1
|
Huang D, Jiang Y, Zhao K, Qin F, Yuan Y, Xia B, Jiang G. Synergistic transformation of Cr(VI) in lubricant degradation by bacterial consortium. World J Microbiol Biotechnol 2025; 41:27. [PMID: 39779495 DOI: 10.1007/s11274-024-04247-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025]
Abstract
In recent years, it has become widely acknowledged that heavy metals are often present in oil-contaminated sites. This study utilized three specific types of microorganisms with different functions to construct a composite bacterial consortium for treating lubricant-Cr(VI) composite pollutants. The selected strains were Lysinbacillus fusiformis and Bacillus tropicus. The Back Propagation Neural Network-genetic algorithm was employed to optimize the secondary bacterial addition time to 67 h and the strain ratio to 2:1. The optimized process involved the use of 4.6 g/L glucose and ammonium oxalate as electron donors. After 6 days of treatment with the composite consortium, the removal rates of 1500 mg/L lubricating oil and 50 mg/L chromium reached 90.3% and 84.2%, respectively. Initial analysis using three-dimensional fluorescence to examine the changes in extracellular polymers in the bacteria when exposed to chromium-lubricating oil, showed that 30 mg/L Cr(VI) could induce the secretion of extracellular protein-like substances. These substances may be directly or indirectly involved in the biological detoxification mechanism of chromium. The synergistic removal of complex pollutants has the potential to transform previous "unilateral" removal studies and enhance bioremediation efficiency.
Collapse
Affiliation(s)
- Di Huang
- Engineering Research Centre for Waste Oil Recovery Technology and Equipment, Ministry Education, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Yan Jiang
- Engineering Research Centre for Waste Oil Recovery Technology and Equipment, Ministry Education, Chongqing Technology and Business University, Chongqing, 400067, China.
| | - Kui Zhao
- Engineering Research Centre for Waste Oil Recovery Technology and Equipment, Ministry Education, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Fang Qin
- School of Chemical Safety, North China Institute of Science and Technology, Sanhe, 065201, China
| | - Yuan Yuan
- Engineering Research Centre for Waste Oil Recovery Technology and Equipment, Ministry Education, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Bin Xia
- Engineering Research Centre for Waste Oil Recovery Technology and Equipment, Ministry Education, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Guangming Jiang
- Engineering Research Centre for Waste Oil Recovery Technology and Equipment, Ministry Education, Chongqing Technology and Business University, Chongqing, 400067, China
| |
Collapse
|
2
|
Li S, Jiang Z, Wei S. Interaction of heavy metals and polycyclic aromatic hydrocarbons in soil-crop systems: The effects and mechanisms. ENVIRONMENTAL RESEARCH 2024; 263:120035. [PMID: 39313170 DOI: 10.1016/j.envres.2024.120035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/24/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
In natural environments, the removal and degradation of two major pollutants, heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs), are explored through targeted experimental investigations. However, these endeavors reveal that outcomes in situ may significantly diverge from the idealized effects observed in laboratory settings due to the complex interaction between HMs and PAHs, underscoring a pressing need for thorough research into their mutual impacts. This review examines the origins and migratory pathways of compound pollution stemming from HMs and PAHs. Concurrently, it provides an overview of the farmland ecosystem's response to combined HMs-PAHs pollution. This encompassed the assessments of changes in the soil's physical and chemical properties, the intricacies of the migration and transformation processes of the combined pollution within plants, and the consequential impact on the physiological functions of soil microorganisms. The varying concentration ratios of HMs and PAHs can modulate the permeability of plant root cell membranes, thereby influencing the translocation of these substances within the plant via symplastic and apoplastic pathways. Recent research has uncovered the mechanisms underlying cation-π interactions between HMs and PAHs. This review aims to offer a comprehensive overview of the current state of HMs-PAHs co-pollution, offering both qualitative and quantitative insights into their interaction patterns within the farmland ecosystem. The ultimate goal is to establish a robust theoretical foundation to support the in-situ remediation of these pollutants in agricultural practices and to provide a theoretical basis for soil health management in agricultural production.
Collapse
Affiliation(s)
- Shijing Li
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing, 400715, China
| | - Zhenmao Jiang
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing, 400715, China
| | - Shiqiang Wei
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
3
|
Ossai IC, Hamid FS, Aboudi-Mana SC, Hassan A. Ecotoxicological effects, human and animal health risks of pollution and exposure to waste engine oils: a review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:416. [PMID: 39240425 DOI: 10.1007/s10653-024-02198-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Waste engine oils are hazardous waste oils originating from the transportation sector and industrial heavy-duty machinery operations. Improper handling, disposal, and miscellaneous misuses cause significant air, soil, sediments, surface water, and groundwater pollution. Occupational exposure by prolonged and repeated contact poses direct or indirect health risks, resulting in short-term (acute) or long-term (chronic) toxicities. Soil pollution causes geotoxicity by disrupting the biocenosis and physicochemical properties of the soil, and phytotoxicity by impairing plant growth, physiology and metabolism. Surface water pollution impacts aquatic ecosystems and biodiversity. Air pollution from incineration causes the release of greenhouse gases creating global warming, noxious gases and particulate matter eliciting pulmonary disorders. The toxicity of waste engine oil is due to the total petroleum hydrocarbons (TPH) composition, including polycyclic aromatic hydrocarbons (PAHs), benzene, toluene, ethylbenzene, xylene (BTEX), polychlorinated biphenyls (PCBs) congeners, organometallic compounds, and toxic chemical additives. The paper aims to provide a comprehensive overview of the ecotoxicological effects, human and animal health toxicology and exposure to waste engine oils. It highlights the properties and functions of engine oil and describes waste engine oil generation, disposal and recycling. It provides intensive evaluations and descriptions of the toxicokinetics, metabolism, routes of exposure and toxicosis in human and animal studies based on toxicological, epidemiological and experimental studies. It emphasises the preventive measures in occupational exposure and recommends risk-based remediation techniques to mitigate environmental pollution. The review will assist in understanding the potential risks of waste engine oil with significant consideration of the public health benefits and importance.
Collapse
Affiliation(s)
- Innocent Chukwunonso Ossai
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- Centre for Research in Waste Management, Institute of Research Management and Monitoring, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- Tetragram Bioresources Limited, Federal Capital Territory (FCT), Abuja, Nigeria.
| | - Fauziah Shahul Hamid
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Centre for Research in Waste Management, Institute of Research Management and Monitoring, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Suzanne Christine Aboudi-Mana
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Centre for Research in Waste Management, Institute of Research Management and Monitoring, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Auwalu Hassan
- Centre for Research Excellence and Incubation Management, Universiti Sultan Zainal Abdidin, 21300, Kuala Nerus, Terengganu Darul Iman, Malaysia
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abdidin, 21300, Kuala Nerus, Terengganu Darul Iman, Malaysia
- Department of Biological Sciences, Faculty of Science, Federal University Kashere, Kashere, Gombe State, Nigeria
| |
Collapse
|
4
|
Ni Z, Gong Z, Song L, Jia C, Zhang X. Adaptation strategies and functional transitions of microbial community in pyrene-contaminated soils promoted by lead with Pseudomonas veronii and its extracellular polymeric substances. CHEMOSPHERE 2024; 351:141139. [PMID: 38185422 DOI: 10.1016/j.chemosphere.2024.141139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/25/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
Pyrene was designated as a remediation target in this study, and low contamination of lead (Pb) was set to induce heavy metal stress. Pseudomonas veronii and its extracellular polymeric substances (EPSs) were chosen for biofortification, with the aim of elucidating the structural, metabolic, and functional responses of soil microbial communities. Community analysis of soil microorganisms using high-throughput sequencing showed that the co-addition of P. veronii and EPSs resulted in an increase in relative abundance of phyla associated with pyrene degradation, and formed a symbiotic system dominated by Firmicutes and Proteobacteria, which involved in pyrene metabolism. Co-occurrence network analysis revealed that the module containing P. veronii was the only one exhibiting a positive correlation between bacterial abundance and pyrene removal, indicating the potential of bioaugmentation in enriching functional taxa. Biofortification also enhanced the abundance of functional gene linked to EPS production (biofilm formation-Pseudomonas aeruginosa) and pyrene degradation. Furthermore, 17 potential functional bacteria were screened out using random forest algorithm. Lead contamination further promoted the growth of Proteobacteria, intensified cooperative associations among bacteria, and increased the abundance of bacteria with positive correlation with pyrene degradation. The results offer novel perspectives on alterations in microbial communities resulting from the synergistic impact of heavy metal stress and biofortification.
Collapse
Affiliation(s)
- Zijun Ni
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zongqiang Gong
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Lei Song
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chunyun Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Xiaorong Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
5
|
Pulikova E, Ivanov F, Gorovtsov A, Dudnikova T, Zinchenko V, Minkina T, Mandzhieva S, Barahov A, Sherbakov A, Sushkova S. Microbiological status of natural and anthropogenic soils of the Taganrog Bay coast at different levels of combined pollution with heavy metals and PAHs. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9373-9390. [PMID: 36436180 DOI: 10.1007/s10653-022-01405-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
The effect of heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) pollution on the microbiological status of soils on the coast of the Taganrog Bay and adjacent areas was studied. The content of total and exchangeable forms of HMs, the content of 16 priority PAHs and the abundance of several groups of culturable microorganisms was determined, namely copiotrophic, prototrophic, aerobic spore-forming bacteria, actinomycetes, molds and yeasts. The content of total and exchangeable forms of HMs in urban coastal soils in industrial zone significantly exceeded that in non-urban soils. The maximum concentrations of total forms of Mn, Cr, Ni, Cu, Zn, Pb and Cd are 1821, 871, 143, 89, 1390, 317 and 10 mg/kg, respectively. The median value of the total content of 16 PAHs in urban soils is 3 times higher than in the soils of natural areas and reached 4309 ng/g. The lowest numbers of copiotrophic bacteria, prototrophic bacteria and aerobic spore-forming bacteria were found in the soils of industrial zone: 6.8, 13.8 and 0.63 million CFU g-1 dry soil, respectively. The largest numbers of copiotrophic bacteria, prototrophic bacteria and aerobic spore-forming bacteria were recorded in the soils of natural areas-72.5, 136 and 5.73 million CFU g-1 dry soil, respectively. It was found that the abundance of copiotrophs, prototrophs, and aerobic spore-forming bacteria is more affected by the urbanization of coastal soils including the pollution of HMs and PAHs. Other groups of microorganisms (actinomycetes, molds and yeasts) turned out to be more resistant to anthropogenic factors.
Collapse
Affiliation(s)
| | - Fedor Ivanov
- Southern Federal University, Rostov-on-Don, Russian Federation, 344090
| | - Andrey Gorovtsov
- Southern Federal University, Rostov-on-Don, Russian Federation, 344090
| | - Tamara Dudnikova
- Southern Federal University, Rostov-on-Don, Russian Federation, 344090
| | | | - Tatiana Minkina
- Southern Federal University, Rostov-on-Don, Russian Federation, 344090
| | | | - Anatoly Barahov
- Southern Federal University, Rostov-on-Don, Russian Federation, 344090
| | - Alexey Sherbakov
- Southern Federal University, Rostov-on-Don, Russian Federation, 344090
| | - Svetlana Sushkova
- Southern Federal University, Rostov-on-Don, Russian Federation, 344090.
| |
Collapse
|
6
|
Su Q, Yu J, Fang K, Dong P, Li Z, Zhang W, Liu M, Xiang L, Cai J. Microbial Removal of Petroleum Hydrocarbons from Contaminated Soil under Arsenic Stress. TOXICS 2023; 11:toxics11020143. [PMID: 36851017 PMCID: PMC9962243 DOI: 10.3390/toxics11020143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 06/12/2023]
Abstract
The contamination of soils with petroleum and its derivatives is a longstanding, widespread, and worsening environmental issue. However, efforts to remediate petroleum hydrocarbon-polluted soils often neglect or overlook the interference of heavy metals that often co-contaminate these soils and occur in petroleum itself. Here, we identified Acinetobacter baumannii strain JYZ-03 according to its Gram staining, oxidase reaction, biochemical tests, and FAME and 16S rDNA gene sequence analyses and determined that it has the ability to degrade petroleum hydrocarbons. It was isolated from soil contaminated by both heavy metals and petroleum hydrocarbons. Strain JYZ-03 utilized diesel oil, long-chain n-alkanes, branched alkanes, and polycyclic aromatic hydrocarbons (PAHs) as its sole carbon sources. It degraded 93.29% of the diesel oil burden in 7 days. It also had a high tolerance to heavy metal stress caused by arsenic (As). Its petroleum hydrocarbon degradation efficiency remained constant over the 0-300 mg/L As(V) range. Its optimal growth conditions were pH 7.0 and 25-30 °C, respectively, and its growth was not inhibited even by 3.0% (w/v) NaCl. Strain JYZ-03 effectively bioremediates petroleum hydrocarbon-contaminated soil in the presence of As stress. Therefore, strain JYZ-03 may be of high value in petroleum- and heavy-metal-contaminated site bioremediation.
