1
|
Zhang K, Lin WH, Wang S, Hou D. Pyrogenic carbon modulating TCE dehalogenation through snorkeling electrons under sulfate-reducing conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135903. [PMID: 39307012 DOI: 10.1016/j.jhazmat.2024.135903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 12/01/2024]
Abstract
Microbial dehalogenation, using obligate and facultative organohalide-respiring bacteria (OHRB), has been widely used to remediate halohydrocarbon-polluted sites. Owing to the scarcity of OHRB, and poor efficiency in H2-mediating interspecies electron transfer, microbial dehalogenation relying on OHRB is easily disturbed by Fe(III), sulfate, and nitrate as electron competitors. In the present study, pyrogenic carbon, featuring electron snorkeling, was introduced into the process of microbial dehalogenation, which facilitated the electron transfer from electro-active microbes to halohydrocarbon, then invigorating dehalogenation. As a consequence, fine dehalogenation of trichloroethene (TCE, as representative halohydrocarbon) was obtained, expressed as the nearly complete diminishment of 150 µmol L-1 TCE and the sequestration of high contents of ethene (72.2-122.3 µmol L-1 within 80 d). Such fine dehalogenation was ascribed to the synergy between pyrogenic carbon and electro-active microbes. Multiple microbes in mixed cultures, including Clostridium sp., Sporanaerobacter, Sedimentibacter, Paraclostridium, and Tissierella, stimulated TCE dehalogenation by providing electrons to pyrogenic carbon. Redox moieties on pyrogenic carbon enabled it to snorkel electrons, which facilitated the electron transfer from electro-active microbes to TCE, consequently invigorating TCE dehalogenation. Such microbial dehalogenation free of OHRB demonstrates the effectiveness of a novel strategy for remediating halohydrocarbon-polluted environments.
Collapse
Affiliation(s)
- Kaikai Zhang
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Wei-Han Lin
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environ. Pollut. Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Xie Z, Li W, Yang K, Wang X, Xiong S, Zhang X. Bacterial and Archaeal Communities in Erhai Lake Sediments: Abundance and Metabolic Insight into a Plateau Lake at the Edge of Eutrophication. Microorganisms 2024; 12:1617. [PMID: 39203459 PMCID: PMC11356345 DOI: 10.3390/microorganisms12081617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
The littoral zones of lakes are potential hotspots for local algal blooms and biogeochemical cycles; however, the microbial communities within the littoral sediments of eutrophic plateau lakes remain poorly understood. Here, we investigated the taxonomic composition, co-occurrence networks, and potential functional roles of both abundant and rare taxa within bacterial and archaeal communities, as well as physicochemical parameters, in littoral sediments from Erhai Lake, a mesotrophic lake transitioning towards eutrophy located in the Yunnan-Guizhou Plateau. 16S rRNA gene sequencing revealed that bacterial communities were dominated by Proteobacteria, Bacteroidetes, and Chloroflexi, while Euryarchaeota was the main archaeal phylum. Co-occurrence network analysis revealed that keystone taxa mainly belonged to rare species in the bacterial domain, but in the archaeal domain, over half of keystone taxa were abundant species, demonstrating their fundamental roles in network persistence. The rare bacterial taxa contributed substantially to the overall abundance (81.52%), whereas a smaller subset of abundant archaeal taxa accounted for up to 82.70% of the overall abundance. Functional predictions highlighted a divergence in metabolic potentials, with abundant bacterial sub-communities enriched in pathways for nitrogen cycling, sulfur cycling, and chlorate reduction, while rare bacterial sub-communities were linked to carbon cycling processes such as methanotrophy. Abundant archaeal sub-communities exhibited a high potential for methanogenesis, chemoheterotrophy, and dark hydrogen oxidation. Spearman correlation analysis showed that genera such as Candidatus competibacter, Geobacter, Syntrophobacter, Methanocella, and Methanosarcina may serve as potential indicators of eutrophication. Overall, this study provides insight into the distinct roles that rare and abundant taxa play in the littoral sediments of mesotrophic plateau lakes.
Collapse
Affiliation(s)
- Zhen Xie
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.X.); (K.Y.)
| | - Wei Li
- National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali 671000, China; (W.L.); (X.W.); (S.X.)
- Yunnan Dali Research Institute, Shanghai Jiao Tong University, Dali 671000, China
| | - Kaiwen Yang
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.X.); (K.Y.)
| | - Xinze Wang
- National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali 671000, China; (W.L.); (X.W.); (S.X.)
- Yunnan Dali Research Institute, Shanghai Jiao Tong University, Dali 671000, China
| | - Shunzi Xiong
- National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali 671000, China; (W.L.); (X.W.); (S.X.)
- Yunnan Dali Research Institute, Shanghai Jiao Tong University, Dali 671000, China
| | - Xiaojun Zhang
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.X.); (K.Y.)
| |
Collapse
|
3
|
Dong S, Yan PF, Mezzari MP, Abriola LM, Pennell KD, Cápiro NL. Using Network Analysis and Predictive Functional Analysis to Explore the Fluorotelomer Biotransformation Potential of Soil Microbial Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7480-7492. [PMID: 38639388 DOI: 10.1021/acs.est.4c00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Microbial transformation of per- and polyfluoroalkyl substances (PFAS), including fluorotelomer-derived PFAS, by native microbial communities in the environment has been widely documented. However, few studies have identified the key microorganisms and their roles during the PFAS biotransformation processes. This study was undertaken to gain more insight into the structure and function of soil microbial communities that are relevant to PFAS biotransformation. We collected 16S rRNA gene sequencing data from 8:2 fluorotelomer alcohol and 6:2 fluorotelomer sulfonate biotransformation studies conducted in soil microcosms under various redox conditions. Through co-occurrence network analysis, several genera, including Variovorax, Rhodococcus, and Cupriavidus, were found to likely play important roles in the biotransformation of fluorotelomers. Additionally, a metagenomic prediction approach (PICRUSt2) identified functional genes, including 6-oxocyclohex-1-ene-carbonyl-CoA hydrolase, cyclohexa-1,5-dienecarbonyl-CoA hydratase, and a fluoride-proton antiporter gene, that may be involved in defluorination. This study pioneers the application of these bioinformatics tools in the analysis of PFAS biotransformation-related sequencing data. Our findings serve as a foundational reference for investigating enzymatic mechanisms of microbial defluorination that may facilitate the development of efficient microbial consortia and/or pure microbial strains for PFAS biotransformation.
