Ecología Evolutiva y Filoinformática, Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
9
|
Ibanez-Erquiaga B, Pacheco AS, Rivadeneira MM, Tejada CL. Biogeographical zonation of rocky intertidal communities along the coast of Peru (3.5-13.5° S Southeast Pacific). PLoS One 2018; 13:e0208244. [PMID: 30500855 PMCID: PMC6267975 DOI: 10.1371/journal.pone.0208244] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 11/14/2018] [Indexed: 01/25/2023] Open
Abstract
The biogeography of the Peruvian Eastern Pacific coast has been described based on oceanographic parameters and qualitative species occurrence data. This has generated disagreement about the limits and existence of different biogeographic units. In this study, the distribution of rocky-shore macrobenthic communities were recorded over 41 sites along the Peruvian coastline (3.5°S-13.5°S) and analyzed together with historic abiotic data in order to quantitatively evaluate the biogeographic zonation of rocky intertidal communities throughout the region and its relationship with environmental variables to propose an update bioregionalization. Clusters and non-metric multidimensional scaling were performed using Bray-Curtis dissimilarity matrices from abundance data to evaluate biogeographic patterns of dissimilarities of rocky-shore communities. Significant turnover of taxa among defined biogeographical units was tested using permutational multivariate dispersion. Relationships between of the biogeographical community's structure and environmental factors were examined using Random Forest analysis on datasets available at Bio-Oracle and Jet Propulsion Laboratory-California Institute of Technology. Variation of community structure of 239 taxa depicted three biogeographical units along the region matching Panamic, transitional and Humboldt provinces. Beta diversity analysis indicated a significant turnover of taxa within the transitional unit. Random forest analysis showed a strong correlation between biogeographic units with phosphate, sea surface temperature, nitrate, dissolved oxygen, cloud fraction, and silicates. Our results set the putative limits of three biogeographic units for rocky-shore communities along the coast of Peru, providing base-line information for understanding further biogeographic changes on communities associated with the ongoing regional coastal cooling and impacts of El Niño events.
Collapse
Affiliation(s)
- Bruno Ibanez-Erquiaga
- Laboratorio de Ciencias del Mar, Universidad Peruana Cayetano Heredia, Lima, Perú
- Asociación CONSERVACCION, Lima, Perú
| | - Aldo S. Pacheco
- CENSOR Laboratory, Instituto de Ciencias Naturales Alexander von Humboldt, Universidad de Antofagasta, Antofagasta, Chile
| | - Marcelo M. Rivadeneira
- Laboratorio de Paleobiología, Centro de Estudios Avanzados en Zonas Áridas, Coquimbo, Chile
- Departamento de Biología Marina, Facultad de Ciencias Biológicas, Universidad Católica del Norte, Coquimbo, Chile
- Departamento de Biología, Universidad de La Serena, La Serena, Chile
| | - Claudia L. Tejada
- Laboratorio de Ciencias del Mar, Universidad Peruana Cayetano Heredia, Lima, Perú
- Asociación CONSERVACCION, Lima, Perú
| |
Collapse
|
10
|
Ardura A, Clusa L, Zaiko A, Garcia-Vazquez E, Miralles L. Stress related epigenetic changes may explain opportunistic success in biological invasions in Antipode mussels. Sci Rep 2018; 8:10793. [PMID: 30018391 PMCID: PMC6050280 DOI: 10.1038/s41598-018-29181-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/26/2018] [Indexed: 01/02/2023] Open
Abstract
Different environmental factors could induce epigenetic changes, which are likely involved in the biological invasion process. Some of these factors are driven by humans as, for example, the pollution and deliberate or accidental introductions and others are due to natural conditions such as salinity. In this study, we have analysed the relationship between different stress factors: time in the new location, pollution and salinity with the methylation changes that could be involved in the invasive species tolerance to new environments. For this purpose, we have analysed two different mussels' species, reciprocally introduced in antipode areas: the Mediterranean blue mussel Mytilus galloprovincialis and the New Zealand pygmy mussel Xenostrobus securis, widely recognized invaders outside their native distribution ranges. The demetylathion was higher in more stressed population, supporting the idea of epigenetic is involved in plasticity process. These results can open a new management protocols, using the epigenetic signals as potential pollution monitoring tool. We could use these epigenetic marks to recognise the invasive status in a population and determine potential biopollutants.