Collapse
Affiliation(s)
- Qu Su
- Hubei Provincial Academy of Eco-EnvironmentSal Science, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
| | - Jiang Yu
- Hubei Provincial Academy of Eco-EnvironmentSal Science, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
- Institute of Advanced Studies, China University of Geosciences, Wuhan 430079, China
| | - Kaiqin Fang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
- Huazhong Agricultural University, Wuhan 430070, China
| | - Panyue Dong
- Hubei Provincial Academy of Eco-EnvironmentSal Science, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
| | - Zheyong Li
- Hubei Provincial Academy of Eco-EnvironmentSal Science, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
| | - Wuzhu Zhang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
- Huazhong Agricultural University, Wuhan 430070, China
| | - Manxia Liu
- Hubei Provincial Academy of Eco-EnvironmentSal Science, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
| | - Luojing Xiang
- Hubei Provincial Academy of Eco-EnvironmentSal Science, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
| | - Junxiong Cai
- Hubei Provincial Academy of Eco-EnvironmentSal Science, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
| |
Collapse
|
7
|
Dell'Anno F, Joaquim van Zyl L, Trindade M, Buschi E, Cannavacciuolo A, Pepi M, Sansone C, Brunet C, Ianora A, de Pascale D, Golyshin PN, Dell'Anno A, Rastelli E. Microbiome enrichment from contaminated marine sediments unveils novel bacterial strains for petroleum hydrocarbon and heavy metal bioremediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120772. [PMID: 36455775 DOI: 10.1016/j.envpol.2022.120772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Petroleum hydrocarbons and heavy metals are some of the most widespread contaminants affecting marine ecosystems, urgently needing effective and sustainable remediation solutions. Microbial-based bioremediation is gaining increasing interest as an effective, economically and environmentally sustainable strategy. Here, we hypothesized that the heavily polluted coastal area facing the Sarno River mouth, which discharges >3 tons of polycyclic aromatic hydrocarbons (PAHs) and ∼15 tons of heavy metals (HMs) into the sea annually, hosts unique microbiomes including marine bacteria useful for PAHs and HMs bioremediation. We thus enriched the microbiome of marine sediments, contextually selecting for HM-resistant bacteria. The enriched mixed bacterial culture was subjected to whole-DNA sequencing, metagenome-assembled-genomes (MAGs) annotation, and further sub-culturing to obtain the major bacterial species as pure strains. We obtained two novel isolates corresponding to the two most abundant MAGs (Alcanivorax xenomutans strain-SRM1 and Halomonas alkaliantarctica strain-SRM2), and tested their ability to degrade PAHs and remove HMs. Both strains exhibited high PAHs degradation (60-100%) and HMs removal (21-100%) yield, and we described in detail >60 genes in their MAGs to unveil the possible genetic basis for such abilities. Most promising yields (∼100%) were obtained towards naphthalene, pyrene and lead. We propose these novel bacterial strains and related genetic repertoire to be further exploited for effective bioremediation of marine environments contaminated with both PAHs and HMs.
Collapse
Affiliation(s)
- Filippo Dell'Anno
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Villa Comunale, 80121, Naples, Italy.
| | - Leonardo Joaquim van Zyl
- Department of Biotechnology, Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Bellville, 7535, Cape Town, South Africa.
| | - Marla Trindade
- Department of Biotechnology, Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Bellville, 7535, Cape Town, South Africa.
| | - Emanuela Buschi
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Fano Marine Centre, Viale Adriatico 1-N, 61032, Fano, Italy.
| | - Antonio Cannavacciuolo
- Department of Integrative Marine Ecology, Stazione Zoologica "Anton Dohrn", Fano Marine Centre, Viale Adriatico 1-N, 61032, Fano, Italy.
| | - Milva Pepi
- Department of Integrative Marine Ecology, Stazione Zoologica "Anton Dohrn", Fano Marine Centre, Viale Adriatico 1-N, 61032, Fano, Italy.
| | - Clementina Sansone
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Villa Comunale, 80121, Naples, Italy.
| | - Christophe Brunet
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Villa Comunale, 80121, Naples, Italy.
| | - Adrianna Ianora
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Villa Comunale, 80121, Naples, Italy.
| | - Donatella de Pascale
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Villa Comunale, 80121, Naples, Italy.
| | - Peter N Golyshin
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Gwynedd LL57 2UW, UK.
| | - Antonio Dell'Anno
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - Eugenio Rastelli
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Fano Marine Centre, Viale Adriatico 1-N, 61032, Fano, Italy.
| |
Collapse
|
8
|
Wang D, Qin L, Liu E, Chai G, Su Z, Shan J, Yang Z, Wang Z, Wang H, Meng H, Zheng X, Li H, Li J, Lin Y. Biodegradation performance and diversity of enriched bacterial consortia capable of degrading high-molecular-weight polycyclic aromatic hydrocarbons. ENVIRONMENTAL TECHNOLOGY 2022; 43:4200-4211. [PMID: 34148513 DOI: 10.1080/09593330.2021.1946163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/13/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are key organic pollutants in the environment that pose threats to the ecosystem and human health. The degradation of high molecular weight (HMW) PAHs by enriched bacterial consortia has been previously studied, while the involved metabolisms and microbial communities are still unclear and warrant further investigations. In this study, five bacterial consortia capable of utilizing different PAHs (naphthalene, anthracene, and pyrene) as the sole carbon and energy sources were enriched from PAH-contaminated soil samples. Among the five consortia, consortium TC exhibited the highest pyrene degradation efficiency (91%) after 19 d of incubation. The degradation efficiency was further enhanced up to 99% by supplementing yeast extract. Besides, consortium TC showed tolerances to high concentrations of pyrene (up to 1000 mg/L) and different heavy metal stresses (including Zn2+, Cd2+, and Pb2+). The dominant genus in consortium TC, GS, and PL showing relatively higher degradation efficiency for anthracene and pyrene was Pseudomonas, whereas consortium PG and GD were predominated by genus Achromobacter and class Enterobacteriaceae, respectively. Consortium TC, as a highly efficient HMW PAH-degrading consortium, could be applied for synergistic biodegradation of HMW PAHs and in situ bioremediation of the sites contaminated with both PAHs and heavy metals.
Collapse
Affiliation(s)
- Dongqi Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Water Resources and Environment, Xi'an University of Technology, Xi'an, People's Republic of China
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Lu Qin
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Enyu Liu
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Guodong Chai
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Zhenduo Su
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Jiaqi Shan
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Zhangjie Yang
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Zhe Wang
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Hui Wang
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Haiyu Meng
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Xing Zheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, People's Republic of China
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Huaien Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, People's Republic of China
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Jiake Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, People's Republic of China
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Yishan Lin
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Science, Xi'an, People's Republic of China
| |
Collapse
|
9
|
Yang ZN, Liu ZS, Wang KH, Liang ZL, Abdugheni R, Huang Y, Wang RH, Ma HL, Wang XK, Yang ML, Zhang BG, Li DF, Jiang CY, Corvini PFX, Liu SJ. Soil microbiomes divergently respond to heavy metals and polycyclic aromatic hydrocarbons in contaminated industrial sites. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 10:100169. [PMID: 36159729 PMCID: PMC9488039 DOI: 10.1016/j.ese.2022.100169] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 05/19/2023]
Abstract
Contaminated sites from electronic waste (e-waste) dismantling and coking plants feature high concentrations of heavy metals (HMs) and/or polycyclic aromatic hydrocarbons (PAHs) in soil. Mixed contamination (HMs + PAHs) hinders land reclamation and affects the microbial diversity and function of soil microbiomes. In this study, we analyzed HM and PAH contamination from an e-waste dismantling plant and a coking plant and evaluated the influences of HM and PAH contamination on soil microbiomes. It was noticed that HMs and PAHs were found in all sites, although the major contaminants of the e-waste dismantling plant site were HMs (such as Cu at 5,947.58 ± 433.44 mg kg-1, Zn at 4,961.38 ± 436.51 mg kg-1, and Mn at 2,379.07 ± 227.46 mg kg-1), and the major contaminants of the coking plant site were PAHs (such as fluorene at 11,740.06 ± 620.1 mg kg-1, acenaphthylene at 211.69 ± 7.04 mg kg-1, and pyrene at 183.14 ± 18.89 mg kg-1). The microbiomes (diversity and abundance) of all sites were determined via high-throughput sequencing of 16S rRNA genes, and redundancy analysis was conducted to investigate the relations between soil microbiomes and contaminants. The results showed that the microbiomes of the contaminated sites divergently responded to HMs and PAHs. The abundances of the bacterial genera Sulfuritalea, Pseudomonas, and Sphingobium were positively related to PAHs, while the abundances of the bacterial genera Bryobacter, Nitrospira, and Steroidobacter were positively related to HMs. This study promotes an understanding of how soil microbiomes respond to single and mixed contamination with HMs and PAHs.
Collapse
Affiliation(s)
- Zhen-Ni Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ze-Shen Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ke-Huan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zong-Lin Liang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rashidin Abdugheni
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Run-Hua Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong-Lin Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Kang Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mei-Ling Yang
- School of Life Sciences, Hebei University, Baoding, 071002, Hebei Province, China
| | - Bing-Ge Zhang
- School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China
| | - De-Feng Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Philippe F.-X. Corvini
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, 4132, Switzerland
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, 226237, Shandong Province, China
| |
Collapse
|
10
|
Ambaye TG, Chebbi A, Formicola F, Prasad S, Gomez FH, Franzetti A, Vaccari M. Remediation of soil polluted with petroleum hydrocarbons and its reuse for agriculture: Recent progress, challenges, and perspectives. CHEMOSPHERE 2022; 293:133572. [PMID: 35016966 DOI: 10.1016/j.chemosphere.2022.133572] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Petroleum hydrocarbons (PHs) are used as raw materials in many industries and primary energy sources. However, excessive PHs act as soil pollutants, posing serious threats to living organisms. Various ex-situ or in-situ chemical and biological methods are applied to restore polluted soil. However, most of the chemical treatment methods are expensive, environmentally unfriendly, and sometimes inefficient. That attracts scientists and researchers to develop and select new strategists to remediate polluted soil through risk-based analysis and eco-friendly manner. This review discusses the sources of PHs, properties, distribution, transport, and fate in the environment, internal and external factors affecting the soil remediation and restoration process, and its effective re-utilization for agriculture. Bioremediation is an eco-friendly method for degrading PHs, specifically by using microorganisms. Next-generation sequencing (NGS) technologies are being used to monitor contaminated sites. Currently, these new technologies have caused a paradigm shift by giving new insights into the microbially mediated biodegradation processes by targeting rRNA are discussed concisely. The recent development of risk-based management for soil contamination and its challenges and future perspectives are also discussed. Furthermore, nanotechnology seems very promising for effective soil remediation, but its success depends on its cost-effectiveness. This review paper suggests using bio-electrochemical systems that utilize electro-chemically active microorganisms to remediate and restore polluted soil with PHs that would be eco-friendlier and help tailor-made effective and sustainable remediation technologies.
Collapse
Affiliation(s)
- Teklit Gebregiorgis Ambaye
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy.
| | - Alif Chebbi
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy; Department of Earth and Environmental Sciences -DISAT, University of Milano-Bicocca, Piazza Della Scienza, 1 - 20126, Milano, Italy
| | - Francesca Formicola
- Department of Earth and Environmental Sciences -DISAT, University of Milano-Bicocca, Piazza Della Scienza, 1 - 20126, Milano, Italy
| | - Shiv Prasad
- Division of Environment Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Franco Hernan Gomez
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences -DISAT, University of Milano-Bicocca, Piazza Della Scienza, 1 - 20126, Milano, Italy
| | - Mentore Vaccari
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy.
| |
Collapse
|
11
|
Ali M, Song X, Ding D, Wang Q, Zhang Z, Tang Z. Bioremediation of PAHs and heavy metals co-contaminated soils: Challenges and enhancement strategies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118686. [PMID: 34920044 DOI: 10.1016/j.envpol.2021.118686] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/20/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Systemic studies on the bioremediation of co-contaminated PAHs and heavy metals are lacking, and this paper provides an in-depth review on the topic. The released sources and transport of co-contaminated PAHs and heavy metals, including their co-occurrence through formation of cation-π interactions and their adsorption in soil are examined. Moreover, it is investigated that co-contamination of PAHs and heavy metals can drive a synergistic positive influence on bioremediation through enhanced secretion of extracellular polymeric substances (EPSs), production of biosynthetic genes, organic acid and enzymatic proliferation. However, PAHs molecular structure, PAHs-heavy metals bioavailability and their interactive cytotoxic effects on microorganisms can exert a challenging influence on the bioremediation under co-contaminated conditions. The fluctuations in bioavailability for microorganisms are associated with soil properties, chemical coordinative interactions, and biological activities under the co-contaminated PAHs-heavy metals conditions. The interactive cytotoxicity caused by the emergence of co-contaminants includes microbial cell disruption, denaturation of DNA and protein structure, and deregulation of antioxidant biological molecules. Finally, this paper presents the emerging strategies to overcome the bioavailability problems and recommends the use of biostimulation and bioaugmentation along with the microbial immobilization for enhanced bioremediation of PAHs-heavy metals co-contaminated sites. Better knowledge of the bioremediation potential is imperative to improve the use of these approaches for the sustainable and cost-effective remediation of PAHs and heavy metals co-contamination in the near future.
