1
|
Liu Y, Scheiner SM, Hogan JA, Thomas MB, Soltis PS, Guralnick RP, Soltis DE, Lichstein JW. Nonnative tree invaders lead to declines in native tree species richness. Proc Natl Acad Sci U S A 2025; 122:e2424908122. [PMID: 40258149 PMCID: PMC12054818 DOI: 10.1073/pnas.2424908122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/09/2025] [Indexed: 04/23/2025] Open
Abstract
Biological invasions are profoundly altering Earth's ecosystems, but generalities about the effects of nonnative species on the diversity and productivity of native communities have been elusive. This lack of generality may reflect the limited spatial and temporal extents of most previous studies. Using >5 million tree measurements across eastern US forests from 1995 to 2023, we quantified temporal trends in tree diversity and biomass. We then analyzed community-level changes in native tree diversity and biomass in relation to nonnative tree invasion and native species colonization. Across the entire eastern United States, native tree species richness decreased over time in plots where nonnatives occurred, whereas nonnative species richness and the biomass of both natives and nonnatives increased over time. At the community scale, native richness tended to decline following nonnative invasion, whereas native biomass and richness-independent measures of trait and phylogenetic diversity tended to remain stable. These patterns can be explained by the rarity of the displaced native species and their functional and phylogenetic similarity to native species that survived nonnative invasions. In contrast, native survivors tended to be functionally distinct from nonnative invaders, suggesting an important role for niche partitioning in community dynamics. Colonization by previously absent native species was associated with an increase in native richness (beyond the addition of native colonizers), which contrasts with declines in native richness that tended to follow nonnative invasion. These results suggest a causal role for nonnative species in the native richness decline of invaded communities.
Collapse
Affiliation(s)
- Yunpeng Liu
- Invasion Science Institute, Agronomy Department, University of Florida, Gainesville, FL32611
| | | | - J. Aaron Hogan
- United States Department of Agriculture Forest Service, International Institute of Tropical Forestry, San Juan, PR00925
| | - Matthew B. Thomas
- Invasion Science Institute, Agronomy Department, University of Florida, Gainesville, FL32611
- Department of Biology, University of York, YorkYO10 5DD, United Kingdom
| | - Pamela S. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL32611
- Genetics Institute, University of Florida, Gainesville, FL32611
- Biodiversity Institute, University of Florida, Gainesville, FL32611
| | - Robert P. Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, FL32611
- Genetics Institute, University of Florida, Gainesville, FL32611
- Biodiversity Institute, University of Florida, Gainesville, FL32611
| | - Douglas E. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL32611
- Genetics Institute, University of Florida, Gainesville, FL32611
- Biodiversity Institute, University of Florida, Gainesville, FL32611
- Department of Biology, University of Florida, Gainesville, FL32611
| | | |
Collapse
|
2
|
Homma S, Murakami D, Hosokawa S, Kanefuji K. Introduction risk of fire ants through container cargo in ports: Data integration approach considering a logistic network. PLoS One 2025; 20:e0313849. [PMID: 39919107 PMCID: PMC11805435 DOI: 10.1371/journal.pone.0313849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/01/2024] [Indexed: 02/09/2025] Open
Abstract
Invasive alien species introduced to ports through cargo containers have destroyed the biodiversity worldwide. The introduction risk at ports must be estimated to control the early stages of invasion. However, limited data are available for this estimation in the introduction stage. Spatial statistical models have been used to address the lack of information by considering the observations of neighbors or integrating multiple data sources based on the assumption of spatial correlation. Unlike natural dispersal, methods to address these issues have not yet been established, because the spatial correlation between ports based on the geographical distance is not assumed for human-mediated species introduction through container cargo. Herein, we propose a multivariate conditional autoregressive model that considers a logistic network in order to integrate multiple data sources and estimate introduction risk. A relationship between locations based on logistics connectivity is assumed rather than the spatial correlation based on the geographical distance used in the past. Hierarchical Bayesian models integrating data through the network were implemented for two fire ant species (Solenopsis invicta and Solenopsis geminata) observed in Japanese ports. We observed that the proposed joint models improved the fit compared to conventional models estimated from a single dataset. This finding suggests that integrating data from multiple species or data types based on a network helps to address the lack of observations. This is one of the first studies to demonstrate the effectiveness of multivariate conditional autoregressive model in considering biological invasion networks and contributes to the development of reliable biosecurity strategies.
Collapse
Affiliation(s)
- Shota Homma
- Big Data Technology Group, Port and Airport Research Institute, Yokosuka, Kanagawa, Japan
- Department of Statistical Science, Graduate University for Advanced Studies (SOKENDAI), Tachikawa, Tokyo, Japan
| | - Daisuke Murakami
- Department of Fundamental Statistical Mathematics, The Institute of Statistical Mathematics, Tachikawa, Tokyo, Japan
| | - Shinya Hosokawa
- Big Data Technology Group, Port and Airport Research Institute, Yokosuka, Kanagawa, Japan
- Marine Environmental Information Group, Port and Airport Research Institute, Yokosuka, Kanagawa, Japan
| | - Koji Kanefuji
- Department of Interdisciplinary Statistical Mathematics, The Institute of Statistical Mathematics, Tachikawa, Tokyo, Japan
| |
Collapse
|
3
|
Cooper RD, Luckau TK, Toffelmier E, Cook DG, Martinelli S, Fawcett MH, Shaffer HB. A novel genetic strategy to enable rapid detection of rare non-native alleles. Sci Rep 2024; 14:26027. [PMID: 39472468 PMCID: PMC11522522 DOI: 10.1038/s41598-024-76149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
Established invasive species represent one of the most harmful and challenging threats to native biodiversity, necessitating methods for Early Detection and Rapid Response. Cryptic invasions are particularly challenging and often require expensive and time-consuming molecular surveys which limits their usefulness for management. We present a novel application of the Fluidigm SNP-Type Assay to identify rare non-native alleles that significantly reduces the cost and time to generate diagnostic results. We demonstrate the efficacy of this method using experimental Fluidigm pools (99% accuracy) and sequence data (96% accuracy). We apply our novel methodology to an endangered population of California tiger salamanders in Sonoma County where two individual non-native tiger salamander hybrids have previously been detected since 2008. We screened 5805 larvae in 387 sample-pools containing 15 larvae each. We did not detect any non-native hybrids in the population, a result that was verified with sequence data, though we strongly recommend additional years of sampling to confirm hybrid absence. Our success with a challenging, large-genome amphibian suggests this method may be applied to any system, and would be particularly useful when it is necessary for conservation practitioners to rapidly identify rare taxa or genes of interest.
Collapse
Affiliation(s)
- Robert D Cooper
- Department of Ecology and Evolutionary Biology, University of California, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA.
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, CA, 90095, USA.
| | - Tara K Luckau
- Department of Ecology and Evolutionary Biology, University of California, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
| | - Erin Toffelmier
- Department of Ecology and Evolutionary Biology, University of California, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, CA, 90095, USA
| | - Dave G Cook
- , 3003 Magowan Drive, Santa Rosa, CA, 95405, USA
| | - Stacy Martinelli
- California Department of Fish and Wildlife, Wildlife and Lands Management Program, Santa Rosa, CA, 95403, USA
| | - Michael H Fawcett
- Fawcett Environmental Consulting, 598 South First Street, Dunsmuir, CA, 96025, USA
| | - H Bradley Shaffer
- Department of Ecology and Evolutionary Biology, University of California, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
4
|
Ion MC, Bloomer CC, Bărăscu TI, Oficialdegui FJ, Shoobs NF, Williams BW, Scheers K, Clavero M, Grandjean F, Collas M, Baudry T, Loughman Z, Wright JJ, Ruokonen TJ, Chucholl C, Guareschi S, Koese B, Banyai ZM, Hodson J, Hurt M, Kaldre K, Lipták B, Fetzner JW, Cancellario T, Weiperth A, Birzaks J, Trichkova T, Todorov M, Balalaikins M, Griffin B, Petko ON, Acevedo-Alonso A, D’Elía G, Śliwińska K, Alekhnovich A, Choong H, South J, Whiterod N, Zorić K, Haase P, Soto I, Brady DJ, Haubrock PJ, Torres PJ, Şadrin D, Vlach P, Kaya C, Woo Jung S, Kim JY, Vermeersch XH, Bonk M, Guiaşu R, Harlioğlu MM, Devlin J, Kurtul I, Błońska D, Boets P, Masigol H, Cabe PR, Jussila J, Vrålstad T, Beresford DV, Reid SM, Patoka J, Strand DA, Tarkan AS, Steen F, Abeel T, Harwood M, Auer S, Kelly S, Giantsis IA, Maciaszek R, Alvanou MV, Aksu Ö, Hayes DM, Kawai T, Tricarico E, Chakandinakira A, Barnett ZC, Kudor ŞG, Beda AE, Vîlcea L, Mizeranschi AE, Neagul M, Licz A, Cotoarbă AD, Petrusek A, Kouba A, Taylor CA, Pârvulescu L. World of Crayfish™: a web platform towards real-time global mapping of freshwater crayfish and their pathogens. PeerJ 2024; 12:e18229. [PMID: 39421415 PMCID: PMC11485098 DOI: 10.7717/peerj.18229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Freshwater crayfish are amongst the largest macroinvertebrates and play a keystone role in the ecosystems they occupy. Understanding the global distribution of these animals is often hindered due to a paucity of distributional data. Additionally, non-native crayfish introductions are becoming more frequent, which can cause severe environmental and economic impacts. Management decisions related to crayfish and their habitats require accurate, up-to-date distribution data and mapping tools. Such data are currently patchily distributed with limited accessibility and are rarely up-to-date. To address these challenges, we developed a versatile e-portal to host distributional data of freshwater crayfish and their pathogens (using Aphanomyces astaci, the causative agent of the crayfish plague, as the most prominent example). Populated with expert data and operating in near real-time, World of Crayfish™ is a living, publicly available database providing worldwide distributional data sourced by experts in the field. The database offers open access to the data through specialized standard geospatial services (Web Map Service, Web Feature Service) enabling users to view, embed, and download customizable outputs for various applications. The platform is designed to support technical enhancements in the future, with the potential to eventually incorporate various additional features. This tool serves as a step forward towards a modern era of conservation planning and management of freshwater biodiversity.
Collapse
Affiliation(s)
- Mihaela C. Ion
- Institute of Biology Bucharest, Romanian Academy, Bucharest, Romania
| | - Caitlin C. Bloomer
- Illinois Natural History Survey, Prairie Research Institute, Champaign, IL, United States of America
| | | | - Francisco J. Oficialdegui
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Nathaniel F. Shoobs
- Museum of Biological Diversity, Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, United States of America
| | - Bronwyn W. Williams
- Research Laboratory, North Carolina Museum of Natural Sciences, Raleigh, NC, United States of America
| | - Kevin Scheers
- Unit Freshwater habitats, Research Institute for Nature and Forest, Brussels, Belgium
| | | | - Frédéric Grandjean
- Laboratoire Ecologie et Biologie des Interactions - UMR CNRS 7267, Laboratoire EBI - Equipe Ecologie Evolution Symbiose - Batiment B31, Université de Poitiers, Poitiers, France
| | - Marc Collas
- Office Français de la Biodiversité, Epinal, France
| | - Thomas Baudry
- Laboratoire Ecologie et Biologie des Interactions - UMR CNRS 7267, Laboratoire EBI - Equipe Ecologie Evolution Symbiose - Batiment B31, Université de Poitiers, Poitiers, France
| | - Zachary Loughman
- Department of Organismal Biology, Ecology, and Zoo Science, West Liberty University, West Liberty, WV, United States of America
| | | | | | | | - Simone Guareschi
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Bram Koese
- Naturalis Biodiversity Center, Leiden, Netherlands
| | - Zsombor M. Banyai
- Doctoral School of Environmental Science, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
- Department of Freshwater Fish Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - James Hodson
- School of Biology, Faculty of Biological Science, University of Leeds, Leeds, United Kingdom
| | - Margo Hurt
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Katrin Kaldre
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Boris Lipták
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
- Slovak Environment Agency, Banská Bystrica, Slovakia
| | - James W. Fetzner
- Section of Invertebrate Zoology, Carnegie Museum of Natural History, Pittsburgh, PA, United States of America
| | - Tommaso Cancellario
- Balearic Biodiversity Centre, Department of Biology, University of the Balearic Islands, Palma, Spain
| | - András Weiperth
- Department of Systematic Zoology and Ecology, Eötvös Loránd University, Budapest, Hungary
| | - Jạnis Birzaks
- Institute of Life Sciences and Technology, Department of Biodiversity, Daugavpils University, Daugavpils, Latvia
| | - Teodora Trichkova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Milcho Todorov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maksims Balalaikins
- Institute of Life Sciences and Technology, Department of Biodiversity, Daugavpils University, Daugavpils, Latvia
| | | | - Olga N. Petko
- Crayfish Research Centre, Institute for Advanced Environmental Research, West University of Timisoara, Timisoara, Romania
| | | | - Guillermo D’Elía
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Karolina Śliwińska
- Scientific and Practical Center for Biological Resources of the National Academy of Science of Belarus, Minsk, Belarus
| | - Anatoly Alekhnovich
- Scientific and Practical Center for Biological Resources of the National Academy of Science of Belarus, Minsk, Belarus
| | - Henry Choong
- Royal British Columbia Museum, Victoria, British Columbia, Canada
| | - Josie South
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
- Water@Leeds, School of Biology, Faculty of Biological Sciences, Leeds, United Kingdom
| | - Nick Whiterod
- Nature Glenelg Trust, South Australia, Australia
- CLLMM Research Centre, Goyder Institute for Water Research, Goolwa, South Australia, Australia
| | - Katarina Zorić
- Department of Hydroecology and Water Protection, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Peter Haase
- Faculty of Biology, University of Duisburg-Essen, Essen, Germany
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Ismael Soto
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Daniel J. Brady
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Gießen, Germany
| | - Phillip J. Haubrock
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
- CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, Kuwait
| | - Pedro J. Torres
- Biology Department, College of the Holy Cross, Worcester, MA, United States of America
| | - Denis Şadrin
- Crayfish Research Centre, Institute for Advanced Environmental Research, West University of Timisoara, Timisoara, Romania
| | - Pavel Vlach
- Center of Biology, Geosciences and Environmental Education, Faculty of Education, University of West Bohemia, Plzeň, Czech Republic
| | - Cüneyt Kaya
- Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, Turkey
| | - Sang Woo Jung
- DASARI Research Institute of BioResources, Daejeon, Republic of Korea
| | - Jin-Young Kim
- Research Center for Endangered Species, National Institute of Ecology, Yeongyang, Republic of Korea
| | | | - Maciej Bonk
- Institute of Nature Conservation, Polish Academy of Sciences, Kraków, Poland
| | - Radu Guiaşu
- Biology Program, Glendon College, York University, Toronto, Ontario, Canada
| | | | - Jane Devlin
- Ontario Ministry of Natural Resources, Peterborough, Ontario, Canada
| | - Irmak Kurtul
- Marine and Inland Waters Sciences and Technology Department, Faculty of Fisheries, Ege University, Izmir, Turkey
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Bournemouth, United Kingdom
| | - Dagmara Błońska
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Pieter Boets
- Provincial Centre of Environmental Research, Ghent, Belgium
| | - Hossein Masigol
- Crayfish Research Centre, Institute for Advanced Environmental Research, West University of Timisoara, Timisoara, Romania
| | - Paul R. Cabe
- Biology Department, Washington and Lee University, Lexington, VA, United States of America
| | - Japo Jussila
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Trude Vrålstad
- Department of Aquatic Animal Health, Norwegian Veterinary Institute, Ås, Norway
| | - David V. Beresford
- Biology and Trent School of the Environment, Trent University, Peterborough, Ontario, Canada
| | - Scott M. Reid
- Ontario Ministry of Natural Resources, Peterborough, Ontario, Canada
| | - Jiří Patoka
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - David A. Strand
- Department of Aquatic Animal Health, Norwegian Veterinary Institute, Ås, Norway
| | - Ali S. Tarkan
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Frédérique Steen
- Unit Freshwater habitats, Research Institute for Nature and Forest, Brussels, Belgium
| | - Thomas Abeel
- Agro- and Biotechnology, Odisee University of Applied Sciences, Sint-Niklaas, Belgium
| | - Matthew Harwood
- Water@Leeds, School of Biology, Faculty of Biological Sciences, Leeds, United Kingdom
| | | | - Sandor Kelly
- University of Central Florida, Orlando, FL, United States of America
| | - Ioannis A. Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, Florina, Greece
- Laboratory of Ichthyology & Fisheries, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Rafał Maciaszek
- Department of Animal Genetics and Conservation, Institute of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Maria V. Alvanou
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, Florina, Greece
| | - Önder Aksu
- Department of Aquaculture of Fisheries Faculty, Munzur University, Tunceli, Turkey
| | - David M. Hayes
- Eastern Kentucky University, Richmond, KY, United States of America
| | - Tadashi Kawai
- Hokkaido Research Organization, Central Fisheries Research Institute, Yoichi Hokkaido, Japan
| | - Elena Tricarico
- Dipartimento di Biologia, Università di Firenze, Sesto Fiorentino, Italy
| | - Adroit Chakandinakira
- Lake Kariba Fisheries Research Institute, Zimbabwe Parks and Wildlife Management Authority, Kariba, Zimbabwe
| | - Zanethia C. Barnett
- USDA Forest Service, Southern Research Station, Center for Bottomland Hardwoods Research, Clemson, SC, United States of America
| | - Ştefan G. Kudor
- “Simion Mehedinţi - Nature and Sustainable Development” Doctoral School, University of Bucharest, Bucharest, Romania
| | - Andreea E. Beda
- Department of Computer Science and Information Technology, Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, Bucharest, Romania
| | - Lucian Vîlcea
- Department of Economic Informatics and Cybernetics, Bucharest University of Economic Studies, Bucharest, Romania
| | - Alexandru E. Mizeranschi
- Crayfish Research Centre, Institute for Advanced Environmental Research, West University of Timisoara, Timisoara, Romania
- Research and Development Station for Bovine - Arad, Arad, Romania
| | - Marian Neagul
- Crayfish Research Centre, Institute for Advanced Environmental Research, West University of Timisoara, Timisoara, Romania
| | - Anton Licz
- Information Technology & Communications Department, West University of Timisoara, Timisoara, Romania
| | - Andra D. Cotoarbă
- Department of Biology, Faculty of Chemistry, Biology, Geography, West University of Timisoara, Timisoara, Romania
| | - Adam Petrusek
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Antonín Kouba
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Christopher A. Taylor
- Illinois Natural History Survey, Prairie Research Institute, Champaign, IL, United States of America
| | - Lucian Pârvulescu
- Crayfish Research Centre, Institute for Advanced Environmental Research, West University of Timisoara, Timisoara, Romania
- Department of Biology, Faculty of Chemistry, Biology, Geography, West University of Timisoara, Timisoara, Romania
| |
Collapse
|
5
|
Mazzotti FJ, Dalaba JR, Evans PM, Gati EV, Miller MA. Employing targeted outreach to improve community involvement in detecting invasive Nile monitors (Varanus niloticus) in Florida. Sci Rep 2024; 14:21976. [PMID: 39304783 DOI: 10.1038/s41598-024-73286-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
We successfully employed targeted outreach to communities in Palm Beach County, Florida, to enhance detection of invasive reptiles. We defined targeted outreach as delivering a specific message to a specific audience, at a specific location, to obtain a specific result. These efforts improved our ability to solicit community involvement focused on target species of interest in locations at risk of potential establishment of incipient populations. From 2018 through 2020, we reached over 112,000 individuals who reported over 50 nonnative lizard sightings to EDDMapS, a web-based mapping system for documenting invasive species, and the State-managed IVE-GOT1 reporting hotline. We considered reports to be directly attributed to our outreach efforts when the reporter indicated our outreach method as the source from which they obtained information on reporting large invasive lizards. We found print media elicited the most reports, while social media reached the largest audience both in direct shares and spillover to additional communities outside our target area. We concluded that to help improve invasive species management programs, three tactics could be employed: (1) using multiple forms of media, (2) additional educational support to improve the accuracy of public reports, and (3) rapid, dedicated capability to respond to reported sightings.
Collapse
Affiliation(s)
- Frank J Mazzotti
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, Fort Lauderdale, FL, 33314, USA.
| | - Justin R Dalaba
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, Fort Lauderdale, FL, 33314, USA
| | - Paul M Evans
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, Fort Lauderdale, FL, 33314, USA
| | - Emily V Gati
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, Fort Lauderdale, FL, 33314, USA
| | - Melissa A Miller
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, Fort Lauderdale, FL, 33314, USA
| |
Collapse
|
6
|
McDuie F, T. Overton C, A. Lorenz A, L. Matchett E, L. Mott A, A. Mackell D, T. Ackerman J, De La Cruz SEW, Patil VP, Prosser DJ, Takekawa JY, Orthmeyer DL, Pitesky ME, Díaz-Muñoz SL, Riggs BM, Gendreau J, Reed ET, Petrie MJ, Williams CK, Buler JJ, Hardy MJ, Ladman BS, Legagneux P, Bêty J, Thomas PJ, Rodrigue J, Lefebvre J, Casazza ML. Mitigating Risk: Predicting H5N1 Avian Influenza Spread with an Empirical Model of Bird Movement. Transbound Emerg Dis 2024; 2024:5525298. [PMID: 40303041 PMCID: PMC12016750 DOI: 10.1155/2024/5525298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/05/2024] [Accepted: 04/06/2024] [Indexed: 05/02/2025]
Abstract
Understanding timing and distribution of virus spread is critical to global commercial and wildlife biosecurity management. A highly pathogenic avian influenza virus (HPAIv) global panzootic, affecting ~600 bird and mammal species globally and over 83 million birds across North America (December 2023), poses a serious global threat to animals and public health. We combined a large, long-term waterfowl GPS tracking dataset (16 species) with on-ground disease surveillance data (county-level HPAIv detections) to create a novel empirical model that evaluated spatiotemporal exposure and predicted future spread and potential arrival of HPAIv via GPS tracked migratory waterfowl through 2022. Our model was effective for wild waterfowl, but predictions lagged HPAIv detections in poultry facilities and among some highly impacted nonmigratory species. Our results offer critical advance warning for applied biosecurity management and planning and demonstrate the importance and utility of extensive multispecies tracking to highlight potential high-risk disease spread locations and more effectively manage outbreaks.
Collapse
Affiliation(s)
- Fiona McDuie
- U.S. Geological SurveyWestern Ecological Research Center, Dixon Field Station, 800 Business Park Drive Ste D, Dixon, CA, USA
- San Jose State University Research FoundationMoss Landing Marine Laboratories, Moss Landing, CA, USA
| | - Cory T. Overton
- U.S. Geological SurveyWestern Ecological Research Center, Dixon Field Station, 800 Business Park Drive Ste D, Dixon, CA, USA
| | - Austen A. Lorenz
- U.S. Geological SurveyWestern Ecological Research Center, Dixon Field Station, 800 Business Park Drive Ste D, Dixon, CA, USA
| | - Elliott L. Matchett
- U.S. Geological SurveyWestern Ecological Research Center, Dixon Field Station, 800 Business Park Drive Ste D, Dixon, CA, USA
| | - Andrea L. Mott
- U.S. Geological SurveyWestern Ecological Research Center, Dixon Field Station, 800 Business Park Drive Ste D, Dixon, CA, USA
| | - Desmond A. Mackell
- U.S. Geological SurveyWestern Ecological Research Center, Dixon Field Station, 800 Business Park Drive Ste D, Dixon, CA, USA
| | - Joshua T. Ackerman
- U.S. Geological SurveyWestern Ecological Research Center, Dixon Field Station, 800 Business Park Drive Ste D, Dixon, CA, USA
| | - Susan E. W. De La Cruz
- U.S. Geological SurveyWestern Ecological Research Center, San Francisco Bay Estuary Field Station, Moffett Field, San Francisco, CA, USA
| | - Vijay P. Patil
- U.S. Geological SurveyAlaska Science Center, Anchorage, AK, USA
| | - Diann J. Prosser
- U.S. Geological SurveyEastern Ecological Science Center at the Patuxent Research Refuge (formerly USGS Patuxent Wildlife Research Center), Laurel, MD, USA
| | | | | | - Maurice E. Pitesky
- School of Veterinary MedicineUniversity of California Davis, Davis, CA, USA
| | - Samuel L. Díaz-Muñoz
- College of Biological SciencesGenome Center and Department of Microbiology and Molecular GeneticsUniversity of California Davis, Davis, CA, USA
| | - Brock M. Riggs
- School of Veterinary MedicineUniversity of California Davis, Davis, CA, USA
| | - Joseph Gendreau
- School of Veterinary MedicineUniversity of California Davis, Davis, CA, USA
| | - Eric T. Reed
- Environment and Climate Change CanadaCanadian Wildlife Service, Northwest Territories, Yellowknife, Canada
| | | | - Chris K. Williams
- Department of Entomology and Wildlife EcologyUniversity of Delaware, Newark, DE, USA
| | - Jeffrey J. Buler
- Department of Entomology and Wildlife EcologyUniversity of Delaware, Newark, DE, USA
| | - Matthew J. Hardy
- Department of Entomology and Wildlife EcologyUniversity of Delaware, Newark, DE, USA
| | - Brian S. Ladman
- Department of Animal and Food SciencesUniversity of Delaware, Newark, DE, USA
| | - Pierre Legagneux
- Centre de la Science de la Biodiversité du QuébecCentre d'études NordiquesDépartement de BiologieUniversité Laval, Québec City, Québec, Canada
| | - Joël Bêty
- Centre d'études NordiquesDépartement de BiologieUniversité du Québec à Rimouski, A Rimouski, Québec, Canada
| | - Philippe J. Thomas
- Environment and Climate Change CanadaNational Wildlife Research CentreCarleton University, Ottawa, Ontario, Canada
| | - Jean Rodrigue
- Environment and Climate Change CanadaCanadian Wildlife Service, Québec City, Québec, Canada
| | - Josée Lefebvre
- Environment and Climate Change CanadaCanadian Wildlife Service, Québec City, Québec, Canada
| | - Michael L. Casazza
- U.S. Geological SurveyWestern Ecological Research Center, Dixon Field Station, 800 Business Park Drive Ste D, Dixon, CA, USA
| |
Collapse
|
7
|
Camus L, Gautier M, Boitard S. Predicting species invasiveness with genomic data: Is genomic offset related to establishment probability? Evol Appl 2024; 17:e13709. [PMID: 38884022 PMCID: PMC11178484 DOI: 10.1111/eva.13709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 06/18/2024] Open
Abstract
Predicting the risk of establishment and spread of populations outside their native range represents a major challenge in evolutionary biology. Various methods have recently been developed to estimate population (mal)adaptation to a new environment with genomic data via so-called Genomic Offset (GO) statistics. These approaches are particularly promising for studying invasive species but have still rarely been used in this context. Here, we evaluated the relationship between GO and the establishment probability of a population in a new environment using both in silico and empirical data. First, we designed invasion simulations to evaluate the ability to predict establishment probability of two GO computation methods (Geometric GO and Gradient Forest) under several conditions. Additionally, we aimed to evaluate the interpretability of absolute Geometric GO values, which theoretically represent the adaptive genetic distance between populations from distinct environments. Second, utilizing public empirical data from the crop pest species Bactrocera tryoni, a fruit fly native from Northern Australia, we computed GO between "source" populations and a diverse range of locations within invaded areas. This practical application of GO within the context of a biological invasion underscores its potential in providing insights and guiding recommendations for future invasion risk assessment. Overall, our results suggest that GO statistics represent good predictors of the establishment probability and may thus inform invasion risk, although the influence of several factors on prediction performance (e.g., propagule pressure or admixture) will need further investigation.
Collapse
Affiliation(s)
- Louise Camus
- CBGP, INRAE, CIRAD, IRD, L'institut Agro, Université de Montpellier Montpellier France
| | - Mathieu Gautier
- CBGP, INRAE, CIRAD, IRD, L'institut Agro, Université de Montpellier Montpellier France
| | - Simon Boitard
- CBGP, INRAE, CIRAD, IRD, L'institut Agro, Université de Montpellier Montpellier France
| |
Collapse
|
8
|
Shao F, Pan J, Ye X, Liu G. Exploring the Dynamic Invasion Pattern of the Black-Headed Fall Webworm in China: Susceptibility to Topography, Vegetation, and Human Activities. INSECTS 2024; 15:349. [PMID: 38786905 PMCID: PMC11121765 DOI: 10.3390/insects15050349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
The fall webworm (FWW), H. cunea (Drury) (Lepidoptera: Erebidae: Arctiidae), is an extremely high-risk globally invasive pest. Understanding the invasion dynamics of invasive pests and identifying the critical factors that promote their spread is essential for devising practical and efficient strategies for their control and management. The invasion dynamics of the FWW and its influencing factors were analyzed using standard deviation ellipse and spatial autocorrelation methods. The analysis was based on statistical data on the occurrence of the FWW in China. The dissemination pattern of the FWW between 1979 and 2022 followed a sequence of "invasion-occurrence-transmission-outbreak", spreading progressively from coastal to inland regions. Furthermore, areas with high nighttime light values, abundant ports, and non-forested areas with low vegetation cover at altitudes below 500 m were more likely to be inhabited by the black-headed FWW. The dynamic invasion pattern and the driving factors associated with the fall webworm (FWW) provide critical insights for future FWW management strategies. These strategies serve not only to regulate the dissemination of insects and diminish migratory tendencies but also to guarantee the implementation of efficient early detection systems and prompt response measures.