Collapse
Affiliation(s)
- Alba Ardura
- Department of Functional Biology, University of Oviedo, C/Julian Claveria s/n, 33006, Oviedo, Spain.
| | - Laura Clusa
- Department of Functional Biology, University of Oviedo, C/Julian Claveria s/n, 33006, Oviedo, Spain
| | - Anastasija Zaiko
- Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
- Marine Research Institute, Klaipeda University, H. Manto 84, Klaipeda, 92294, Lithuania
| | - Eva Garcia-Vazquez
- Department of Functional Biology, University of Oviedo, C/Julian Claveria s/n, 33006, Oviedo, Spain
| | - Laura Miralles
- Department of Functional Biology, University of Oviedo, C/Julian Claveria s/n, 33006, Oviedo, Spain
| |
Collapse
|
11
|
Transcriptomic response to thermal and salinity stress in introduced and native sympatric Palaemon caridean shrimps. Sci Rep 2017; 7:13980. [PMID: 29070787 PMCID: PMC5656633 DOI: 10.1038/s41598-017-13631-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 09/27/2017] [Indexed: 01/25/2023] Open
Abstract
Organisms develop local adaptations to cope with spatially and temporally variable environments such as estuarine habitats, where abiotic parameters such as salinity and temperature fluctuate continuously. Studying the regulation of gene expression in a variable environment allows us to understand the underlying molecular mechanisms of these adaptations and the relative roles of the genetic and plastic response. The transcriptomes of the European native Palaemon longirostris (PL) and the introduced P. macrodactylus (PM) shrimps are described and compared after an experiment simulating summer conditions in the Guadalquivir Estuary, Spain. Specimens, collected in the Guadalquivir Estuary, were maintained at a temperature and salinity of 20 °C and 5 ppt for the control, and 30 °C and 15 ppt for the stress treatment. A large amount of differential gene expression was observed: 16,013 and 2,594 for PL and PM respectively. Functionally annotated unigenes revealed some differences, with PL seemingly having to face stronger physiological stress than PM. Thus, PM seems to have greater resistance than PL under conditions of high temperature and salinity. These results constitute a step forward in the understanding of the underlying molecular mechanisms of genetic adaptation of native invertebrates, and alien taxa that have successfully invaded estuaries in temperate regions around the world.
Collapse
|
12
|
Taking a detour: invasion of an octocoral into the Tropical Eastern Pacific. Biol Invasions 2017. [DOI: 10.1007/s10530-017-1469-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Astudillo JC, Bonebrake TC, Leung KMY. The recently introduced bivalve Xenostrobus securis has higher thermal and salinity tolerance than the native Brachidontes variabilis and established Mytilopsis sallei. MARINE POLLUTION BULLETIN 2017; 118:229-236. [PMID: 28259420 DOI: 10.1016/j.marpolbul.2017.02.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/10/2017] [Accepted: 02/15/2017] [Indexed: 06/06/2023]
Abstract
The recently introduced bivalve Xenostrobus securis and the previously introduced Mytilopsis sallei (~30years) are dominant over the native Brachidontes variabilis in estuarine fouling communities in Hong Kong. This study tested whether these introduced species have higher thermal and salinity tolerance than the native species under local subtropical seawater conditions. Survival, attachment, clearance rate and byssal thread production of these three species were examined through 96-h acute temperature and salinity tests. The results indicated that X. securis responded normally over a wide range of temperature and salinity conditions. Though M. sallei exhibited a wide salinity tolerance, its sub-lethal responses decreased in cold-seawater conditions. Brachidontes variabilis had the narrowest tolerance to temperature and salinity. These findings may explain the dominance of the non-native bivalves over B. variabilis. The high tolerance of X. securis enables them to become highly invasive in subtropical regions across Southeast Asia, impacting natural communities and shellfish farming.