Collapse
Affiliation(s)
- Mukhtiar Ali
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Da Ding
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Qing Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhuanxia Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiwen Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Structural Selectivity of PAH Removal Processes in Soil, and the Effect of Metal Co-Contaminants. ENVIRONMENTS 2022. [DOI: 10.3390/environments9020023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) form a convenient structural series of molecules with which to examine the selectivity exerted on their removal by soil microbiota. It is known that there is an inverse relationship between PAH molecular size and degradation rates in soil. In this paper, we look at how the magnitude of the slope for this relationship, m, can be used as an indicator of the effect of metal co-contaminants on degradation rates across a range of PAH molecular weights. The analysis utilises data collected from our previous microcosm study (Deary, M.E.; Ekumankama, C.C.; Cummings, S.P. Development of a novel kinetic model for the analysis of PAH biodegradation in the presence of lead and cadmium co-contaminants. Journal of Hazard Materials 2016, 307, 240–252) in which we followed the degradation of the 16 US EPA PAHs over 40 weeks in soil microcosms taken from a high organic matter content woodland soil. The soil was amended with a PAH mixture (total concentration of 2166 mg kg−1) and with a range of metal co-contaminant concentrations (lead, up to 782 mg kg−1; cadmium up to 620 mg kg−1; and mercury up to 1150 mg kg−1). It was found that the magnitude of m increases in relation to the applied concentration of metal co-contaminant, indicating a more adverse effect on microbial communities that participate in the removal of higher molecular weight PAHs. We conclude that m is a useful parameter by which we might measure the differential effects of environmental contaminants on the PAH removal. Such information will be useful in planning and implementing remediation strategies.
Collapse
|
13
|
Geng S, Qin W, Cao W, Wang Y, Ding A, Zhu Y, Fan F, Dou J. Pilot-scale bioaugmentation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil using an indigenous bacterial consortium in soil-slurry bioreactors. CHEMOSPHERE 2022; 287:132183. [PMID: 34500332 DOI: 10.1016/j.chemosphere.2021.132183] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/08/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Soil-slurry bioreactor based bioremediation of polycyclic aromatic hydrocarbons (PAHs) contaminated soil was studied through laboratory and pilot-scale trials, in which the degradation mechanism was explored. Indigenous PAH-degrading consortium was firstly screened out and it degraded 80.5% of total PAHs in lab-scale bioreactors. Then a pilot-scale trial lasting 410 days was conducted in two bioreactors of 1.5 m3 to examine the operating parameters and validate the optimum running conditions. During the initial 200 days, the crucial running parameters affecting PAH removal were evaluated and selected. Subsequently, an average PAH removal rate of 93.4% was achieved during 15 consecutive batches (210 days) under the optimum running conditions. The kinetic analysis showed that the reactor under optimum conditions achieved the highest PAH degradation rate of 0.1795 day-1 and the shortest half-life of 3.86 days. Notably, efficient mass transfer of PAHs and high biodegradation capability by bioaugmented consortia in soil-slurry bioreactors were two key mechanisms for appreciable PAH removal performance. Under the optimal operating conditions, the degradation rate of low-molecular-weight (LMW) PAHs was significantly higher than high-molecular-weight (HMW) PAHs; when the mass transfer was limited, there was no significant difference between their degradation behaviors. Both microbial co-metabolism and collaborative metabolism might occur when all PAHs demonstrated low degradation rates. The findings provide insightful guidance on the future assessment and remediation practices of PAH-contaminated sites.
Collapse
Affiliation(s)
- Shuying Geng
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Wei Qin
- School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Wei Cao
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Yingying Wang
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Aizhong Ding
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Yi Zhu
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Fuqiang Fan
- Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, PR China.
| | - Junfeng Dou
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
14
|
Xu T, Liu T, Jiang D, Yuan Z, Jia X. Attainment and characterization of a microbial consortium that efficiently degrades biphenyl and related substances. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Ferraro A, Massini G, Miritana VM, Panico A, Pontoni L, Race M, Rosa S, Signorini A, Fabbricino M, Pirozzi F. Bioaugmentation strategy to enhance polycyclic aromatic hydrocarbons anaerobic biodegradation in contaminated soils. CHEMOSPHERE 2021; 275:130091. [PMID: 33984916 DOI: 10.1016/j.chemosphere.2021.130091] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
This paper proposes an innovative bioaugmentation approach for the remediation of polycyclic aromatic hydrocarbon (PAH) contaminated soils, based on a novel habitat-based strategy. This approach was tested using two inocula (i-24 and i-96) previously enriched through an anaerobic digestion process on wheat straw. It relies on the application of allochthonous microorganisms characterized by specific functional roles obtained by mimicking a natural hydrolytic environment such as the rumen. The inocula efficiency was tested in presence of naphthalene alone, benzo[a]pyrene alone, and a mix of both of them. In single-contamination tests, i-24 inoculum showed the highest biodegradation rates (84.7% for naphthalene and 51.7% for benzo[a]pyrene). These values were almost 1.2 times higher than those obtained for both contaminants with i-96 inoculum and in the control test in presence of naphthalene alone, while they were 3 times higher compared to the control test in presence of benzo[a]pyrene alone. In mixed-contamination tests, i-96 inoculum showed final biodegradation efficiencies for naphthalene and benzo[a]pyrene between 1.1 and 1.5 higher than i-24 inoculum or autochthonous biomass. Total microbial abundances increased in the bioaugmented tests in line with the PAH degradation. The microbial community structure showed the highest diversity at the end of the experiment in almost all cases. Values of the Firmicutes active fraction up to 7 times lower were observed in the i-24 bioaugmented tests compared to i-96 and control tests. This study highlights a successful bioaugmentation strategy with biological components that can be reused in multiple processes supporting an integrated and environmentally sustainable bioremediation system.
Collapse
Affiliation(s)
- Alberto Ferraro
- Department of Civil, Architectural and Environmental Engineering, University of Naples "Federico II", Via Claudio 21, 80125, Naples, Italy; Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Via E. Orabona 4, 70125, Bari, Italy
| | - Giulia Massini
- Department of Energy Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123, Rome, Italy
| | - Valentina Mazzurco Miritana
- Department of Energy Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123, Rome, Italy
| | - Antonio Panico
- Department of Engineering, University of Campania "L. Vanvitelli", Via Roma, 29, 81031, Aversa, Italy; Telematic University Pegaso, Piazza Trieste e Trento 48, Naples, Italy.
| | - Ludovico Pontoni
- Department of Civil, Architectural and Environmental Engineering, University of Naples "Federico II", Via Claudio 21, 80125, Naples, Italy
| | - Marco Race
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via di Biasio 43, 03043, Cassino, Italy
| | - Silvia Rosa
- Department of Energy Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123, Rome, Italy
| | - Antonella Signorini
- Department of Energy Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123, Rome, Italy
| | - Massimiliano Fabbricino
- Department of Civil, Architectural and Environmental Engineering, University of Naples "Federico II", Via Claudio 21, 80125, Naples, Italy
| | - Francesco Pirozzi
- Department of Civil, Architectural and Environmental Engineering, University of Naples "Federico II", Via Claudio 21, 80125, Naples, Italy
| |
Collapse
|
16
|
Wilcke W, Bigalke M, Wei C, Han Y, Musa Bandowe BA. Global distribution of oxygenated polycyclic aromatic hydrocarbons in mineral topsoils. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:717-729. [PMID: 33825209 DOI: 10.1002/jeq2.20224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Hazardous oxygenated polycyclic aromatic hydrocarbons (OPAHs) originate from combustion (primary sources) or postemission conversion of polycyclic aromatic hydrocarbons (PAHs) (secondary sources). We evaluated the global distribution of up to 15 OPAHs in 195 mineral topsoils from 33 study sites (covering 52° N-47° S, 71° W-118 °E) to identify indications of primary or secondary sources of OPAHs. The sums of the (frequently measured 7 and 15) OPAH concentrations correlated with those of the Σ16EPA-PAHs. The relationship of the Σ16EPA-PAH concentrations with the Σ7OPAH/Σ16EPA-PAH concentration ratios (a measure of the variable OPAH sources) could be described by a power function with a negative exponent <1, leveling off at a Σ16EPA-PAH concentration of approximately 400 ng g-1 . We suggest that below this value, secondary sources contributed more to the OPAH burden in soil than above this value, where primary sources dominated the OPAH mixture. This was supported by a negative correlation of the Σ16EPA-PAH concentrations with the contribution of the more readily biologically produced highly polar OPAHs (log octanol-water partition coefficient <3) to the Σ7OPAH concentrations. We identified mean annual precipitation (Spearman ρ = .33, p < .001, n = 143) and clay concentrations (ρ = .55, p < .001, n = 33) as important drivers of the Σ7OPAH/Σ16EPA-PAH concentration ratios. Our results indicate that at low PAH contamination levels, secondary sources contribute considerably and to a variable extent to total OPAH concentrations, whereas at Σ16EPA-PAH contamination levels >400 ng g-1 , there was a nearly constant Σ7OPAH/Σ16EPA-PAH ratio (0.08 ± 0.005 [SE], n = 80) determined by their combustion sources.
Collapse
Affiliation(s)
- Wolfgang Wilcke
- Institute of Geography and Geoecology, Karlsruhe Institute of Technology, Reinhard-Baumeister-Platz 1, 76131, Karlsruhe, Germany
| | - Moritz Bigalke
- Institute of Geography, Univ. of Bern, Hallerstrasse 12, 3012, Bern, Switzerland
| | - Chong Wei
- Shanghai Carbon Data Research Center, Key Lab. of Low-carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
- State Key Lab. of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Yongming Han
- State Key Lab. of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong Univ., Xi'an, 710049, China
| | - Benjamin A Musa Bandowe
- Dep. of Multiphase Chemistry, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128, Mainz, Germany
| |
Collapse
|
17
|
Li Q, Li J, Jiang L, Sun Y, Luo C, Zhang G. Diversity and structure of phenanthrene degrading bacterial communities associated with fungal bioremediation in petroleum contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123895. [PMID: 33264959 DOI: 10.1016/j.jhazmat.2020.123895] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/14/2020] [Accepted: 08/29/2020] [Indexed: 06/12/2023]
Abstract
Fungal bioremediation is a promising technique for the cleanup of sites contaminated with polycyclic aromatic hydrocarbons (PAHs). However, due to limited understanding of the composition and dynamics of the native PAH-degrading microorganisms in contaminated sites, its application has been difficult. In the present study, DNA stable-isotope probing was performed to identify indigenous phenanthrene (PHE)-degrading bacteria and determine their diversity during the fungal bioremediation process. The results showed a total of 14 operational taxonomic units (OTUs) enriched in the heavy DNA fractions, which were related to seven genera (Sphingomonas, Sphingobacterium, Acidovorax, Massilia, Flavobacterium, Cupriavidus, Aeromicrobium, and unclassified Chitinophagaceae). Along with enhanced efficiency of PHE removal, the number and diversity of indigenous PHE-degrading bacteria in soil bioaugmented with fungi were significantly increased. Furthermore, based on the results of linear model analysis, we found that PHE degraders affiliated with the genus Sphingomonas were significantly enriched during fungal bioremediation. Moreover, fungal bioaugmentation promoted indigenous functional Proteobacteria involved in PAH degradation through co-metabolism, suggesting that PAH biodegradation was attributable to cooperative metabolism by fungi and indigenous bacteria. Our findings provide new insights into the diversity of PHE-degrading communities and support a more comprehensive view of the fungal bioremediation process.
Collapse
Affiliation(s)
- Qiqian Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; College of Chemical and Biological Engineering, Hechi University, Yizhou, 546300, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Longfei Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yingtao Sun
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
18
|
Al Farraj DA, Alkufeidy RM, Alkubaisi NA, Alshammari MK. Polynuclear aromatic anthracene biodegradation by psychrophilic Sphingomonas sp., cultivated with tween-80. CHEMOSPHERE 2021; 263:128115. [PMID: 33297108 DOI: 10.1016/j.chemosphere.2020.128115] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/09/2020] [Accepted: 08/22/2020] [Indexed: 06/12/2023]
Abstract
Anthracene is a low molecular weight polynuclear aromatic hydrocarbons (PAHs) being identified as a precedence toxic contaminant in the ecosystem. Thus, the present work was designed to evaluate anthracene biodegradation efficiency by selected marine bacteria. From the marine isolates, the most effective anthracene biodegrading strain was identified as Sphingomonas sp., KSU05. Time course batch growth results indicated that the isolate KSU05 was capable of surviving up to 500 mg/L of anthracene. The influence of various nutrient sources were screened for enhanced growth and pyrene degradation, based on results glucose and tween-80 were used for further optimization studies. Batch experimental analysis showed maximum biodegradation (70.5%) of anthracene (50 mg/L) with enhanced survival of Sphingomonas sp. KSU05 was observed at 96 h of cultivation. Box-Behnken design optimization results showed that the culture conditions enhanced the anthracene biodegradation (90.0%) at pH 7.0, 0.3 mM of tween-80 concentration, and 5.5% of glucose concentration. In addition, the isolate Sphingomonas sp. KSU05 was found to rapidly degrade anthracene within 96 h. The anthracene intermediates was analyzed using Gas chromatography mass spectrophotometer (GC-MS). Overall, this research shown that the Sphingomonas sp., cultivated with suggested optimum conditions could provide an effective prospective for the degradation of anthracene from contaminated environment.
