1
|
Tripathi A, Matey C, Buchmann K, Hahn C. Monogeneans on exotic Indian freshwater fish. 7. Results of a national study on ornamental fishes from 2019-2022. Parasite 2025; 32:28. [PMID: 40354521 PMCID: PMC12068787 DOI: 10.1051/parasite/2025021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/04/2025] [Indexed: 05/14/2025] Open
Abstract
This study reports the results of a nationwide parasitological survey that was conducted from 2019 to 2022 to investigate the potential introduction of monogenean parasites into India via the ornamental fish trade. A total of 619 individual exotic ornamental fish representing 27 teleost species from nine families were collected from the country's major aquaria markets and examined for monogeneans. To identify monogeneans at the species level, we employed a morphometric analysis of sclerotised structures (haptoral and reproductive hard parts), as well as a molecular analysis of nuclear 28S rRNA and ITS2 regions. Indian conditions for importing exotic ornamental fish species require a pre-quarantine certificate, quarantine treatment, and post-quarantine follow-up. Despite these restrictions, 26 monogenean species from 12 known genera were detected and identified in 17 of the 27 fishes examined. Dactylogyrus was represented by a maximum of nine species, followed by Gyrodactylus with five. Cyprinidae was the most parasitised fish family (13 species), followed by Cichlidae (three species) and Helostomatidae, Poeciliidae, and Serrasalmidae (two species each). The majority of co-transported parasite species originated from Asia (65.38%, n = 17), followed by South America (23.07%, n = 6), North and Central America (7.69%, n = 2), and Africa (3.5%, n = 1). Three fish species were identified as the first host records for monogenean parasites: Chindongo socolofi for Cichlidogyrus tilapiae Paperna, 1960, Metynnis hypsauchen for Mymarothecium sp., and Betta splendens for Heteronchocleidus sp. In general, exotic populations had fewer parasite species than in their native distribution ranges.
Collapse
Affiliation(s)
- Amit Tripathi
- Department of Zoology, University of Lucknow Uttar Pradesh 226 007 India
| | - Chawan Matey
- Department of Zoology, University of Lucknow Uttar Pradesh 226 007 India
| | - Kurt Buchmann
- Department of Veterinary and Animal Sciences, University of Copenhagen Stigbøjlen 7 DK-1870 Frederiksberg C. Denmark
| | - Christoph Hahn
- Department of Biology, University of Graz Universitätsplatz 2 A-8010 Graz Austria
| |
Collapse
|
2
|
Suwannarat N, Ribas A, Miquel J, Poonlaphdecha S. Helminth absence and invasion success of blackchin tilapia ( Sarotherodon melanotheron) in Thailand. Front Vet Sci 2025; 12:1529827. [PMID: 39989666 PMCID: PMC11842417 DOI: 10.3389/fvets.2025.1529827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/23/2025] [Indexed: 02/25/2025] Open
Abstract
Introduction This study investigates the helminth absence in the invasive blackchin tilapia (Sarotherodon melanotheron) in Thailand, testing the Enemy Release Hypothesis (ERH). The ERH suggests that invasive species thrive in new habitats due to the lack of natural parasites that control their populations in native environments. The recent introduction of S. melanotheron in Thailand has raised concerns about its ecological and economic impacts. Methods We surveyed 164 blackchin tilapia from six different locations in Chumphon Province, Thailand, including the sea, estuary, canal, and shrimp farms, examining them for helminths. Fishermen provided data on the first capture dates in the surveyed areas to determine how long the populations have been established. Results No helminths were detected in any of the examined fish. The absence of parasites was consistent across all surveyed environments, suggesting a lack of parasitic burden in the population. Discussion The absence of helminths may contribute to the successful expansion of S. melanotheron in Thailand, supporting the Enemy Release Hypothesis.
Collapse
Affiliation(s)
- Nannaphat Suwannarat
- Program in Fishery Science and Aquatic Resources, Department of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Prince of Chumphon Campus, Chumphon, Thailand
| | - Alexis Ribas
- Parasitology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Jordi Miquel
- Parasitology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Srisupaph Poonlaphdecha
- Parasitology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Becker BM, Banson I, Walker JM, Deshwal A, Brown MW, Silberman JD. Isolation of Naegleria lustrarea n. sp. (Excavata, Discoba, Heterolobosea) from the feces of Ambystoma annulatum (Ringed Salamander) in Northwest Arkansas. J Eukaryot Microbiol 2024; 71:e13031. [PMID: 38725295 DOI: 10.1111/jeu.13031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 07/17/2024]
Abstract
The salamander, Ambystoma annulatum, is considered a "species of special concern" in the state of Arkansas, USA, due to its limited geographic range, specialized habitat requirements and low population size. Although metazoan parasites have been documented in this salamander species, neither its native protists nor microbiome have yet been evaluated. This is likely due to the elusive nature and under-sampling of the animal. Here, we initiate the cataloguing of microbial associates with the identification of a new heterlobosean species, Naegleria lustrarea n. sp. (Excavata, Discoba, Heterolobosea), isolated from feces of an adult A. annulatum.
Collapse
Affiliation(s)
- Brian M Becker
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Idan Banson
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - James M Walker
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Anant Deshwal
- Department of Biology, Bradley University, Peoria, Illinois, USA
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Jeffery D Silberman
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
- Biology Center CAS, Institute of Parasitology, Ceske Budejovice, Czech Republic
| |
Collapse
|
4
|
Ebert MB, Narciso RB, Vieira Dias DHM, Osaki-Pereira MM, Jorge M, de León GPP, da Silva RJ. Parasites (Monogenea) of tilapias Oreochromis niloticus and Coptodon rendalli (Cichlidae) in a river spring in Brazil. Parasite 2024; 31:22. [PMID: 38602374 PMCID: PMC11008226 DOI: 10.1051/parasite/2024021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
In the present study, we examined 30 individuals of introduced African cichlids, Oreochromis niloticus and Coptodon rendalli, collected in a river spring of the Pardo River, Paranapanema River basin, southeastern Brazil. Based on morphological and molecular analyses of the partial LSU rDNA gene, we identified four species of monogeneans, Cichlidogyrus tilapiae, C. thurstonae, C. mbirizei, and Scutogyrus longicornis on the gills of O. niloticus, whereas individuals of C. rendalli were infested only with C. papernastrema. This is the first record of C. mbirizei and C. papernastrema in tilapias from Brazil. The ecological consequences of the introduction of exotic species of tilapia such as O. niloticus and C. rendalli along with their monogenean parasites in a wild environment represented by a river spring are discussed. Our new molecular data on Cichlidogyrus and Scutogyrus contribute to the investigation of the phylogenetic interrelationships of these widely distributed genera of monogeneans since their species composition is still unsettled.