Collapse
Affiliation(s)
| | - Jie Pan
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (F.S.); (X.Y.); (G.L.)
| | | | | |
Collapse
|
9
|
Nguyen HTM, Chu L, Liebhold AM, Epanchin-Niell R, Kean JM, Kompas T, Robinson AP, Brockerhoff EG, Moore JL. Optimal allocation of resources among general and species-specific tools for plant pest biosecurity surveillance. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2955. [PMID: 38379349 DOI: 10.1002/eap.2955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/21/2023] [Accepted: 11/16/2023] [Indexed: 02/22/2024]
Abstract
This paper proposes a surveillance model for plant pests that can optimally allocate resources among survey tools with varying properties. While some survey tools are highly specific for the detection of a single pest species, others are more generalized. There is considerable variation in the cost and sensitivity of these tools, but there are no guidelines or frameworks for identifying which tools are most cost-effective when used in surveillance programs that target the detection of newly invaded populations. To address this gap, we applied our model to design a trapping surveillance program in New Zealand for bark- and wood-boring insects, some of the most serious forest pests worldwide. Our findings show that exclusively utilizing generalized traps (GTs) proves to be highly cost-effective across a wide range of scenarios, particularly when they are capable of capturing all pest species. Implementing surveillance programs that only employ specialized traps (ST) is cost-effective only when these traps can detect highly damaging pests. However, even in such cases, they significantly lag in cost-effectiveness compared to GT-only programs due to their restricted coverage. When both GTs and STs are used in an integrated surveillance program, the total expected cost (TEC) generally diminishes when compared to programs relying on a single type of trap. However, this relative reduction in TEC is only marginally larger than that achieved with GT-only programs, as long as highly damaging species can be detected by GTs. The proportion of STs among the optimal required traps fluctuates based on several factors, including the relative pricing of GTs and STs, pest arrival rates, potential damage, and, more prominently, the coverage capacity of GTs. Our analysis suggests that deploying GTs extensively across landscapes appears to be more cost-effective in areas with either very high or very low levels of relative risk density, potential damage, and arrival rate. Finally, STs are less likely to be required when the pests that are detected by those tools have a higher likelihood of successful eradication because delaying detection becomes less costly for these species.
Collapse
Affiliation(s)
- Hoa-Thi-Minh Nguyen
- Crawford School of Public Policy, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Long Chu
- Crawford School of Public Policy, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Andrew M Liebhold
- USDA Forest Service Northern Research Station, Morgantown, West Virginia, USA
- Czech University of Life Sciences, Faculty of Forestry and Wood Sciences, Prague, Czech Republic
| | - Rebecca Epanchin-Niell
- Department of Agricultural and Resource Economics, University of Maryland, College Park, Maryland, USA
| | - John M Kean
- AgResearch Limited, Ruakura Science Centre, Hamilton, New Zealand
| | - Tom Kompas
- Centre of Excellence for Biosecurity Risk Analysis, School of Biosciences and School of Ecosystem and Forest Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew P Robinson
- Centre of Excellence for Biosecurity Risk Analysis, Schools of Biosciences and Mathematics and Statistics, University of Melbourne, Melbourne, Victoria, Australia
| | - Eckehard G Brockerhoff
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Joslin L Moore
- Arthur Rylah Institute for Environmental Research, Department of Energy, Environment and Climate Action, Heidelberg, Victoria, Australia
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
10
|
de Groot M, Kozamernik E, Kermavnar J, Kolšek M, Marinšek A, Nève Repe A, Kutnar L. Importance of Habitat Context in Modelling Risk Maps for Two Established Invasive Alien Plant Species: The Case of Ailanthus altissima and Phytolacca americana in Slovenia (Europe). PLANTS (BASEL, SWITZERLAND) 2024; 13:883. [PMID: 38592890 PMCID: PMC10974566 DOI: 10.3390/plants13060883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Forests are important ecosystems that face threats from climate change and global environmental shifts, with invasive alien plant species being a significant concern. Some of these invasive species have already become established, while others are in the process of naturalisation. Although forests are a relatively stable ecosystem, extreme weather events increase their vulnerability to change, and clearings left after natural disturbances are particularly susceptible to invasion by alien plant species (IAPS). We created risk maps of two species that have spread rapidly in the last decade: American pokeweed (Phytolacca americana) and the tree of heaven (Ailanthus altissima). We prepared a generalised linear model based on the occurrence data collected within the LIFE ARTEMIS project. Eleven environmental variables were used to determine habitat characteristics. We constructed two models for each species: one covering the entirety of Slovenia and the other specifically for the forested areas in Slovenia, with the latter incorporating forest-specific variables (such as forest sanitation felling and monocultures). We observed the presence of both species at lower altitudes and in close proximity to water sources. American pokeweed tends to occur nearer to railways, while the presence of the tree of heaven is associated with areas lacking carbonate parent material and influenced by land use patterns. In forested areas, the occurrence of American pokeweed is influenced by forest habitat characteristics, such as disturbances caused by extreme weather events or the prevalence of Norway spruce monocultures. In contrast, the occurrence of the tree of heaven is influenced by more general environmental variables, such as altitude and proximity to railways. Consequently, we have generated risk maps for the entirety of Slovenia and separately for forested areas, both of which indicate similar levels of risk, particularly for the tree of heaven. The risk map for American pokeweed highlights numerous vulnerable areas, especially forest edges, which are highly susceptible to invasion. Furthermore, there is a higher likelihood of this species occurring in areas that have undergone sanitation felling. This study suggests that the production of risk maps of IAPS could be improved by focussing on habitat types and taking into account habitat-specific variables. This approach could enhance the early detection and management of these invasive species.
Collapse
Affiliation(s)
- Maarten de Groot
- Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia; (E.K.); (J.K.); (A.M.); (L.K.)
| | - Erika Kozamernik
- Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia; (E.K.); (J.K.); (A.M.); (L.K.)
| | - Janez Kermavnar
- Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia; (E.K.); (J.K.); (A.M.); (L.K.)
| | - Marija Kolšek
- Slovenia Forest Service, Večna pot 2, 1000 Ljubljana, Slovenia; (M.K.); (A.N.R.)
| | - Aleksander Marinšek
- Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia; (E.K.); (J.K.); (A.M.); (L.K.)
| | - Andreja Nève Repe
- Slovenia Forest Service, Večna pot 2, 1000 Ljubljana, Slovenia; (M.K.); (A.N.R.)
| | - Lado Kutnar
- Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia; (E.K.); (J.K.); (A.M.); (L.K.)
| |
Collapse
|
11
|
Crawley SE. Shifting the paradigm: highlights from 2022 demonstrate broad public health impacts of applied urban entomology. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:267-273. [PMID: 38156724 DOI: 10.1093/jme/tjad159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/27/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
In 2022, the dramatic reduction of applied and extension urban entomology positions was highlighted and widely discussed by seasoned and nascent urban entomologists alike. In fact, many urban entomologists are calling for a "paradigm shift" within the discipline given the reduction in niche urban entomology-specific positions. Specifically, many individuals are insisting that movement toward a framework where urban entomologists address complex, cross-disciplinary issues and advocate for research funding through science policy is critical for the endurance of the discipline. In this new model, the purpose of urban entomology does not necessarily change, but rather expands to attack questions that may be of interest to the broader scientific community. In addition, this paradigm shift would necessitate increased engagement of urban entomologists with bureaucratic and administrative agencies to communicate the importance of urban pest management, especially in a landscape where funding opportunities and endowments have been reduced, reallocated, or eliminated. To reflect the ongoing transformation within the field of urban entomology, the objectives of this review were to highlight papers published in 2022 that exemplify the broader impacts of urban entomological studies and urban pest management. Studies with ties to global public health and Entomological Society of America science policy initiatives are highlighted to encourage urban entomologists to consider the far-reaching influence of their research.
Collapse
Affiliation(s)
- Sydney E Crawley
- Department of Entomology and Plant Pathology, North Carolina State University, 100 Derieux Place, Campus Box 7613, Raleigh, NC 27695-7613, USA
- Bug Out, Raleigh, 5706 Chapel Hill Road Suite 114, Raleigh, NC 27607, USA
| |
Collapse
|
12
|
Hernández-Teixidor D, Pérez-Morín A, Pestano J, Mora D, Fajardo S. The destructive subterranean termite Reticulitermes flavipes (Blattodea: Rhinotermitidae) can colonize arid territories. PeerJ 2024; 12:e16936. [PMID: 38435985 PMCID: PMC10909367 DOI: 10.7717/peerj.16936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/23/2024] [Indexed: 03/05/2024] Open
Abstract
Reticulitermes flavipes, one of the most destructive subterranean termite species, has been detected for the first time in an arid territory: Lanzarote (Canary Islands, Spain). This invasive species was introduced into several countries but never such a dry region. Although there are places with presence of this termite at similar or even higher temperatures, none has annual rainfall (10.1 mm) as low as Lanzarote. On this island it is present in semi-desert, near an affected urban area. Distribution, genetic, climate and host-plant data are evaluated to track and understand its invasion process in the archipelago.
Collapse
Affiliation(s)
- David Hernández-Teixidor
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), La Laguna, Tenerife, Canary Islands, Spain
| | - Aura Pérez-Morín
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), La Laguna, Tenerife, Canary Islands, Spain
| | - Juan Pestano
- Tragsatec, La Laguna, Tenerife, Canary Islands, Spain
| | | | - Silvia Fajardo
- Servicio de Biodiversidad, Consejería de Transición Ecológica, Lucha Contra el Cambio Climático y Planificación Territorial, Gobierno de Canarias, Santa Cruz de Tenerife, Tenerife, Canary Islands, Spain
| |
Collapse
|
13
|
Guo W, Li S, Zhan A. eDNA-Based Early Detection Illustrates Rapid Spread of the Non-Native Golden Mussel Introduced into Beijing via Water Diversion. Animals (Basel) 2024; 14:399. [PMID: 38338056 PMCID: PMC10854655 DOI: 10.3390/ani14030399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
The world's largest water diversion, the South-to-North Water Transfer Project (SNWTP) in China, has created an "invasion highway" to introduce invasive golden mussels (Limnoperna fortunei) from the Yangtze River basin to Beijing. To examine the spread and colonization patterns of this newly introduced invasive species, we conducted comprehensive environmental DNA (eDNA)-based early detection and conventional field surveys across all water bodies in five river basins in Beijing from 2020 to 2023. Our results indicated a rapid spread over the past four years. Among the 130 tested sites, the number of sites with positive signals from eDNA analysis exhibited an annual increase: Commencing with four infested sites identified through field surveys in 2019, eDNA analysis detected an additional 13, 11, and 10 positive sites in 2020, 2021, and 2022, respectively, and a substantial rise comprising an additional 28 sites in 2023. Conventional field surveys detected mussels 1-3 years later than eDNA-based analysis at 16 sites. Across all 16 sites, we detected a low population density ranging from 1 to 30 individuals/m2. These findings collectively indicate that the invasions by golden mussels in Beijing are still in their early stages. To date, golden mussels have successfully colonized four out of the five investigated river basins, including the Jiyun River (22.2% positive sites), North Canal River (59.6% positive sites), Chaobai River (40% positive sites), and Yongding River (63.6% positive sites), with the North Canal River and Yongding River being the most heavily infested. Currently, only the Daqing River basin remains uninfested. Given the significant number of infested sites and the ongoing transport of large new propagules via SNWTP, further rapid spread and colonization are anticipated across aquatic ecosystems in Beijing and beyond. Consequently, we call for the proper implementation of effective management strategies, encompassing early detection, risk assessment, and the use of appropriate control measures to mitigate the potential ecological and economic damages in invaded ecosystems.
Collapse
Affiliation(s)
- Wei Guo
- Beijing Hydrology Center, Beijing 100089, China;
| | - Shiguo Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Genovesi P, Carnevali L, Hoffmann BD, Monaco A, Roy HE, Simberloff D. Conservation action should come before publication. Curr Biol 2024; 34:R49-R50. [PMID: 38262355 DOI: 10.1016/j.cub.2023.11.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 01/25/2024]
Abstract
With regard to the recent discovery of the red imported fire ant in Sicily (Menchetti et al. 2023), Genovesi et al. highlight the delay in communicating the observation and call on the scientific communities, scientific journals, and local authorities to ensure that new invasive alien species records are immediately reported for enhancing action.
Collapse
Affiliation(s)
- Piero Genovesi
- Wildlife Service, Institute for Environmental Protection and Research - ISPRA, Rome 00144, Italy; Chair IUCN SSC Invasive Species Specialist Group, Rome 00144, Italy.
| | - Lucilla Carnevali
- Wildlife Service, Institute for Environmental Protection and Research - ISPRA, Rome 00144, Italy
| | - Benjamin D Hoffmann
- CSIRO Health and Biosecurity, Tropical Ecosystems Research Centre, Winnellie, NT 0822, Australia
| | - Andrea Monaco
- Wildlife Service, Institute for Environmental Protection and Research - ISPRA, Rome 00144, Italy
| | - Helen E Roy
- Center for Ecology and Hydrology, Wallingford OX10 8BB, UK
| | - Daniel Simberloff
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
15
|
Pocock MJ, Adriaens T, Bertolino S, Eschen R, Essl F, Hulme PE, Jeschke JM, Roy HE, Teixeira H, de Groot M. Citizen science is a vital partnership for invasive alien species management and research. iScience 2024; 27:108623. [PMID: 38205243 PMCID: PMC10776933 DOI: 10.1016/j.isci.2023.108623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Invasive alien species (IAS) adversely impact biodiversity, ecosystem functions, and socio-economics. Citizen science can be an effective tool for IAS surveillance, management, and research, providing large datasets over wide spatial extents and long time periods, with public participants generating knowledge that supports action. We demonstrate how citizen science has contributed knowledge across the biological invasion process, especially for early detection and distribution mapping. However, we recommend that citizen science could be used more for assessing impacts and evaluating the success of IAS management. Citizen science does have limitations, and we explore solutions to two key challenges: ensuring data accuracy and dealing with uneven spatial coverage of potential recorders (which limits the dataset's "fit for purpose"). Greater co-development of citizen science with public stakeholders will help us better realize its potential across the biological invasion process and across ecosystems globally while meeting the needs of participants, local communities, scientists, and decision-makers.