Collapse
Affiliation(s)
- Dunia A Al Farraj
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia.
| | - Roua M Alkufeidy
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Noorah A Alkubaisi
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Maryam K Alshammari
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| |
Collapse
|
19
|
Gran-Scheuch A, Ramos-Zuñiga J, Fuentes E, Bravo D, Pérez-Donoso JM. Effect of Co-contamination by PAHs and Heavy Metals on Bacterial Communities of Diesel Contaminated Soils of South Shetland Islands, Antarctica. Microorganisms 2020; 8:microorganisms8111749. [PMID: 33171767 PMCID: PMC7695015 DOI: 10.3390/microorganisms8111749] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/26/2020] [Accepted: 10/31/2020] [Indexed: 01/04/2023] Open
Abstract
Diesel oil is the main source of energy used in Antarctica. Since diesel is composed of toxic compounds such as polycyclic aromatic hydrocarbons (PAHs) and heavy metals, it represents a constant threat to the organisms inhabiting this continent. In the present study, we characterized the chemical and biological parameters of diesel-exposed soils obtained from King George Island in Antarctica. Contaminated soils present PAH concentrations 1000 times higher than non-exposed soils. Some contaminated soil samples also exhibited high concentrations of cadmium and lead. A 16S metagenome analysis revealed the effect of co-contamination on bacterial communities. An increase in the relative abundance of bacteria known as PAH degraders or metal resistant was determined in co-contaminated soils. Accordingly, the soil containing higher amounts of PAHs exhibited increased dehydrogenase activity than control soils, suggesting that the microorganisms present can metabolize diesel. The inhibitory effect on soil metabolism produced by cadmium was lower in diesel-contaminated soils. Moreover, diesel-contaminated soils contain higher amounts of cultivable heterotrophic, cadmium-tolerant, and PAH-degrading bacteria than control soils. Obtained results indicate that diesel contamination at King George island has affected microbial communities, favoring the presence of microorganisms capable of utilizing PAHs as a carbon source, even in the presence of heavy metals.
Collapse
Affiliation(s)
- Alejandro Gran-Scheuch
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Republica # 330, Santiago 8370146, Chile; (A.G.-S.); (J.R.-Z.)
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone Pohlhammer # 1007, Santiago 8380000, Chile;
| | - Javiera Ramos-Zuñiga
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Republica # 330, Santiago 8370146, Chile; (A.G.-S.); (J.R.-Z.)
| | - Edwar Fuentes
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone Pohlhammer # 1007, Santiago 8380000, Chile;
| | - Denisse Bravo
- Laboratorio de Microbiología Oral, Facultad de Odontología, Universidad de Chile, Sergio Livingstone Pohlhammer # 943, Santiago 8380453, Chile;
| | - José M. Pérez-Donoso
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Republica # 330, Santiago 8370146, Chile; (A.G.-S.); (J.R.-Z.)
- Correspondence:
| |
Collapse
|
20
|
Kotoky R, Pandey P. Difference in the rhizosphere microbiome of Melia azedarach during removal of benzo(a)pyrene from cadmium co-contaminated soil. CHEMOSPHERE 2020; 258:127175. [PMID: 32535435 DOI: 10.1016/j.chemosphere.2020.127175] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/16/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Benzo(a)pyrene (BaP) is a highly persistent biohazard polyaromatic hydrocarbon and often reported to be present in soils co-contaminated with heavy metals. The present study explains the rhizodegradation of BaP using bacterial consortium in the rhizosphere of Melia azedarach, along with a change in taxonomical and functional properties of the rhizosphere microbiome. The relative abundance of most dominant phylum Proteobacteria was 2% higher with BaP, while in the presence of both BaP and Cd, its abundance was 2.2% lower. Functional metagenome analysis also revealed the shifting of microbial community and functional gene abundance in the favor of xenobiotic compound degradation upon augmentation of bacterial consortium. Interestingly, upon the addition of BaP the range of functional abundance for genes of PAH degradation (0.165-0.19%), was found to be decreasing. However, augmentation of a bacterial consortium led to an increase in its abundance including genes for degradation of benzoate (0.55-0.64%), toluene (0.2-0.22%), naphthalene (0.25-0.295%) irrespective of the addition of BaP and Cd. Moreover, under greenhouse condition, the application of M. azedarach-bacterial consortium enhanced the degradation of BaP in the rhizosphere (88%) after 60 days, significantly higher than degradation in bulk soil (68.22%). The analysis also showed an increase in degradation of BaP by 15% with plant-native microbe association than in bulk soil. Therefore, the association of M. azedarach-bacterial consortium enhanced the degradation of BaP in soil along with the taxonomical and functional attributes of the rhizosphere microbiome.
Collapse
Affiliation(s)
- Rhitu Kotoky
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India.
| |
Collapse
|
21
|
Duraisamy P, Sekar J, Arunkumar AD, Ramalingam PV. Kinetics of Phenol Biodegradation by Heavy Metal Tolerant Rhizobacteria Glutamicibacter nicotianae MSSRFPD35 From Distillery Effluent Contaminated Soils. Front Microbiol 2020; 11:1573. [PMID: 32760369 PMCID: PMC7373764 DOI: 10.3389/fmicb.2020.01573] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/17/2020] [Indexed: 11/13/2022] Open
Abstract
Biodegradation of phenol using bacteria is recognized as an efficient, environmentally friendly and cost-effective approach for reducing phenol pollutants compared to the current conventional physicochemical processes adopted. A potential phenol degrading bacterial strain Glutamicibacter nicotianae MSSRFPD35 was isolated and identified from Canna indica rhizosphere grown in distillery effluent contaminated sites. It showed high phenol degrading efficiency up to 1117 mg L–1 within 60 h by the secretion of catechol 1,2-dioxygenase via ortho intradial pathway. The strain MSSRFPD35 possess both the catechol 1,2 dioxygenase and catechol 2,3 dioxygenase coding genes that drive the ortho and meta pathways, but the enzymatic assay revealed that the strain cleaves catechol via ortho pathway. Haldane’s kinetic method was well fit to exponential growth data and the following kinetic parameter was obtained: μ∗ = 0.574 h–1, Ki = 268.1, Ks = 20.29 mg L–1. The true μmax and Sm were calculated as 0.37 h–1 and 73.76 mg L–1, respectively. The Haldane’s constant values were similar to earlier studies and healthy fitness depicted in correlation coefficient value R2 of 0.98. Phenol degrading kinetic’s was predicted using Haldane’s model as qmax 0.983, Ki′ 517.5 and Ks′ 9.152. Further, MSSRFPD35 was capable of utilizing different monocyclic and polycyclic aromatic hydrocarbons and to degrade phenol in the presence of different heavy metals. This study for the first time reports high phenol degrading efficiency of G. nicotianae MSSRFPD35 in the presence of toxic heavy metals. Thus, the strain G. nicotianae MSSRFPD35 can be exploited for the bioremediation of phenol and its derivatives polluted environments, co-contaminated with heavy metals.
Collapse
Affiliation(s)
- Purushothaman Duraisamy
- Microbiology Lab, Biotechnology Programme, M. S. Swaminathan Research Foundation, Chennai, India
| | - Jegan Sekar
- Microbiology Lab, Biotechnology Programme, M. S. Swaminathan Research Foundation, Chennai, India
| | - Anu D Arunkumar
- Microbiology Lab, Biotechnology Programme, M. S. Swaminathan Research Foundation, Chennai, India
| | - Prabavathy V Ramalingam
- Microbiology Lab, Biotechnology Programme, M. S. Swaminathan Research Foundation, Chennai, India
| |
Collapse
|
22
|
Fan M, Liu N, Wu X, Zhang J, Cai M. Tolerance and Removal of Four Polycyclic Aromatic Hydrocarbon Compounds (PAHs) by Black Soldier Fly (Diptera: Stratiomyidae). ENVIRONMENTAL ENTOMOLOGY 2020; 49:667-672. [PMID: 32333018 DOI: 10.1093/ee/nvaa043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Indexed: 06/11/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), as well-recognized toxic chemical, cause the public hazard in environments. Here, we demonstrated the black soldier fly larvae (BSFL) could tolerate the PAHs and reduce their content. Four typical PAHs (1.0, 10.0, and 100.0 mg/kg), naphthalene, fluorene, phenanthrene, and pyrene, were individually spiked into BSFL conversion systems. The parameters for larval growth, conversion process, and PAHs removal were determined in spiked group and no-spiked control. The results show that the larval development time (19.7-21.0 d) in the half of PAH groups was significantly longer by 2-4 d than those in the control, while the relative growth rates (1.88-1.99% per day) in the majority PAH groups were lower. The larval mortalities (0-2.83%), harvest yields (80.20-85.91 g), conversion rates (14.71-15.83%), and eclosion rates (60.27-82.67%) in almost all of PAH groups did not significantly different from those in the control. The four PAHs potentially delayed the development time of BSFL, slowed the larval growth, and lower waste reduction rates, but these influences were slight and might be caused by the inhibition of PAHs to microbial activity. The BSFL-mortalities, conversion rates, yields, and eclosion rates were not significantly affected by the PAHs. Furthermore, BSFL effectively removed 34.1-84.2% of PAHs from subtracts in 18-21 d. The removal of PAHs with low concentration could be easier than those with high concentration by BSFL. The present results provide an alternative strategy to treat the waste contaminated by PAHs and elucidate the effect of PAHs on insects in the environment.
Collapse
Affiliation(s)
- Mingxia Fan
- Renmin Hospital of Wuhan University, Wuhan, China
| | - Nian Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Xiangji Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
23
|
Govarthanan M, Khalifa AY, Kamala-Kannan S, Srinivasan P, Selvankumar T, Selvam K, Kim W. Significance of allochthonous brackish water Halomonas sp. on biodegradation of low and high molecular weight polycyclic aromatic hydrocarbons. CHEMOSPHERE 2020; 243:125389. [PMID: 31765893 DOI: 10.1016/j.chemosphere.2019.125389] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/11/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
The present study is aimed to isolate and identify polycyclic aromatic hydrocarbons (PAHs) degrading bacteria from brackish water and to assess the biodegradation efficiency against low and high molecular weight PAHs. Among 15 isolates, the isolate designated as RM effectively degraded 100 mg/L of phenanthrene (Phe) (67.0%), pyrene (Pyr) (63.0%), naphthalene (NaP) (60.0%), and benzo [a]pyrene (BaP) (58.0%) after 7 days of incubation. Carbon sources, pH, and salinity of the culture medium were optimized to enhance the growth and PAHs biodegradation of the isolate RM. Sucrose was found to be an excellent carbon source to enhance PAHs biodegradation (Phe, 75.0; Pyr, 68.5; NaP, 62.5; and BaP, 59.5%). Furthermore, the isolate showed enhanced degradation at pH 7.0 and 4% salinity. The isolate RM was identified as Halomonas sp. based on partial 16S rDNA gene sequence analysis. The results indicated that the isolate RM (i.e., Halomonas sp.) has the potential to be used in remediation of oil spills in the marine ecosystem.
Collapse
Affiliation(s)
- M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Ashraf Yz Khalifa
- Biological Sciences Department, College of Science, King Faisal University, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, University of Beni-Suef, Beni-Suef, Egypt
| | - S Kamala-Kannan
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - P Srinivasan
- PG& Research Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Kalippatti, Namakkal, 637501, Tamil Nadu, India
| | - T Selvankumar
- PG& Research Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Kalippatti, Namakkal, 637501, Tamil Nadu, India
| | - K Selvam
- PG& Research Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Kalippatti, Namakkal, 637501, Tamil Nadu, India
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
24
|
Czarny J, Staninska-Pięta J, Piotrowska-Cyplik A, Juzwa W, Wolniewicz A, Marecik R, Ławniczak Ł, Chrzanowski Ł. Acinetobacter sp. as the key player in diesel oil degrading community exposed to PAHs and heavy metals. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121168. [PMID: 31541964 DOI: 10.1016/j.jhazmat.2019.121168] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/01/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study was to verify the hypothesis that a hydrocarbon degrading community isolated from a site heavily polluted with polycyclic aromatic hydrocarbons (PAHs) and heavy metals should exhibit a high activity and biodegradation efficiency, despite decreased biodiversity resulting from the presence of such contaminants. Microbial community isolated from soil collected at an abandoned creosote railway wood-sleepers impregnation plant using diesel oil was used during the studies. Four parallel systems spiked with diesel oil, diesel oil + PAHs, diesel oil + heavy metals and diesel oil + PAHs + heavy metals were analysed in terms of relative abundance and biodiversity of the microbial community (Illumina), biodegradation efficiency (GCMS) and cellular metabolic activity (flow cytometry). Principal Component Analysis and biodiversity parameters indicated that the mixture of PAHs and heavy metals was the dominant factor which resulted in the enrichment of the Gammaproteobacteria class. This was associated with higher degradation of additional PAHs in the presence of heavy metals and an increase of metabolically active sub-populations during flow cytometry analysis. The increased abundance of the Acinetobacter genus in systems with both PAHs and heavy metals implies that it may play a crucial role in soil populations exposed to mixed contaminations.
