1
|
Monge-Loría M, Zhong W, Abrahamse NH, Hartter S, Garg N. Discovery of Peptidic Siderophore Degradation by Screening Natural Product Profiles in Marine-Derived Bacterial Mono- and Cocultures. Biochemistry 2025; 64:634-654. [PMID: 39807563 PMCID: PMC11800396 DOI: 10.1021/acs.biochem.4c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/12/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
Coral reefs are hotspots of marine biodiversity, which results in the synthesis of a wide variety of compounds with unique molecular scaffolds, and bioactivities, rendering reefs an ecosystem of interest. The chemodiversity stems from the intricate relationships between inhabitants of the reef, as the chemistry produced partakes in intra- and interspecies communication, settlement, nutrient acquisition, and defense. However, the coral reefs are declining at an unprecedented rate due to climate change, pollution, and increased incidence of pathogenic diseases. Among pathogens, Vibrio spp. bacteria are key players resulting in high mortality. Thus, alternative strategies such as application of beneficial bacteria isolated from disease-resilient species are being explored to lower the burden of pathogenic species. Here, we apply coculturing of a coral-derived pathogenic species of Vibrio and beneficial bacteria and leverage recent advancements in untargeted metabolomics to discover engineerable beneficial traits. By chasing chemical change in coculture, we report Microbulbifer spp.-mediated degradation of amphibactins, produced by Vibrio spp. bacteria to sequester iron. Additional biochemical experiments revealed that the degradation occurs in the peptide backbone and requires the enzyme fraction of Microbulbifer. A reduction in iron affinity is expected due to the loss of one Fe(III) binding moiety. Therefore, we hypothesize that this degradation shapes community behaviors as it pertains to iron acquisition, a limiting nutrient in the marine environment, and survival. Furthermore, Vibrio sp. bacteria suppressed natural product synthesis by beneficial bacteria. Understanding biochemical mechanisms behind these interactions will enable engineering probiotic bacteria capable of lowering pathogenic burdens during heat waves and incidence of disease.
Collapse
Affiliation(s)
- Mónica Monge-Loría
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Weimao Zhong
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Nadine H. Abrahamse
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Stephen Hartter
- Georgia
Aquarium, 225 Baker St.
NW, Atlanta, Georgia 30313, United States
| | - Neha Garg
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332, United States
- Center
for Microbial Dynamics and Infection, Georgia
Institute of Technology, 315 Ferst Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Murakami C, Tanaka AR, Sato Y, Morimoto K. Buffer-free CAS assay using a diluted growth medium efficiently detects siderophore production and microbial growth. Biometals 2024; 37:223-232. [PMID: 37848652 DOI: 10.1007/s10534-023-00544-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Siderophores are iron chelators and low-molecular-weight compounds secreted by various microorganisms under low-iron conditions. Many microorganisms produce siderophores in the natural environment as iron is an essential element for many of them. CAS assays are widely used to detect siderophores in cultures of various microorganisms; however, it is necessary to improve their sensitivity for the efficient application to fastidious microorganisms. We developed a simple, high-throughput CAS assay employing a buffer-free CAS reagent and diluted growth medium (10% dR2A) in a 96-well microplate. Using a diluted growth medium in agar plates suitable for iron-restricted conditions supported siderophore production by microorganisms from activated sludge. A buffer-free CAS reagent combined with a diluted growth medium revealed that these microorganisms tended to produce more siderophores or iron chelators than microorganisms under iron-rich conditions. Moreover, this buffer-free CAS assay easily and efficiently detected not only siderophore production but also the growth of fastidious microorganisms.
Collapse
Affiliation(s)
- Chiho Murakami
- Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Hiroshima City, Hiroshima Prefecture, 731-0153, Japan.
| | - Arowu R Tanaka
- Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Hiroshima City, Hiroshima Prefecture, 731-0153, Japan
| | - Yuichiro Sato
- Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Hiroshima City, Hiroshima Prefecture, 731-0153, Japan
| | - Kinjiro Morimoto
- Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Hiroshima City, Hiroshima Prefecture, 731-0153, Japan
| |
Collapse
|
3
|
Laglera LM, Uskaikar H, Klaas C, Naqvi SWA, Wolf-Gladrow DA, Tovar-Sánchez A. Dissolved and particulate iron redox speciation during the LOHAFEX fertilization experiment. MARINE POLLUTION BULLETIN 2022; 184:114161. [PMID: 36179387 DOI: 10.1016/j.marpolbul.2022.114161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The redox speciation of iron was determined during the iron fertilization LOHAFEX and for the first time, the chemiluminescence assay of filtered and unfiltered samples was systematically compared. We hypothesize that higher chemiluminescence in unfiltered samples was caused by Fe(II) adsorbed onto biological particles. Dissolved and particulate Fe(II) increased in the mixed layer steadily 6-fold during the first two weeks and decreased back to initial levels by the end of LOHAFEX. Both Fe(II) forms did not show diel cycles downplaying the role of photoreduction. The chemiluminescence of unfiltered samples across the patch boundaries showed strong gradients, correlated significantly to biomass and the photosynthetic efficiency and were higher at night, indicative of a biological control. At 150 m deep, a secondary maximum of dissolved Fe(II) was associated with maxima of nitrite and ammonium despite high oxygen concentrations. We hypothesize that during LOHAFEX, iron redox speciation was mostly regulated by trophic interactions.