Collapse
Affiliation(s)
| | - Tim Adriaens
- Research Institute for Nature and Forest (INBO), Brussels, Belgium
| | - Sandro Bertolino
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | | | - Franz Essl
- Division of BioInvasions, Global Change & Macroecology, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Philip E. Hulme
- Bioprotection Aotearoa, Department of Pest Management and Conservation, Lincoln University, PO Box 84850, Christchurch, Lincoln 7648, New Zealand
| | - Jonathan M. Jeschke
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Helen E. Roy
- UK Centre for Ecology & Hydrology, Wallingford, Oxfordshire, UK
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn, United Kingdom
| | - Heliana Teixeira
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus de Santiago, Aveiro, Portugal
| | - Maarten de Groot
- Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
16
|
Barker BS, Coop L. Phenological Mapping of Invasive Insects: Decision Support for Surveillance and Management. INSECTS 2023; 15:6. [PMID: 38249012 PMCID: PMC10816952 DOI: 10.3390/insects15010006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
Readily accessible and easily understood forecasts of the phenology of invasive insects have the potential to support and improve strategic and tactical decisions for insect surveillance and management. However, most phenological modeling tools developed to date are site-based, meaning that they use data from a weather station to produce forecasts for that single site. Spatial forecasts of phenology, or phenological maps, are more useful for decision-making at area-wide scales, such as counties, states, or entire nations. In this review, we provide a brief history on the development of phenological mapping technologies with a focus on degree-day models and their use as decision support tools for invasive insect species. We compare three different types of phenological maps and provide examples using outputs of web-based platforms that are presently available for real-time mapping of invasive insects for the contiguous United States. Next, we summarize sources of climate data available for real-time mapping, applications of phenological maps, strategies for balancing model complexity and simplicity, data sources and methods for validating spatial phenology models, and potential sources of model error and uncertainty. Lastly, we make suggestions for future research that may improve the quality and utility of phenological maps for invasive insects.
Collapse
Affiliation(s)
- Brittany S. Barker
- Oregon Integrated Pest Management Center, Oregon State University, 4575 Research Way, Corvallis, OR 97333, USA;
- Department of Horticulture, Oregon State University, 4017 Agriculture and Life Sciences Building, Corvallis, OR 97333, USA
| | - Leonard Coop
- Oregon Integrated Pest Management Center, Oregon State University, 4575 Research Way, Corvallis, OR 97333, USA;
- Department of Horticulture, Oregon State University, 4017 Agriculture and Life Sciences Building, Corvallis, OR 97333, USA
| |
Collapse
|
17
|
Li Y, Blackburn TM, Luo Z, Song T, Watters F, Li W, Deng T, Luo Z, Li Y, Du J, Niu M, Zhang J, Zhang J, Yang J, Wang S. Quantifying global colonization pressures of alien vertebrates from wildlife trade. Nat Commun 2023; 14:7914. [PMID: 38036540 PMCID: PMC10689770 DOI: 10.1038/s41467-023-43754-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
The global trade in live wildlife elevates the risk of biological invasions by increasing colonization pressure (the number of alien species introduced to an area). Yet, our understanding of species traded as aliens remains limited. We created a comprehensive global database on live terrestrial vertebrate trade and use it to investigate the number of traded alien species, and correlates of establishment richness for aliens. We identify 7,780 species involved in this trade globally. Approximately 85.7% of these species are traded as aliens, and 12.2% of aliens establish populations. Countries with greater trading power, higher incomes, and larger human populations import more alien species. These countries, along with island nations, emerge as hotspots for establishment richness of aliens. Colonization pressure and insularity consistently promote establishment richness across countries, while socio-economic factors impact specific taxa. Governments must prioritize policies to mitigate the release or escape of traded animals and protect global biosecurity.
Collapse
Affiliation(s)
- Yiming Li
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, China.
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Tim M Blackburn
- Centre for Biodiversity and Environment Research, University College London, Gower Street, London, WC1E 6BT, UK
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Zexu Luo
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Tianjian Song
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Freyja Watters
- Invasion Science & Wildlife Ecology Lab, University of Adelaide, Adelaide, SA, Australia
| | - Wenhao Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Teng Deng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhenhua Luo
- School of Life Sciences, Central China Normal University, NO.152 Luoyu Road, Wuhan, 430079, Hubei, China
| | - Yuanyi Li
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, China
| | - Jiacong Du
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, China
| | - Meiling Niu
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, China
| | - Jun Zhang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, China
| | - Jinyu Zhang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, China
| | - Jiaxue Yang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, China
| | - Siqi Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
18
|
Li Y, Yu FH. Managing the risk of biological invasions. iScience 2023; 26:108221. [PMID: 37942008 PMCID: PMC10628845 DOI: 10.1016/j.isci.2023.108221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
The large environmental impacts and enormous economic costs caused by biological invasions provide a strong impetus for managing invasion risks. Understanding the factors driving the invasion process and their consequences will raise awareness of invasions among the general public, stakeholders, and policymakers and inform effective management strategies. The identification of priority species and introduction pathways and sites and the development of national capabilities for prevention and preparedness, early detection, monitoring, and rapid response will reduce the impacts of invasive species in terms of effectiveness and cost efficiency.
Collapse
Affiliation(s)
- Yiming Li
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101, China
| | - Fei-Hai Yu
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China
| |
Collapse
|
19
|
Macêdo RL, Haubrock PJ, Rocha O. Towards effective management of the marine-origin Prymnesium parvum (Haptophyta): A growing concern in freshwater reservoirs? HARMFUL ALGAE 2023; 129:102513. [PMID: 37951608 DOI: 10.1016/j.hal.2023.102513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/26/2023] [Accepted: 09/17/2023] [Indexed: 11/14/2023]
Abstract
Freshwater ecosystems are highly susceptible to harmful algal blooms (HABs), which are often caused by monospecific dense blooms. Effective preventive management strategies are urgently needed to avoid wide-ranging and severe impacts often resulting in costly damage to resources and unsustainable management options. In this study, we utilized SDM techniques focused on Prymnesium parvum, one of the most notorious HABs species worldwide. We first compare the climatic space occupied by P. parvum in North America, Europe and Australia. Additionally, we use MaxEnt algorithm to infer, for the first time, the potentially suitable freshwater environments in the aforementioned ranges. We also discuss the risks of invasion in reservoirs - prone habitats to persistent blooms of pests and invasive phytoplanktonic species. Our results show populations with distinctive niches suggesting ecophysiological tolerances, perhaps reflecting different strains. Our model projections revealed that the potential extent for P. parvum invasions is much broader than its current geographic distribution. The spatial configuration of reservoirs, if not sustaining dense blooms due to non-optimal conditions, favors colonization of multiple basins and ecoregions not yet occupied by P. parvum. Our models can provide valuable insights to decision-makers and monitoring programs while reducing the resources required to control the spread of P. parvum in disturbed habitats. Lastly, as impact magnitude is influenced by toxicity which in turn varies between different strains, we suggest future studies to incorporate intraspecific genetic information and fine-scale environmental variables to estimate potential distribution of P. parvum.
Collapse
Affiliation(s)
- Rafael L Macêdo
- Graduate Program in Ecology and Natural Resources, Department of Ecology and Evolutionary Biology, Federal University of São Carlos, UFSCar, São Carlos, Brazil; Institute of Biology, Freie Universität Berlin, Berlin, Germany.
| | - Phillip J Haubrock
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystr. 12, 63571 Gelnhausen, Germany; Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Kuwait
| | - Odete Rocha
- Graduate Program in Ecology and Natural Resources, Department of Ecology and Evolutionary Biology, Federal University of São Carlos, UFSCar, São Carlos, Brazil
| |
Collapse
|
20
|
Gomez-Maldonado S, Calleros A, Salazar-Rueda I, Camacho-Cervantes M. The invasive twospot livebearer's biology, and its current and potential global distribution. JOURNAL OF FISH BIOLOGY 2023; 103:854-863. [PMID: 37321972 DOI: 10.1111/jfb.15483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/15/2023] [Indexed: 06/17/2023]
Abstract
Poeciliids are widely recognized as successful invaders, possessing traits associated with invasion success. Native to Central America and south-eastern Mexico, the twospot livebearer (Pseudoxiphophorus bimaculatus) is a species recently recognized as invasive in both Central and northern Mexico. Despite its invasive status, limited research exists on its invasion process and the potential threats it poses to native species. In this study, we conducted a comprehensive review of the current knowledge on the twospot livebearer and mapped its current and potential distribution worldwide. The twospot livebearer shares similar traits with other successful invaders within the same family. Notably, it exhibits high fecundity throughout the year and demonstrates resilience to highly polluted and oxygen-deprived water conditions. This fish serves as a host for several parasites, including generalists, and has been extensively translocated for commercial purposes. Recently, it has also been used for biocontrol within its native range. Apart from existing outside its native range, the twospot livebearer, under current climate conditions and if transported there, could readily colonize biodiversity hotspots in tropical zones worldwide, including the Caribbean Islands, the Horn of Africa, North of Madagascar Island, south-eastern Brazil, and others located in southern and eastern Asia. Given that this fish is highly plastic and our Species Distribution Model, we consider that all areas with a habitat suitability >0.2 should prevent its arrival and establishment. Our findings underscore the urgent need to recognize this species as a threat to freshwater native topminnows and prevent its introduction and spread.
Collapse
Affiliation(s)
- Sebastian Gomez-Maldonado
- Instituto de Ciencias del Mar y Limnologia, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Mexico City, Mexico
| | - Adrian Calleros
- Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autonoma de Mexico, Morelia, Mexico
| | - Isabel Salazar-Rueda
- Instituto de Ciencias del Mar y Limnologia, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Mexico City, Mexico
| | - Morelia Camacho-Cervantes
- Instituto de Ciencias del Mar y Limnologia, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Mexico City, Mexico
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
21
|
Casazza ML, Lorenz AA, Overton CT, Matchett EL, Mott AL, Mackell DA, McDuie F. AIMS for wildlife: Developing an automated interactive monitoring system to integrate real-time movement and environmental data for true adaptive management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118636. [PMID: 37574637 DOI: 10.1016/j.jenvman.2023.118636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/28/2023] [Accepted: 07/15/2023] [Indexed: 08/15/2023]
Abstract
To effectively manage species and habitats at multiple scales, population and land managers require rapid information on wildlife use of managed areas and responses to landscape conditions and management actions. GPS tracking studies of wildlife are particularly informative to species ecology, habitat use, and conservation. Combining GPS data with administrative data and a diverse suite of remotely sensed, geo-referenced environmental (e.g., climatic) data, would more comprehensively inform how animals interact with and utilize habitats and ecosystems and our goal was to create a conceptual model for a system that would accomplish this - the 'Automated Interactive Monitoring System (AIMS) for Wildlife'. Our objective for this study was to develop a Customized Wildlife Report (CWR) - the first AIMS for Wildlife deliverable product. CWRs collate and summarize our 8-year GPS tracking dataset of ∼11 million locations from 1338 individual (16 species) avifauna and make actionable, real-time data on animal movements and trends in a specific area of interest available to managers and stakeholders for rapid application in day-to-day management. The CWR exemplar presented in this paper was developed to address needs identified by habitat managers of Sacramento National Wildlife Refuge and illustrates the highly specific, information offered and how it contributes to assessing the efficacy of conservation actions while allowing for near real-time adaptive management. The report can be easily customized for any of the thousands of wildlife refuges or regional areas of interest in the United States, emphasizing the broad application of an animal movement data stream. Utilizing diverse, extensive telemetry data streams through scientific collaboration can aid managers and conservation stakeholders with short and long-term research and conservation planning and help address a cadre of issues from local-scale habitat management to improving the understanding of landscape level impacts like drought, wildfire, and climate change on wildlife populations.
Collapse
Affiliation(s)
- Michael L Casazza
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Suite D Dixon, CA, USA.
| | - Austen A Lorenz
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Suite D Dixon, CA, USA
| | - Cory T Overton
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Suite D Dixon, CA, USA
| | - Elliott L Matchett
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Suite D Dixon, CA, USA
| | - Andrea L Mott
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Suite D Dixon, CA, USA
| | - Desmond A Mackell
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Suite D Dixon, CA, USA
| | - Fiona McDuie
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Suite D Dixon, CA, USA; San Jose State University Research Foundation, Moss Landing Marine Laboratories, 8272 Moss Landing Rd. Moss Landing, CA, USA
| |
Collapse
|
22
|
Marchessaux G, Chevalier C, Mangano MC, Sarà G. Larval connectivity of the invasive blue crabs Callinectes sapidus and Portunus segnis in the Mediterranean Sea: A step toward improved cross border management. MARINE POLLUTION BULLETIN 2023; 194:115272. [PMID: 37442052 DOI: 10.1016/j.marpolbul.2023.115272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
The two invasive blue crabs, Callinectes sapidus and Portunus segnis have spread rapidly in the Mediterranean and no data exists on the connectivity of populations. Determining the source and recruitment areas is crucial to prioritize where population control measures should be put into immediate action. We simulated the dispersal of blue crab larvae using a Lagrangian model coupled at high resolution to estimate the potential connectivity of blue crab populations over a 3-year period. Our results reveal that the main areas at risk are the Spanish, French, Italian Tyrrhenian and Sardinian coasts for Callinectes sapidus with high populations connectivity. Tunisia and Egypt represent high auto recruitment zones for Portunus segnis restricted to the central and western basins. This study provides an overview of the connectivity between populations and will help define priority areas that require the urgent implementation of management measures.
Collapse
Affiliation(s)
- Guillaume Marchessaux
- Laboratory of Ecology, Department of Earth and Marine Science (DiSTeM), University of Palermo, Palermo, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy.
| | | | - Maria Cristina Mangano
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy; Stazione Zoologica Anton Dohrn, Dipartimento Ecologia Marina Integrata, Sicily Marine Center, Lungomare Cristoforo Colombo (complesso Roosevelt), 90142 Palermo, Italy
| | - Gianluca Sarà
- Laboratory of Ecology, Department of Earth and Marine Science (DiSTeM), University of Palermo, Palermo, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy
| |
Collapse
|
23
|
Heinig R, Reeves LE, Lucas KJ. Aedes Tortilis, Culex Declarator, and Culex Tarsalis: New County Records for Mosquito Species in Collier County, Florida. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2023; 39:149-156. [PMID: 37603394 DOI: 10.2987/23-7129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Understanding the distribution of mosquito species is an important element of surveillance. This is especially true in Florida, where detections of nonnative mosquitoes have been increasing. Collier Mosquito Control District performs routine adult mosquito surveillance for operational purposes throughout the year. Here, we report records for 3 species collected in 2021 that had not been documented previously in Collier County, FL: Aedes tortilis, Culex declarator, and Cx. tarsalis. Specimens were initially identified based on morphology, then each species was confirmed by comparing the cytochrome c oxidase subunit I gene sequences to those of other related mosquito species. Although Ae. tortilis and Cx. declarator were collected at multiple sites, Cx. tarsalis was collected only once, making it unclear whether this species has established a permanent population within the county.
Collapse
|
24
|
Zhu G, Oeller LC, Wojahn R, Acosta C, Milnes JM, Crowder DW. Potential distribution and spread of Japanese beetle in Washington State. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:1458-1463. [PMID: 37319330 DOI: 10.1093/jee/toad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
The Japanese beetle, Popillia japonica (Newman, 1841) (Coleoptera: Scarabaeidae), was first detected in southern Washington State in 2020. Widespread trapping efforts ensued, and over 23,000 individuals were collected in both 2021 and 2022 in this region known for specialty crop production. The invasion of Japanese beetle is of major concern as it feeds on over 300 plant species and has shown an ability to spread across landscapes. Here, we created a habitat suitability model for Japanese beetle in Washington and used dispersal models to forecast invasion scenarios. Our models predict that the area of current establishment occurs in a region with highly suitable habitat. Moreover, vast areas of habitat that are likely highly suitable for Japanese beetle occur in coastal areas of western Washington, with medium to highly suitable habitat in central and eastern Washington. Dispersal models suggested that the beetle could spread throughout Washington within 20 years without management, which justifies quarantine and eradication measures. Timely map-based predictions can be useful tools to guide management of invasive species while also increasing citizen engagement to invaders.