Collapse
Affiliation(s)
- J Czarny
- Institute of Forensic Genetics, Bydgoszcz, Poland
| | - J Staninska-Pięta
- Institute of Food Technology of Plant Origin, Poznań University of Life Sciences, Poznan, Poland
| | - A Piotrowska-Cyplik
- Institute of Food Technology of Plant Origin, Poznań University of Life Sciences, Poznan, Poland
| | - W Juzwa
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznan, Poland
| | - A Wolniewicz
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznan, Poland; PROTE Technologies for our Environment Ltd., Poznan, Poland
| | - R Marecik
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznan, Poland.
| | - Ł Ławniczak
- Faculty of Chemical Technology, Poznan University of Technology, Poznan, Poland
| | - Ł Chrzanowski
- Faculty of Chemical Technology, Poznan University of Technology, Poznan, Poland
| |
Collapse
|
25
|
Chettri B, Singh AK. Kinetics of hydrocarbon degradation by a newly isolated heavy metal tolerant bacterium Novosphingobium panipatense P5:ABC. BIORESOURCE TECHNOLOGY 2019; 294:122190. [PMID: 31585342 DOI: 10.1016/j.biortech.2019.122190] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
This study report kinetics of PAHs and crude oil degradation by a newly isolated multiple heavy metal tolerant Novosphingobium panipatense P5:ABC. The isolate showed hydrocarbon degrading enzyme activities namely alkane hydroxylase, catechol 1,2-dioxygenase and catechol 2,3-dioxygenase. The level of C23O activity was 9.63 times higher than C12O thus suggesting active involvement of meta-cleavage pathway. The data of biodegradation of hydrocarbons fitted well to the first order kinetic model. The degradation rate was highest for phenanthrene followed by crude oil, and fluoranthene. We have further reported the estimate of fundamental kinetic parameters, half-saturation constant (Ks) and maximum degradation rates (Vmax) for biodegradation of phenanthrene and fluoranthene. Overall characterization underscores the potential of Novosphingobium in bioremediation of crude oil polluted sites.
Collapse
Affiliation(s)
- Bobby Chettri
- Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Arvind Kumar Singh
- Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
26
|
Wang C, Gu L, Ge S, Liu X, Zhang X, Chen X. Remediation potential of immobilized bacterial consortium with biochar as carrier in pyrene-Cr(VI) co-contaminated soil. ENVIRONMENTAL TECHNOLOGY 2019; 40:2345-2353. [PMID: 29465023 DOI: 10.1080/09593330.2018.1441328] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 02/10/2018] [Indexed: 06/08/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and potentially toxic trace elements (PTEs) soil contamination have become areas of concern. Bioaugmentation is regarded as an effective bioremediation method, however it is difficult to simultaneously degrade organic compounds and remove PTEs with individual microbial strains. Therefore, the objective of this study was to evaluate the feasibility of using immobilized microbial consortia, including two PAH-degrading bacterial strains (W1 and W2) and a Cr(VI)-reducing bacterium (Y2), for the remediation of pyrene-Cr(VI) co-contaminated soil. Three immobilization methods were investigated: (1) bacterial consortium adsorption onto biochar (BC), (2) bacterial consortium entrapment in alginate beads (AC), (3) bacterial consortium adsorption on biochar and sequential entrapment in alginate beads (BAC). In addition, a free bacterial consortium (FC) was also used for comparison. Ten treatments were designed to illustrate the bioremediation efficiency of the free and immobilized consortia. The results show that treatments AC and BAC resulted in more efficient Cr(VI) removal compared with BC and FC. Pyrene levels in AC and BAC microcosms were reduced from 42.33 ± 3.82 to 11.56 ± 1.37 and 7.48 ± 0.39 mg kg-1, respectively. Bioavailable Cr (VI) in AC and BAC was significantly lower than that in other microcosms after 28 days' incubation. Both AC and BAC microcosms exhibited a higher level of dehydrogenase and fluorescein diacetate hydrolysis activity. Furthermore, soil microbial diversity was higher in AC and BAC microcosms compared with the others. Thus, the entrapped consortia may be useful for bioremediation of pyrene and Cr (VI) without compromising soil ecology.
Collapse
Affiliation(s)
- Chuanhua Wang
- a College of Life and Environment Science, Wenzhou University , Wenzhou , People's Republic of China
| | - Lingfeng Gu
- b College of Environment and Chemical Engineering, Shanghai University , Shanghai , People's Republic of China
| | - Shimei Ge
- a College of Life and Environment Science, Wenzhou University , Wenzhou , People's Republic of China
| | - Xiaoyan Liu
- b College of Environment and Chemical Engineering, Shanghai University , Shanghai , People's Republic of China
| | - Xinying Zhang
- b College of Environment and Chemical Engineering, Shanghai University , Shanghai , People's Republic of China
| | - Xiao Chen
- b College of Environment and Chemical Engineering, Shanghai University , Shanghai , People's Republic of China
| |
Collapse
|
27
|
Haleyur N, Shahsavari E, Jain SS, Koshlaf E, Ravindran VB, Morrison PD, Osborn AM, Ball AS. Influence of bioaugmentation and biostimulation on PAH degradation in aged contaminated soils: Response and dynamics of the bacterial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 238:49-58. [PMID: 30844545 DOI: 10.1016/j.jenvman.2019.02.115] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/31/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) represent a group of hazardous compounds that are ubiquitous and persistent. The main aim of this study was to investigate the degradation of PAHs in chronically contaminated, aged and weathered soils obtained from a former gas plant of Australia. Biostimulation and bioaugmentation using individual isolates (Rhodococcus sp. (NH2), Achromobacter sp. (NH13), Oerskovia paurometabola (NH11), Pantoea sp. (NH15), Sejongia sp. (NH20), Microbacterium maritypicum (NH30) and Arthrobacter equi (NH21)) and a consortium of these isolates were tested during mesocosm studies. A significant reduction (99%) in PAH concentration was observed in all the treatments. In terms of the abundance of PAH-degrading genes and microbial community structure during PAH degradation, qPCR results revealed that Gram-positive bacteria were dominant over other bacterial communities in all the treatments. 16S sequencing results revealed that the inoculated organisms did not establish themselves during the treatment. However, substantial bacterial community changes during the treatments were observed, suggesting that the natural community exhibited sufficient resilience and diversity to enable an active, but changing degrading community at all stages of the degradation process. Consequently, biostimulation is proposed as the best strategy to remediate PAHs in aged, weathered and chronically contaminated soils.
Collapse
Affiliation(s)
- Nagalakshmi Haleyur
- School of Science, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia; Centre for Environmental Sustainability and Remediation, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia.
| | - Esmaeil Shahsavari
- School of Science, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia; Centre for Environmental Sustainability and Remediation, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia
| | - Sohni Singh Jain
- Department of Electrical and Biomedical Engineering, School of Engineering, RMIT University, Bundoora West, VIC, 3083, Australia
| | - Eman Koshlaf
- School of Science, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia; Centre for Environmental Sustainability and Remediation, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia
| | - Vivek B Ravindran
- School of Science, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia; Centre for Environmental Sustainability and Remediation, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia
| | - Paul D Morrison
- Centre for Environmental Sustainability and Remediation, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia
| | - A Mark Osborn
- School of Science, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia; Centre for Environmental Sustainability and Remediation, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia
| | - Andrew S Ball
- School of Science, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia; Centre for Environmental Sustainability and Remediation, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia.
| |
Collapse
|
28
|
Sivaram AK, Logeshwaran P, Lockington R, Naidu R, Megharaj M. Low molecular weight organic acids enhance the high molecular weight polycyclic aromatic hydrocarbons degradation by bacteria. CHEMOSPHERE 2019; 222:132-140. [PMID: 30703652 DOI: 10.1016/j.chemosphere.2019.01.110] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
The biodegradation potential of three bacterial cultures isolated from the rhizosphere of maize (Zea mays) and Sudan grass (Sorghum sudanense) grown in PAHs contaminated soils to degrade benzo[a]pyrene (BaP) and pyrene (PYR) was assessed. Of the three bacterial cultures isolated, two belonged to Gram-positive bacteria of phylum Actinobacteria namely Arthrobacter sp. MAL3 and Microbacterium sp. MAL2. The Gram-negative bacterial culture was Stenotrophomonas sp. MAL1, from the phylum Proteobacteria. The cultures were grown in the presence of BaP and PYR as sole carbon sources and with the addition of low molecular weight organic acids (LMWOAs) mixture. After 10-14 days of exposure, all the bacterial isolates exhibited a complete degradation of PYR with the addition of LMWOAs mixture, whereas only 38.7% of BaP was degraded by Stenotrophomonas sp. MAL1 with the addition of LMWOAs mixture. In addition, enhanced PAHs biodegradation by bacterial culture was observed when the PAHs present as mixture (BaP + PYR) with the addition of LMWOAs. Dioxygenase genes were detected in Stenotrophomonas sp. MAL1 (phnAC), and Arthrobacter sp. MAL3 (nidA and PAH-RHDα). Therefore, this study provides new insights on the influence of LMWOAs in enhancing the degradation of high molecular weight (HMW) PAHs in soil by rhizosphere bacterial cultures.
Collapse
Affiliation(s)
- Anithadevi Kenday Sivaram
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle (UoN), University Drive, Callaghan, NSW, 2308, Australia; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, ATC Building, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Panneerselvan Logeshwaran
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle (UoN), University Drive, Callaghan, NSW, 2308, Australia; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, ATC Building, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Robin Lockington
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, ATC Building, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle (UoN), University Drive, Callaghan, NSW, 2308, Australia; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, ATC Building, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle (UoN), University Drive, Callaghan, NSW, 2308, Australia; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, ATC Building, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
29
|
Subashchandrabose SR, Venkateswarlu K, Venkidusamy K, Palanisami T, Naidu R, Megharaj M. Bioremediation of soil long-term contaminated with PAHs by algal-bacterial synergy of Chlorella sp. MM3 and Rhodococcus wratislaviensis strain 9 in slurry phase. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:724-731. [PMID: 31096402 DOI: 10.1016/j.scitotenv.2018.12.453] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/18/2018] [Accepted: 12/29/2018] [Indexed: 06/09/2023]
Abstract
Remediation of soil contaminated with pollutants using biological agents is more a sustainable and greener approach as compared to physico-chemical technologies. We recently confirmed that a microalga, Chlorella sp. MM3, and a bacterium, Rhodococcus wratislaviensis strain 9, can degrade high-molecular weight PAHs. In this study, an algal-bacterial system of these two strains was developed by long-term growth on a mixture of phenanthrene, pyrene, and benzo[a]pyrene (BaP). In a soil spiked with 50 mg L-1 phenanthrene, 10 mg L-1 of pyrene and 10 mg L-1 of BaP, the algal-bacterial system degraded these PAHs almost completely in slurry phase within 30 days. Also, the algal-bacterial system was able to successfully remediate these three PAHs in a soil long-term contaminated with 245.1 mg kg-1 of 16 PAHs and several heavy metals under slurry phase in 21 days. Use of such appropriate assays as chlorophyll estimation for the microalga and semi-quantitative PCR for the bacterium confirmed survival of both the strains during soil bioremediation. Moreover, the residual toxicity test involving Escherichia coli DH5α that expresses green fluorescent protein indicated the successful bioremediation of PAHs-contaminated soil in slurry phase. For the first time, here we demonstrate the great potential of an algal-bacterial synergy in bioremediation of soil long-term contaminated with PAHs even in the presence of toxic heavy metals.
Collapse
Affiliation(s)
- Suresh R Subashchandrabose
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), PO Box 18, Callaghan, NSW 2308, Australia
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapur 515055, India
| | - Krishnaveni Venkidusamy
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes SA5095, Australia
| | - Thavamani Palanisami
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), PO Box 18, Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), PO Box 18, Callaghan, NSW 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), PO Box 18, Callaghan, NSW 2308, Australia.
| |
Collapse
|
30
|
Subashchandrabose SR, Venkateswarlu K, Naidu R, Megharaj M. Biodegradation of high-molecular weight PAHs by Rhodococcus wratislaviensis strain 9: Overexpression of amidohydrolase induced by pyrene and BaP. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:813-821. [PMID: 30253363 DOI: 10.1016/j.scitotenv.2018.09.192] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 06/08/2023]
Abstract
A Gram-positive bacterium, Rhodococcus wratislaviensis strain 9, completely degraded 280 μM of phenanthrene, 40% of 50 μM pyrene or 28% of 40 μM benzo[a]pyrene (BaP), each supplemented in M9 medium, within 7 days. PCR screening with gene-specific primers indicated that the strain 9 harbors genes which code for 2,3-dihydroxybiphenyl 1,2-dioxygenase (bphC), 4-nitrophenol 2-monooxygenase component B (npcB) as well as oxygenase component (nphA1), 4-hydroxybenzoate 3-monooxygenase (phbH), extradiol dioxygenase (edo), and naphthalene dioxygenase (ndo), all of which are largely implicated in biodegradation of several aromatic hydrocarbons. An orthogonal design experiment revealed that BaP biodegradation was greatly enhanced by surfactants such as Tween 80, Triton X-100 and linoleic acid, suggesting that bioavailability is the major limiting factor in bacterial metabolism of BaP. Both pyrene and BaP induced the overexpression of amidohydrolase, a metallo-dependent hydrolase, possibly involved in their biodegradation by strain 9. The up-regulation of amidohydrolase gene induced by BaP, in particular, was also confirmed by semi-quantitative RT-PCR. Catechol 2,3-dioxygenase and the large subunit of ndo, but not amidohydrolase, accumulated when the strain 9 was grown on phenanthrene. To our knowledge, this is the first report on overexpression of amidohydrolase and its possible implication in bacterial degradation of high-molecular weight PAHs.