Collapse
Affiliation(s)
- Sheng Dong
- Department of Biological and Environmental Engineering, Cornell University, 214 Riley-Robb Hall, 111 Wing Drive, Ithaca, New York 14853, United States
| | - Peng-Fei Yan
- Department of Biological and Environmental Engineering, Cornell University, 214 Riley-Robb Hall, 111 Wing Drive, Ithaca, New York 14853, United States
| | - Melissa P Mezzari
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Linda M Abriola
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Natalie L Cápiro
- Department of Biological and Environmental Engineering, Cornell University, 214 Riley-Robb Hall, 111 Wing Drive, Ithaca, New York 14853, United States
| |
Collapse
|
4
|
Chen J, Zhang B, Wang C, Wang P, Cui G, Gao H, Feng B, Zhang J. Insight into the enhancement effect of humic acid on microbial degradation of triclosan in anaerobic sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132549. [PMID: 37717441 DOI: 10.1016/j.jhazmat.2023.132549] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/21/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Humic acid (HA) as one class of macromolecular substances plays important roles in mediating environmental behaviors of pollutants in sediments, but its effect on microbial degradation of triclosan (TCS), a common antibacterial drug, remains unclear. In this study, the effects of HA addition with different dosages (0-5%) on TCS degradation in anaerobic sediment slurries and the underlying microbial mechanisms were investigated. The results showed that HA addition significantly accelerated the TCS removal and the maximum removal percentage (30.2%) was observed in the sediment slurry with 5% HA addition. The iron reduction rate, relative abundances of the genera Comamonas, Pseudomonas and Geobacter, and bacterial network complexity in sediment slurry were significantly enhanced due to HA addition. Based on the partial least squares path modeling analysis, the enhancement effect of HA on TCS degradation was mainly explained by Fe(II):Fe(III) ratio with the highest influence on TCS removal (total effect: 0.723), followed by dominant genera abundances (total effect: 0.391), module relative abundance (total effect: 0.272), and network topological features (total effect: 0.263). This finding enhanced our understanding of the role of HA in TCS biodegradation in contaminated sediments for bioremediation purposes.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Bo Zhang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Ge Cui
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Bingbing Feng
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Jingjing Zhang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| |
Collapse
|
5
|
Zhang K, Deng J, Lin WH, Hu S. Vitamin B 12 and iron-rich sludge-derived biochar enhanced PFOA biodegradation: Importance of direct inter-species electron transfer and functional microbes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118978. [PMID: 37742566 DOI: 10.1016/j.jenvman.2023.118978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/19/2023] [Accepted: 09/09/2023] [Indexed: 09/26/2023]
Abstract
Owing to the strong C-F bond in nature and the rigidity of the poly-fluoroalkyl chain, perfluorooctanoic acid (PFOA) is difficult to be eliminated by reactive species and microbes in environments, thus posing a serious threat to ecosystems. Vitamin B12 as a cofactor for enzymes, and biochar as the electron providers and conductors, were integrated to enhance PFOA biodegradation. The raw material of biochar was the sludge after dewatering by adding 50 mg/g DS of Fe(III). After pyrolysis under high temperature (800 °C), biochar (SC800) detected high content of Fe(II) (197.64 mg/g) and abundant oxygen-containing functional groups, thus boosting PFOA biodegradation via donating electrons. 99.9% of PFOA could be removed within 60 d as 0.1 g/L SC800 was presented in the microbial systems containing vitamin B12. Moreover, vitamin B12 facilitated the evolution of Sporomusa which behaved the deflorination. Via providing reactive sites and mediating direct inter-species electron transfer (DIET), SC800 boosted PFOA biodegradation. Corresponding novel results in the present study could guide the development of bioremediation technologies for PFOA-polluted sites.
Collapse
Affiliation(s)
- Kaikai Zhang
- School of Environment, Tsinghua University, Beijing, 100091, PR China
| | - Jiayu Deng
- School of Environment, Tsinghua University, Beijing, 100091, PR China
| | - Wei-Han Lin
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Shaogang Hu
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
6
|
Liu Y, Chen S, Wang J, Shao B, Fang J, Cao J. The Phylogeny, Metabolic Potentials, and Environmental Adaptation of an Anaerobe, Abyssisolibacter sp. M8S5, Isolated from Cold Seep Sediments of the South China Sea. Microorganisms 2023; 11:2156. [PMID: 37764000 PMCID: PMC10536192 DOI: 10.3390/microorganisms11092156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Bacillota are widely distributed in various environments, owing to their versatile metabolic capabilities and remarkable adaptation strategies. Recent studies reported that Bacillota species were highly enriched in cold seep sediments, but their metabolic capabilities, ecological functions, and adaption mechanisms in the cold seep habitats remained obscure. In this study, we conducted a systematic analysis of the complete genome of a novel Bacillota bacterium strain M8S5, which we isolated from cold seep sediments of the South China Sea at a depth of 1151 m. Phylogenetically, strain M8S5 was affiliated with the genus Abyssisolibacter within the phylum Bacillota. Metabolically, M8S5 is predicted to utilize various carbon and nitrogen sources, including chitin, cellulose, peptide/oligopeptide, amino acids, ethanolamine, and spermidine/putrescine. The pathways of histidine and proline biosynthesis were largely incomplete in strain M8S5, implying that its survival strictly depends on histidine- and proline-related organic matter enriched in the cold seep ecosystems. On the other hand, strain M8S5 contained the genes encoding a variety of extracellular peptidases, e.g., the S8, S11, and C25 families, suggesting its capabilities for extracellular protein degradation. Moreover, we identified a series of anaerobic respiratory genes, such as glycine reductase genes, in strain M8S5, which may allow it to survive in the anaerobic sediments of cold seep environments. Many genes associated with osmoprotectants (e.g., glycine betaine, proline, and trehalose), transporters, molecular chaperones, and reactive oxygen species-scavenging proteins as well as spore formation may contribute to its high-pressure and low-temperature adaptations. These findings regarding the versatile metabolic potentials and multiple adaptation strategies of strain M8S5 will expand our understanding of the Bacillota species in cold seep sediments and their potential roles in the biogeochemical cycling of deep marine ecosystems.
Collapse
Affiliation(s)
- Ying Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (J.W.); (B.S.)
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535000, China
| | - Songze Chen
- Shenzhen Ecological and Environmental Monitoring Center of Guangdong Province, Shenzhen 518049, China;
| | - Jiahua Wang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (J.W.); (B.S.)
| | - Baoying Shao
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (J.W.); (B.S.)
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (J.W.); (B.S.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Junwei Cao
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (J.W.); (B.S.)
| |
Collapse
|
7
|
Chen T, Zou C, Chen F, Yuan Y, Pan J, Zhao Q, Wang M, Qiao L, Cheng H, Ding C, Wang A. Response of 2,4,6-trichlorophenol-reducing biocathode to burial depth in constructed wetland sediments. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128066. [PMID: 34915250 DOI: 10.1016/j.jhazmat.2021.128066] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Biocathode systems could be used for in-situ bioremediation of chlorophenols (CPs) in constructed wetland (CW) sediments. However, little is known regarding whether or how cathode burial depths affect the dechlorination of CPs in sediments. Here, 2,4,6-trichlorophenol (2,4,6-TCP)-dechlorinating biocathode systems were constructed under a cathode potential of - 0.7 V (vs. a saturated calomel electrode, SCE) at three different cathode burial depths (5, 10, and 15 cm). The 2,4,6-TCP removal efficiency and average transformation rate with the biocathode increased by 21.46-36.86% and 14.63-34.88% compared to those in the non-electrode groups. Deeper cathode burial depths enhanced the 2,4,6-TCP dechlorination performance. Furthermore, the oxidation-reduction potential (ORP) of the sediment decreased with sediment depth and the applied potential created a more favorable redox environment for the enrichment of functional bacteria. Deeper cathode burial depths also promoted the selective enrichment of electro-active and dechlorinating bacteria (e.g., Bacillus and Dehalobacter, respectively). The biocathode thus served as the carrier, electron source, and regulator of functional bacteria to accelerate the transformation of 2,4,6-TCP (2,4,6-TCP → 2,4-dichlorophenol → 4-chlorophenol → phenol) in sediments. These results offer insights into the effects of cathode burial depth on 2,4,6-TCP dechlorination in sediments from a redox environment and microbial community structure standpoint.
Collapse
Affiliation(s)
- Tianming Chen
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng 224051, China
| | - Chao Zou
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Fan Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710129, China
| | - Ye Yuan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Jingjing Pan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Qi Zhao
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Mansi Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Liang Qiao
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng 224051, China
| | - Haoyi Cheng
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Cheng Ding
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng 224051, China
| | - Aijie Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng 224051, China.
| |
Collapse
|
8
|
Wu Y, Wu J, Wu Z, Zhou J, Zhou L, Lu Y, Liu X, Wu W. Groundwater contaminated with short-chain chlorinated paraffins and microbial responses. WATER RESEARCH 2021; 204:117605. [PMID: 34488140 DOI: 10.1016/j.watres.2021.117605] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
The vertical migrations of toxic and persistent short-chain chlorinated paraffins (SCCPs) in soils as well as the microbial responses have been reported, however, there is a paucity of data on the resulting groundwater contamination. Here, we determined the concentration and congener profile of SCCPs in the groundwater beneath a production plant of chlorinated paraffins (CPs) and characterized the microbial community to explore their responses to SCCPs. Results showed that SCCPs ranged from not detected to 70.3 μg/L, with C13-CPs (11.2-65.8%) and Cl7-CPs (27.2-50.6%), in mass ratio, as the dominant groups. Similar to the distribution pattern in soils, SCCPs in groundwater were distributed in hotspot pattern. CP synthesis was the source of SCCPs in groundwater and the entire contamination plume significantly migrated downgradient, while there was an apparent hysteresis of C13-CP migration. Groundwater microbial community was likely shaped by both hydrogeological condition (pH and depth) and SCCPs. Specifically, the microbial community responded to the contamination by forming a co-occurrence network with "small world" feature, where Desulfobacca, Desulfomonile, Ferritrophicum, Methylomonas, Syntrophobacter, Syntrophorhabdus, Syntrophus, and Thermoanaerobaculum were the keystone taxa. Furthermore, the interrelations between bacterial taxa and SCCPs indicated that the microbial community might cooperate to achieve the dechlorination and mineralization of SCCPs through either anaerobic organohalide respiration mainly functioned by the keystone taxa, or cometabolic degradation processes functioned by Aquabacterium and Hydrogenophaga. Results of this study would provide a better understanding of the environmental behavior and ecological effects of SCCPs in groundwater systems.