Collapse
Affiliation(s)
- Mariana Bertholdi Ebert
- São Paulo State University (UNESP), Institute of Biosciences, Department of Biodiversity and Biostatistics, Section of Parasitology Botucatu SP Brazil
| | - Rodrigo Bravin Narciso
- São Paulo State University (UNESP), Institute of Biosciences, Department of Biodiversity and Biostatistics, Section of Parasitology Botucatu SP Brazil
| | - Diego Henrique Mirandola Vieira Dias
- São Paulo State University (UNESP), Institute of Biosciences, Department of Biodiversity and Biostatistics, Section of Parasitology Botucatu SP Brazil
| | - Melissa Miyuki Osaki-Pereira
- São Paulo State University (UNESP), Institute of Biosciences, Department of Biodiversity and Biostatistics, Section of Parasitology Botucatu SP Brazil
| | - Maurício Jorge
- São Paulo State University (UNESP), Institute of Biosciences, Department of Biodiversity and Biostatistics, Section of Parasitology Botucatu SP Brazil
| | - Gerardo Pérez-Ponce de León
- Escuela Nacional de Estudios Superiores, Unidad Mérida, Universidad Nacional Autónoma de México 97357 Ucú Yucatán Mexico
| | - Reinaldo José da Silva
- São Paulo State University (UNESP), Institute of Biosciences, Department of Biodiversity and Biostatistics, Section of Parasitology Botucatu SP Brazil
| |
Collapse
|
5
|
Dudliv I, Kvach Y, Tkachenko MY, Nazaruk K, Ondračková M. Comparative Analysis of Parasite Load on Recently Established Invasive Pumpkinseed Lepomis gibbosus (Actinopterygii: Centrarchidae) in Europe. Acta Parasitol 2024; 69:819-830. [PMID: 38429543 PMCID: PMC11001714 DOI: 10.1007/s11686-024-00794-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/12/2024] [Indexed: 03/03/2024]
Abstract
PURPOSE The aim of this study was the comparative analysis of the parasite communities of new populations of invasive pumpkinseed (Lepomis gibbosus) in western Ukraine with pumpkinseed from Czechia, where populations have rapidly expanded over the last two decades. METHODS Sampling took place at three localities in the western part of Ukraine (i.e. Dobrotvir Reservoir (Vistula basin), Burshtyn Reservoir (Dniester basin), Mynai Pond (Danube basin)) and four in Czechia (i.e. Oxbow D2, Heršpický Pond (Danube basin), and Kolín oxbow and Římov Reservoir (Elbe basin). RESULTS In total, 11 parasite taxa were recorded in Ukraine and 17 in Czechia. Four species were co-introduced from North America with their host, i.e. the myxosporean Myxobolus dechtiari, the monogeneans Onchocleidus dispar and Onchocleidus similis, and metacercariae of a trematode Posthodiplostomum centrarchi. High dominance indices were related to a high abundance of co-introduced parasites, i.e. O. similis in Mynai pond and P. centrarchi in Dobrotvir Reservoir. Overall abundance of acquired parasites was generally low. CONCLUSION This study shows that parasite communities in recently established pumpkinseed populations in the western part of Ukraine and Czechia are less diverse than those established in Europe for decades. The generally low parasite load in these new populations may play an important role in their ability to successfully establish and create strong populations by providing a competitive advantage over local species.
Collapse
Affiliation(s)
- Ivanna Dudliv
- Department of Zoology, Ivan Franko National University of Lviv, Hrushevskyi Str. 4, Lviv, 79005, Ukraine.
| | - Yuriy Kvach
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
- Institute of Marine Biology, National Academy of Sciences of Ukraine, Odesa, Ukraine
| | - Maria Yu Tkachenko
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - Kateryna Nazaruk
- Department of Zoology, Ivan Franko National University of Lviv, Hrushevskyi Str. 4, Lviv, 79005, Ukraine
| | - Markéta Ondračková
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
6
|
Míč R, Řehulková E, Šimková A, Razanabolana JR, Seifertová M. New species of Dermoergasilus Ho & Do, 1982 (Copepoda: Cyclopoida: Ergasilidae) parasitizing endemic cichlid Paretroplus polyactis (Bleeker) in Madagascar. Parasitology 2024; 151:319-336. [PMID: 38239098 PMCID: PMC11007281 DOI: 10.1017/s0031182024000088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 02/13/2024]
Abstract
Dermoergasilus madagascarensis n. sp. is described from the gills of Paretroplus polyactis, an endemic cichlid fish in Madagascar, using a combined morphological (light microscopy and SEM) and molecular approach (partial 18S rDNA, 28S rDNA, and COI sequences). The new species is characterized mainly by possessing: (i) roughly pentagonal cephalosome; (ii) antennal endopodal segments covered with slightly inflated membrane; (iii) maxillule bearing 2 equally long outer setae and a minute inner seta; (iv) interpodal sternites of swimming legs ornamented with 3–4 rows of spinules; (v) genital segment and first abdominal somite both barrel-shaped; and (vi) a caudal ramus projecting into a digitiform process with inconspicuous terminal seta and bearing 3 terminal setae. The obtained DNA sequences of Malagasy species represent the first molecular data for species of Dermoergasilus. The 28S rDNA phylogeny showed the affiliation of D. madagascarensis n. sp. to Ergasilidae and its sister relationship with cosmopolitan Ergasilus sieboldi von Nordmann, 1832. The first checklist for all species of Dermoergasilus is provided.