Collapse
Affiliation(s)
- Suresh R Subashchandrabose
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan NSW 2308, Australia, and CRC CARE, Newcastle University LPO, PO Box 18, Callaghan, NSW 2308, Australia
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapur 515055, India
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan NSW 2308, Australia, and CRC CARE, Newcastle University LPO, PO Box 18, Callaghan, NSW 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan NSW 2308, Australia, and CRC CARE, Newcastle University LPO, PO Box 18, Callaghan, NSW 2308, Australia.
| |
Collapse
|
31
|
Lee Y, Lee Y, Jeon CO. Biodegradation of naphthalene, BTEX, and aliphatic hydrocarbons by Paraburkholderia aromaticivorans BN5 isolated from petroleum-contaminated soil. Sci Rep 2019; 9:860. [PMID: 30696831 PMCID: PMC6351602 DOI: 10.1038/s41598-018-36165-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/16/2018] [Indexed: 11/09/2022] Open
Abstract
To isolate bacteria responsible for the biodegradation of naphthalene, BTEX (benzene, toluene, ethylbenzene, and o-, m-, and p-xylene), and aliphatic hydrocarbons in petroleum-contaminated soil, three enrichment cultures were established using soil extract as the medium supplemented with naphthalene, BTEX, or n-hexadecane. Community analyses showed that Paraburkholderia species were predominant in naphthalene and BTEX, but relatively minor in n-hexadecane. Paraburkholderia aromaticivorans BN5 was able to degrade naphthalene and all BTEX compounds, but not n-hexadecane. The genome of strain BN5 harbors genes encoding 29 monooxygenases including two alkane 1-monooxygenases and 54 dioxygenases, indicating that strain BN5 has versatile metabolic capabilities, for diverse organic compounds: the ability of strain BN5 to degrade short chain aliphatic hydrocarbons was verified experimentally. The biodegradation pathways of naphthalene and BTEX compounds were bioinformatically predicted and verified experimentally through the analysis of their metabolic intermediates. Some genomic features including the encoding of the biodegradation genes on a plasmid and the low sequence homologies of biodegradation-related genes suggest that biodegradation potentials of strain BN5 may have been acquired via horizontal gene transfers and/or gene duplication, resulting in enhanced ecological fitness by enabling strain BN5 to degrade all compounds including naphthalene, BTEX, and short aliphatic hydrocarbons in contaminated soil.
Collapse
Affiliation(s)
- Yunho Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yunhee Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
32
|
Mansouri A, Abbes C, Ben Mouhoub R, Ben Hassine S, Landoulsi A. Enhancement of mixture pollutant biodegradation efficiency using a bacterial consortium under static magnetic field. PLoS One 2019; 14:e0208431. [PMID: 30608939 PMCID: PMC6319723 DOI: 10.1371/journal.pone.0208431] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 11/16/2018] [Indexed: 11/19/2022] Open
Abstract
One of the main challenges of bioremediation is to define efficient protocols with low environmental impact and high removal rates, such as static magnetic field (SMF). The aim of this study was to evaluate the effect of SMF exposure on the biodegradation rate of a mixture of pollutants using three bacterial strains which were isolated and identified from the Bizerte lagoon: Pseudomonas stutzeri LBR (KC157911), Cupriavidus metallidurans LBJ (KU659610) and Rhodococcus equi LBB (KU743870). To recognize the improvement role of SMF, the culture was submitted to a pre-treatment with SMF with an induction equal to 200 mT for 5 hours, after that the degradation experiment was followed with individual strains and with a consortium. Results showed an increase by 20% in the growth of the exposed bacterial population compared to controls, and 98% of biodegradation of DDT and 90% for BaP after 30 days of follow-up. This encouraging data opens new perspectives for a bioremediation bioprocess using SMF.
Collapse
Affiliation(s)
- Ahlem Mansouri
- University of Carthage, Biochemistry and Molecular Biology Lab of Faculty of Sciences, Risks Related to Environmental Stress, Struggle and Prevention (UR17ES20), Bizerte, Zarzouna, Tunisia
- * E-mail:
| | - Chiraz Abbes
- University of Carthage, Biochemistry and Molecular Biology Lab of Faculty of Sciences, Risks Related to Environmental Stress, Struggle and Prevention (UR17ES20), Bizerte, Zarzouna, Tunisia
| | - Ramla Ben Mouhoub
- University of Carthage, Biochemistry and Molecular Biology Lab of Faculty of Sciences, Risks Related to Environmental Stress, Struggle and Prevention (UR17ES20), Bizerte, Zarzouna, Tunisia
| | - Sihem Ben Hassine
- Laboratory of Environmental Analytical Chemistry, University of Carthage, Faculty of Sciences of Bizerte, Zarzouna, Tunisia
| | - Ahmed Landoulsi
- University of Carthage, Biochemistry and Molecular Biology Lab of Faculty of Sciences, Risks Related to Environmental Stress, Struggle and Prevention (UR17ES20), Bizerte, Zarzouna, Tunisia
| |
Collapse
|
33
|
Khudur LS, Gleeson DB, Ryan MH, Shahsavari E, Haleyur N, Nugegoda D, Ball AS. Implications of co-contamination with aged heavy metals and total petroleum hydrocarbons on natural attenuation and ecotoxicity in Australian soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:94-102. [PMID: 30172128 DOI: 10.1016/j.envpol.2018.08.040] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/27/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
The bioremediation of historic industrial contaminated sites is a complex process. Co-contamination, often with lead which was commonly added to gasoline until 16 years ago is one of the biggest challenges affecting the clean-up of these sites. In this study, the effect of heavy metals, as co-contaminant, together with total petroleum hydrocarbons (TPH) is reported, in terms of remaining soil toxicity and the structure of the microbial communities. Contaminated soil samples from a relatively hot and dry climate in Western Australia were collected (n = 27). Analysis of soils showed the presence of both contaminants, TPHs and heavy metals. The Microtox test confirmed that their co-presence elevated the remaining ecotoxicity. Toxicity was correlated with the presence of lead, zinc and TPH (0.893, 0.599 and 0.488), respectively, assessed using Pearson Correlation coefficient factor. Next Generation Sequencing of soil bacterial 16S rRNA, revealed a lack of dominate genera; however, despite the variation in soil type, a few genera including Azospirillum spp. and Conexibacter were present in most soil samples (85% and 82% of all soils, respectively). Likewise, many genera of hydrocarbon-degrading bacteria were identified in all soil samples. Streptomyces spp. was presented in 93% of the samples with abundance between 7% and 40%. In contrast, Acinetobacter spp. was found in only one sample but was a dominant member of (45%) of the microbial community. In addition, some bacterial genera were correlated to the presence of the heavy metals, such as Geodermatophilus spp., Rhodovibrio spp. and Rubrobacter spp. which were correlated with copper, lead and zinc, respectively. This study concludes that TPH and heavy metal co-contamination significantly elevated the associated toxicity. This is an important consideration when carrying out risk assessment associated with natural attenuation. This study also improves knowledge about the dynamics of microbial communities in mixed contamination scenarios.
Collapse
Affiliation(s)
- Leadin S Khudur
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC, 3083, Australia.
| | - Deirdre B Gleeson
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Megan H Ryan
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Esmaeil Shahsavari
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC, 3083, Australia
| | - Nagalakshmi Haleyur
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC, 3083, Australia
| | - Dayanthi Nugegoda
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC, 3083, Australia
| | - Andrew S Ball
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC, 3083, Australia
| |
Collapse
|
34
|
Ma XK, Li TT, Fam H, Charles Peterson E, Zhao WW, Guo W, Zhou B. The influence of heavy metals on the bioremediation of polycyclic aromatic hydrocarbons in aquatic system by a bacterial-fungal consortium. ENVIRONMENTAL TECHNOLOGY 2018; 39:2128-2137. [PMID: 28678633 DOI: 10.1080/09593330.2017.1351492] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Co-contamination of polycyclic aromatic hydrocarbons (PAHs) with heavy metals (HMs) in aquatic environments is a global threat; however, little is understood about PAH biodegradation in these sites. In this study, PAHs' biodegradation in the presence of HMs in water by a metal-tolerant consortium composed of Bacillus subtilis and fungus Acremonium sp. was investigated. The consortium demonstrated higher tolerance to the tested HMs (Fe2+, Al3+, Ni2+, Cu2+, Mn2+ and Zn2+) than the individual consortium components, and the tolerance to individual metals decreased with increasing metal concentrations. In the absence of HMs in aquatic systems, the consortium efficiently degraded naphthalene, fluorine, phenanthrene, anthracene and fluoranthene individually (50 mmol/L) over 10 days. However, while Ni2+ supplementation (5 mmol/L) suppressed phenanthrene and anthracene removal (p ≤ 0.01), enhanced fluoranthene degradation relative to the control was observed. Cu2+, Zn2+, Fe2+ and Al3+ supplementation demonstrated significant inhibition against individual phenanthrene, anthracene and fluoranthene removal, and Cu2+ showed a more significant effect on the degradation of these PAH compounds compared to other metals. Conversely, Mn2+ significantly enhanced the removal of fluorene, phenanthrene and fluoranthene, but inhibited anthracene degradation. HM contamination in aquatic systems did not show any effect on naphthalene bioremediation, possible due to its rapid degradation over a short time. Thus, metals affect PAH aquatic biodegradation by consortia, depending on metal species and PAH compound, underlining the complex nature of co-contaminated systems containing HMs and PAHs. To our knowledge, this is the first study to examine the influence of HMs on PAHs' bioremediation by such PAH-degrading consortia in water.
Collapse
Affiliation(s)
- Xiao-Kui Ma
- a Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University , Xi'an , Shaanxi , People's Republic of China
| | - Ting-Ting Li
- a Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University , Xi'an , Shaanxi , People's Republic of China
| | - Hala Fam
- b Department of Chemical Engineering , Queen's University , Kingston , ON , Canada
| | | | - Wei-Wei Zhao
- a Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University , Xi'an , Shaanxi , People's Republic of China
| | - Wenying Guo
- a Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University , Xi'an , Shaanxi , People's Republic of China
| | - Bo Zhou
- d Department of microbiology, College of Life Science , Shandong Agricultural University , Taian , Shandong , People's Republic of China
| |
Collapse
|
35
|
Sivaram AK, Logeshwaran P, Lockington R, Naidu R, Megharaj M. Impact of plant photosystems in the remediation of benzo[a]pyrene and pyrene spiked soils. CHEMOSPHERE 2018; 193:625-634. [PMID: 29175394 DOI: 10.1016/j.chemosphere.2017.11.081] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/06/2017] [Accepted: 11/16/2017] [Indexed: 05/28/2023]
Abstract
The phytoremediation potential of 14 different plant species belonging to C3 and C4 carbon fixation pathway for soils spiked with polycyclic aromatic hydrocarbons (PAHs) such as benzo[a]pyrene (B[a]P) and pyrene (PYR) was investigated. A glasshouse experiment was conducted to measure the changes in morphological, physiological, biochemical parameters and the bioaccumulation and biodegradation ability of the plants in soils spiked with 48 and 194 mg kg-1 of B[a]P and PYR, respectively. The per cent removal efficacy of B[a]P and PYR by the tested plant species over a period of 50 days was from 6 to 26% and 14 to 40% respectively. The maximum removal of both B[a]P and PYR was observed in Sudan grass (C4), vetiver (C4), maize (C4), and sunflower (C3). In terms of accumulation in root and shoot, the concentration of PYR was higher in both C3 and C4 plant species when compared to B[a]P. Overall the results indicated that C4 plants were more efficient than their C3 counterparts in terms of morphological, physiological, biochemical and degradation ability of PAHs.
Collapse
Affiliation(s)
- Anithadevi Kenday Sivaram
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle (UoN), University Drive, Callaghan, NSW 2308, Australia; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Advanced Technology Centre, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Panneerselvan Logeshwaran
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle (UoN), University Drive, Callaghan, NSW 2308, Australia; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Advanced Technology Centre, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Robin Lockington
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Advanced Technology Centre, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle (UoN), University Drive, Callaghan, NSW 2308, Australia; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Advanced Technology Centre, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle (UoN), University Drive, Callaghan, NSW 2308, Australia; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Advanced Technology Centre, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
| |
Collapse
|
36
|
Aziz A, Agamuthu P, Alaribe FO, Fauziah SH. Biodegradation of benzo[a]pyrene by bacterial consortium isolated from mangrove sediment. ENVIRONMENTAL TECHNOLOGY 2018; 39:527-535. [PMID: 28281885 DOI: 10.1080/09593330.2017.1305455] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/07/2017] [Indexed: 06/06/2023]
Abstract
Benzo[a]pyrene is a high-molecular-weight polycyclic aromatic hydrocarbon highly recalcitrant in nature and thus harms the ecosystem and/or human health. Therefore, its removal from the marine environment is crucial. This research focuses on benzo[a]pyrene degradation by using enriched bacterial isolates in consortium under saline conditions. Bacterial isolates capable of using benzo[a]pyrene as sole source of carbon and energy were isolated from enriched mangrove sediment. These isolates were identified as Ochrobactrum anthropi, Stenotrophomonas acidaminiphila, and Aeromonas salmonicida ss salmonicida. Isolated O. anthropi and S. acidaminiphila degraded 26% and 20%, respectively, of an initial benzo[a]pyrene concentration of 20 mg/L after 8 days of incubation in seawater (28 ppm of NaCl). Meanwhile, the bacterial consortium decomposed 41% of an initial 50 mg/L benzo[a]pyrene concentration after 8 days of incubation in seawater (28 ppm of NaCl). The degradation efficiency of benzo[a]pyrene increased to 54%, when phenanthrene was supplemented as a co-metabolic substrate. The order of biodegradation rate by temperature was 30°C > 25°C > 35°C. Our results suggest that co-metabolism by the consortium could be a promising biodegradation strategy for benzo[a]pyrene in seawater.