Collapse
Affiliation(s)
- Gengping Zhu
- Department of Entomology, Washington State University, Pullman, WA 99163, USA
| | - Liesl C Oeller
- Department of Entomology, Washington State University, Pullman, WA 99163, USA
| | - Rian Wojahn
- Washington State Department of Agriculture, Plant Protection Division, 3939 Cleveland Ave SE, Olympia, WA 98501, USA
| | - Camilo Acosta
- Washington State Department of Agriculture, Plant Protection Division, 21 North 1st Avenue, Suite 103, Yakima, WA 98902, USA
| | - Joshua M Milnes
- Washington State Department of Agriculture, Plant Protection Division, 21 North 1st Avenue, Suite 103, Yakima, WA 98902, USA
| | - David W Crowder
- Department of Entomology, Washington State University, Pullman, WA 99163, USA
| |
Collapse
|
25
|
Franzese J, Ripa RR. Common juniper, an overlooked conifer with high invasion potential in protected areas of Patagonia. Sci Rep 2023; 13:9818. [PMID: 37330618 PMCID: PMC10276858 DOI: 10.1038/s41598-023-37023-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023] Open
Abstract
The benefits of early detection of biological invasions are widely recognized, especially for protected areas (PAs). However, research on incipient invasive plant species is scarce compared to species with a recognized history of invasion. Here, we characterized the invasion status of the non-native conifer Juniperus communis in PAs and interface areas of Andean Patagonia, Argentina. We mapped its distribution and described both the invasion and the environments this species inhabits through field studies, a literature review, and a citizen science initiative. We also modeled the species' potential distribution by comparing the climatic characteristics of its native range with those of the introduced ranges studied. The results show that J. communis is now widely distributed in the region, occurring naturally in diverse habitats, and frequently within and close to PAs. This species can be considered an incipient invader with a high potential for expansion in its regional distribution range, largely due to its high reproductive potential and the high habitat suitability of this environment. Early detection of a plant invasion affords a valuable opportunity to inform citizens of the potential risks to high conservation value ecosystems before the invader is perceived as a natural component of the landscape.
Collapse
Affiliation(s)
- Jorgelina Franzese
- Investigaciones de Ecología en Ambientes Antropizados, Instituto de Investigaciones en Biodiversidad y Medioambiente (CONICET-UNCo), R8400, S. C. Bariloche, Argentina.
| | - Ramiro Rubén Ripa
- Grupo de Genética Ecológica, Instituto de Investigaciones en Biodiversidad y Medioambiente (CONICET-UNCo), Evolutiva y de la Conservación, R8400, S. C. Bariloche, Argentina
- Instituto de Evolución, Ecología Histórica y Ambiente (CONICET-UTN), San Rafael, Mendoza, Argentina
| |
Collapse
|
26
|
Lozano V, Di Febbraro M, Brundu G, Carranza ML, Alessandrini A, Ardenghi NMG, Barni E, Bedini G, Celesti-Grapow L, Cianfaglione K, Cogoni A, Domina G, Fascetti S, Ferretti G, Foggi B, Iberite M, Lastrucci L, Lazzaro L, Mainetti A, Marinangeli F, Montagnani C, Musarella CM, Orsenigo S, Peccenini S, Peruzzi L, Poggio L, Proietti C, Prosser F, Ranfa A, Rosati L, Santangelo A, Selvaggi A, Spampinato G, Stinca A, Vacca G, Villani M, Siniscalco C. Plant invasion risk inside and outside protected areas: Propagule pressure, abiotic and biotic factors definitively matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162993. [PMID: 36948323 DOI: 10.1016/j.scitotenv.2023.162993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/18/2023] [Accepted: 03/17/2023] [Indexed: 05/06/2023]
Abstract
Invasive alien species are among the main global drivers of biodiversity loss posing major challenges to nature conservation and to managers of protected areas. The present study applied a methodological framework that combined invasive Species Distribution Models, based on propagule pressure, abiotic and biotic factors for 14 invasive alien plants of Union concern in Italy, with the local interpretable model-agnostic explanation analysis aiming to map, evaluate and analyse the risk of plant invasions across the country, inside and outside the network of protected areas. Using a hierarchical invasive Species Distribution Model, we explored the combined effect of propagule pressure, abiotic and biotic factors on shaping invasive alien plant occurrence across three biogeographic regions (Alpine, Continental, and Mediterranean) and realms (terrestrial and aquatic) in Italy. We disentangled the role of propagule pressure, abiotic and biotic factors on invasive alien plant distribution and projected invasion risk maps. We compared the risk posed by invasive alien plants inside and outside protected areas. Invasive alien plant distribution varied across biogeographic regions and realms and unevenly threatens protected areas. As an alien's occurrence and risk on a national scale are linked with abiotic factors followed by propagule pressure, their local distribution in protected areas is shaped by propagule pressure and biotic filters. The proposed modelling framework for the assessment of the risk posed by invasive alien plants across spatial scales and under different protection regimes represents an attempt to fill the gap between theory and practice in conservation planning helping to identify scale, site, and species-specific priorities of management, monitoring and control actions. Based on solid theory and on free geographic information, it has great potential for application to wider networks of protected areas in the world and to any invasive alien plant, aiding improved management strategies claimed by the environmental legislation and national and global strategies.
Collapse
Affiliation(s)
- Vanessa Lozano
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39/A, 07100 Sassari, Italy; National Biodiversity Future Center (NBFC), Palermo 90133, Italy.
| | - Mirko Di Febbraro
- National Biodiversity Future Center (NBFC), Palermo 90133, Italy; EnviX-Lab, Dipartimento Di Bioscienze e Territorio, Università Degli Studi Del Molise, C. DaFonte Lappone, 86090 Pesche, IS, Italy.
| | - Giuseppe Brundu
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39/A, 07100 Sassari, Italy; National Biodiversity Future Center (NBFC), Palermo 90133, Italy.
| | - Maria Laura Carranza
- National Biodiversity Future Center (NBFC), Palermo 90133, Italy; EnviX-Lab, Dipartimento Di Bioscienze e Territorio, Università Degli Studi Del Molise, C. DaFonte Lappone, 86090 Pesche, IS, Italy.
| | | | | | - Elena Barni
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.
| | - Gianni Bedini
- PLANTSEED Lab, Department of Biology, University of Pisa, Italy.
| | | | | | - Annalena Cogoni
- Department of Life and Environmental Sciences, Botany section, University of Cagliari, Viale S.Ignazio 13, 09123 Cagliari, Italy.
| | - Gianniantonio Domina
- Department of Agricultural, Food and Forest Sciences University of Palermo, Palermo, Italy.
| | - Simonetta Fascetti
- School of Agriculture, Forestry, Food and Environment, University of Basilicata, Potenza, Italy.
| | - Giulio Ferretti
- Museum of Natural History, University of Florence, Florence, Italy.
| | - Bruno Foggi
- Department of Biology, University of Florence, Florence, Italy.
| | - Mauro Iberite
- Department of Environmental Biology, Sapienza University, Rome, Italy.
| | | | - Lorenzo Lazzaro
- Department of Biology, University of Florence, Florence, Italy.
| | - Andrea Mainetti
- Biodiversity service and scientific research, Gran Paradiso National Park, fraz. Valnontey 44, 11012, Cogne, Aosta, Italy.
| | - Francesca Marinangeli
- Agricultural Research and Economics, Research Centre for Agricultural Policies and Bioeconomy, Perugia, Italy.
| | - Chiara Montagnani
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milano, Italy.
| | | | - Simone Orsenigo
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy.
| | | | - Lorenzo Peruzzi
- PLANTSEED Lab, Department of Biology, University of Pisa, Pisa, Italy.
| | - Laura Poggio
- Biodiversity service and scientific research, Gran Paradiso National Park, fraz. Valnontey 44, 11012, Cogne, Aosta, Italy.
| | - Chiara Proietti
- Department of Civil and Environmental Engineering, University of Perugia, Italy.
| | - Filippo Prosser
- Fondazione Museo Civico di Rovereto, I-38068 Rovereto, Italy.
| | - Aldo Ranfa
- Department of Civil and Environmental Engineering, University of Perugia, Italy.
| | - Leonardo Rosati
- School of Agriculture, Forestry, Food and Environment, University of Basilicata, Via Ateneo Lucano 10, Potenza I-85100, Italy.
| | - Annalisa Santangelo
- Department of Biology, University of Naples Federico II, via Foria 223, 80139 Napoli, Italy.
| | | | - Giovanni Spampinato
- Department of Agriculture, Mediterranean University of Reggio Calabria, Reggio Calabria, Italy.
| | - Adriano Stinca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy.
| | - Gabriella Vacca
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39/A, 07100 Sassari, Italy.
| | | | - Consolata Siniscalco
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.
| |
Collapse
|
27
|
Sepulveda AJ, Dumoulin CE, Blanchette DL, McPhedran J, Holme C, Whalen N, Hunter ME, Merkes CM, Richter CA, Neilson ME, Daniel WM, Jones DN, Smith DR. When are environmental DNA early detections of invasive species actionable? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 343:118216. [PMID: 37247541 DOI: 10.1016/j.jenvman.2023.118216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/19/2023] [Accepted: 05/19/2023] [Indexed: 05/31/2023]
Abstract
Environmental DNA (eDNA) sampling provides sensitive early detection capabilities for recently introduced taxa. However, natural resource managers struggle with how to integrate eDNA results into an early detection rapid response program because positive eDNA detections are not always indicative of an eventual infestation. We used a structured decision making (SDM) framework to evaluate appropriate response actions to hypothetical eDNA early detections of an introduced aquatic plant in Sebago Lake (Maine, USA). The results were juxtaposed to a recent study that used a similar SDM approach to evaluate response actions to hypothetical eDNA early detections of introduced mussels in Jordanelle Reservoir (Utah, USA). We found that eDNA early detections were not actionable in Sebago Lake because the plant's invasion potential was spatially constrained and the current management activities provided acceptable levels of mitigation. In Jordanelle Reservoir, eDNA detections were actionable due to high invasion potential and analyses supported management actions to contain the invasion. The divergent outcomes of the two case studies are related to the unique attributes of the habitats and species, highlighting the utility of the SDM approach when considering an eDNA monitoring program. We use these two case studies to present a general SDM framework and a set of heuristics that can be efficiently applied to eDNA early detection rapid response scenarios and other instances associated with indeterminant eDNA detections, especially when there is an imperative to make decisions as quickly as possible.
Collapse
Affiliation(s)
- Adam J Sepulveda
- U.S. Geological Survey Northern Rocky Mountain Science Center, Bozeman, MT, 59715, USA.
| | - Christine E Dumoulin
- U.S. Geological Survey, Eastern Ecological Science Center, Leetown, WV, 25430, USA
| | | | - John McPhedran
- Maine Department of Environmental Protection, Augusta, ME, 04333, USA
| | - Colin Holme
- Lakes Environmental Association, Bridgton, ME, 04009, USA
| | | | - Margaret E Hunter
- U.S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, FL, 32653, USA
| | - Christopher M Merkes
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI, 54603, USA
| | - Catherine A Richter
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, 65201, USA
| | - Matthew E Neilson
- U.S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, FL, 32653, USA
| | - Wesley M Daniel
- U.S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, FL, 32653, USA
| | - Devin N Jones
- U.S. Geological Survey Northern Rocky Mountain Science Center, Bozeman, MT, 59715, USA
| | - David R Smith
- U.S. Geological Survey, Eastern Ecological Science Center, Leetown, WV, 25430, USA
| |
Collapse
|
28
|
Oficialdegui FJ, Zamora-Marín JM, Guareschi S, Anastácio PM, García-Murillo P, Ribeiro F, Miranda R, Cobo F, Gallardo B, García-Berthou E, Boix D, Arias A, Cuesta JA, Medina L, Almeida D, Banha F, Barca S, Biurrun I, Cabezas MP, Calero S, Campos JA, Capdevila-Argüelles L, Capinha C, Casals F, Clavero M, Encarnação J, Fernández-Delgado C, Franco J, Guillén A, Hermoso V, Machordom A, Martelo J, Mellado-Díaz A, Morcillo F, Oscoz J, Perdices A, Pou-Rovira Q, Rodríguez-Merino A, Ros M, Ruiz-Navarro A, Sánchez MI, Sánchez-Fernández D, Sánchez-González JR, Sánchez-Gullón E, Teodósio MA, Torralva M, Vieira-Lanero R, Oliva-Paterna FJ. A horizon scan exercise for aquatic invasive alien species in Iberian inland waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161798. [PMID: 36702272 DOI: 10.1016/j.scitotenv.2023.161798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
As the number of introduced species keeps increasing unabatedly, identifying and prioritising current and potential Invasive Alien Species (IAS) has become essential to manage them. Horizon Scanning (HS), defined as an exploration of potential threats, is considered a fundamental component of IAS management. By combining scientific knowledge on taxa with expert opinion, we identified the most relevant aquatic IAS in the Iberian Peninsula, i.e., those with the greatest geographic extent (or probability of introduction), severe ecological, economic and human health impacts, greatest difficulty and acceptability of management. We highlighted the 126 most relevant IAS already present in Iberian inland waters (i.e., Concern list) and 89 with a high probability of being introduced in the near future (i.e., Alert list), of which 24 and 10 IAS, respectively, were considered as a management priority after receiving the highest scores in the expert assessment (i.e., top-ranked IAS). In both lists, aquatic IAS belonging to the four thematic groups (plants, freshwater invertebrates, estuarine invertebrates, and vertebrates) were identified as having been introduced through various pathways from different regions of the world and classified according to their main functional feeding groups. Also, the latest update of the list of IAS of Union concern pursuant to Regulation (EU) No 1143/2014 includes only 12 top-ranked IAS identified for the Iberian Peninsula, while the national lists incorporate the vast majority of them. This fact underlines the great importance of taxa prioritisation exercises at biogeographical scales as a step prior to risk analyses and their inclusion in national lists. This HS provides a robust assessment and a cost-effective strategy for decision-makers and stakeholders to prioritise the use of limited resources for IAS prevention and management. Although applied at a transnational level in a European biodiversity hotspot, this approach is designed for potential application at any geographical or administrative scale, including the continental one.