Collapse
Affiliation(s)
- Yingxin Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Jiahui Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Zhuohao Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Jingyan Zhou
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Lingli Zhou
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Yang Lu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Xiaowen Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Wencheng Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China.
| |
Collapse
|
9
|
Cheng J, Li S, Yang X, Huang X, Lu Z, Xu J, He Y. Regulating the dechlorination and methanogenesis synchronously to achieve a win-win remediation solution for γ-hexachlorocyclohexane polluted anaerobic environment. WATER RESEARCH 2021; 203:117542. [PMID: 34412017 DOI: 10.1016/j.watres.2021.117542] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
The wish for rapid degradation of chlorinated organic pollutants along with the increase concern with respect to greenhouse effect and bioenergy methane production have created urgent needs to explore synchronous regulation approach. Microbial electrolysis cell was established under four degressive cathode potential settings (from -0.15V to -0.60V) to regulate γ-hexachlorocyclohexane (γ-HCH) reduction while CH4 cumulation in this study. The synchronous facilitation of γ-HCH reduction and CH4 cumulation was occurred in -0.15V treatment while the facilitation of γ-HCH reductive removal together with the inhibition of CH4 cumulation was showed in -0.30V treatment. Electrochemical patterns via cyclic voltammetry and morphological performances via scanning electron microscopy illustrated bioelectrostimulation promoted redox reactions and helped to construct mature biofilms located on bioelectrodes. Also, bioelectrostimulated regulation pronouncedly affected the bacteria and archaeal communities and subsequently assembled distinctly core sensitive responders across bioanode, biocathode and plankton. Clostridum, Longilinea and Methanothrix relatively accumulated in the plankton, and Cupriavidus and Methanospirillum, and Perimonas and Nonoarcheaum in biocathode and bioanode, respectively; while Pseudomonas, Stenotrophomonas, Methanoculleus and Methanosarcina were diffusely enriched. Microbial interactions in the ecological network were more complicated in -0.15V and -0.30V cathodic potential treatments, coincident with the increasement of γ-HCH reduction. The co-existence between putative dechlorinators and methanogens was less significant in -0.30V treatment when compared to that in -0.15V treatment, relevant with the variations of CH4 cumulation. In all, this study firstly corroborated the availability to synchronously regulate γ-HCH reductive removal and methanogenesis. Besides, it paves an advanced approach controlling γ-HCH reduction in cooperation with CH4 cumulation, of which to achieve γ-HCH degradation facilitation along with biogas (CH4) production promotion with -0.15V cathode potential during anaerobic γ-HCH contaminated wastewater digestion, or to realize γ-HCH degradation facilitation with the inhibition of CH4 emission with -0.30V cathode potential for an all-win remediation in γ-HCH polluted anaerobic environment such as paddy soil.
Collapse
Affiliation(s)
- Jie Cheng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Shuyao Li
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Xueling Yang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Xiaowei Huang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Zhijiang Lu
- Department of Environmental Science and Geology, Wayne State University, Detroit, MI 48201, United States
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Yan He
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China.
| |
Collapse
|
10
|
Liao J, Chen Q. Biodegradable plastics in the air and soil environment: Low degradation rate and high microplastics formation. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126329. [PMID: 34118549 DOI: 10.1016/j.jhazmat.2021.126329] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
In recent years, the promotion and use of biodegradable plastics (BPs) are growing into a general trend. Here the degradation performance of different types of BPs was investigated in the natural environment. Their degradation levels followed the order of pure BPs> BP blends> claimed "BP"≈ non-biodegradable plastic after 6-month incubation. Photo- and biodegradation were the main degradation mechanisms of these plastics in the air and soil, respectively. Poly(p-dioxanone) (PPDO) exhibited the highest weight loss potentials in both air (54.7 ± 9.1%) and soil (56.8 ± 4.8%), due to its special ether bond and the rich and diverse microorganisms on its biofilms. The microbiota on PPDO was distinct and enriched with Chloroflexi and Firmicutes that responsible for carbon cycle and organic degradation. The weight loss was only 1.1-8.0% for poly(lactic acid), and 0.8-6.8% for poly(butylene adipate-co-terephthalate), and other plastics are basically non-degradable. Of note, numerous microplastics were formed after PPDO degradation, with 441 ± 326 and 2103 ± 131 item/g plastic in the air and soil, respectively. Taken together, the monitoring of BP biodegradation in the natural environment is of vital importance, and it is risky to promote large-scale application of BPs if the knowledge gap of their environmental behavior has not been well addressed.
Collapse
Affiliation(s)
- Jin Liao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China; Shanghai Polar Moment Science and Technology Education Company, Shanghai 200433, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China.
| |
Collapse
|
11
|
Yuan J, Shentu J, Ma B, Lu Z, Luo Y, Xu J, He Y. Microbial and abiotic factors of flooded soil that affect redox biodegradation of lindane. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146606. [PMID: 34030285 DOI: 10.1016/j.scitotenv.2021.146606] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Pollution induces pressure to soil microorganism; and conversely, the degradation of pollutants is reported largely regulated by the soil microbiome assembly in situ. However, the specific-dependent core taxa of degraders were barely confirmed, which is not conducive to improving the soil remediation strategy. Taking pollution of a typical organochlorine pesticide (OCP), lindane, as an example, we explored the microbial community assembly in flooded soils and simultaneously quantified the corresponding dynamics of typical soil redox processes. Contrasting initial status of microbial diversity was set up by gamma irradiation or not, with additives (acetate, NaNO3, acetate + NaNO3) capable of modifying microbial growth employed simultaneously. Microorganism under lindane stress was reflected by microbial adaptability within complex co-occurrence networks, wherein some environment-dependent core taxa (e.g., Clostridia, Bacteroidia, Bacilli) were highly resilient to pollution and sterilization disturbances. Lindane had higher degradation rate in irradiated soil (0.96 mg kg-1 d-1) than non-irradiated soil (0.83 mg kg-1 d-1). In non-irradiated soil, addition of acetate promoted lindane degradation and methanogenesis, whereas nitrate inhibited lindane degradation but promoted denitrification. No significant differences in lindane degradation were observed in irradiated soils, which exhibited low-diversity microbiomes in parallel to stronger Fe reduction and methanogenesis. The varied corresponding trigger effects on soil redox processes are likely due to differences of soil microbiome, specifically, deterministic or stochastic assembly, in response to pollution stress under high or low initial microbial diversity conditions. Our results improve the knowledge of the adaptability of disturbed microbiomes and their feedback on microbial functional development in OCP-polluted soils, achieving for a more reliable understanding with respect to the ecological risk of soils resided with OCPs under the fact of global microbial diversity loss.