Collapse
Affiliation(s)
- Robert Míč
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Eva Řehulková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Andrea Šimková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Jeanne Rasamy Razanabolana
- Department of Animal Biology, Faculty of Science, University of Antananarivo, BP 906 Antananarivo 101, Madagascar
| | - Mária Seifertová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| |
Collapse
|
7
|
Geraerts M, Huyse T, Barson M, Bassirou H, Bilong Bilong CF, Bitja Nyom AR, Manda AC, Cruz-Laufer AJ, Kabalika CK, Kasembele GK, Bukinga FM, Njom S, Van Steenberge M, Artois T, Vanhove MPM. Sharing is caring? Barcoding suggests co-introduction of dactylogyrid monogeneans with Nile tilapia and transfer towards native tilapias in sub-Saharan Africa. Int J Parasitol 2023; 53:711-730. [PMID: 37414208 DOI: 10.1016/j.ijpara.2023.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 07/08/2023]
Abstract
Invasive Nile tilapias negatively impact native tilapia species through hybridisation and competition. However, the co-introduction of parasites with Nile tilapia, and subsequent changes in parasite communities, are scarcely documented. Monogeneans are known pathogens of cultured Nile tilapia, although little is known about their fate once Nile tilapias establish in new ecosystems. We investigate the parasitological consequences of Nile tilapia introduction on native tilapias in basins in Cameroon, the Democratic Republic of the Congo (DRC), and Zimbabwe, focusing on ectoparasitic dactylogyrids (Monogenea). Using the mitochondrial cytochrome oxidase c subunit I (COI) and nuclear 18S-internal transcribed spacer 1 (18S-ITS1) rDNA region of 128 and 166 worms, respectively, we evaluated transmission of several dactylogyrid species. Parasite spillover from Nile tilapia was detected for Cichlidogyrus tilapiae to Coptodon guineensis in Cameroon, Cichlidogyrus thurstonae to Oreochromis macrochir in the DRC, and Cichlidogyrus halli and C. tilapiae to Coptodon rendalli in Zimbabwe. Parasite spillback to Nile tilapia was detected for Cichlidogyrus papernastrema and Scutogyrus gravivaginus from Tilapia sparrmanii and Cichlidogyrus dossoui from C. rendalli or T. sparrmanii in the DRC, and Cichlidogyrus chloeae from Oreochromis cf. mortimeri and S. gravivaginus from O. macrochir in Zimbabwe. 'Hidden' transmissions (i.e. transmission of certain parasite lineages of species that are naturally present on both alien and native hosts) were detected for C. tilapiae and Scutogyrus longicornis between Nile tilapia and Oreochromis aureus and C. tilapiae between Nile tilapia and Oreochromis mweruensis in the DRC, and Cichlidogyrus sclerosus and C. tilapiae between Nile tilapia and O. cf. mortimeri in Zimbabwe. A high density of Nile tilapia occurring together with native tilapias, and the broad host range and/or environmental tolerance of the transmitted parasites, are proposed as factors behind parasite transmission through ecological fitting. However, continuous monitoring and the inclusion of environmental variables are necessary to understand the long-term consequences of these transmissions on native tilapias and to elucidate other underlying factors influencing these transmissions.
Collapse
Affiliation(s)
- Mare Geraerts
- UHasselt - Hasselt University, Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Diepenbeek, Belgium.
| | - Tine Huyse
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium; Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Maxwell Barson
- Department of Biological Sciences, University of Zimbabwe, Harare, Zimbabwe; Department of Biological Sciences, University of Botswana, Gaborone, Botswana; Lake Kariba Research Station, University of Zimbabwe, Kariba, Zimbabwe
| | - Hassan Bassirou
- Department of Biological Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | | | - Arnold R Bitja Nyom
- Department of Biological Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon; Department of Management of Fisheries and Aquatic Ecosystems, Institute of Fisheries, University of Douala, Douala, Cameroon
| | - Auguste Chocha Manda
- Unité de Recherche en Biodiversité et Exploitation durable des Zones Humides (BEZHU), Faculté des Sciences Agronomiques, Université de Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Armando J Cruz-Laufer
- UHasselt - Hasselt University, Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Diepenbeek, Belgium
| | - Clément Kalombo Kabalika
- Unité de Recherche en Biodiversité et Exploitation durable des Zones Humides (BEZHU), Faculté des Sciences Agronomiques, Université de Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Gyrhaiss Kapepula Kasembele
- Unité de Recherche en Biodiversité et Exploitation durable des Zones Humides (BEZHU), Faculté des Sciences Agronomiques, Université de Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Fidel Muterezi Bukinga
- Section de Parasitologie, Département de Biologie, Centre de Recherche en Hydrobiologie, Uvira, Democratic Republic of the Congo
| | - Samuel Njom
- Department of Biological Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Maarten Van Steenberge
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium; Vertebrate Section, OD Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Tom Artois
- UHasselt - Hasselt University, Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Diepenbeek, Belgium
| | - Maarten P M Vanhove
- UHasselt - Hasselt University, Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Diepenbeek, Belgium; Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Rahmouni C, Seifertová M, Šimková A. Revealing the hidden diversity of Gyrodactylus communities (Monogenea, Gyrodactylidae) from Nearctic Catostomidae and Leuciscidae fish hosts (Teleostei, Cypriniformes), with descriptions of ten new species. Parasite 2023; 30:40. [PMID: 37768077 PMCID: PMC10537664 DOI: 10.1051/parasite/2023035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Despite the high diversity of freshwater fishes in the Nearctic region, little is known about the composition of their parasite communities. We addressed the diversity of viviparous monogeneans of Gyrodactylus parasitizing highly diversified cypriniform fish inhabiting Nearctic watersheds. Nowadays, a thorough assessment of Gyrodactylus spp. diversity requires both morphological traits and genetic data. A combination of taxonomically important haptoral features and sequences of the ITS regions and 18S rDNA revealed 25 Gyrodactylus spp. parasitizing two catostomid and 15 leuciscid species sampled in six distinct localities in the United States and Canada. These include ten Gyrodactylus species recognized as new to science and described herein (G. ellae n. sp., G. hamdii n. sp., G. hanseni n. sp., G. huyseae n. sp., G. kuchtai n. sp., G. lummei n. sp., G. mendeli n. sp., G. prikrylovae n. sp., G. scholzi n. sp., and G. steineri n. sp.), seven already known species, and finally eight undescribed species. Overall, Nearctic Gyrodactylus spp. exhibited haptoral morphotypes known from fish hosts worldwide and those apparently restricted to Nearctic Gyrodactylus lineages like the typical ventral bar with a median knob and a plate-like membrane, or the additional filament attached to the handles of marginal hooks. The integrative approach further evidenced possible ongoing gene flow, host-switching in generalist Gyrodactylus spp., and regional translocation of monogenean fauna through fish introductions. The study highlights the hitherto underexplored morphological and genetic diversity of viviparous monogeneans throughout the Nearctic region.