Collapse
Affiliation(s)
- Francisco J Oficialdegui
- Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, CEIR Campus Mare Nostrum (CMN), Murcia, Spain.
| | - José M Zamora-Marín
- Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Simone Guareschi
- Geography and Environment Division, Loughborough University, Loughborough, United Kingdom; Departamento de Biología de la Conservación, Estación Biológica de Doñana (EBD)-CSIC, Sevilla, Spain
| | - Pedro M Anastácio
- Departamento de Paisagem, Ambiente e Ordenamento, MARE-Centro de Ciências do Mar e do Ambiente, Escola de Ciências e Tecnologia, Universidade de Évora, Évora, Portugal
| | - Pablo García-Murillo
- Departamento de Biología Vegetal y Ecología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Filipe Ribeiro
- MARE-Centro de Ciências do Mar e do Ambiente, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Rafael Miranda
- Instituto de Biodiversidad y Medioambiente (BIOMA), Universidad de Navarra, Pamplona, Spain
| | - Fernando Cobo
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Facultade de Bioloxía, Universidade de Santiago de Compostela, A Coruña, Spain
| | - Belinda Gallardo
- Departamento de Biodiversidad y Restauración, Instituto Pirenaico de Ecología (IPE)-CSIC, Zaragoza, Spain
| | | | - Dani Boix
- GRECO, Institut d'Ecologia Aquàtica, Universitat de Girona, Girona, Spain
| | - Andrés Arias
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, Asturias, Spain
| | - Jose A Cuesta
- Departamento de Ecología y Gestión Costera, Instituto de Ciencias Marinas de Andalucía (ICMAN)-CSIC, Cádiz, Spain
| | | | - David Almeida
- Department of Basic Medical Sciences, School of Medicine, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Filipe Banha
- Departamento de Paisagem, Ambiente e Ordenamento, MARE-Centro de Ciências do Mar e do Ambiente, Escola de Ciências e Tecnologia, Universidade de Évora, Évora, Portugal
| | - Sandra Barca
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Facultade de Bioloxía, Universidade de Santiago de Compostela, A Coruña, Spain
| | - Idoia Biurrun
- Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, Bilbao, Spain
| | - M Pilar Cabezas
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Sara Calero
- Planificación y Gestión Hídrica, Tragsatec, Grupo Tragsa-SEPI, Madrid, Spain
| | - Juan A Campos
- Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, Bilbao, Spain
| | | | - César Capinha
- Centre of Geographical Studies, Institute of Geography and Spatial Planning, University of Lisbon, Lisboa, Portugal
| | - Frederic Casals
- Departament de Ciència Animal, Universitat de Lleida, Lleida, Spain; Centre Tecnològic Forestal de Catalunya (CTFC), Solsona, Lleida, Spain
| | - Miguel Clavero
- Departamento de Biología de la Conservación, Estación Biológica de Doñana (EBD)-CSIC, Sevilla, Spain
| | - João Encarnação
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | | | - Javier Franco
- AZTI, Marine Research, Marine and Coastal Environmental Management, Pasaia, Gipuzkoa, Spain
| | - Antonio Guillén
- Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Virgilio Hermoso
- Departamento de Biología Vegetal y Ecología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Annie Machordom
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN)-CSIC, Madrid, Spain
| | - Joana Martelo
- MARE-Centro de Ciências do Mar e do Ambiente, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Andrés Mellado-Díaz
- Planificación y Gestión Hídrica, Tragsatec, Grupo Tragsa-SEPI, Madrid, Spain
| | - Felipe Morcillo
- Departamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid, Madrid, Spain
| | - Javier Oscoz
- Departamento de Biología Ambiental, Universidad de Navarra, Pamplona, Spain
| | - Anabel Perdices
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN)-CSIC, Madrid, Spain
| | | | | | - Macarena Ros
- Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Ana Ruiz-Navarro
- Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, CEIR Campus Mare Nostrum (CMN), Murcia, Spain; Departamento de Didáctica de las Ciencias Experimentales, Facultad de Educación, Universidad de Murcia, Murcia, Spain
| | - Marta I Sánchez
- Departamento de Ecología de Humedales, Estación Biológica de Doñana (EBD)-CSIC, Sevilla, Spain
| | | | - Jorge R Sánchez-González
- Departament de Ciència Animal, Universitat de Lleida, Lleida, Spain; Sociedad Ibérica de Ictiología, Departamento de Biología Ambiental, Universidad de Navarra, Pamplona/Iruña, Spain
| | - Enrique Sánchez-Gullón
- Consejería de Sostenibilidad, Medio Ambiente y Economía Azul, Junta de Andalucía, Huelva, Spain
| | - M Alexandra Teodósio
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Mar Torralva
- Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Rufino Vieira-Lanero
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Facultade de Bioloxía, Universidade de Santiago de Compostela, A Coruña, Spain
| | - Francisco J Oliva-Paterna
- Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| |
Collapse
|
29
|
Herrera C, Williams M, Encarnação J, Roura‐Pascual N, Faulhaber B, Jurado‐Rivera JA, Leza M. Automated detection of the yellow-legged hornet (Vespa velutina) using an optical sensor with machine learning. PEST MANAGEMENT SCIENCE 2023; 79:1225-1233. [PMID: 36416795 PMCID: PMC10107170 DOI: 10.1002/ps.7296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The yellow-legged hornet (Vespa velutina) is native to Southeast Asia and is an invasive alien species of concern in many countries. More effective management of populations of V. velutina could be achieved through more widespread and intensive monitoring in the field, however current methods are labor intensive and costly. To address this issue, we have assessed the performance of an optical sensor combined with a machine learning model to classify V. velutina and native wasps/hornets and bees. Our aim is to use the results of the present work as a step towards the development of a monitoring solution for V. velutina in the field. RESULTS We recorded a total 935 flights from three bee species: Apis mellifera, Bombus terrestris and Osmia bicornis; and four wasp/hornet species: Polistes dominula, Vespula germanica, Vespa crabro and V. velutina. The machine learning model achieved an average accuracy for species classification of 80.1 ± 13.9% and 74.5 ± 7.0% for V. velutina. V. crabro had the highest level of misclassification, confused mainly with V. velutina and P. dominula. These results were obtained using a 14-value peak and valley feature derived from the wingbeat power spectral density. CONCLUSION This study demonstrates that the wingbeat recordings from a flying insect sensor can be used with machine learning methods to differentiate V. velutina from six other Hymenoptera species in the laboratory and this knowledge could be used to help develop a tool for use in integrated invasive alien species management programs. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Cayetano Herrera
- Department of Biology (Zoology)University of the Balearic IslandsPalmaSpain
| | | | | | | | | | | | - Mar Leza
- Department of Biology (Zoology)University of the Balearic IslandsPalmaSpain
| |
Collapse
|
30
|
Rossi JP, Rasplus JY. Climate change and the potential distribution of the glassy-winged sharpshooter (Homalodisca vitripennis), an insect vector of Xylella fastidiosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160375. [PMID: 36423847 DOI: 10.1016/j.scitotenv.2022.160375] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Biological invasions represent a major threat for biodiversity and agriculture. Despite efforts to restrict the spread of alien species, preventing their introduction remains the best strategy for an efficient control. In that context preparedness of phytosanitary authorities is very important and estimating the geographical range of alien species becomes a key information. The present study investigates the potential geographical range of the glassy-winged sharpshooter (Homalodisca vitripennis), a very efficient insect vector of Xylella fastidiosa, one of the most dangerous plant-pathogenic bacteria worldwide. We use species distribution modeling (SDM) to analyse the climate factors driving the insect distribution and we evaluate its potential distribution in its native range (USA) and in Europe according to current climate and different scenarios of climate change: 6 General Circulation Models (GCM), 4 shared socioeconomic pathways of gas emission and 4 time periods (2030, 2050, 2070, 2090). The first result is that the climate conditions of the European continent are suitable to the glassy-winged sharpshooter, in particular around the Mediterranean basin where X. fastidiosa is present. Projections according to future climate conditions indicate displacement of climatically suitable areas towards the north in both North America and Europe. Globally, suitable areas will decrease in North America and increase in Europe in the coming decades. SDM outputs vary according to the GCM considered and this variability indicated areas of uncertainty in the species potential range. Both potential distribution and its uncertainty associated to future climate projections are important information for improved preparedness of phytosanitary authorities.
Collapse
Affiliation(s)
- Jean-Pierre Rossi
- CBGP (Centre de Biologie pour la Gestion des Populations), INRAE, CIRAD, IRD, Institut Agro, Montpellier, France.
| | - Jean-Yves Rasplus
- CBGP (Centre de Biologie pour la Gestion des Populations), INRAE, CIRAD, IRD, Institut Agro, Montpellier, France.
| |
Collapse
|
31
|
Cheseto X, Rering CC, Broadhead GT, Torto B, Beck JJ. Early infestation volatile biomarkers of fruit fly Bactrocera dorsalis (Hendel) ovipositional activity in mango (Mangifera indica L.). PHYTOCHEMISTRY 2023; 206:113519. [PMID: 36462541 DOI: 10.1016/j.phytochem.2022.113519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Infestation of agricultural commodities by insect pests results in significant economic, import and export, food safety, and invasive insect introduction issues for growers, consumers, and inspectors. The Oriental fruit fly (Bactrocera dorsalis) is considered a highly invasive insect pest with populations reported in more than 60 countries, with prevalent distributions in Asia and Africa. B. dorsalis is phytophagous with a host range encompassing hundreds of fruits and vegetables. Damage to the fruit or vegetable is inflicted through oviposition and subsequent larval feeding resulting in spoilage. Early detection of insect pest infestations is a critical component for ensuring food safety as well as controlling introduction and spread of invasive insects. However, detection of ovipositional activity and early larval development is visually difficult, thus rapid and non-destructive detection often relies on odors associated with infestation. We investigated the odors of mangoes (Mangifera indica L.) infested with B. dorsalis and compared the volatile profiles of infested mangoes to non-infested and mechanically damaged mangoes 24 h post-infestation. GC-MS and multivariate analyses provided the identification of eleven compounds unique to infested mangoes compared to mechanically damaged or non-infested fruit. Results indicated compositional and quantitative differentiation of volatile profiles among treatments for detection of infested fruit at quality checks or points of commerce.
Collapse
Affiliation(s)
- Xavier Cheseto
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, 00100, Nairobi, Kenya
| | - Caitlin C Rering
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service, U.S. Department of Agriculture, 1700 SW 23rd Drive, Gainesville, FL, 32608, United States
| | - Geoffrey T Broadhead
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service, U.S. Department of Agriculture, 1700 SW 23rd Drive, Gainesville, FL, 32608, United States
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, 00100, Nairobi, Kenya
| | - John J Beck
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service, U.S. Department of Agriculture, 1700 SW 23rd Drive, Gainesville, FL, 32608, United States.
| |
Collapse
|
32
|
Elemental content in under-utilized green leafy vegetables of urban waterbodies in Kolkata, India and their associated health risk. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
33
|
Healy BD, Budy P, Yackulic CB, Murphy BP, Schelly RC, McKinstry MC. Exploring metapopulation-scale suppression alternatives for a global invader in a river network experiencing climate change. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e13993. [PMID: 36047692 PMCID: PMC10107352 DOI: 10.1111/cobi.13993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/07/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Invasive species can dramatically alter ecosystems, but eradication is difficult, and suppression is expensive once they are established. Uncertainties in the potential for expansion and impacts by an invader can lead to delayed and inadequate suppression, allowing for establishment. Metapopulation viability models can aid in planning strategies to improve responses to invaders and lessen invasive species' impacts, which may be particularly important under climate change. We used a spatially explicit metapopulation viability model to explore suppression strategies for ecologically damaging invasive brown trout (Salmo trutta), established in the Colorado River and a tributary in Grand Canyon National Park. Our goals were to estimate the effectiveness of strategies targeting different life stages and subpopulations within a metapopulation; quantify the effectiveness of a rapid response to a new invasion relative to delaying action until establishment; and estimate whether future hydrology and temperature regimes related to climate change and reservoir management affect metapopulation viability and alter the optimal management response. Our models included scenarios targeting different life stages with spatially varying intensities of electrofishing, redd destruction, incentivized angler harvest, piscicides, and a weir. Quasi-extinction (QE) was obtainable only with metapopulation-wide suppression targeting multiple life stages. Brown trout population growth rates were most sensitive to changes in age 0 and large adult mortality. The duration of suppression needed to reach QE for a large established subpopulation was 12 years compared with 4 with a rapid response to a new invasion. Isolated subpopulations were vulnerable to suppression; however, connected tributary subpopulations enhanced metapopulation persistence by serving as climate refuges. Water shortages driving changes in reservoir storage and subsequent warming would cause brown trout declines, but metapopulation QE was achieved only through refocusing and increasing suppression. Our modeling approach improves understanding of invasive brown trout metapopulation dynamics, which could lead to more focused and effective invasive species suppression strategies and, ultimately, maintenance of populations of endemic fishes.
Collapse
Affiliation(s)
- Brian D. Healy
- Department of Watershed Sciences and the Ecology CenterUtah State UniversityLoganUtahUSA
- Native Fish Ecology and Conservation Program, Division of Science and Resource ManagementGrand Canyon National Park, National Park ServiceFlagstaffArizonaUSA
| | - Phaedra Budy
- U.S. Geological Survey, Utah Cooperative Fish and Wildlife Research Unit, Department of Watershed SciencesUtah State UniversityLoganUtahUSA
| | - Charles. B. Yackulic
- U.S. Geological Survey, Southwest Biological Science CenterGrand Canyon Monitoring and Research CenterFlagstaffArizonaUSA
| | - Brendan P. Murphy
- School of Environmental ScienceSimon Fraser UniversityVancouverBritish ColumbiaCanada
| | - Robert C. Schelly
- Native Fish Ecology and Conservation Program, Division of Science and Resource ManagementGrand Canyon National Park, National Park ServiceFlagstaffArizonaUSA
| | - Mark C. McKinstry
- Upper Colorado Regional OfficeU.S. Bureau of ReclamationSalt Lake CityUtahUSA
| |
Collapse
|
34
|
Jarnevich C, Engelstad P, LaRoe J, Hays B, Hogan T, Jirak J, Pearse I, Prevéy J, Sieracki J, Simpson A, Wenick J, Young N, Sofaer HR. Invaders at the doorstep: Using species distribution modeling to enhance invasive plant watch lists. ECOL INFORM 2023. [DOI: 10.1016/j.ecoinf.2023.101997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
35
|
Ecological risks associated with seaweed cultivation and identifying risk minimization approaches. ALGAL RES 2023. [DOI: 10.1016/j.algal.2022.102967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
36
|
Bradley BA, Beaury EM, Fusco EJ, Lopez BE. Invasive Species Policy Must Embrace a Changing Climate. Bioscience 2022. [DOI: 10.1093/biosci/biac097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
With increasing impacts of climate change observed across ecosystems, there is an urgent need to consider climate change in all future environmental policy. But existing policy and management might be slow to respond to this challenge, leading to missed opportunities to incorporate climate change into practice. Furthermore, invasive species threats continue to rise and interact with climate change—exacerbating negative impacts. Enabling natural resource managers and individuals to be proactive about climate-driven invasive species threats creates a win–win for conservation. Recommendations include expanding opportunities for information sharing across borders, supporting proactive screening and regulation of high-risk species on the horizon, and incentivizing individual actions that reduce ecological impacts. In addition, invasive species risk should be considered when crafting climate mitigation and adaptation policy to reduce compounding stressors on ecosystems. As we develop much-needed tools to reduce harm, policy and management must consider the combined threats of invasions and climate change.