Collapse
Affiliation(s)
- A Aziz
- a Lasbela University of Agriculture, Water and Marine Sciences , Uthal , Pakistan
- b Institute of Biological Sciences, Faculty of Science , University of Malaya , Kuala Lumpur , Malaysia
- c Center for Research in Waste Management, Faculty of Science , University of Malaya , Kuala Lumpur , Malaysia
| | - P Agamuthu
- b Institute of Biological Sciences, Faculty of Science , University of Malaya , Kuala Lumpur , Malaysia
- c Center for Research in Waste Management, Faculty of Science , University of Malaya , Kuala Lumpur , Malaysia
| | - F O Alaribe
- b Institute of Biological Sciences, Faculty of Science , University of Malaya , Kuala Lumpur , Malaysia
- c Center for Research in Waste Management, Faculty of Science , University of Malaya , Kuala Lumpur , Malaysia
| | - S H Fauziah
- b Institute of Biological Sciences, Faculty of Science , University of Malaya , Kuala Lumpur , Malaysia
- c Center for Research in Waste Management, Faculty of Science , University of Malaya , Kuala Lumpur , Malaysia
| |
Collapse
|
37
|
Borowik A, Wyszkowska J, Wyszkowski M. Resistance of aerobic microorganisms and soil enzyme response to soil contamination with Ekodiesel Ultra fuel. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:24346-24363. [PMID: 28890995 PMCID: PMC5655587 DOI: 10.1007/s11356-017-0076-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/01/2017] [Indexed: 05/04/2023]
Abstract
This study determined the susceptibility of cultured soil microorganisms to the effects of Ekodiesel Ultra fuel (DO), to the enzymatic activity of soil and to soil contamination with PAHs. Studies into the effects of any type of oil products on reactions taking place in soil are necessary as particular fuels not only differ in the chemical composition of oil products but also in the composition of various fuel improvers and antimicrobial fuel additives. The subjects of the study included loamy sand and sandy loam which, in their natural state, have been classified into the soil subtype 3.1.1 Endocalcaric Cambisols. The soil was contaminated with the DO in amounts of 0, 5 and 10 cm3 kg-1. Differences were noted in the resistance of particular groups or genera of microorganisms to DO contamination in loamy sand (LS) and sandy loam (SL). In loamy sand and sandy loam, the most resistant microorganisms were oligotrophic spore-forming bacteria. The resistance of microorganisms to DO contamination was greater in LS than in SL. It decreased with the duration of exposure of microorganisms to the effects of DO. The factor of impact (IFDO) on the activity of particular enzymes varied. For dehydrogenases, urease, arylsulphatase and β-glucosidase, it had negative values, while for catalase, it had positive values and was close to 0 for acid phosphatase and alkaline phosphatase. However, in both soils, the noted index of biochemical activity of soil (BA) decreased with the increase in DO contamination. In addition, a positive correlation occurred between the degree of soil contamination and its PAH content.
Collapse
Affiliation(s)
- Agata Borowik
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Jadwiga Wyszkowska
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Mirosław Wyszkowski
- Department of Environmental Chemistry, University of Warmia and Mazury in Olsztyn, Plac Łódzki 4, 10-727 Olsztyn, Poland
| |
Collapse
|
38
|
Pino-Herrera DO, Pechaud Y, Huguenot D, Esposito G, van Hullebusch ED, Oturan MA. Removal mechanisms in aerobic slurry bioreactors for remediation of soils and sediments polluted with hydrophobic organic compounds: An overview. JOURNAL OF HAZARDOUS MATERIALS 2017; 339:427-449. [PMID: 28715703 DOI: 10.1016/j.jhazmat.2017.06.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/04/2017] [Accepted: 06/06/2017] [Indexed: 06/07/2023]
Abstract
Hydrophobic organic compound (HOC)-contaminated soils are a great environmental and public health concern nowadays. Further research is necessary to develop environmental friendly biotechnologies that allows public and private sectors to implement efficient and adaptable treatment approaches. Aerobic soil-slurry bioreactor technology has emerged as an effective and feasible technique with a high remediation potential, especially for silt and clay soil fractions, which often contain the highest pollutant concentration levels and are usually difficult to remove by implementing conventional methods. However, the mechanisms involved in the HOC removal in bioslurry reactor are still not completely understood. Gas-liquid and solid-liquid mass transfer, mass transport and biodegradation phenomena are the main known processes taking place in slurry bioreactors. This review compiles the most up-to-date information available about these phenomena and tries to link them, enlightening the possible interactions between parameters. It gathers the basic information needed to understand the complex bioremediation technology and raises awareness of some considerations that should be made.
Collapse
Affiliation(s)
- Douglas O Pino-Herrera
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, Marne-la-Vallée, 77454, France
| | - Yoan Pechaud
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, Marne-la-Vallée, 77454, France.
| | - David Huguenot
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, Marne-la-Vallée, 77454, France
| | - Giovanni Esposito
- University of Cassino and Southern Lazio, Department of Civil Engineering, Via di Biasio, 43, Cassino, 03043 FR, Italy
| | - Eric D van Hullebusch
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, Marne-la-Vallée, 77454, France; IHE Delft Institute for Water Education, Department of Environmental Engineering and Water Technology, Westvest 7, 2611 AX Delft, The Netherlands
| | - Mehmet A Oturan
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, Marne-la-Vallée, 77454, France
| |
Collapse
|
39
|
Ping L, Guo Q, Chen X, Yuan X, Zhang C, Zhao H. Biodegradation of pyrene and benzo[a]pyrene in the liquid matrix and soil by a newly identified Raoultella planticola strain. 3 Biotech 2017; 7:56. [PMID: 28444597 DOI: 10.1007/s13205-017-0704-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/21/2017] [Indexed: 11/28/2022] Open
Abstract
In the current study, the PL7 strain was isolated from soil and identified as Raoultella planticola based on its physiological characteristics and 16S rDNA sequence. By the 10th day, the PL7 strain degraded 52.0% of the pyrene (PYR) content and 50.8% of the benzo[a]pyrene (BaP) content in 20 mg L-1 PYR and 10 mg L-1 BaP in the liquid matrix. The half-life of PYR and BaP by PL7 degradation was 8.59 and 9.46 days, respectively. At pH 8.0, the degradation rates of PYR and BaP by PL7 were significantly higher at 30 °C than at 20 and 40 °C. The degradation ability of PL7 differed in red soil, paddy soil and fluvo-aquic soil; red soil produced the fastest degradation rates. The half-life of PYR and BaP by PL7 degradation in red soil was 21.7 and 11.9 days, respectively; however, without PL7 the half-life of PYR in red soil was 91.2 days. This study demonstrated the significant potential of the PL7 strain for bioremediation applications in the liquid matrix and soil contaminated by PAHs.
Collapse
Affiliation(s)
- Lifeng Ping
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, China.
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Qian Guo
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaoyang Chen
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaoli Yuan
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Chunrong Zhang
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hua Zhao
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
40
|
Fernández PM, Martorell MM, Blaser MG, Ruberto LAM, de Figueroa LIC, Mac Cormack WP. Phenol degradation and heavy metal tolerance of Antarctic yeasts. Extremophiles 2017; 21:445-457. [PMID: 28271165 DOI: 10.1007/s00792-017-0915-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 01/22/2017] [Indexed: 11/26/2022]
Abstract
In cold environments, biodegradation of organic pollutants and heavy metal bio-conversion requires the activity of cold-adapted or cold-tolerant microorganisms. In this work, the ability to utilize phenol, methanol and n-hexadecane as C source, the tolerance to different heavy metals and growth from 5 to 30 °C were evaluated in cold-adapted yeasts isolated from Antarctica. Fifty-nine percent of the yeasts were classified as psychrotolerant as they could grow in all the range of temperature tested, while the other 41% were classified as psychrophilic as they only grew below 25 °C. In the assimilation tests, 32, 78, and 13% of the yeasts could utilize phenol, n-hexadecane, and methanol as C source, respectively, but only 6% could assimilate the three C sources evaluated. In relation to heavy metals ions, 55, 68, and 80% were tolerant to 1 mM of Cr(VI), Cd(II), and Cu(II), respectively. Approximately a half of the isolates tolerated all of them. Most of the selected yeasts belong to genera previously reported as common for Antarctic soils, but several other genera were also isolated, which contribute to the knowledge of this cold environment mycodiversity. The tolerance to heavy metals of the phenol-degrading cold-adapted yeasts illustrated that the strains could be valuable as inoculant for cold wastewater treatment in extremely cold environments.
Collapse
Affiliation(s)
- Pablo Marcelo Fernández
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), San Miguel de Tucumán, Argentina
| | | | - Mariana G Blaser
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), San Miguel de Tucumán, Argentina
| | - Lucas Adolfo Mauro Ruberto
- Instituto Antártico Argentino (IAA), Buenos Aires, Argentina
- Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- NANOBIOTEC-CONICET, Buenos Aires, Argentina
| | - Lucía Inés Castellanos de Figueroa
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), San Miguel de Tucumán, Argentina
- Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán, Argentina
| | - Walter Patricio Mac Cormack
- Instituto Antártico Argentino (IAA), Buenos Aires, Argentina
- Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- NANOBIOTEC-CONICET, Buenos Aires, Argentina
| |
Collapse
|
41
|
Aydin S, Karaçay HA, Shahi A, Gökçe S, Ince B, Ince O. Aerobic and anaerobic fungal metabolism and Omics insights for increasing polycyclic aromatic hydrocarbons biodegradation. FUNGAL BIOL REV 2017. [DOI: 10.1016/j.fbr.2016.12.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Kuppusamy S, Thavamani P, Venkateswarlu K, Lee YB, Naidu R, Megharaj M. Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions. CHEMOSPHERE 2017; 168:944-968. [PMID: 27823779 DOI: 10.1016/j.chemosphere.2016.10.115] [Citation(s) in RCA: 357] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 05/22/2023]
Abstract
For more than a decade, the primary focus of environmental experts has been to adopt risk-based management approaches to cleanup PAH polluted sites that pose potentially destructive ecological consequences. This focus had led to the development of several physical, chemical, thermal and biological technologies that are widely implementable. Established remedial options available for treating PAH contaminated soils are incineration, thermal conduction, solvent extraction/soil washing, chemical oxidation, bioaugmentation, biostimulation, phytoremediation, composting/biopiles and bioreactors. Integrating physico-chemical and biological technologies is also widely practiced for better cleanup of PAH contaminated soils. Electrokinetic remediation, vermiremediation and biocatalyst assisted remediation are still at the development stage. Though several treatment methods to remediate PAH polluted soils currently exist, a comprehensive overview of all the available remediation technologies to date is necessary so that the right technology for field-level success is chosen. The objective of this review is to provide a critical overview in this respect, focusing only on the treatment options available for field soils and ignoring the spiked ones. The authors also propose the development of novel multifunctional green and sustainable systems like mixed cell culture system, biosurfactant flushing, transgenic approaches and nanoremediation in order to overcome the existing soil- contaminant- and microbial-associated technological limitations in tackling high molecular weight PAHs. The ultimate objective is to ensure the successful remediation of long-term PAH contaminated soils.
Collapse
Affiliation(s)
- Saranya Kuppusamy
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), PO Box 486, Salisbury South, SA5106, Australia.
| | - Palanisami Thavamani
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), PO Box 486, Salisbury South, SA5106, Australia; Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapur, 515055, India
| | - Yong Bok Lee
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Ravi Naidu
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), PO Box 486, Salisbury South, SA5106, Australia; Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Mallavarapu Megharaj
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), PO Box 486, Salisbury South, SA5106, Australia; Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
43
|
Song M, Yang Y, Jiang L, Hong Q, Zhang D, Shen Z, Yin H, Luo C. Characterisation of the phenanthrene degradation-related genes and degrading ability of a newly isolated copper-tolerant bacterium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:1059-1067. [PMID: 27889087 DOI: 10.1016/j.envpol.2016.11.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/12/2016] [Accepted: 11/14/2016] [Indexed: 06/06/2023]
Abstract
A copper-tolerant phenanthrene (PHE)-degrading bacterium, strain Sphingobium sp. PHE-1, was newly isolated from the activated sludge in a wastewater treatment plant. Two key genes, ahdA1b-1 encoding polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase (PAH-RHDɑ) and xyLE encoding catechol-2,3-dioxygenase (C23O), involved in the PHE metabolism by strain PHE-1 were identified. The PAH-RHD gene cluster showed 96% identity with the same cluster of Sphingomonas sp. P2. Our results indicated the induced transcription of xylE and ahdA1b-1 genes by PHE, simultaneously promoted by Cu(II). For the first time, high concentration of Cu(II) is found to encourage the expression of PAH-RHDɑ and C23O genes during PHE degradation. Applying Sphingomonas PHE-1 in PHE-contaminated soils for bioaugmentation, the abundance of xylE gene was increased by the planting of ryegrass and the presence of Cu(II), which, in turn, benefited ryegrass growth. The best performance of PHE degradation and the highest abundance of xylE genes occurred in PHE-copper co-contaminated soils planted with ryegrass.