Collapse
Affiliation(s)
- Jing Yuan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Jue Shentu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Zhijiang Lu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Yu Luo
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Yan He
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China.
| |
Collapse
|
12
|
Yang C, Xiao N, Chang Z, Huang JJ, Zeng W. Biodegradation of TOC by Nano‐Fe
2
O
3
Modified SMFC and Its Potential Environmental Effects**. ChemistrySelect 2021. [DOI: 10.1002/slct.202101125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Chen Yang
- College of Environmental Science and Engineering/Sino-Canada Joint R&D Centre for Water and Environmental Safety Nankai University 38 Tongyan Rd., Jinnan District Tianjin P.R. China 300350
| | - Nan Xiao
- College of Environmental Science and Engineering/Sino-Canada Joint R&D Centre for Water and Environmental Safety Nankai University 38 Tongyan Rd., Jinnan District Tianjin P.R. China 300350
| | - Zi'ang Chang
- College of Environmental Science and Engineering/Sino-Canada Joint R&D Centre for Water and Environmental Safety Nankai University 38 Tongyan Rd., Jinnan District Tianjin P.R. China 300350
| | - Jinhui Jeanne Huang
- College of Environmental Science and Engineering/Sino-Canada Joint R&D Centre for Water and Environmental Safety Nankai University 38 Tongyan Rd., Jinnan District Tianjin P.R. China 300350
| | - Wenlu Zeng
- College of Environmental Science and Engineering/Sino-Canada Joint R&D Centre for Water and Environmental Safety Nankai University 38 Tongyan Rd., Jinnan District Tianjin P.R. China 300350
| |
Collapse
|
13
|
Yuan J, Li S, Cheng J, Guo C, Shen C, He J, Yang Y, Hu P, Xu J, He Y. Potential Role of Methanogens in Microbial Reductive Dechlorination of Organic Chlorinated Pollutants In Situ. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5917-5928. [PMID: 33856788 DOI: 10.1021/acs.est.0c08631] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Previous studies often attribute microbial reductive dechlorination to organohalide-respiring bacteria (OHRB) or cometabolic dechlorination bacteria (CORB). Even though methanogenesis frequently occurs during dechlorination of organic chlorinated pollutants (OCPs) in situ, the underestimated effect of methanogens and their interactions with dechlorinators remains unknown. We investigated the association between dechlorination and methanogenesis, as well as the performance of methanogens involved in reductive dechlorination, through the use of meta-analysis, incubation experiment, untargeted metabolomic analysis, and thermodynamic modeling approaches. The meta-analysis indicated that methanogenesis is largely synchronously associated with OCP dechlorination, that OHRB are not the sole degradation engineers that maintain OCP bioremediation, and that methanogens are fundamentally needed to sustain microenvironment functional balance. Laboratory results further confirmed that Methanosarcina barkeri (M. barkeri) promotes the dechlorination of γ-hexachlorocyclohexane (γ-HCH). Untargeted metabolomic analysis revealed that the application of γ-HCH upregulated the metabolic functioning of chlorocyclohexane and chlorobenzene degradation in M. barkeri, further confirming that M. barkeri potentially possesses an auxiliary dechlorination function. Finally, quantum analysis based on density functional theory (DFT) indicated that the methanogenic coenzyme F430 significantly reduces the activation barrier to dechlorination. Collectively, this work suggests that methanogens are highly involved in microbial reductive dechlorination at OCP-contaminated sites and may even directly favor OCP degradation.
Collapse
Affiliation(s)
- Jing Yuan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuyao Li
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Cheng
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chenxi Guo
- School of Chemistry and Chemical Engineering, The Queen's University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Chaofeng Shen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Yi Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
| | - Peijun Hu
- School of Chemistry and Chemical Engineering, The Queen's University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Jianming Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Yan He
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| |
Collapse
|
14
|
Khalid F, Hashmi MZ, Jamil N, Qadir A, Ali MI. Microbial and enzymatic degradation of PCBs from e-waste-contaminated sites: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10474-10487. [PMID: 33411303 DOI: 10.1007/s11356-020-11996-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/07/2020] [Indexed: 05/21/2023]
Abstract
Electronic waste is termed as e-waste and on recycling it produces environmental pollution. Among these e-waste pollutants, polychlorinated biphenyls (PCBs) are significantly important due to ubiquitous, organic in nature and serious health and environmental hazards. PCBs are used in different electrical equipment such as in transformers and capacitors for the purposes of exchange of heat and hydraulic fluids. Bioremediation is a reassuring technology for the elimination of the PCBs from the environment. In spite of their chemical stability, there are several microbes which can bio-transform or mineralize the PCBs aerobically or anaerobically. In this review paper, our objective was to summarize the information regarding PCB-degrading enzymes and microbes. The review suggested that the most proficient PCB degraders during anaerobic condition are Dehalobacter, Dehalococcoides, and Desulfitobacterium and in aerobic condition are Burkholderia, Achromobacter, Comamonas, Ralstonia, Pseudomonas, Bacillus, and Alcaligenes etc., showing the broadest substrate among bacterial strains. Enzymes found in soil such as dehydrogenases and fluorescein diacetate (FDA) esterases have the capability to breakdown PCBs. Biphenyl upper pathway involves four enzymes: dehydrogenase (bphB), multicomponent dioxygenase (bphA, E, F, and G), second dioxygenase (bphC), hydrolase, and (bphD). Biphenyl dioxygenase is considered as the foremost enzyme used for aerobic degradation of PCBs in metabolic pathway. It has been proved that several micro-organisms are responsible for the PCB metabolization. The review provides novel strategies for e-waste-contaminated soil management.
Collapse
Affiliation(s)
- Foqia Khalid
- College of Earth and Environmental Science, University of the Punjab, Lahore, Pakistan
| | - Muhammad Zaffar Hashmi
- Department of Chemistry, COMSATS University Islamabad, Islamabad, 44000, Pakistan.
- Pakistan Academy of Science, 3-Constitution Avenue Sector G-5/2, Islamabad, Pakistan.
| | - Nadia Jamil
- College of Earth and Environmental Science, University of the Punjab, Lahore, Pakistan
| | - Abdul Qadir
- College of Earth and Environmental Science, University of the Punjab, Lahore, Pakistan
| | - Muhammad Ishtiaq Ali
- Department of Microbiology, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| |
Collapse
|
15
|
Li Q, Huang Y, Xin S, Li Z. Comparative analysis of bacterioplankton assemblages from two subtropical karst reservoirs of southwestern China with contrasting trophic status. Sci Rep 2020; 10:22296. [PMID: 33339847 PMCID: PMC7749139 DOI: 10.1038/s41598-020-78459-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/25/2020] [Indexed: 11/08/2022] Open
Abstract
Although bacterioplankton play an important role in aquatic ecosystems, less is known about bacterioplankton assemblages from subtropical karst reservoirs of southwestern China with contrasting trophic status. Here, 16S rRNA gene next-generation sequencing coupled with water chemistry analysis was applied to compare the bacterioplankton communities from a light eutrophic reservoir, DL Reservoir, and a mesotrophic reservoir, WL Reservoir, in subtropical karst area of southwestern China. Our findings indicated that Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, Cyanobacteria and Verrucomicrobia dominated bacterioplankton community with contrasting relative frequency in the two subtropical karst reservoirs. Proteobacteria and Bacteroidetes were the core communities, which played important roles in karst biogeochemical cycles. Though WT, TN and DOC play the decisive role in assembling karst aquatic bacterioplankton, trophic status exerted significantly negative direct effects on bacterioplankton community composition and alpha diversity. Due to contrasting trophic status in the two reservoirs, the dominant taxa such as Enterobacter, Clostridium sensu stricto, Candidatus Methylacidiphilum and Flavobacteriia, that harbor potential functions as valuable and natural indicators of karst water health status, differed in DL Reservoir and WL Reservoir.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Karst Dynamics, MNR and GZAR, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, 541004, China.