Collapse
Affiliation(s)
- Chahrazed Rahmouni
- Department of Botany and Zoology, Faculty of Science, Masaryk University Kotlářská 2 611 37 Brno Czech Republic
| | - Mária Seifertová
- Department of Botany and Zoology, Faculty of Science, Masaryk University Kotlářská 2 611 37 Brno Czech Republic
| | - Andrea Šimková
- Department of Botany and Zoology, Faculty of Science, Masaryk University Kotlářská 2 611 37 Brno Czech Republic
| |
Collapse
|
9
|
Moons T, Kmentová N, Pariselle A, Artois T, Bert W, Vanhove MP, Cruz-Laufer AJ. All quiet on the western front? The evolutionary history of monogeneans (Dactylogyridae: Cichlidogyrus, Onchobdella) infecting a West and Central African tribe of cichlid fishes (Chromidotilapiini). Parasite 2023; 30:25. [PMID: 37404116 PMCID: PMC10321234 DOI: 10.1051/parasite/2023023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/21/2023] [Indexed: 07/06/2023] Open
Abstract
Owing to the largely unexplored diversity of metazoan parasites, their speciation mechanisms and the circumstances under which such speciation occurs - in allopatry or sympatry - remain vastly understudied. Cichlids and their monogenean flatworm parasites have previously served as a study system for macroevolutionary processes, e.g., for the role of East African host radiations on parasite communities. Here, we investigate the diversity and evolution of the poorly explored monogeneans infecting a West and Central African lineage of cichlid fishes: Chromidotilapiini, which is the most species-rich tribe of cichlids in this region. We screened gills of 149 host specimens (27 species) from natural history collections and measured systematically informative characters of the sclerotised attachment and reproductive organs of the parasites. Ten monogenean species (Dactylogyridae: Cichlidogyrus and Onchobdella) were found, eight of which are newly described and one redescribed herein. The phylogenetic positions of chromidotilapiines-infecting species of Cichlidogyrus were inferred through a parsimony analysis of the morphological characters. Furthermore, we employed machine learning algorithms to detect morphological features associated with the main lineages of Cichlidogyrus. Although the results of these experimental algorithms remain inconclusive, the parsimony analysis indicates that West and Central African lineages of Cichlidogyrus and Onchobdella are monophyletic, unlike the paraphyletic host lineages. Several instances of host sharing suggest occurrences of intra-host speciation (sympatry) and host switching (allopatry). Some morphological variation was recorded that may also indicate the presence of species complexes. We conclude that collection material can provide important insights on parasite evolution despite the lack of well-preserved DNA material.
Collapse
Affiliation(s)
- Tanisha Moons
- UHasselt – Hasselt University, Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Agoralaan Gebouw D 3590 Diepenbeek Belgium
- Nematology Research Unit, Department of Biology, Ghent University K.L. Ledeganckstraat 35 9000 Ghent Belgium
- Department of Parasitology, Faculty of Science, University of South Bohemia České Budějovice 37005 Czech Republic
| | - Nikol Kmentová
- UHasselt – Hasselt University, Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Agoralaan Gebouw D 3590 Diepenbeek Belgium
| | - Antoine Pariselle
- ISEM, Université de Montpellier, CNRS, IRD 34095 Montpellier France
- Faculty of Sciences, Laboratory “Biodiversity, Ecology and Genome”, Research Centre “Plant and Microbial Biotechnology, Biodiversity and Environment”, Mohammed V University 10000 Rabat Morocco
| | - Tom Artois
- UHasselt – Hasselt University, Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Agoralaan Gebouw D 3590 Diepenbeek Belgium
| | - Wim Bert
- Nematology Research Unit, Department of Biology, Ghent University K.L. Ledeganckstraat 35 9000 Ghent Belgium
| | - Maarten P.M. Vanhove
- UHasselt – Hasselt University, Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Agoralaan Gebouw D 3590 Diepenbeek Belgium
| | - Armando J. Cruz-Laufer
- UHasselt – Hasselt University, Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Agoralaan Gebouw D 3590 Diepenbeek Belgium
| |
Collapse
|
10
|
Scholz T, Kuchta R. Fish tapeworms (Cestoda) in the molecular era: achievements, gaps and prospects. Parasitology 2022; 149:1876-1893. [PMID: 36004800 PMCID: PMC11010522 DOI: 10.1017/s0031182022001202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 12/29/2022]
Abstract
The tapeworms of fishes (Chondrichthyes and Actinopterygii) account one-third (1670 from around 5000) of the total tapeworm (Platyhelminthes: Cestoda) species diversity. In total 1186 species from 9 orders occur as adults in elasmobranchs (sharks, rays and chimaeras), and 484 species from 8 orders mature in ray-finned fishes (referred to here as teleosts). Teleost tapeworms are dominated by freshwater species (78%), but only 3% of elasmobranch tapeworms are known from freshwater rays of South America and Asia (Borneo). In the last 2 decades, vast progress has been made in understanding species diversity, host associations and interrelationships among fish tapeworms. In total, 172 new species have been described since 2017 (149 from elasmobranchs and 23 from teleosts; invalidly described taxa are not included, especially those from the Oriental region). Molecular data, however, largely limited to a few molecular markers (mainly 28S rDNA, but also 18S and cox1), are available for about 40% of fish tapeworm species. They allowed us to significantly improve our understanding of their interrelationships, including proposals of a new, more natural classification at the higher-taxonomy level (orders and families) as well as at the lower-taxonomy level (genera). In this review, we summarize the main advances and provide perspectives for future research.