Collapse
Affiliation(s)
- Mengke Song
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ying Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Longfei Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qing Hong
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dayi Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hua Yin
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chunling Luo
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
44
|
Kuppusamy S, Thavamani P, Megharaj M, Lee YB, Naidu R. Polyaromatic hydrocarbon (PAH) degradation potential of a new acid tolerant, diazotrophic P-solubilizing and heavy metal resistant bacterium Cupriavidus sp. MTS-7 isolated from long-term mixed contaminated soil. CHEMOSPHERE 2016; 162:31-39. [PMID: 27475295 DOI: 10.1016/j.chemosphere.2016.07.052] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 07/09/2016] [Accepted: 07/15/2016] [Indexed: 06/06/2023]
Abstract
An isolate of Cupriavidus (strain MTS-7) was identified from a long-term PAHs and heavy metals mixed contaminated soil with the potential to biodegrade both LMW and HMW PAHs with added unique traits of acid and alkali tolerance, heavy metal tolerance, self-nutrient assimilation by N fixation and P solubilization. This strain completely degraded the model 3 (150 mg L(-1) Phe), 4 (150 mg L(-1) Pyr) and 5 (50 mg L(-1) BaP) ring PAHs in 4, 20 and 30 days, respectively. It could mineralize 90-100% of PAHs (200 mg L(-1) of Phe and Pyr) within 15 days across pH ranging from 5 to 8 and even in the presence of toxic metal contaminations. During biodegradation, the minimum inhibitory concentrations were 5 (Cu(2+)) and 3 (Cd(2+), Pb(2+), Zn(2+)) mg L(-1) of the potentially bioavailable metal ions and over 17 mg L(-1) metal levels was lethal for the microbe. Further, it could fix 217-274 μg mL(-1) of N and solubilize 79-135 μg mL(-1) of P while PAHs degradation. MTS-7 as a superior candidate could be thus used in the enhanced bioaugmentation and/or phytoremediation of long-term mixed contaminated sites.
Collapse
Affiliation(s)
- Saranya Kuppusamy
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 660-701, South Korea; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), PO Box 486, Salisbury South, SA5106, Australia.
| | - Palanisami Thavamani
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), PO Box 486, Salisbury South, SA5106, Australia; Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Mallavarapu Megharaj
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), PO Box 486, Salisbury South, SA5106, Australia; Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Yong Bok Lee
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 660-701, South Korea
| | - Ravi Naidu
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), PO Box 486, Salisbury South, SA5106, Australia; Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
45
|
Potential of Endophytic Bacterium Paenibacillus sp. PHE-3 Isolated from Plantago asiatica L. for Reduction of PAH Contamination in Plant Tissues. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13070633. [PMID: 27347988 PMCID: PMC4962174 DOI: 10.3390/ijerph13070633] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/01/2016] [Accepted: 06/11/2016] [Indexed: 11/17/2022]
Abstract
Endophytes are ubiquitous in plants, and they may have a natural capacity to biodegrade polycyclic aromatic hydrocarbons (PAHs). In our study, a phenanthrene-degrading endophytic Paenibacillus sp. PHE-3 was isolated from P. asiatica L. grown in a PAH-contaminated site. The effects of environmental variables on phenanthrene biodegradation by strain PHE-3 were studied, and the ability of strain PHE-3 to use high molecular weight PAH (HMW-PAH) as a sole carbon source was also evaluated. Our results indicated that pH value of 4.0–8.0, temperature of 30 °C–42 °C, initial phenanthrene concentration less than 100 mg·L−1, and some additional nutrients are favorable for the biodegradation of phenanthrene by strain PHE-3. The maximum biodegradation efficiency of phenanthrene was achieved at 99.9% after 84 h cultivation with additional glutamate. Moreover, the phenanthrene biodegradation by strain PHE-3 was positively correlated with the catechol 2,3-dioxygenase activity (ρ = 0.981, p < 0.05), suggesting that strain PHE-3 had the capability of degrading HMW-PAHs. In the presence of other 2-, 3-ringed PAHs, strain PHE-3 effectively degraded HMW-PAHs through co-metabolism. The results of this study are beneficial in that the re-colonization potential and PAH degradation performance of endophytic Paenibacillus sp. PHE-3 may be applied towards reducing PAH contamination in plants.
Collapse
|
46
|
Kuppusamy S, Thavamani P, Megharaj M, Lee YB, Naidu R. Kinetics of PAH degradation by a new acid-metal-tolerant Trabulsiella isolated from the MGP site soil and identification of its potential to fix nitrogen and solubilize phosphorous. JOURNAL OF HAZARDOUS MATERIALS 2016; 307:99-107. [PMID: 26775109 DOI: 10.1016/j.jhazmat.2015.12.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/15/2015] [Accepted: 12/30/2015] [Indexed: 06/05/2023]
Abstract
Development of an efficient bioinoculum is considered as an appropriate remedial approach to treat the PAHs-metal mixed contaminated sites. Therefore, we aimed to isolate a degrader able to exert an outstanding PAH catabolic potential with added traits of pH-metal-resistance, N-fix or P-solubilization from a manufactured gas plant site soil. The identified strain (MTS-6) was a first low and high molecular weight (LMW and HMW) PAHs degrading Trabulsiella sp. tolerant to pH 5. MTS-6 completely degraded the model 3 [150mgL(-1) phenanthrene (Phe)], 4 [150mgL(-1) pyrene (Pyr)] and 5 [50mgL(-1) benzo[a]pyrene (BaP)] ring PAHs in 6, 25 and 90 days, respectively. Presence of co-substrate (100mgL(-1) Phe) increased the biodegradation rate constant (k) and decreased the half-life time (t1/2) of HMW PAHs (100mgL(-1) Pyr or 50mgL(-1) BaP). The strain fixed 47μgmL(-1)N and solubilized 58μgmL(-1)P during PAH metabolism and exhibited an EC50 value of 3-4mgL(-1) for Cu, Cd, Pb and Zn. Over 6mgL(-1) metal levels was lethal for the microbe. The identified bacterium (MTS-6) with exceptional multi-functional traits opens the way for its exploitation in the bioremediation of manufactured gas plant sites in a sustainable way by employing bioaugmentation strategy.
Collapse
Affiliation(s)
- Saranya Kuppusamy
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 660-701, South Korea; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), PO Box 486, Salisbury South, SA 5106, Australia.
| | - Palanisami Thavamani
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), PO Box 486, Salisbury South, SA 5106, Australia; Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mallavarapu Megharaj
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), PO Box 486, Salisbury South, SA 5106, Australia; Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Yong Bok Lee
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 660-701, South Korea
| | - Ravi Naidu
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), PO Box 486, Salisbury South, SA 5106, Australia; Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
47
|
Deary ME, Ekumankama CC, Cummings SP. Development of a novel kinetic model for the analysis of PAH biodegradation in the presence of lead and cadmium co-contaminants. JOURNAL OF HAZARDOUS MATERIALS 2016; 307:240-252. [PMID: 26785214 DOI: 10.1016/j.jhazmat.2015.12.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/16/2015] [Accepted: 12/09/2015] [Indexed: 06/05/2023]
Abstract
We report on the results of a 40 week study in which the biodegradation of 16 US EPA polycyclic aromatic hydrocarbons (PAHs) was followed in microcosms containing soil of high organic carbon content (11%) in the presence and absence of lead and cadmium co-contaminants. The total spiked PAH concentration was 2166mg/kg. Mercury amendment was also made to give an abiotic control. A novel kinetic model has been developed to explain the observed biphasic nature of PAH degradation. The model assumes that PAHs are distributed across soil phases of varying degrees of bioaccessibility. The results of the analysis suggest that overall percentage PAH loss is dependent on the respective rates at which the PAHs (a) are biodegraded by soil microorganisms in pore water and bioaccessible soil phases and (b) migrate from bioaccessible to non-bioaccessible soil phases. In addition, migration of PAHs to non-bioaccessible and non-Soxhlet-extractable soil phases associated with the humin pores gives rise to an apparent removal process. The presence of metal co-contaminants shows a concentration dependent inhibition of the biological degradation processes that results in a reduction in overall degradation. Lead appears to have a marginally greater inhibitory effect than cadmium.
Collapse
Affiliation(s)
- Michael E Deary
- Department of Geography,Faculty of Engineering and Environment, Northumbria University, Ellison Building, Newcastle upon Tyne NE1 8ST, United Kingdom.
| | - Chinedu C Ekumankama
- Department of Geography,Faculty of Engineering and Environment, Northumbria University, Ellison Building, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Stephen P Cummings
- Faculty of Health and Life Sciences, Northumbria University, Ellison Building, Newcastle upon Tyne NE1 8ST, United Kingdom
| |
Collapse
|
48
|
Chen C, Lei W, Lu M, Zhang J, Zhang Z, Luo C, Chen Y, Hong Q, Shen Z. Characterization of Cu(II) and Cd(II) resistance mechanisms in Sphingobium sp. PHE-SPH and Ochrobactrum sp. PHE-OCH and their potential application in the bioremediation of heavy metal-phenanthrene co-contaminated sites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:6861-6872. [PMID: 26670028 DOI: 10.1007/s11356-015-5926-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/03/2015] [Indexed: 06/05/2023]
Abstract
Soil that is co-contaminated with heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) is difficult to bioremediate due to the ability of toxic metals to inhibit PAH degradation by bacteria. We demonstrated the resistance mechanisms to Cu(II) and Cd(II) of two newly isolated strains of Sphingobium sp. PHE-SPH and Ochrobactrum sp. PHE-OCH and further tested their potential application in the bioremediation of HM-phenanthrene (PhA) co-contaminated sites. The PHE-SPH and PHE-OCH strains tolerated 4.63 and 4.34 mM Cu(II) and also showed tolerance to 0.48 and 1.52 mM Cd(II), respectively. Diverse resistance patterns were detected between the two strains. In PHE-OCH cells, the maximum accumulation of Cu(II) occurred in the cell wall, while the maximum accumulation was in the cytoplasm of PHE-SPH cells. This resulted in a sudden suppression of growth in PHE-OCH and a gradual inhibition in PHE-SPH as the concentration of Cu(II) increased. Organic acid production was markedly higher in PHE-OCH than in PHE-SPH, which may also have a role in the resistance mechanisms, and contributes to the higher Cd(II) tolerance of PHE-OCH. The factors involved in the absorption of Cu(II) or Cd(II) in PHE-SPH and PHE-OCH were identified as proteins and carbohydrates by Fourier transform infrared (FT-IR) spectroscopy. Furthermore, both strains showed the ability to efficiently degrade PhA and maintained this high degradation efficiency under HM stress. The high tolerance to HMs and the PhA degradation capacity make Sphingobium sp. PHE-SPH and Ochrobactrum sp. PHE-OCH excellent candidate organisms for the bioremediation of HM-PhA co-contaminated sites.
Collapse
Affiliation(s)
- Chen Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Wenrui Lei
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Min Lu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jianan Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhou Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qing Hong
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
49
|
Kuppusamy S, Palanisami T, Megharaj M, Venkateswarlu K, Naidu R. In-Situ Remediation Approaches for the Management of Contaminated Sites: A Comprehensive Overview. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 236:1-115. [PMID: 26423073 DOI: 10.1007/978-3-319-20013-2_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Though several in-situ treatment methods exist to remediate polluted sites, selecting an appropriate site-specific remediation technology is challenging and is critical for successful clean up of polluted sites. Hence, a comprehensive overview of all the available remediation technologies to date is necessary to choose the right technology for an anticipated pollutant. This review has critically evaluated the (i) technological profile of existing in-situ remediation approaches for priority and emerging pollutants, (ii) recent innovative technologies for on-site pollutant remediation, and (iii) current challenges as well as future prospects for developing innovative approaches to enhance the efficacy of remediation at contaminated sites.
Collapse
Affiliation(s)
- Saranya Kuppusamy
- CERAR-Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA, 5095, Australia
- CRC CARE-Cooperative Research Centre for Contamination Assessment and Remediation of Environment, 486, Salisbury South, SA, 5106, Australia
| | - Thavamani Palanisami
- CRC CARE-Cooperative Research Centre for Contamination Assessment and Remediation of Environment, 486, Salisbury South, SA, 5106, Australia
- GIER- Global Institute for Environmental Research, Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Mallavarapu Megharaj
- CRC CARE-Cooperative Research Centre for Contamination Assessment and Remediation of Environment, 486, Salisbury South, SA, 5106, Australia.
- GIER- Global Institute for Environmental Research, Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapur, 515055, India
| | - Ravi Naidu
- CRC CARE-Cooperative Research Centre for Contamination Assessment and Remediation of Environment, 486, Salisbury South, SA, 5106, Australia
- GIER- Global Institute for Environmental Research, Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
50
|
Phenol degradation by halophilic fungal isolate JS4 and evaluation of its tolerance of heavy metals. Appl Microbiol Biotechnol 2015; 100:1883-1890. [DOI: 10.1007/s00253-015-7180-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 11/11/2015] [Accepted: 11/13/2015] [Indexed: 11/27/2022]
|