- International Research Center on Karst Under the Auspices of UNESCO, Guilin, 541004, China.
| | - Yadan Huang
- Graduate School of Guilin Medical University, Guilin, 541004, China
| | - Shenglin Xin
- Key Laboratory of Karst Dynamics, MNR and GZAR, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, 541004, China
- International Research Center on Karst Under the Auspices of UNESCO, Guilin, 541004, China
| | - Zhongyi Li
- Agricultural Resource and Environment Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
| |
Collapse
|
16
|
Abbasi U, Bhatti ZA, Mahmood Q, Maqbool F, Faridullah, Hayat MT. Ozone oxidation of wastewater containing trichlorobiphenyl and used transformer oil. Heliyon 2020; 6:e05098. [PMID: 33024872 PMCID: PMC7527640 DOI: 10.1016/j.heliyon.2020.e05098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/19/2020] [Accepted: 09/24/2020] [Indexed: 11/30/2022] Open
Abstract
Trichlorobiphenyl (TCB) is a persistent toxic organic compound and exerts more hydrophilicity than other polychlorinated biphenyl (PCB) compounds. PCBs have been used on large scale in transformer oil. To observe the strong ozone oxidation effect on the degradation of TCB in aqueous medium, synthetic wastewater was prepared from transformer oil with TCB. Microbubbles ozonation of TCB was done in order to completely oxidize it. A batch treatment system was used for 60 min in glass column with a diffuser at the bottom to convert ozone gas into microbubbles. GCMS analyzed TCB and other toxic compounds before and after the treatment. TCB was reduced to below detection limit during the first 20 min of ozonation. Ethylbenzene and 1-chloroheptacosine were identified after 10 and 20 min, the concentrations of these compounds increased to 1.45 and 3.9 mg/L after 60 min. Alkane with chlorine containing compounds were identified more than any other compounds. The alkanes compounds with chlorine, such as tetradecane 1-chloro, hexadecane 1-chloro, heptadecane 1-chloro, octadecane 1-chloro and nonadecane 1-chloro were found during 60 min of ozonation. Chemical oxygen demand (COD) in the wastewater reduced from 700 to 390 mg/L. Small increase in pH was observed from 7.7 to 8.3. In this study it was concluded that TCB and other pollutants in transformer oil were degraded with ozone dose, 0.05 g/min L in the shortest period of 60 min.
Collapse
Affiliation(s)
- Umara Abbasi
- Environmental Sciences Department COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Zulfiqar Ahmad Bhatti
- Environmental Sciences Department COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Qaisar Mahmood
- Environmental Sciences Department COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Farhana Maqbool
- Department of Microbiology, Hazara University, Mansehra, Pakistan
| | - Faridullah
- Environmental Sciences Department COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Malik Tahir Hayat
- Environmental Sciences Department COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| |
Collapse
|
17
|
Guo Y, Wang J, Shinde S, Wang X, Li Y, Dai Y, Ren J, Zhang P, Liu X. Simultaneous wastewater treatment and energy harvesting in microbial fuel cells: an update on the biocatalysts. RSC Adv 2020; 10:25874-25887. [PMID: 35518611 PMCID: PMC9055303 DOI: 10.1039/d0ra05234e] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/03/2020] [Indexed: 01/17/2023] Open
Abstract
The development of microbial fuel cell (MFC) makes it possible to generate clean electricity as well as remove pollutants from wastewater. Extensive studies on MFC have focused on structural design and performance optimization, and tremendous advances have been made in these fields. However, there is still a lack of systematic analysis on biocatalysts used in MFCs, especially when it comes to pollutant removal and simultaneous energy recovery. In this review, we aim to provide an update on MFC-based wastewater treatment and energy harvesting research, and analyze various biocatalysts used in MFCs and their underlying mechanisms in pollutant removal as well as energy recovery from wastewater. Lastly, we highlight key future research areas that will further our understanding in improving MFC performance for simultaneous wastewater treatment and sustainable energy harvesting.
Collapse
Affiliation(s)
- Yajing Guo
- Tianjin Key Lab. of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University Tianjin 300354 PR China
| | - Jiao Wang
- Tianjin Key Lab. of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University Tianjin 300354 PR China
| | - Shrameeta Shinde
- Department of Microbiology, Miami University Oxford OH 45056 USA
| | - Xin Wang
- Department of Microbiology, Miami University Oxford OH 45056 USA
| | - Yang Li
- Tianjin Key Lab. of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University Tianjin 300354 PR China
| | - Yexin Dai
- Tianjin Key Lab. of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University Tianjin 300354 PR China
| | - Jun Ren
- Tianjin Key Lab. of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University Tianjin 300354 PR China
| | - Pingping Zhang
- College of Food Science and Engineering, Tianjin Agricultural University Tianjin 300384 PR China
| | - Xianhua Liu
- Tianjin Key Lab. of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University Tianjin 300354 PR China
| |
Collapse
|
18
|
de Lima E Silva MR, Feitosa de Lima Gomes PC, Okada DY, Sakamoto IK, Varesche MBA. The use of non-adapted anaerobic consortium in batch reactors enable to couple polychlorinated biphenyl degradation and community adaptation. ENVIRONMENTAL TECHNOLOGY 2020; 41:1766-1779. [PMID: 30457445 DOI: 10.1080/09593330.2018.1547794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/03/2018] [Indexed: 06/09/2023]
Abstract
The removal of polychlorinated biphenyls (PCBs) and PCB biosorption was investigated in anaerobic batch reactors with non-adapted sludge fed with 1.5 mg L-1 of six PCB congener (PCB 10, 28, 52, 153, 138 and 180), mineral medium and co-substrates. PCBs were analyzed by gas chromatography using headspace solid-phase microextraction (HS-SPME). In the methanogenic reactor the methane production, COD (Carbon Organic Demand) removal (90% of initial 2292.60 mg L-1) and consumption of volatile organic acids were verified. Nevertheless, anaerobic activity was not observed in the reactor with inactivated biomass and biosorption range of 38% to 89% was measured for distinct PCB congeners in this reactor. The PCB removal was calculated from the PCB bioavailable (not biosorbed) and reached 76% of total PCBs. The selection of some representatives of the Thermotogaceae family, Sedimentibacter and Pseudomonas at 101 days of operation in the methanogenic reactor was correlated with PCB degradation. In addition, the various removal rates for each PCB congener indicate that the removal depends on bioavailability. The selection of the former non-adapted microbiota in the methanogenic reactor combined with PCB degradation occurred at 101 days. These results allow to assert that it is possible to simultaneously couple PCB degradation and community selection, without the previous adaptation step, which is a time-consuming stage.
Collapse
Affiliation(s)
- Mara Rúbia de Lima E Silva
- Department of Hydraulic and Sanitation, School of Engineering of São Carlos, USP-EESC, Sao Carlos, Brazil
| | | | | | - Isabel Kimiko Sakamoto
- Department of Hydraulic and Sanitation, School of Engineering of São Carlos, USP-EESC, Sao Carlos, Brazil
| | | |
Collapse
|
19
|
Qiu B, Hu Y, Liang C, Wang L, Shu Y, Chen Y, Cheng J. Enhanced degradation of diclofenac with Ru/Fe modified anode microbial fuel cell: Kinetics, pathways and mechanisms. BIORESOURCE TECHNOLOGY 2020; 300:122703. [PMID: 31911312 DOI: 10.1016/j.biortech.2019.122703] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/22/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
A microbial fuel cell (MFC) was constructed with a Ru/Fe-modified-anode prepared by reduction and coating for enhancing diclofenac (DCF) degradation. Results showed that Ru0 and Fe0 were dispersed uniformly on Ru/Fe-modified-electrode surface, and Ru/Fe existed as an alloy structure. Due to catalysis of Ru/Fe, both electrochemical activity and DCF-degradation performance of Ru/Fe-modified-anode-MFC (Ru/Fe-MFC) were enhanced compared to carbon-felt-anode-MFC (CF-MFC). The maximum power density of Ru/Fe-MFC reached 0.600 W m-2, and DCF-degradation in Ru/Fe-MFC followed the pseudo-first-order-kinetic model with kobs of 0.711 d-1 which was 1.08, 1.34 and 2.21 times higher than that of Ru-modified-anode-MFC (Ru-MFC), Fe-modified-andoe-MFC (Fe-MFC) and CF-MFC, respectively. Results also showed that DCF-degradation and power generation would compete for electrons in Ru/Fe-MFC. Ru/Fe-modified-anode accelerated the enrichment of electro-active bacteria and DCF-degrading bacteria such as Geobacter, Clostridium, Sedimentibacter, Pseudomonas and Desulfovibrionaceae. Stepwise dechlornation occurred for DCF-degradation mainly due to synergistic reaction of Ru/Fe and DCF-degrading bacteria within Ru/Fe-MFC.