Collapse
Affiliation(s)
- Tomáš Scholz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Roman Kuchta
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
11
|
Thys KJM, Vanhove MPM, Custers JWJ, Vranken N, Van Steenberge M, Kmentová N. Co-introduction of Dolicirroplectanum lacustre, a monogenean gill parasite of the invasive Nile perch Lates niloticus: intraspecific diversification and mitonuclear discordance in native versus introduced areas. Int J Parasitol 2022; 52:775-786. [PMID: 36228748 DOI: 10.1016/j.ijpara.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/05/2022]
Abstract
The Nile perch (Lates niloticus) is a notorious invasive species. The introductions of Nile perch into several lakes and rivers in the Lake Victoria region led to the impoverishment of trophic food webs, particularly well documented in Lake Victoria. Additionally, its parasites were co-introduced, including Dolicirroplectanum lacustre (Monogenea, Diplectanidae). Dolicirroplectanum lacustre is the single monogenean gill parasite of latid fishes (Lates spp.) inhabiting several major African freshwater systems. We examined the intra-specific diversification of D. lacustre from Lates niloticus in Lake Albert, Uganda (native range) and Lake Victoria (introduced range) by assessing morphological and genetic differentiation, and microhabitat preference. We expected reduced morphological and genetic diversity for D. lacustre in Lake Victoria compared with Lake Albert, as a result of the historical introductions. We found that D. lacustre displayed high morphological variability within and between African freshwaters, with two morphotypes identified, as in former studies. The single shared morphotype between Lake Albert and Lake Victoria displayed similar levels of haplotype and nucleotide diversity between the lakes. Mitonuclear discordance within the morphotypes of D. lacustre indicates an incomplete reproductive barrier between the morphotypes. The diversification in the mitochondrial gene portion is directly linked with the morphotypes, while the nuclear gene portions indicate conspecificity. Based on our results, we reported reduced genetic and morphological diversity, potentially being a result of a founder effect in Lake Victoria.
Collapse
Affiliation(s)
- Kelly J M Thys
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium.
| | - Maarten P M Vanhove
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium
| | - Jonas W J Custers
- Utrecht University, Department of Biology, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Nathan Vranken
- KU Leuven, Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, Charles Deberiotstraat 32, 3000 Leuven, Belgium; Royal Museum for Central Africa, Biology Department, Section Vertebrates, Leuvensesteenweg 13, 3080 Tervuren, Belgium
| | - Maarten Van Steenberge
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium; Operational Directorate Taxonomy and Phylogeny, Royal Belgian Institute for Natural Sciences, Vautierstraat 29, B-1000 Brussels, Belgium
| | - Nikol Kmentová
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium
| |
Collapse
|
12
|
|
13
|
Geraerts M, Huyse T, Barson M, Bassirou H, Bilong Bilong CF, Bitja Nyom AR, Chocha Manda A, Cruz-Laufer AJ, Kalombo Kabalika C, Kapepula Kasembele G, Muterezi Bukinga F, Njom S, Artois T, Vanhove MPM. Mosaic or melting pot: The use of monogeneans as a biological tag and magnifying glass to discriminate introduced populations of Nile tilapia in sub-Saharan Africa. Genomics 2022; 114:110328. [PMID: 35276332 DOI: 10.1016/j.ygeno.2022.110328] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 02/10/2022] [Accepted: 03/06/2022] [Indexed: 01/14/2023]
Abstract
The origin of introduced Nile tilapia stocks in sub-Saharan Africa is largely unknown. In this study, the potential of monogeneans as a biological tag and magnifying glass is tested to reveal their hosts' stocking history. The monogenean gill community of different Nile tilapia populations in sub-Saharan Africa was explored, and a phylogeographic analysis was performed based on the mitogenomes of four dactylogyrid species (Cichlidogyrus halli, C. sclerosus, C. thurstonae, and Scutogyrus longicornis). Our results encourage the use of dactylogyrids as biological tags. The magnifying glass hypothesis is only confirmed for C. thurstonae, highlighting the importance of the absence of other potential hosts as prerequisites for a parasite to act as a magnifying glass. With the data generated here, we are the first to extract mitogenomes from individual monogeneans and to perform an upscaled survey of the comparative phylogeography of several monogenean species with unprecedented diagnostic resolution.
Collapse
Affiliation(s)
- Mare Geraerts
- UHasselt - Hasselt University, Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Diepenbeek, Belgium.