Collapse
Affiliation(s)
- Juan C Astudillo
- The Swire Institute of Marine Science, Faculty of Science, The University of Hong Kong, Cape d'Aguilar Road, Shek O, Hong Kong, China; School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Timothy C Bonebrake
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science, Faculty of Science, The University of Hong Kong, Cape d'Aguilar Road, Shek O, Hong Kong, China; School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
14
|
Astudillo JC, Leung KMY, Bonebrake TC. Seasonal heterogeneity provides a niche opportunity for ascidian invasion in subtropical marine communities. MARINE ENVIRONMENTAL RESEARCH 2016; 122:1-10. [PMID: 27642109 DOI: 10.1016/j.marenvres.2016.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 09/01/2016] [Accepted: 09/04/2016] [Indexed: 06/06/2023]
Abstract
Implications of changes in environmental conditions caused by seasonality and human alterations on the recruitment of non-native species and their biotic resistance to predation are poorly understood. Here, through the use of experimental recruitment panels and predation exclusion cages, we examined 1) whether a subtropical seasonality (i.e., tropical and temperate conditions) affects the recruitment and abundance of the non-native ascidian Ciona intestinalis, the cryptogenic Styela plicata and Ascidia sydneiensis, and native Hermandia momus in fouling communities in Hong Kong, 2) whether human environmental alterations (i.e., typhoon shelters and sheltered bays with different habitat alteration and seawater quality) affect the abundance of the ascidians, and 3) whether predation reduces the abundance of ascidians under different environmental conditions caused by seasonality and human alteration. Our experimental results indicate that seasonality provides a temporal niche for the recruitment of the ascidians; C. intestinalis and S. plicata recruited mostly in winter, whereas A. sydneiensis and H. momus recruited in summer. Ciona intestinalis was the only ascidian that prospered in anthropogenically altered environments where it monopolized communities. The marked seasonal recruitment of the ascidians obscured the effect of predation between seasons, whereas human alteration did not affect predation. The recruitment of the ascidians in subtropical communities appeared to correspond to their original temperate or tropical distributions, hence Ciona intestinalis, with a temperate native distribution, benefits from a temporal niche opportunity during winter conditions. We argue that seasonality, as an important ecological factor for recruitment and community ecology dynamics, must also be considered in the context of biological invasion.
Collapse
Affiliation(s)
- Juan C Astudillo
- The Swire Institute of Marine Science, Faculty of Science, The University of Hong Kong, Cape d'Aguilar Road, Shek O, Hong Kong, China; School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science, Faculty of Science, The University of Hong Kong, Cape d'Aguilar Road, Shek O, Hong Kong, China; School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Timothy C Bonebrake
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China; Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
15
|
Drouin A, McKindsey CW, Johnson LE. Dynamics of recruitment and establishment of the invasive seaweed Codium fragile within an eelgrass habitat. MARINE BIOLOGY 2016; 163:61. [PMID: 27064481 PMCID: PMC4766232 DOI: 10.1007/s00227-016-2832-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/28/2016] [Indexed: 06/01/2023]
Abstract
Knowledge of the potential distribution (i.e. abundance and spatial extent) of an invasive species is important to estimating its potential impacts on recipient communities. Most previous studies have focused on the potential spatial extent of invasive species populations at regional scales, but little is known on how species successfully recruit and establish at more local scales. In this study, we examined how recruitment of the green alga Codium fragile ssp. fragile (hereafter Codium) can vary spatially and the environmental factors associated with Codium establishment in eelgrass (Zostera marina) beds. Standardized recruitment blocks (65 blocks in a 720 × 240 m2 grid) were used to monitor the number of Codium recruits, juveniles and adults over 2 years. Environmental factors (depth, relative water flow, light and temperature) and attributes of the surrounding macrophyte assemblage (eelgrass density, eelgrass length, Codium biomass) were also measured. Recruitment occurred on all blocks or nearby artificial structures (i.e. buoys) and mainly originated from button stages (i.e. female gametes or utricles). Contrary to other studies, the abundance of Codium (recruits, juveniles and adults) was best predicted by the density of the native canopy-forming species, Z. marina, which highlights a positive interaction between native and non-native canopy-forming species. Seasonal variation in recruitment was observed; it was lower during the summer. Recruitment did not show any distinct spatial pattern (e.g. gradient or patch), but the same spatial pattern of recruitment was observed every sampling date, suggesting that there are "hotspots" for recruitment. In general, the total number of Codium fronds observed on a block at the end of the experiment was positively correlated with the cumulative number of recruits. However, recruitment occurred on some blocks but recruits never grew, suggesting that some environmental factors limit Codium distribution and abundance in eelgrass beds. Overall, the assessment of Codium recruitment over 2 years showed that the colonization of suitable locations by Codium within seagrass beds may take several years and that some factors may not only limit, but also inhibit Codium expansion within eelgrass beds.