Collapse
Affiliation(s)
- Bing Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yongyou Hu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Chen Liang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Luxiang Wang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yan Shu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yuancai Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Jianhua Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| |
Collapse
|
20
|
Gong M, Yang G, Zhuang L, Zeng EY. Microbial biofilm formation and community structure on low-density polyethylene microparticles in lake water microcosms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:94-102. [PMID: 31146243 DOI: 10.1016/j.envpol.2019.05.090] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 05/20/2023]
Abstract
The occurrence of microplastics (MPs) in the environment has been gaining widespread attention globally. MP-colonizing microorganisms are important links for MPs contamination in various ecosystems, but have not been well understood. To partially address this issue, the present study investigated biofilm formation by microorganisms originating from lake water on low-density polyethylene (LDPE) MPs using a cultivation approach and the surface-related effects on the MP-associated microbial communities using 16S rRNA high-throughput sequencing. With the addition of nonionic surfactants and UV-irradiation pretreatment that changed the surface properties of LDPE MPs, more microorganisms were colonized on LDPE surface. Microbial community analysis indicated that LDPE MPs were primarily colonized by the phyla Proteobacteria, Bacteroidetes and Firmicutes, and the surface roughness and hydrophobicity of MP were important factors shaping the LDPE MP-associated microbial community structure. Half of the top 20 most abundant genera colonizing on LDPE were found to be potential pathogens, e.g., plant pathogens Agrobacterium, nosocomial pathogens Chryseobacterium and fish pathogens Flavobacterium. This study demonstrated rapid bacterial colonization of LDPE MPs in lake water microcosms, the role of MPs as transfer vectors for harmful microorganisms in lake water, and provided a first glimpse into the effect of surface properties on LDPE MP-associated biofilm communities.
Collapse
Affiliation(s)
- Mengting Gong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Guiqin Yang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Li Zhuang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| |
Collapse
|
21
|
Chen D, Shen J, Jiang X, Su G, Han W, Sun X, Li J, Mu Y, Wang L. Simultaneous debromination and mineralization of bromophenol in an up-flow electricity-stimulated anaerobic system. WATER RESEARCH 2019; 157:8-18. [PMID: 30947080 DOI: 10.1016/j.watres.2019.03.054] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/27/2019] [Accepted: 03/26/2019] [Indexed: 05/20/2023]
Abstract
Due to highly recalcitrant and toxicological nature of halogenated organic compounds, conventional anaerobic dehalogenation is often limited by low removal rate and poor process stability. Besides, the reduction intermediates or products formed during dehalogenation process, which are still toxic, required further energy-intensive aerobic post-treatment. In this study, an up-flow electricity-stimulated anaerobic system (ESAS) was developed by installing cathode underneath and anode above to realize simultaneous anaerobic debromination and mineralization of 4-bromophenol (4-BP). When cathode potential was -600 mV, high TOC removal efficiency (98.78 ± 0.96%), complete removal of 4-BP and phenol could be achieved at 4-BP loading rate of 0.58 mol m-3 d-1, suggesting debrominated product of 4-BP from cathode (i.e., phenol) would be utilized as the fuel by the bioanode of ESAS. Under high 4-BP loading rate (2.32 mol m-3 d-1) and low electron donor dosage (4.88 mM), 4-BP could be completely removed at acetate usage ratio as low as 4.21 ± 1.42 mol acetate mol-1 4-BP removal in ESAS, whereas only 13.45 ± 1.38% of 4-BP could be removed at acetate usage ratio as high as 31.28 ± 3.38 mol acetate mol-1 4-BP removal in control reactor. Besides, electrical stimulation distinctly facilitated the growth of various autotrophic dehalogenation species, phenol degradation related species, fermentative species, homoacetogens and electrochemically active species in ESAS. Moreover, based on the identified intermediates and the bacterial taxonomic analysis, possible metabolism mechanism involved in enhanced anaerobic debromination and mineralization of 4-BP in ESAS was proposed.
Collapse
Affiliation(s)
- Dan Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Xinbai Jiang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Weiqing Han
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| | - Lianjun Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
22
|
Sun J, Xu W, Yang P, Li N, Yuan Y, Zhang H, Wang Y, Ning X, Zhang Y, Chang K, Peng Y, Chen K. Enhanced oxytetracycline removal coupling with increased power generation using a self-sustained photo-bioelectrochemical fuel cell. CHEMOSPHERE 2019; 221:21-29. [PMID: 30634145 DOI: 10.1016/j.chemosphere.2018.12.152] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
Photo-bioelectrochemical fuel cell (PBFC) represents a promising technology for enhancing removal of antibiotic pollutants while simultaneously sustainable transformation of organic wastes and solar energy into electricity. In this study, simultaneous antibiotic removal and bioelectricity generation were investigated in a PBFC with daily light/dark cycle using oxytetracycline (OTC) as a model compound of antibiotic. The specific OTC removal rate increased by 61% at an external resistance of 50 Ω compared to that in the open-circuit control, which was attributed to bioelectrochemically enhanced co-metabolic degradation in the presence of the bioanode. The OTC removal was obviously accelerated during illumination of cathode in contrast with a dark cathode due to the higher driving force for anodic bioelectrochemical reaction by using photosynthetic oxygen as cathodic electron acceptor during illumination than that using nitrate in dark. The bioelectrocatalytic activity of anodic biofilm was continuously enhanced even at an initial OTC concentration of up to 50 mg L-1. The degradation products of OTC can function as mediators to facilitate the electron transfer from bacteria to the anode, resulting in 1.2, 1.76 and 1.8 fold increase in maximum power output when 10, 30 and 50 mg L-1 OTC was fed to the bioanode, compared to the OTC-free bioanode, respectively. The OTC feeding selective enriched OTC-tolerant bacterial community capable of degrading complex organic compounds and producing electricity. The occurrence of ARGs during bioelectrochemical degradation of OTC was affected more greatly by the succession of the anodic bacterial community than the initial OTC concentration.
Collapse
Affiliation(s)
- Jian Sun
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wenjing Xu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ping Yang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Nan Li
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yong Yuan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hongguo Zhang
- Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China
| | - Yujie Wang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xunan Ning
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yaping Zhang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Kenlin Chang
- Institute of Environmental Engineering, National Sun Yat-sen University, Gaoxiong, 80424, Taiwan
| | - Yenping Peng
- Department of Environmental Science and Engineering, Tunghai University, Taichung, 40704, Taiwan
| | - Kufan Chen
- Department of Civil Engineering, National Chi Nan University, Nanto, 54561, Taiwan
| |
Collapse
|
23
|
Wu M, Xu X, Lu K, Li X. Effects of the presence of nanoscale zero-valent iron on the degradation of polychlorinated biphenyls and total organic carbon by sediment microbial fuel cell. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:39-44. [PMID: 30502733 DOI: 10.1016/j.scitotenv.2018.11.326] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/06/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
The degradation of polychlorinated biphenyls (PCBs) and total organic carbon (TOC) by sediment microbial fuel cell (SMFC) with/without nanoscale zero-valent iron (NZVI) addition was investigated. It was found that the combined application led to the highest removal efficiencies of PCBs (37.55 ± 1.11%) and TOC (49.72 ± 1.54%) in all circumstances and produced a higher power density (108.89 mW/m2) and a corresponding lower internal resistance (264 Ω) than operation employing SMFC only. The TOC removal efficiency and the total production of electricity were linear. High-throughput sequencing of anodic microbial communities indicated that the electrode participation can increase the abundance of electrogenic bacteria (Geobacter and Pseudomonas) and the NZVI addition can reduce the oxidation reduction potential of the system and therefore enrich some bacteria (Longilinea and Desulfofustis) beneficial to the degradation of organic matter.