| | - Tine Huyse
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium
| | - Maxwell Barson
- Department of Biological Sciences, University of Zimbabwe, Harare, Zimbabwe; Department of Biological Sciences, University of Botswana, Gaborone, Botswana; Lake Kariba Research Station, University of Zimbabwe, Kariba, Zimbabwe
| | - Hassan Bassirou
- Department of Biological Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | | | - Arnold R Bitja Nyom
- Department of Biological Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon; Department of Management of Fisheries and Aquatic Ecosystems, Institute of Fisheries, University of Douala, Douala, Cameroon
| | - Auguste Chocha Manda
- Unité de Recherche en Biodiversité et Exploitation durable des Zones Humides (BEZHU), Faculté des Sciences Agronomiques, Université de Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Armando J Cruz-Laufer
- UHasselt - Hasselt University, Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Diepenbeek, Belgium
| | - Clément Kalombo Kabalika
- Unité de Recherche en Biodiversité et Exploitation durable des Zones Humides (BEZHU), Faculté des Sciences Agronomiques, Université de Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Gyrhaiss Kapepula Kasembele
- Unité de Recherche en Biodiversité et Exploitation durable des Zones Humides (BEZHU), Faculté des Sciences Agronomiques, Université de Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Fidel Muterezi Bukinga
- Section de Parasitologie, Département de Biologie, Centre de Recherche en Hydrobiologie, Uvira, Democratic Republic of the Congo
| | - Samuel Njom
- Department of Biological Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Tom Artois
- UHasselt - Hasselt University, Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Diepenbeek, Belgium
| | - Maarten P M Vanhove
- UHasselt - Hasselt University, Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Diepenbeek, Belgium; Zoology Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Cruz-Laufer AJ, Pariselle A, Jorissen MWP, Muterezi Bukinga F, Al Assadi A, Van Steenberge M, Koblmüller S, Sturmbauer C, Smeets K, Huyse T, Artois T, Vanhove MPM. Somewhere I belong: phylogeny and morphological evolution in a species-rich lineage of ectoparasitic flatworms infecting cichlid fishes. Cladistics 2022; 38:465-512. [PMID: 35488795 DOI: 10.1111/cla.12506] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
A substantial portion of biodiversity has evolved through adaptive radiation. However, the effects of explosive speciation on species interactions remain poorly understood. Metazoan parasites infecting radiating host lineages could improve our knowledge because of their intimate host relationships. Yet limited molecular, phenotypic and ecological data discourage multivariate analyses of evolutionary patterns and encourage the use of discrete characters. Here, we assemble new molecular, morphological and host range data widely inferred from a species-rich lineage of parasites (Cichlidogyrus, Platyhelminthes: Monogenea) infecting cichlid fishes to address data scarcity. We infer a multimarker (28S/18S rDNA, ITS1, COI mtDNA) phylogeny of 58 of 137 species and characterize major lineages through synapomorphies inferred from mapping morphological characters. We predict the phylogenetic position of species without DNA data through shared character states, a morphological phylogenetic analysis, and a classification analysis with support vector machines. Based on these predictions and a cluster analysis, we assess the systematic informativeness of continuous characters, search for continuous equivalents for discrete characters, and suggest new characters for morphological traits not analysed to date. We also model the attachment/reproductive organ and host range evolution using the data for 136 of 137 described species and multivariate phylogenetic comparative methods (PCMs). We show that discrete characters not only can mask phylogenetic signals, but also are key for characterizing species groups. Regarding the attachment organ morphology, a divergent evolutionary regime for at least one lineage was detected and a limited morphological variation indicates host and environmental parameters affecting its evolution. However, moderate success in predicting phylogenetic positions, and a low systematic informativeness and high multicollinearity of morphological characters call for a revaluation of characters included in species characterizations.
Collapse
Affiliation(s)
- Armando J Cruz-Laufer
- Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Agoralaan Gebouw D, Diepenbeek, 3590, Belgium
| | - Antoine Pariselle
- ISEM, Université de Montpellier, CNRS, IRD, Montpellier, France.,Faculty of Sciences, Laboratory "Biodiversity, Ecology and Genome", Research Centre "Plant and Microbial Biotechnology, Biodiversity and Environment", Mohammed V University, Rabat, Morocco
| | - Michiel W P Jorissen
- Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Agoralaan Gebouw D, Diepenbeek, 3590, Belgium.,Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium
| | - Fidel Muterezi Bukinga
- Section de Parasitologie, Département de Biologie, Centre de Recherche en Hydrobiologie, Uvira, Democratic Republic of the Congo
| | - Anwar Al Assadi
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Nobelstraße 12, Stuttgart, 70569, Germany
| | - Maarten Van Steenberge
- Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Charles Deberiotstraat 32, Leuven, B-3000, Belgium.,Operational Directorate Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, Brussels, B-1000, Belgium
| | - Stephan Koblmüller
- Institute of Biology, University of Graz, Universitätsplatz 2, Graz, 8010, Austria
| | - Christian Sturmbauer
- Institute of Biology, University of Graz, Universitätsplatz 2, Graz, 8010, Austria
| | - Karen Smeets
- Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Agoralaan Gebouw D, Diepenbeek, 3590, Belgium
| | - Tine Huyse
- Section de Parasitologie, Département de Biologie, Centre de Recherche en Hydrobiologie, Uvira, Democratic Republic of the Congo.,Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Charles Deberiotstraat 32, Leuven, B-3000, Belgium
| | - Tom Artois
- Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Agoralaan Gebouw D, Diepenbeek, 3590, Belgium
| | - Maarten P M Vanhove
- Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Agoralaan Gebouw D, Diepenbeek, 3590, Belgium.,Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Charles Deberiotstraat 32, Leuven, B-3000, Belgium
| |
Collapse
|
15
|
Rahmouni C, Vanhove MP, Koblmüller S, Šimková A. Molecular phylogeny and speciation patterns in host-specific monogeneans (Cichlidogyrus, Dactylogyridae) parasitizing cichlid fishes (Cichliformes, Cichlidae) in lake tanganyika. Int J Parasitol 2022; 52:359-375. [DOI: 10.1016/j.ijpara.2021.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 12/01/2022]
|
16
|
Helminth fauna of the Eurasian beaver in the Czech Republic with remarks on the genetic diversity of specialist Stichorchis subtriquetrus (Digenea: Cladorchiidae). Parasitol Res 2022; 121:633-644. [PMID: 35076776 DOI: 10.1007/s00436-021-07379-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
Eurasian beaver (Castor fiber) is a well-established faunal element in the Czech Republic, even though, historically, its populations were almost eradicated in this region. Nowadays, its distribution and population density are well monitored; nonetheless, the beaver's parasites, as potential threats to the environment, are often neglected in wildlife management. Therefore, we investigated the endoparasitic helminth diversity of 15 beaver individuals from three collection sites in the Czech Republic. Three parasite species were collected: Stichorchis subtriquetrus (Digenea), Travassosius rufus, and Calodium hepaticum (Nematoda), of which the two nematode species were reported for the first time from C. fiber in the Czech Republic. The highest prevalence and intensity of infection were observed in S. subtriquetrus (P = 93%, I = 1-138), while the two other species were collected only from one beaver individual. Subsequent analysis of the genetic diversity of the specimens using highly variable genetic markers revealed a weak population structure among the individuals collected from different beaver hosts. There was only a weak association of COI haplotypes with geography, as the haplotypes from the Berounka basin formed homogeneous groups, and individuals from the Dyje basin and Morava partially shared a haplotype. Even though common population genetic markers (i.e., microsatellites) did not reveal any structure in the hosts, our results suggest that the genetic diversity of their parasites may shed more light on population partition and the historical migration routes of Eurasian beavers.