Collapse
Affiliation(s)
- Bethany A Bradley
- Department of Environmental Conservation, University of Massachusetts , Amherst, Amherst, Massachusetts, United States
| | - Evelyn M Beaury
- High Meadows Environmental Institute, Princeton University , Princeton, New Jersey, United States
| | - Emily J Fusco
- Department of Environmental Conservation, University of Massachusetts , Amherst, Amherst, Massachusetts, United States
| | - Bianca E Lopez
- American Association for the Advancement of Science , Washington, DC, United States
| |
Collapse
|
37
|
Designing a surveillance program for early detection of alien plants and insects in Norway. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02957-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
AbstractNaturalized species of alien plants and animals comprise < 3% of biodiversity recorded in Norway but have had major impacts on natural ecosystems through displacement of native species. Encroachment of alien species has been especially problematic for coastal sites close to transport facilities and urban areas with high density housing. The goal of our field project was to design and test a surveillance program for early detection of alien species of vascular plants and terrestrial insects at the first phase of establishment in natural areas. In our 3-year project (2018–2020), we sampled 60 study plots in three counties in the Oslofjord region of southern Norway. Study plots (6.25 ha) were selected by two criteria: manual selection based on expert opinion (27 plots) or by random selection based on weights from a hotspot analysis of occurrence of alien species (33 plots). Vascular plants were surveyed by two experienced botanists who found a total of 239 alien species of vascular plants in 95 rounds of surveys. Insects and other invertebrates were captured with a single Malaise trap per site, with 3–4 rounds of repeated sampling. We used DNA-metabarcoding to identify invertebrates based on DNA extractions from crushed insects or from the preservative media. Over 3500 invertebrate taxa were detected in 255 rounds of sampling. We recorded 20 alien species of known risk, and 115 species that were new to Norway, including several ‘doorknocker’ species identified by previous risk assessments. We modeled the probabilities of occupancy (ψ) and detection (p) with occupancy models with repeated visits by multiple observers (vascular plants) or multiple rounds of sampling (insects). The two probabilities covaried with risk category for alien organisms and both were low for species categorized as no known or low risk (range = 0.052–0.326) but were higher for species categorized as severe risk (range = 0.318–0.651). Selecting sites at random or manually did not improve the probability of finding novel alien species, but occupancy had a weak positive relationship with housing density for some categories of alien plants and insects. We used our empirical estimates to test alternative sampling designs that would minimize the combined variance of occupancy and detection (A-optimality criterion). Sampling designs with 8–10 visits per site were best for surveillance of new alien species if the probabilities of occupancy and detection were both low, and provided low conditional probabilities of site occupancy ($$\hat{\psi }_{condl}$$
ψ
^
condl
≤ 0.032) and a high probabilities of cumulative detection ($$\hat{p}*$$
p
^
∗
≥ 0.943). Our field results demonstrate that early detection is feasible as a key component of a national surveillance program based on early detection and rapid response.
Collapse
|
38
|
Wu H, Dong S, Rao B. Latitudinal trends in the structure, similarity and beta diversity of plant communities invaded by Alternanthera philoxeroides in heterogeneous habitats. FRONTIERS IN PLANT SCIENCE 2022; 13:1021337. [PMID: 36275507 PMCID: PMC9583019 DOI: 10.3389/fpls.2022.1021337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Variations in latitudinal gradients could lead to changes in the performance and ecological effects of invasive plants and thus may affect the species composition, distribution and interspecific substitution of native plant communities. However, variations in structure, similarity and beta (β) diversity within invaded communities across latitudinal gradients in heterogeneous habitats remain unclear. In this study, we conducted a two-year field survey along 21°N to 37°N in China, to examine the differential effects of the amphibious invasive plant Alternanthera philoxeroides on native plant communities in terrestrial and aquatic habitats. We compared the differences in the invasion importance value (IV), species distribution, community similarity (Jaccard index and Sorenson index) and β diversity (Bray-Curtis index and βsim index) between terrestrial and aquatic communities invaded by A. philoxeroides, as well as analyzed their latitudinal trends. We found that the IV of A. philoxeroides and β diversity in aquatic habitats were all significantly higher than that of terrestrial, while the terrestrial habitat had a higher community similarity values. The aquatic A. philoxeroides IV increased with increasing latitude, while the terrestrial IV had no significant latitudinal trend. With increasing latitude, the component proportion of cold- and drought-tolerant species in the terrestrial communities increased, and the dominant accompanying species in the aquatic communities gradually changed from hygrophytes and floating plants to emerged and submerged plants. In addition, the aquatic communities had lower community similarity values and higher β diversity in higher latitudinal regions, while terrestrial communities had the opposite parameters in these regions. Our study indicates that the bioresistance capacities of the native communities to invasive A. philoxeroides in heterogeneous habitats are different; A. philoxeroides invasion leads to higher community homogenization in terrestrial habitats than in aquatic habitats, and terrestrial communities experience more severe homogenization in higher latitudinal regions. These findings are crucial for predicting the dynamics of invasive plant communities under rapid global change.
Collapse
Affiliation(s)
- Hao Wu
- College of Life Sciences, Xinyang Normal University, Xinyang, China
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Sijin Dong
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Benqiang Rao
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| |
Collapse
|
39
|
Jarnevich CS, Sofaer HR, Belamaric P, Engelstad P. Regional models do not outperform continental models for invasive species. NEOBIOTA 2022. [DOI: 10.3897/neobiota.77.86364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Aim: Species distribution models can guide invasive species prevention and management by characterizing invasion risk across space. However, extrapolation and transferability issues pose challenges for developing useful models for invasive species. Previous work has emphasized the importance of including all available occurrences in model estimation, but managers attuned to local processes may be skeptical of models based on a broad spatial extent if they suspect the captured responses reflect those of other regions where data are more numerous. We asked whether species distribution models for invasive plants performed better when developed at national versus regional extents.
Location: Continental United States.
Methods: We developed ensembles of species distribution models trained nationally, on sagebrush habitat, or on sagebrush habitat within three ecoregions (Great Basin, eastern sagebrush, and Great Plains) for nine invasive plants of interest for early detection and rapid response at local or regional scales. We compared the performance of national versus regional models using spatially independent withheld test data from each of the three ecoregions.
Results: We found that models trained using a national spatial extent tended to perform better than regionally trained models. Regional models did not outperform national ones even when considerable occurrence data were available for model estimation within the focal region. Information was often unavailable to fit informative regional models precisely in those areas of greatest interest for early detection and rapid response.
Main conclusions: Habitat suitability models for invasive plant species trained at a continental extent can reduce extrapolation while maximizing information on species’ responses to environmental variation. Standard modeling methods can capture spatially varying limiting factors, while regional or hierarchical models may only be advantageous when populations differ in their responses to environmental conditions, a condition expected to be relatively rare at the expanding boundaries of invasive species’ distributions.
Collapse
|
40
|
Singh JP, Kuang Y, Ploughe L, Coghill M, Fraser LH. Spotted knapweed (Centaurea stoebe) creates a soil legacy effect by modulating soil elemental composition in a semi-arid grassland ecosystem. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115391. [PMID: 35660827 DOI: 10.1016/j.jenvman.2022.115391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 05/08/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Invasive plants such as spotted knapweed (Centaurea stoebe) are particularly detrimental to fragile ecosystems like semi-arid grasslands in the interior British Columbia, impacting aboveground and belowground ecology. Physical removal of C. stoebe has been one of the most popular invasive species management strategies, but the impact of C. stoebe removal on soil has hardly been studied. Here, we examine the legacy effect of C. stoebe on soil elemental composition and ecosystem function following its removal in the Lac Du Bios Grasslands Protected Area, British Columbia. First, we selected 40 paired C. stoebe invaded and control (uninvaded) plots and removed all vegetation from these plots. We planted Festuca campestris seedlings in these plots and harvested and weighed the biomass after four months. Additionally, we quantified total carbon and nitrogen in soil. We observed that C. stoebe invaded plots had significantly lower F. campestris biomass. Moreover, the total carbon and nitrogen content, and carbon/nitrogen ratio were significantly lower in C. stoebe invaded plots. We further analyzed 12 common soil elements and found the elemental composition was significantly different in C. stoebe invaded plots compared to controls. We investigated the impact of elemental composition on soil ecosystem functions (such as total soil carbon, total soil nitrogen, and F. campestris productivity). Our analysis revealed significant relationships amongst the elemental composition and total soil carbon and nitrogen, and F. campestris productivity. The results indicate that C. stoebe exerts a legacy effect by altering the soil elemental composition that may subsequently impacts soil ecosystem functions such as plant productivity and total carbon and nitrogen content.
Collapse
Affiliation(s)
- Jay Prakash Singh
- Department of Natural Resource Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, BC, V2C 0C8, Canada.
| | - Yuying Kuang
- Department of Natural Resource Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, BC, V2C 0C8, Canada
| | - Laura Ploughe
- Department of Natural Resource Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, BC, V2C 0C8, Canada
| | - Matthew Coghill
- Department of Natural Resource Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, BC, V2C 0C8, Canada
| | - Lauchlan H Fraser
- Department of Natural Resource Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, BC, V2C 0C8, Canada
| |
Collapse
|
41
|
Jeunen GJ, Lipinskaya T, Gajduchenko H, Golovenchik V, Moroz M, Rizevsky V, Semenchenko V, Gemmell NJ. Environmental DNA (eDNA) metabarcoding surveys show evidence of non-indigenous freshwater species invasion to new parts of Eastern Europe. METABARCODING AND METAGENOMICS 2022. [DOI: 10.3897/mbmg.6.e68575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Active environmental DNA (eDNA) surveillance through species-specific amplification has shown increased sensitivity in the detection of non-indigenous species (NIS) compared to traditional approaches. When many NIS are of interest, however, active surveillance decreases in cost- and time-efficiency. Passive surveillance through eDNA metabarcoding takes advantage of the complex DNA signal in environmental samples and facilitates the simultaneous detection of multiple species. While passive eDNA surveillance has previously detected NIS, comparative studies are essential to determine the ability of eDNA metabarcoding to accurately describe the range of invasion for multiple NIS versus alternative approaches. Here, we surveyed twelve sites, covering nine rivers across Belarus for NIS with three different techniques, i.e. an ichthyological, hydrobiological and eDNA survey, whereby DNA was extracted from 500 ml surface water samples and amplified with two 16S rDNA primer assays targeting the fish and macroinvertebrate biodiversity. Nine non-indigenous fish and ten non-indigenous benthic macroinvertebrates were detected by traditional surveys, while seven NISeDNA signals were picked up, including four fish, one aquatic and two benthic macroinvertebrates. Passive eDNA surveillance extended the range of invasion further north for two invasive fish and identified a new NIS for Belarus, the freshwater jellyfish Craspedacusta sowerbii. False-negative detections for the eDNA survey might be attributed to: (i) preferential amplification of aquatic over benthic macroinvertebrates from surface water samples and (ii) an incomplete reference database. The evidence provided in this study recommends the implementation of both molecular-based and traditional approaches to maximise the probability of early detection of non-native organisms.
Collapse
|
42
|
Wildlife trade and the establishment of invasive alien species in Indonesia: management, policy, and regulation of the commercial sale of songbirds. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02831-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractIn Southeast Asia, mynas (genus Acridotheres) are amongst the most invasive bird species. Information is largely lacking as to where they have established themselves. The spread of invasive, non-native mynas is partially or largely driven by the massive trade in these species as songbirds. While preventing unintentional introductions early is the most effective management option, these species continue to be traded in bird markets throughout the region. We focus on the trade of native and non-native species of mynas, and the establishment of non-native mynas on the Indonesian islands of Java, Bali, and Lombok. Between 2016 and 2019, through field surveys and use of citizen science data (e.g., Burungnesia, iNaturalist, birding reports), we assessed where non-native mynas have been recorded in the wild on these three islands; through bird market surveys we established in which cities these birds are traded. We recorded common myna in Yogyakarta, one of our three survey areas. Combining all records, the areas where alien invasive mynas are established are Greater Jakarta (common and jungle myna), Yogyakarta (common myna), Bali (common and bank myna) and Lombok (common and Javan myna). Two-thirds of the records come from farmlands, home gardens and urbanised areas. In the bird markets, we recorded ~ 23,000 mynas of five species for sale, with Greater Jakarta, Bali and Lombok standing out as areas with high numbers of potentially invasive alien species offered for sale. Restrictions on the sale of wild-caught birds are not adhered to. Well-intended policies concerning the breeding and sale of legally protected species, whereby 10% of the stock is bred to be released in the wild, exacerbate the risk of the establishment of non-native species. We surmise that one of the most effective ways to reduce the risk of the accidental or deliberate release of potentially invasive alien mynas (and indeed other birds) into the wild is for governments and conservationists to work more closely with the retailers who hold the key to informing and educating consumers.
Collapse
|
43
|
Fisher S, Fisher RN, Pauly GB. Hidden in Plain Sight: Detecting Invasive Species When They Are Morphologically Similar to Native Species. FRONTIERS IN CONSERVATION SCIENCE 2022. [DOI: 10.3389/fcosc.2022.846431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Early detection and rapid response (EDRR) can help mitigate and control invasive species outbreaks early on but its success is dependent on accurate identification of invasive species. We evaluated a novel outbreak in San Diego County, California of the Sonoran Spotted Whiptail (Aspidoscelis sonorae) in order to confirm their spread as well as quantify how to better detect and potentially manage this invasive species in California. We found that A. sonorae went undetected for over two years due to its morphological similarity to native whiptails and that it has spread rapidly since they were first observed. There are two species of native California whiptails with which A. sonorae can be confused locally, the Orange-throated Whiptail (Aspidoscelis hyperythrus), and to a lesser extent the Tiger Whiptail (Aspidoscelis tigris). We review key diagnostic features to distinguish A. sonorae from native California whiptails. We also discuss how to efficiently use widely available community science tools to rapidly assess a novel invasive species outbreak and outline suggestions to help manage cryptic invasive species.