Collapse
Affiliation(s)
- Mingsong Wu
- College of Resources and Civil Engineering, Northeastern University, Shenyang 100819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China; Qinhuangdao Key Laboratory of Water Conservation and Pollution Control and Ecological Restoration, Qinhuangdao 066004, China.
| | - Xun Xu
- Tongji Zhejiang College, Jiaxing 314051, China
| | - Kexiang Lu
- Tongji Zhejiang College, Jiaxing 314051, China
| | - Xueqi Li
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| |
Collapse
|
24
|
Wan H, Yi X, Liu X, Feng C, Dang Z, Wei C. Time-dependent bacterial community and electrochemical characterizations of cathodic biofilms in the surfactant-amended sediment-based bioelectrochemical reactor with enhanced 2,3,4,5-tetrachlorobiphenyl dechlorination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:343-354. [PMID: 29414357 DOI: 10.1016/j.envpol.2018.01.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/13/2018] [Accepted: 01/16/2018] [Indexed: 06/08/2023]
Abstract
Applying an electric field to stimulate the microbial reductive dechlorination of polychlorinated biphenyls (PCBs) represents a promising approach for bioremediation of PCB-contaminated sites. This study aimed to demonstrate the biocathodic film-facilitated reduction of PCB 61 in a sediment-based bioelectrochemical reactor (BER) and, more importantly, the characterizations of electrode-microbe interaction from microbial and electrochemical perspectives particularly in a time-dependent manner. The application of a cathodic potential (-0.45 V vs. SHE) significantly improved the rate and extent of PCB 61 dechlorination compared to the open-circuit scenario (without electrical stimulation), and the addition of an external surfactant further increased the dechlorination, with Tween 80 exerting more pronounced effects than rhamnolipid. The bacterial composition of the biofilms and the bioelectrochemical kinetics of the BERs were found to be time-dependent and to vary considerably with the incubation time and slightly with the coexistence of an external surfactant. Excellent correlations were observed between the dechlorination rate and the relative abundance of Dehalogenimonas, Dechloromonas, and Geobacter, the dechlorination rate and the cathodic current density recorded from the chronoamperometry tests, and the dechlorination rate and the charge transfer resistance derived from the electrochemical impedance tests, with respect to the 120 day-operation. After day 120, PCB 61 was resistant to further appreciable reduction, but substantial hydrogen production was detected, and the bacterial community and electrochemical parameters observed on day 180 were not distinctly different from those on day 120.
Collapse
Affiliation(s)
- Hui Wan
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaoyun Yi
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaoping Liu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou 510006, PR China.
| | - Zhi Dang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou 510006, PR China
| | - Chaohai Wei
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
25
|
de Lima e Silva MR, Correa RC, Sakamoto IK, Varesche MBA. Microbial Characterization of Methanogenic and Iron-reducing Consortium in Reactors with Polychlorinated Biphenyls. Curr Microbiol 2018; 75:666-676. [DOI: 10.1007/s00284-018-1431-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/03/2018] [Indexed: 10/18/2022]
|
26
|
Delforno TP, Lacerda Júnior GV, Noronha MF, Sakamoto IK, Varesche MBA, Oliveira VM. Microbial diversity of a full-scale UASB reactor applied to poultry slaughterhouse wastewater treatment: integration of 16S rRNA gene amplicon and shotgun metagenomic sequencing. Microbiologyopen 2017; 6. [PMID: 28229558 PMCID: PMC5458456 DOI: 10.1002/mbo3.443] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/28/2016] [Accepted: 12/07/2016] [Indexed: 02/06/2023] Open
Abstract
The 16S rRNA gene amplicon and whole-genome shotgun metagenomic (WGSM) sequencing approaches were used to investigate wide-spectrum profiles of microbial composition and metabolic diversity from a full-scale UASB reactor applied to poultry slaughterhouse wastewater treatment. The data were generated by using MiSeq 2 × 250 bp and HiSeq 2 × 150 bp Illumina sequencing platforms for 16S amplicon and WGSM sequencing, respectively. Each approach revealed a distinct microbial community profile, with Pseudomonas and Psychrobacter as predominant genus for the WGSM dataset and Clostridium and Methanosaeta for the 16S rRNA gene amplicon dataset. The virome characterization revealed the presence of two viral families with Bacteria and Archaea as host, Myoviridae, and Siphoviridae. A wide functional diversity was found with predominance of genes involved in the metabolism of acetone, butanol, and ethanol synthesis; and one-carbon metabolism (e.g., methanogenesis). Genes related to the acetotrophic methanogenesis pathways were more abundant than methylotrophic and hydrogenotrophic, corroborating the taxonomic results that showed the prevalence of the acetotrophic genus Methanosaeta. Moreover, the dataset indicated a variety of metabolic genes involved in sulfur, nitrogen, iron, and phosphorus cycles, with many genera able to act in all cycles. BLAST analysis against Antibiotic Resistance Genes Database (ARDB) revealed that microbial community contained 43 different types of antibiotic resistance genes, some of them were associated with growth chicken promotion (e.g., bacitracin, tetracycline, and polymyxin).
Collapse
Affiliation(s)
- Tiago Palladino Delforno
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), Campinas University - UNICAMP, Campinas, São Paulo, Brazil
| | - Gileno Vieira Lacerda Júnior
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), Campinas University - UNICAMP, Campinas, São Paulo, Brazil
| | - Melline F Noronha
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), Campinas University - UNICAMP, Campinas, São Paulo, Brazil
| | - Isabel K Sakamoto
- Laboratory of Biological Processes, Department of Hydraulics and Sanitation, Engineering School of São Carlos - University of São Paulo (EESC - USP) Campus II, São Carlos, São Paulo, Brazil
| | - Maria Bernadete A Varesche
- Laboratory of Biological Processes, Department of Hydraulics and Sanitation, Engineering School of São Carlos - University of São Paulo (EESC - USP) Campus II, São Carlos, São Paulo, Brazil
| | - Valéria M Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), Campinas University - UNICAMP, Campinas, São Paulo, Brazil
| |
Collapse
|
27
|
Yu H, Wan H, Feng C, Yi X, Liu X, Ren Y, Wei C. Microbial polychlorinated biphenyl dechlorination in sediments by electrical stimulation: The effect of adding acetate and nonionic surfactant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 580:1371-1380. [PMID: 28038879 DOI: 10.1016/j.scitotenv.2016.12.102] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 06/06/2023]
Abstract
The necessity for developing an efficient and cost-effective in situ bioremediation technology for sediments contaminated with polychlorinated biphenyls (PCBs) has prompted the application of low-voltage electrical fields to anaerobic digestion systems. Here we show that the use of a sediment-based bio-electrochemical reactor (BER) poised at a potential of -0.50V (vs. a standard calomel electrode, SCE) substantially enhanced the reduction of 2,3,4,5-tetrachlorobiphenyl (PCB 61) when acetate was added as a carbon source. The addition of surfactant Tween 80 to the BER further accelerated the PCB 61 transformation. The comparative study of closed- and open-circuit reactors demonstrated the enrichment conditions affecting the bacterial community structure, the dominant dechlorination metabolisms, and thus the extent, the rate and the products of the reduction of PCBs. The dominant bacterial dechlorinators detected in the BERs in the presence of acetate and Tween 80 are Dehalogenimonas, Dehalobacter, Sulfuricurvum, Dechloromonas and Geobacter, which should be responsible for PCB dechlorination. This study improves understanding of the key factors influencing dechlorination activity in sediment-based BERs polarized at a low potential, as well as the metabolic mechanisms dominating in the PCB dechlorination process.
Collapse
Affiliation(s)
- Hui Yu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Hui Wan
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou 510006, PR China.
| | - Xiaoyun Yi
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaoping Liu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yuan Ren
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chaohai Wei
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
28
|
Chen J, Wang C, Shen ZJ, Gao GF, Zheng HL. Insight into the long-term effect of mangrove species on removal of polybrominated diphenyl ethers (PBDEs) from BDE-47 contaminated sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:390-399. [PMID: 27750135 DOI: 10.1016/j.scitotenv.2016.10.040] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 10/05/2016] [Accepted: 10/05/2016] [Indexed: 06/06/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) have become ubiquitous environmental contaminants, particularly in mangrove wetlands. However, little is known about the long-term effect of mangrove plants on PBDE removal from contaminated sediments. A 12-month microcosm experiment was conducted to understand the effect of two mangrove species, namely Avicennia marina (Am) and Aegiceras corniculatum (Ac), on PBDE removal from the sediments spiked with 2000ngg-1 dry weight of BDE-47, and to explore the microbial mechanism responsible for the planting-induced effects on BDE-47 removal. Results showed that planting of mangrove species, either Am or Ac, could accelerate BDE-47 removal from contaminated sediments during the 12months experiment, mainly through enhancing microbial degradation process. In particular, Am sediment had significantly higher BDE-47 degradation efficiency compared with Ac sediment, which may be mainly attributed to higher activities of urease and dehydrogenase, as well as higher 16S rRNA gene copies of total bacteria and organohalide-respiring bacteria (OHRB) in Am sediment. Moreover, planting could shift sediment bacterial community composition and selectively enrich some bacterial genera responsible for PBDE degradation. Such selective enrichment effect of Am on the potential PBDE-degrading bacteria differed distinctly from that of Ac. These results indicated that long-term planting of mangrove species, especially Am, could significantly promote BDE-47 removal from the contaminated sediments by enhancing microbial activity, increasing total bacterial and OHRB abundances and altering bacterial community composition.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu 210098, PR China; Key Laboratory for Subtropical Wetland Ecosystem Research of Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Chao Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, Jiangsu 210008, PR China.