Collapse
|
17
|
García-Vásquez A, Pinacho-Pinacho CD, Guzmán-Valdivieso I, Calixto-Rojas M, Rubio-Godoy M. Morpho-molecular characterization of Gyrodactylus parasites of farmed tilapia and their spillover to native fishes in Mexico. Sci Rep 2021; 11:13957. [PMID: 34230589 PMCID: PMC8260806 DOI: 10.1038/s41598-021-93472-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/25/2021] [Indexed: 11/30/2022] Open
Abstract
Translocation of fishes for aquaculture has resulted in the co-introduction of some of their parasites. African cichlid fishes, generically called “tilapias” have been introduced worldwide, along with their monogenean parasites. In a nation-wide survey, we characterised monogeneans of the genus Gyrodactylus infecting farmed “tilapia” throughout Mexico. We also collected native fishes around farms, to look for potential parasite spillover from cultured fishes. Monogeneans were identified taxonomically using morphological and molecular characters. Originally African, pathogenic Gyrodactylus cichlidarum was recorded in every farm surveyed, infecting different “tilapia” varieties, as well as three native cichlid fish species. Previously, we had shown that G. cichlidarum also infects native, non-cichlid fishes in Mexico. We also recorded that Gyrodactylus yacatli is widely distributed in Mexico, infecting cultured “tilapia” and native fishes; and present data indicating that this is a further translocated African parasite. A third, unidentified gyrodactylid infected farmed and native fishes in Chiapas, southern Mexico; we describe the new species as Gyrodactylus shinni n. sp., and provide evidence that this is a third monogenean translocated with African fish. The wide distribution of exotic parasites co-introduced with “tilapia” and their spillover to native fishes may have an important impact on the ichthyofauna in Mexico, one the world’s megadiverse countries.
Collapse
Affiliation(s)
- Adriana García-Vásquez
- Instituto de Ecología, A.C., Red de Biología Evolutiva, Carretera antigua a Coatepec 351, 91073, Xalapa, Veracruz, Mexico
| | - Carlos Daniel Pinacho-Pinacho
- Investigador Cátedras CONACyT, Instituto de Ecología, A.C., Red de Estudios Moleculares Avanzados, Carretera antigua a Coatepec 351, 91073, Xalapa, Veracruz, Mexico
| | - Ismael Guzmán-Valdivieso
- Instituto de Ecología, A.C., Red de Biología Evolutiva, Carretera antigua a Coatepec 351, 91073, Xalapa, Veracruz, Mexico
| | - Miguel Calixto-Rojas
- Instituto de Ecología, A.C., Red de Biología Evolutiva, Carretera antigua a Coatepec 351, 91073, Xalapa, Veracruz, Mexico
| | - Miguel Rubio-Godoy
- Instituto de Ecología, A.C., Red de Biología Evolutiva, Carretera antigua a Coatepec 351, 91073, Xalapa, Veracruz, Mexico.
| |
Collapse
|
18
|
Helminth communities of endemic cyprinoids of the Apennine Peninsula, with remarks on ectoparasitic monogeneans, and a description of four new Dactylogyrus Diesing, 1850 species. Parasitology 2021; 148:1003-1018. [PMID: 33843503 PMCID: PMC10090784 DOI: 10.1017/s0031182021000615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The fauna of the Apennine Peninsula is, in comparison to other southern European peninsulas, relatively species-poor regarding the number of endemic cyprinoid species. Nonetheless, the recent introduction of non-native species has significantly increased the total number of freshwater species in this region. Such invasive species may represent a threat to the native fauna, associated among other things with the introduction of non-native parasites with their original hosts.In the present study, we investigated endemic cyprinoid species for the presence of helminth parasites. A total of 36 ectoparasitic monogenean species and five endoparasitic helminth species were collected from ten cyprinoid species in five localities in northern Italy. Out of 20 Dactylogyrus species (gill monogeneans specific to cyprinoids), four were identified as new to science and herein described: Dactylogyrus opertus n. sp. and Dactylogyrus sagittarius n. sp. from Telestes muticellus, Dactylogyrus conchatus n. sp. from T. muticellus and Protochondrostoma genei, and Dactylogyrus globulatus n. sp. from Chondrostoma soetta. All new Dactylogyrus species appear to be endemic to the Apennine Peninsula; however, they share a common evolutionary history with the endemic Dactylogyrus parasitizing cyprinoids of the Balkans. This common origin of cyprinoid-specific parasites supports a historical connection between these two (currently separated) geographical regions.
Collapse
|
19
|
Evidence for enemy release in invasive common dace Leuciscus leuciscus in Ireland: a helminth community survey and systematic review. J Helminthol 2020; 94:e191. [PMID: 32924909 DOI: 10.1017/s0022149x20000759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Invasive species lose parasites in the process of invasion and tend to be less parasitized than conspecifics in the native range and sympatric native species in the invasive range (enemy release). We evaluated enemy release in an invasive freshwater fish in Ireland, common dace Leuciscus leuciscus, using helminth parasite community surveys at the core and front of the invasive range of common dace. Furthermore, we undertook a systematic literature review of helminth infection in common dace across its native range in Great Britain and Europe and invasive range in Ireland. The helminth parasite community survey revealed that invasive common dace were infected with fewer helminth species at the invasion front than at the core. Four helminth taxa - Acanthocephala, Monogenea, Digenea and Nematoda - were present in dace at the invasion core compared to only a single helminth species (Pomphorhynchus tereticollis) at the front. The systematic review revealed that invasive common dace in Ireland hosted fewer species of helminths than common dace in the native range. We report a total of three helminth species in common dace in Ireland compared to 24 in Great Britain and 84 in Continental Europe. Our results support the hypotheses that invasive populations are less parasitized than native populations and that more recently established populations host fewer parasites. However, we demonstrate that invasive species may continue to experience release from parasites long after initial invasion.