Collapse
|
44
|
Pearson JB, Bellmore JR, Dunham JB. Controlling invasive fish in fluctuating environments: Model analysis of common carp (
Cyprinus carpio
) in a shallow lake. Ecosphere 2022. [DOI: 10.1002/ecs2.3985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- James B. Pearson
- Malheur National Wildlife Refuge U.S. Fish and Wildlife Service Princeton Oregon USA
| | - J. Ryan Bellmore
- Pacific Northwest Research Station U.S. Department of Agriculture, Forest Service Juneau Alaska USA
| | - Jason B. Dunham
- Forest and Rangeland Ecosystem Science Center U.S. Geological Survey Corvallis Oregon USA
| |
Collapse
|
45
|
Bradley BA, Beaury EM, Fusco EJ, Munro L, Brown‐Lima C, Coville W, Kesler B, Olmstead N, Parker J. Breaking down barriers to consistent, climate‐smart regulation of invasive plants: A case study of US Northeast states. Ecosphere 2022. [DOI: 10.1002/ecs2.4014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Bethany A. Bradley
- Department of Environmental Conservation University of Massachusetts Amherst Massachusetts USA
| | - Evelyn M. Beaury
- Department of Environmental Conservation University of Massachusetts Amherst Massachusetts USA
- Organismic and Evolutionary Graduate Program University of Massachusetts Amherst Massachusetts USA
| | - Emily J. Fusco
- Department of Environmental Conservation University of Massachusetts Amherst Massachusetts USA
| | - Lara Munro
- Department of Environmental Conservation University of Massachusetts Amherst Massachusetts USA
| | - Carrie Brown‐Lima
- New York Invasive Species Research Institute Cornell University Ithaca New York USA
| | - William Coville
- Department of Environmental Conservation University of Massachusetts Amherst Massachusetts USA
| | - Benjamin Kesler
- Department of Environmental Conservation University of Massachusetts Amherst Massachusetts USA
| | - Nancy Olmstead
- Maine Department of Agriculture Conservation and Forestry—Maine Natural Areas Program Augusta Maine USA
| | - Jocelyn Parker
- Homeland Security and Geointelligence Masters Program Pennsylvania State University University Park Pennsylvania United States
| |
Collapse
|
46
|
Rosa RM, Cavallari DC, Salvador RB. iNaturalist as a tool in the study of tropical molluscs. PLoS One 2022; 17:e0268048. [PMID: 35511960 PMCID: PMC9070955 DOI: 10.1371/journal.pone.0268048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/20/2022] [Indexed: 11/18/2022] Open
Abstract
Although terrestrial gastropods are remarkably diverse, our knowledge of them is still lacking, especially for species from the Global South. As such, new tools to help researchers collect data on these organisms are very welcome. With this in mind, we investigated Brazilian observations on iNaturalist to assess the feasibility of the data available on the platform as a basis for studies on the tropical terrestrial gastropod fauna. The observations on iNaturalist were filtered by country, Brazil, and higher taxa, namely Eupulmonata, Cyclophoroidea and Helicinoidea, yielding a sample of 4,983 observations. These observations were then reviewed in search of records of rare or little-known species, species found outside their previously known range, and interesting ecological interactions. Exotic species made up 35% to 39% of the sampled iNaturalist records. The most commonly observed species were Lissachatina fulica (Bowdich, 1822), Bradybaena similaris (Férussac, 1822), Drymaeus papyraceus (Mawe, 1823), Drymaeus interpunctus (E. von Martens, 1887), Limacus flavus (Linnaeus, 1758), Meghimatium pictum (Stoliczka, 1873), Cornu aspersum (O. F. Müller, 1774), Vaginulus taunaisii (Férussac, 1821), Ovachlamys fulgens (Gude, 1900), and Bulimulus tenuissimus (Férussac, 1832). In total, 166 observations were deemed of interest to our purposes (e.g., rare species, range extensions, ecological interactions), totalling 46 identified species and 16 observations identified at genus level. Among the selected observations, we found pictures of live specimens of species that were previously known only from their shells, such as Megalobulimus pergranulatus (Pilsbry, 1901), bringing to light their appearances in life. Two potentially new species belonging to the genera Plekocheilus Guilding, 1827 and Megalobulimus K. Miller, 1878 were revealed. Additionally, we found records of living individuals of two species that were previously presumed to be possibly extinct, Leiostracus carnavalescus Simone & Salvador, 2016, and Gonyostomus egregius (Pfeiffer, 1845). We take the opportunity to discuss individual records of interest, evaluate the quality of the data and possible improvements, as well the potential and implications of the use of the iNaturalist platform for research in Brazil and other tropical countries. While iNaturalist has its limitations, it holds great potential to help document biodiversity in the tropics.
Collapse
Affiliation(s)
- Rafael Masson Rosa
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- * E-mail:
| | - Daniel Caracanhas Cavallari
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rodrigo Brincalepe Salvador
- Natural History Department, Museum of New Zealand Te Papa Tongarewa, Wellington, Wellington Region, New Zealand
| |
Collapse
|
47
|
van Rees CB, Hand BK, Carter SC, Bargeron C, Cline TJ, Daniel W, Ferrante JA, Gaddis K, Hunter ME, Jarnevich CS, McGeoch MA, Morisette JT, Neilson ME, Roy HE, Rozance MA, Sepulveda A, Wallace RD, Whited D, Wilcox T, Kimball JS, Luikart G. A framework to integrate innovations in invasion science for proactive management. Biol Rev Camb Philos Soc 2022; 97:1712-1735. [PMID: 35451197 DOI: 10.1111/brv.12859] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/26/2022]
Abstract
Invasive alien species (IAS) are a rising threat to biodiversity, national security, and regional economies, with impacts in the hundreds of billions of U.S. dollars annually. Proactive or predictive approaches guided by scientific knowledge are essential to keeping pace with growing impacts of invasions under climate change. Although the rapid development of diverse technologies and approaches has produced tools with the potential to greatly accelerate invasion research and management, innovation has far outpaced implementation and coordination. Technological and methodological syntheses are urgently needed to close the growing implementation gap and facilitate interdisciplinary collaboration and synergy among evolving disciplines. A broad review is necessary to demonstrate the utility and relevance of work in diverse fields to generate actionable science for the ongoing invasion crisis. Here, we review such advances in relevant fields including remote sensing, epidemiology, big data analytics, environmental DNA (eDNA) sampling, genomics, and others, and present a generalized framework for distilling existing and emerging data into products for proactive IAS research and management. This integrated workflow provides a pathway for scientists and practitioners in diverse disciplines to contribute to applied invasion biology in a coordinated, synergistic, and scalable manner.
Collapse
Affiliation(s)
- Charles B van Rees
- Flathead Lake Biological Station, University of Montana, 32125 Bio Station Lane, Polson, MT, 59860, U.S.A
| | - Brian K Hand
- Flathead Lake Biological Station, University of Montana, 32125 Bio Station Lane, Polson, MT, 59860, U.S.A
| | - Sean C Carter
- Numerical Terradynamic Simulation Group, University of Montana, ISB 415, Missoula, MT, 59812, U.S.A
| | - Chuck Bargeron
- Center for Invasive Species and Ecosystem Health, University of Georgia, 4601 Research Way, Tifton, GA, 31793, U.S.A
| | - Timothy J Cline
- U.S. Geological Survey, Northern Rocky Mountain Science Center, 2327 University Way STE 2, Bozeman MT 59717 & 320 Grinnel Drive, West Glacier, MT, 59936, U.S.A
| | - Wesley Daniel
- U.S. Geological Survey, Wetland and Aquatic Research Center, 7920 NW 71st Street, Gainesville, FL, 32653, U.S.A
| | - Jason A Ferrante
- U.S. Geological Survey, Wetland and Aquatic Research Center, 7920 NW 71st Street, Gainesville, FL, 32653, U.S.A
| | - Keith Gaddis
- NASA Biological Diversity and Ecological Forecasting Programs, 300 E St. SW, Washington, DC, 20546, U.S.A
| | - Margaret E Hunter
- U.S. Geological Survey, Wetland and Aquatic Research Center, 7920 NW 71st Street, Gainesville, FL, 32653, U.S.A
| | - Catherine S Jarnevich
- U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Avenue Bldg C, Fort Collins, CO, 80526, U.S.A
| | - Melodie A McGeoch
- Department of Environment and Genetics, La Trobe University, Plenty Road & Kingsbury Drive, Bundoora, Victoria, 3086, Australia
| | - Jeffrey T Morisette
- U.S. Forest Service Rocky Mountain Research Station, 26 Fort Missoula Road, Missoula, 59804, MT, U.S.A
| | - Matthew E Neilson
- U.S. Geological Survey, Wetland and Aquatic Research Center, 7920 NW 71st Street, Gainesville, FL, 32653, U.S.A
| | - Helen E Roy
- UK Centre for Ecology & Hydrology, MacLean Building, Benson Lane, Crowmarsh Gifford, OX10 8BB, U.K
| | - Mary Ann Rozance
- Northwest Climate Adaptation Science Center, University of Washington, Box 355674, Seattle, WA, 98195, U.S.A
| | - Adam Sepulveda
- U.S. Forest Service Rocky Mountain Research Station, 26 Fort Missoula Road, Missoula, 59804, MT, U.S.A
| | - Rebekah D Wallace
- Center for Invasive Species and Ecosystem Health, University of Georgia, 4601 Research Way, Tifton, GA, 31793, U.S.A
| | - Diane Whited
- Flathead Lake Biological Station, University of Montana, 32125 Bio Station Lane, Polson, MT, 59860, U.S.A
| | - Taylor Wilcox
- U.S. Forest Service Rocky Mountain Research Station, 26 Fort Missoula Road, Missoula, 59804, MT, U.S.A
| | - John S Kimball
- Numerical Terradynamic Simulation Group, University of Montana, ISB 415, Missoula, MT, 59812, U.S.A
| | - Gordon Luikart
- Flathead Lake Biological Station, University of Montana, 32125 Bio Station Lane, Polson, MT, 59860, U.S.A
| |
Collapse
|
48
|
Hernández-Brito D, Carrete M, Tella JL. Annual Censuses and Citizen Science Data Show Rapid Population Increases and Range Expansion of Invasive Rose-Ringed and Monk Parakeets in Seville, Spain. Animals (Basel) 2022; 12:677. [PMID: 35327075 PMCID: PMC8944835 DOI: 10.3390/ani12060677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 12/22/2022] Open
Abstract
Population changes of invasive species can go unnoticed long before population explosions, so long-term monitoring programs are needed to assess changes in population size. Although invasive populations of rose-ringed (Psittacula krameri) and monk parakeets (Myiopsitta monachus) are present worldwide, their current status and dynamics are mostly poorly known. Here, we provide a long-term population monitoring of both parakeet species established in a Mediterranean urban area. Between 2013 and 2021, we conducted systematic population censuses in the city of Seville and collected their occurrence and spatial distribution data from citizen science platforms. Our censuses showed a rapid population growth of both species: rose-ringed parakeets increased from 1200 to 6300 individuals, while monk parakeets increased from 70 to 1487 individuals. These population trends were weakly reflected by the number of parakeet observations and the number of cells with parakeet observations but not by the number of individuals recorded in citizen science platforms. Moreover, for the monk parakeet, the number of cells with observations was related to the spatial spread of its nests across the study area. Although resource-intensive, long-term monitoring programs are essential to assess population changes and develop effective management actions for invasive species. Thus, contrasting this information with data taken through citizen science platforms can validate the utility of the latter for assessing population status of invasive species.
Collapse
Affiliation(s)
- Dailos Hernández-Brito
- Department of Conservation Biology, Doñana Biological Station (CSIC), Calle Américo Vespucio, 26, 41092 Sevilla, Spain;
| | - Martina Carrete
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Carretera de Utrera, km 1, 41013 Sevilla, Spain;
| | - José L. Tella
- Department of Conservation Biology, Doñana Biological Station (CSIC), Calle Américo Vespucio, 26, 41092 Sevilla, Spain;
| |
Collapse
|
49
|
Piper AM, Cunningham JP, Cogan NOI, Blacket MJ. DNA Metabarcoding Enables High-Throughput Detection of Spotted Wing Drosophila (Drosophila suzukii) Within Unsorted Trap Catches. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.822648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The spotted wing drosophila (Drosophila suzukii, Matsumara) is a rapidly spreading global pest of soft and stone fruit production. Due to the similarity of many of its life stages to other cosmopolitan drosophilids, surveillance for this pest is currently bottlenecked by the laborious sorting and morphological identification of large mixed trap catches. DNA metabarcoding presents an alternative high-throughput sequencing (HTS) approach for multi-species identification, which may lend itself ideally to rapid and scalable diagnostics of D. suzukii within unsorted trap samples. In this study, we compared the qualitative (identification accuracy) and quantitative (bias toward each species) performance of four metabarcoding primer pairs on D. suzukii and its close relatives. We then determined the sensitivity of a non-destructive metabarcoding assay (i.e., which retains intact specimens) by spiking whole specimens of target species into mock communities of increasing specimen number, as well as 29 field-sampled communities from a cherry and a stone fruit orchard. Metabarcoding successfully detected D. suzukii and its close relatives Drosophila subpulchrella and Drosophila biarmipes in the spiked communities with an accuracy of 96, 100, and 100% respectively, and identified a further 57 non-target arthropods collected as bycatch by D. suzukii surveillance methods in a field scenario. While the non-destructive DNA extraction retained intact voucher specimens, dropouts of single species and entire technical replicates suggests that these protocols behave more similarly to environmental DNA than homogenized tissue metabarcoding and may require increased technical replication to reliably detect low-abundance taxa. Adoption of high-throughput metabarcoding assays for screening bulk trap samples could enable a substantial increase in the geographic scale and intensity of D. suzukii surveillance, and thus likelihood of detecting a new introduction. Trap designs and surveillance protocols will, however, need to be optimized to adequately preserve specimen DNA for molecular identification.
Collapse
|
50
|
Meriggi C, Drakare S, Polaina Lacambra E, Johnson RK, Laugen AT. Species distribution models as a tool for early detection of the invasive Raphidiopsis raciborskii in European lakes. HARMFUL ALGAE 2022; 113:102202. [PMID: 35287933 DOI: 10.1016/j.hal.2022.102202] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/29/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
In freshwater habitats, invasive species and the increase of cyanobacterial blooms have been identified as a major cause of biodiversity loss. The invasive cyanobacteria Raphidiopsis raciborskii a toxin-producing and bloom-forming species affecting local biodiversity and ecosystem services is currently expanding its range across Europe. We used species distribution models (SDMs) and regional bioclimatic environmental variables, such as temperature and precipitation, to identify suitable areas for the colonization and survival of R. raciborskii, with special focus on the geographic extent of potential habitats in Northern Europe. SDMs predictions uncovered areas of high occurrence probability of R. raciborskii in locations where it has not been recorded yet, e.g. some areas in Central and Northern Europe. In the southeastern part of Sweden, areas of suitable climate for R. raciborskii corresponded with lakes of high concentrations of total phosphorus, increasing the risk of the species to thrive. To our knowledge, this is the first attempt to predict areas at high risk of R. raciborskii colonization in Europe. The results from this study suggest several areas across Europe that would need monitoring programs to determine if the species is present or not, to be able to prevent its potential colonization and population growth. Regarding an undesirable microorganism like R. raciborskii, authorities may need to start information campaigns to avoid or minimize the spread.
Collapse
Affiliation(s)
- Carlotta Meriggi
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Stina Drakare
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Richard K Johnson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ane T Laugen
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden; Bioeconomy Research Team, Novia University of Applied Science, Ekenäs, Finland; Current address: Centre for Coastal Research, Department of Natural Sciences, Agder University, Kristiansand, Norway
| |
Collapse
|