| | - Zhi-Jun Shen
- Key Laboratory for Subtropical Wetland Ecosystem Research of Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Gui-Feng Gao
- Key Laboratory for Subtropical Wetland Ecosystem Research of Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| |
Collapse
|
29
|
Matturro B, Di Lenola M, Ubaldi C, Rossetti S. First evidence on the occurrence and dynamics of Dehalococcoides mccartyi PCB-dechlorinase genes in marine sediment during Aroclor1254 reductive dechlorination. MARINE POLLUTION BULLETIN 2016; 112:189-194. [PMID: 27522174 DOI: 10.1016/j.marpolbul.2016.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
The present study evaluates the PCB-dehalorespiring capabilities and dynamics of indigenous Dehalococcoides mccartyi population in a PCB contaminated marine sediment. Specialized PCB-dechlorinase genes pcbA1, pcbA4 and pcbA5 previously characterized in pure cultures of D. mccartyi, were here found for the first time in environmental samples. Reductive dechlorination was stimulated by spiking Aroclor1254 to the sediment and by imposing strictly anaerobic conditions both with and without bioaugmentation with a Dehalococcoides mccartyi enrichment culture. In line with the contaminant dechlorination kinetics, Dehalococcoides population increased during the entire incubation period showing growth yields of 4.94E+07 Dehalococcoides per μmolCl-1 and 7.30E+05 Dehalococcoides per μmolCl-1 in the marine sediment with and without bioaugmentation respectively. The pcbA4 and pcbA5 dechlorinase genes, and to a lesser extent pcbA1 gene, were enriched during the anaerobic incubation suggesting their role in Aroclor1254 dechlorination under salinity conditions.
Collapse
Affiliation(s)
- B Matturro
- Water Research Institute, IRSA-CNR, Via Salaria km 29,300, Monterotondo (RM), Italy
| | - M Di Lenola
- Water Research Institute, IRSA-CNR, Via Salaria km 29,300, Monterotondo (RM), Italy
| | - C Ubaldi
- ENEA, Technical Unit for Environmental Characterization, Prevention and Remediation, UTPRA, C. R. Casaccia, Italy
| | - S Rossetti
- Water Research Institute, IRSA-CNR, Via Salaria km 29,300, Monterotondo (RM), Italy.
| |
Collapse
|
30
|
Yu H, Feng C, Liu X, Yi X, Ren Y, Wei C. Enhanced anaerobic dechlorination of polychlorinated biphenyl in sediments by bioanode stimulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 211:81-9. [PMID: 26745393 DOI: 10.1016/j.envpol.2015.12.039] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 05/20/2023]
Abstract
The application of a low-voltage electric field as an electron donor or acceptor to promote the bioremediation of chlorinated organic compounds represents a promising technology meeting the demand of developing an efficient and cost-effective strategy for in situ treatment of PCB-contaminated sediments. Here, we reported that bioanode stimulation with an anodic potential markedly enhanced dechlorination of 2,3,4,5-tetrachlorobiphenyl (PCB 61) contained in the sediment at an electronic waste recycling site of Qingyuan, Guangdong, China. The 110-day incubation of the bioanode with a potential poised at 0.2 V relative to saturated calomel electrode enabled 58% transformation of the total PCB 61 at the initial concentration of 100 μmol kg(-1), while only 23% was reduced in the open-circuit reference experiment. The introduction of acetate to the bioelectrochemical reactor (BER) further improved PCB 61 transformation to 82%. Analysis of the bacterial composition showed significant community shifts in response to variations in treatment. At phylum level, the bioanode stimulation resulted in substantially increased abundance of Actinobacteria, Bacteroidetes, and Chloroflexi either capable of PCB dechlorination, or detected in the PCB-contaminated environment. At genus level, the BER contained two types of microorganisms: electrochemically active bacteria (EAB) represented by Geobacter, Ignavibacterium, and Dysgonomonas, and dechlorinating bacteria including Hydrogenophaga, Alcanivorax, Sedimentibacter, Dehalogenimonas, Comamonas and Vibrio. These results suggest that the presence of EAB can promote the population of dechlorinating bacteria which are responsible for PCB 61 transformation.
Collapse
Affiliation(s)
- Hui Yu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| | - Xiaoping Liu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaoyun Yi
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yuan Ren
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chaohai Wei
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
31
|
Ma Y, Hu A, Yu CP, Yan Q, Yan X, Wang Y, Deng F, Xiong H. Response of microbial communities to bioturbation by artificially introducing macrobenthos to mudflat sediments for in situ bioremediation in a typical semi-enclosed bay, southeast China. MARINE POLLUTION BULLETIN 2015; 94:114-122. [PMID: 25783451 DOI: 10.1016/j.marpolbul.2015.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/01/2015] [Indexed: 06/04/2023]
Abstract
Although microbes play important roles during the bioremediation process using macrobenthos in degraded environments, their response to macrobenthos bioturbation remains poorly understood. This study used 16S rRNA gene-Illumina Miseq sequencing to investigate the microbial communities and their response to bioturbation by artificially introducing macrobenthos to the mudflat of Sansha Bay, southeast China. A total of 56 phyla were identified, dominated by δ- and γ-Proteobacteria, with a total percentage of over 50%. Others, such as Acidobacteria, Chloroflexi, Bacteroidetes, Planctomycetes and Alphaproteobacteria occupied 4-7% respectively. Eighteen genera indicating the microbial communities response to bioturbation and seasonal change were identified. Bioturbated samples contained more ecologically important genera, and untreated samples contained more genera ubiquitous in marine environments. The physicochemical characteristics did not change significantly probably due to the short time of bioremediation and low survival rate of macrobenthos, confirming that microbial communities are more sensitive and can serve as sentinels for environmental changes.
Collapse
Affiliation(s)
- Ying Ma
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College of Jimei University, Xiamen 361021, China
| | - Anyi Hu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Chang-Ping Yu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qingpi Yan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College of Jimei University, Xiamen 361021, China
| | - Xizhu Yan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College of Jimei University, Xiamen 361021, China
| | - Yongzhong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College of Jimei University, Xiamen 361021, China
| | - Fei Deng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College of Jimei University, Xiamen 361021, China
| | - Hejian Xiong
- Bioengineering College of Jimei University, Xiamen 361021, China.
| |
Collapse
|
32
|
Zhang J, Yang Y, Zhao L, Li Y, Xie S, Liu Y. Distribution of sediment bacterial and archaeal communities in plateau freshwater lakes. Appl Microbiol Biotechnol 2014; 99:3291-302. [PMID: 25432677 DOI: 10.1007/s00253-014-6262-x] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 11/30/2022]
Abstract
Both Bacteria and Archaea might be involved in various biogeochemical processes in lacustrine sediment ecosystems. However, the factors governing the intra-lake distribution of sediment bacterial and archaeal communities in various freshwater lakes remain unclear. The present study investigated the sediment bacterial and archaeal communities in 13 freshwater lakes on the Yunnan Plateau. Quantitative PCR assay showed a large variation in bacterial and archaeal abundances. Illumina MiSeq sequencing illustrated high bacterial and archaeal diversities. Bacterial abundance was regulated by sediment total organic carbon and total nitrogen, and water depth, while nitrate nitrogen was an important determinant of bacterial diversity. Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, Chlorobi, Chloroflexi, Cyanobacteria, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, and Verrucomicrobia were the major components of sediment bacterial communities. Proteobacteria was the largest phylum, but its major classes and their proportions varied greatly among different lakes, affected by sediment nitrate nitrogen. In addition, both Euryarchaeota and Crenarchaeota were important members in sediment archaeal communities, while unclassified Archaea usually showed the dominance.
Collapse
Affiliation(s)
- Jingxu Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | | | | | | | | | | |
Collapse
|