Collapse
|
20
|
Kuchta R, Řehulková E, Francová K, Scholz T, Morand S, Šimková A. Diversity of monogeneans and tapeworms in cypriniform fishes across two continents. Int J Parasitol 2020; 50:771-786. [PMID: 32687912 DOI: 10.1016/j.ijpara.2020.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 11/29/2022]
Abstract
Cypriniformes, which exhibit a wide geographical distribution, are the most species-rich group of freshwater fishes. Despite considerable research on their parasites, no reliable estimates of their parasite diversity on a large geographical scale are available. In the present review, we analyse species richness of two parasitic flatworm groups (monogeneans and tapeworms) reported from cypriniform fishes in the two most intensively studied parts of the Holarctic region, Europe and North America. We also review knowledge on parasite speciation and host-parasite coevolution, and emphasise the risk of parasite co-introduction resulting from transfers of cypriniforms among different continents. As parasite diversity in European cypriniforms has been more intensively explored, we predicted a lower level of knowledge on parasite diversity in North American fishes, despite North America having a higher diversity of cypriniforms than Europe. Our data revealed a higher mean species richness of monogeneans and tapeworms per cypriniform species in Europe compared with North America. We showed that species richness of both parasite taxa in both continents is strongly affected by sample size, but that fish traits also play an important role in determining monogenean and tapeworm species richness in European cyprinoids. We recorded higher host specificity for cypriniform parasites in North America, even within parasite genera shared by cypriniforms on both continents. The host range of monogeneans parasitising cyprinoids on both continents was affected by phylogeny, indicating an effect of parasite life history on host specificity. The difference in parasite host range between the two continents could potentially be explained by either the low overall level of sampling activity in North America or an underestimation of parasite diversity in Europe. We suggest that future research efforts be focussed on cypriniforms in order to obtain reliable data for robust assessments of parasite species richness and phylogenies, to assess host-parasite coevolution and to reveal fish biogeography.
Collapse
Affiliation(s)
- Roman Kuchta
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Eva Řehulková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Kateřina Francová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Tomáš Scholz
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Serge Morand
- CNRS ISEM - CIRAD ASTRE, Montpellier University, Montpellier, France; Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | - Andrea Šimková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| |
Collapse
|
21
|
Historical museum collections help detect parasite species jumps after tilapia introductions in the Congo Basin. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02288-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Geraerts M, Muterezi Bukinga F, Vanhove MPM, Pariselle A, Chocha Manda A, Vreven E, Huyse T, Artois T. Six new species of Cichlidogyrus Paperna, 1960 (Platyhelminthes: Monogenea) from the gills of cichlids (Teleostei: Cichliformes) from the Lomami River Basin (DRC: Middle Congo). Parasit Vectors 2020; 13:187. [PMID: 32272977 PMCID: PMC7147007 DOI: 10.1186/s13071-020-3927-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 02/01/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Monogenea van Beneden, 1858 is a group of parasitic flatworms, commonly found infecting bony fish. Several genera, such as Cichlidogyrus Paperna, 1960, are reported to include potential pathogenic species that can negatively impact aquaculture fish stocks. They can switch from introduced to native fish and vice versa. In Africa (and all over the world), fish species belonging to Cichlidae are often kept in aquaculture and represent a major source of food. Thus, research on the biodiversity and occurrence of monogenean species on these fish is of importance for aquaculture and conservation. The present study is a survey of the diversity of species of Cichlidogyrus in the south of the Democratic Republic of the Congo (DRC) on three cichlid species: Orthochromis sp. 'Lomami', Serranochromis cf. macrocephalus, and Tilapia sparrmanii Smith, 1840. METHODS Specimens of Cichlidogyrus were isolated from the gills and mounted on glass slides with Hoyer's medium. The genital and haptoral hard parts were measured and drawn using interference contrast. RESULTS In total, six species of Cichlidogyrus were found, all new to science: C. bulbophallus n. sp. and C. pseudozambezensis n. sp. on S. cf. macrocephalus, C. flagellum n. sp. and C. lobus n. sp. on T. sparrmanii, C. ranula n. sp. on S. cf. macrocephalus and Orthochromis sp. 'Lomami', and C. maeander n. sp. found on Orthochromis sp. 'Lomami' and T. sparrmanii. The first four species are considered to be strict specialists, C. ranula n. sp. an intermediate generalist and C. maeander n. sp. a generalist. These parasite species show morphological similarities to species found in the Lower Guinea and Zambezi ichthyofaunal provinces, which might be explained by past river capture events between river systems of the Congo Province and both these regions. CONCLUSIONS Serranochromis cf. macrocephalus and Orthochromis sp. 'Lomami' can harbour respectively three and two species of Cichlidogyrus, all described in this study. Tilapia sparrmanii can harbour seven species, of which three are described in the present study. These results highlight the species diversity of this parasite genus in the Congo Basin.
Collapse
Affiliation(s)
- Mare Geraerts
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Fidel Muterezi Bukinga
- Section de Parasitologie, Département de Biologie, Centre de Recherche en Hydrobiologie, Uvira, Democratic Republic of the Congo
| | - Maarten P. M. Vanhove
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Zoology Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Leuven, Belgium
| | - Antoine Pariselle
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, CIRAD, INRAP, Montpellier, France
- Laboratory Biodiversity, Ecology and Genome. Research Centre Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Auguste Chocha Manda
- Unité de recherche en Biodiversité et Exploitation durable des Zones Humides (BEZHU), Faculté des Sciences Agronomiques, Université de Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Emmanuel Vreven
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Leuven, Belgium
- Ichthyology Section, Zoology Department, Royal Museum of Central Africa, Tervuren, Belgium
| | - Tine Huyse
- Department of Biology, Royal Museum of Central Africa, Tervuren, Belgium
| | - Tom Artois
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|