Collapse
Affiliation(s)
- Annick Drouin
- />Demersal and Benthic Sciences Branch, Maurice-Lamontagne Institute, Fisheries and Oceans Canada, PO Box 1000, Mont Joli, QC G5H 3Z4 Canada
- />Département de biologie et Québec-Océan, Université Laval, Quebec, QC G1V 0A6 Canada
| | - Christopher W. McKindsey
- />Demersal and Benthic Sciences Branch, Maurice-Lamontagne Institute, Fisheries and Oceans Canada, PO Box 1000, Mont Joli, QC G5H 3Z4 Canada
| | - Ladd E. Johnson
- />Département de biologie et Québec-Océan, Université Laval, Quebec, QC G1V 0A6 Canada
| |
Collapse
|
16
|
Ordóñez V, Pascual M, Fernández-Tejedor M, Turon X. When invasion biology meets taxonomy: Clavelina oblonga (Ascidiacea) is an old invader in the Mediterranean Sea. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1062-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Januario SM, Estay SA, Labra FA, Lima M. Combining environmental suitability and population abundances to evaluate the invasive potential of the tunicate Ciona intestinalis along the temperate South American coast. PeerJ 2015; 3:e1357. [PMID: 26528417 PMCID: PMC4627925 DOI: 10.7717/peerj.1357] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/07/2015] [Indexed: 11/20/2022] Open
Abstract
The tunicate Ciona intestinalis is an opportunistic invader with high potential for causing economic losses in aquaculture centers. Recent phylogenetic and population genetic analysis support the existence of a genetic complex described as C. intestinalis with two main dominant species (sp A and B) occurring worldwide. In Chile, the species has been observed around 30°S of latitude, but no official reports exist for the presence of C. intestinalis in southern regions (above 40°S), where most of the mollusk aquaculture centers are located. Here, we used occurrences from multiple invaded regions and extensive field sampling to model and validate the environmental conditions that allow the species to persist and to find the geographic areas with the most suitable environmental conditions for the spread of C. intestinalis in the Chilean coast. By studying the potential expansion of C. intestinalis southward in the Chilean Coast, we aimed to provide valuable information that might help the development of control plans before the species becomes a significant problem, especially above 40°S. Our results highlight that, by using portions of the habitat that are apparently distinguishable, the species seem to be not only genetically distinct, but ecologically distinct as well. The two regional models fitted for sp A and for sp B showed disagreement on which sections of Chilean coastline are considered more suitable for these species. While the model for sp A identifies moderately to highly suitable areas between 30° and 40°S, the model for sp B classifies the areas around 45°S as the most appropriate. Data from field sampling show a positive linear relationship between density of C. intestinalis and the index of suitability for sp A in aquaculture centers. Understanding the relation of the distinct species with the surrounding environment provided valuable insights about probable routes of dispersion in Chile, especially into those areas considered suitable for aquaculture activities but where the species has not yet been recorded. We discuss the implications of our findings as a useful tool to anticipate the invasion of such harmful invasive species with regard to the most relevant environmental variables.
Collapse
Affiliation(s)
- Stella M Januario
- Departamento Ciencias Biologicas y Químicas, Facultad de Ciencias, Universidad San Sebastián , Valdivia , Chile ; Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Sergio A Estay
- Instituto Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile , Valdivia , Chile ; Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Fabio A Labra
- Centro de Investigación e Innovación para el Cambio Climático, Facultad de Ciencias, Universidad Santo Tomas , Santiago Region Metropolitana , Chile
| | - Mauricio Lima
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago , Chile ; Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago , Chile
| |
Collapse
|