Collapse
Affiliation(s)
- Luis M Laglera
- FI-TRACE, Departamento de Química, Universidad de las Islas Baleares, Palma, Balearic Islands 07122, Spain; Laboratori Interdisciplinari sobre Canvi Climàtic, Universidad de las Islas Baleares, Palma, Balearic Islands 07122, Spain.
| | - Hema Uskaikar
- National Institute of Oceanography, Dona Paula, Goa, India
| | - Christine Klaas
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | | | - Dieter A Wolf-Gladrow
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Antonio Tovar-Sánchez
- Department of Ecology and Coastal Management, Andalusian Institute for Marine Science, ICMAN (CSIC), Campus Universitario Río San Pedro, Puerto Real, Cádiz, Spain
| |
Collapse
|
4
|
Baranska NG, Parkin A, Duhme-Klair AK. Electrochemical and Solution Structural Characterization of Fe(III) Azotochelin Complexes: Examining the Coordination Behavior of a Tetradentate Siderophore. Inorg Chem 2022; 61:19172-19182. [PMID: 36251475 DOI: 10.1021/acs.inorgchem.2c02777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report an electrochemical setup comprising a boron-doped diamond (BDD) working electrode for the electrochemical study of iron(III) catecholate siderophores. We demonstrate its successful application in the voltammetric investigation of iron(III) azotochelin, an iron complex of a bis(catecholate) siderophore. Cyclic voltammetry results, when complemented by UV-vis and native electrospray ionization-mass spectrometry (ESI-MS) characterization, reveal the formation of a coordinatively unsaturated tetracoordinate 1:1 complex of Fe:azotochelin (M1:L1) at neutral pH, contrary to iron(III) tetradentate siderophore complexes of other classes which favor the hexacoordinate environment of an M2:L3 species. A notable effect of pH and buffer composition on the reduction potential of iron(III) azotochelin is demonstrated. Lower pH values and buffers encompassing primary or secondary amines facilitate a positive potential shift of up to +290 mV and +250 mV vs Ag/AgCl 3 M NaCl, respectively. The study was extended to the investigation of the iron(III) complexes of hexadentate siderophores. For tris(catecholate) siderophores, enterobactin and protochelin, the reduction potentials were found to lie beyond the potential window accessible to the BDD electrode; however, we were successful in observing the electrochemical behavior of a tris(hydroxamate) siderophore, ferricrocin.
Collapse
Affiliation(s)
- Natalia G Baranska
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Alison Parkin
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Anne-K Duhme-Klair
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
5
|
Jew AD, Druhan JL, Ihme M, Kovscek AR, Battiato I, Kaszuba JP, Bargar JR, Brown GE. Chemical and Reactive Transport Processes Associated with Hydraulic Fracturing of Unconventional Oil/Gas Shales. Chem Rev 2022; 122:9198-9263. [PMID: 35404590 DOI: 10.1021/acs.chemrev.1c00504] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hydraulic fracturing of unconventional oil/gas shales has changed the energy landscape of the U.S. Recovery of hydrocarbons from tight, hydraulically fractured shales is a highly inefficient process, with estimated recoveries of <25% for natural gas and <5% for oil. This review focuses on the complex chemical interactions of additives in hydraulic fracturing fluid (HFF) with minerals and organic matter in oil/gas shales. These interactions are intended to increase hydrocarbon recovery by increasing porosities and permeabilities of tight shales. However, fluid-shale interactions result in the dissolution of shale minerals and the release and transport of chemical components. They also result in mineral precipitation in the shale matrix, which can reduce permeability, porosity, and hydrocarbon recovery. Competition between mineral dissolution and mineral precipitation processes influences the amounts of oil and gas recovered. We review the temporal/spatial origins and distribution of unconventional oil/gas shales from mudstones and shales, followed by discussion of their global and U.S. distributions and compositional differences from different U.S. sedimentary basins. We discuss the major types of chemical additives in HFF with their intended purposes, including drilling muds. Fracture distribution, porosity, permeability, and the identity and molecular-level speciation of minerals and organic matter in oil/gas shales throughout the hydraulic fracturing process are discussed. Also discussed are analysis methods used in characterizing oil/gas shales before and after hydraulic fracturing, including permeametry and porosimetry measurements, X-ray diffraction/Rietveld refinement, X-ray computed tomography, scanning/transmission electron microscopy, and laboratory- and synchrotron-based imaging/spectroscopic methods. Reactive transport and spatial scaling are discussed in some detail in order to relate fundamental molecular-scale processes to fluid transport. Our review concludes with a discussion of potential environmental impacts of hydraulic fracturing and important knowledge gaps that must be bridged to achieve improved mechanistic understanding of fluid transport in oil/gas shales.
Collapse
Affiliation(s)
- Adam D Jew
- DOE EFRC─Center for Mechanistic Control of Water-Hydrocarbon-Rock Interactions in Unconventional and Tight Oil Formations, Stanford University, Stanford, California 94305, United States.,Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Jennifer L Druhan
- DOE EFRC─Center for Mechanistic Control of Water-Hydrocarbon-Rock Interactions in Unconventional and Tight Oil Formations, Stanford University, Stanford, California 94305, United States.,Departments of Geology and Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Matthias Ihme
- DOE EFRC─Center for Mechanistic Control of Water-Hydrocarbon-Rock Interactions in Unconventional and Tight Oil Formations, Stanford University, Stanford, California 94305, United States.,Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Anthony R Kovscek
- DOE EFRC─Center for Mechanistic Control of Water-Hydrocarbon-Rock Interactions in Unconventional and Tight Oil Formations, Stanford University, Stanford, California 94305, United States.,Department of Energy Resources Engineering, School of Earth, Energy and Environmental Sciences, Stanford University, Stanford, California 94305-2220, United States
| | - Ilenia Battiato
- DOE EFRC─Center for Mechanistic Control of Water-Hydrocarbon-Rock Interactions in Unconventional and Tight Oil Formations, Stanford University, Stanford, California 94305, United States.,Department of Energy Resources Engineering, School of Earth, Energy and Environmental Sciences, Stanford University, Stanford, California 94305-2220, United States
| | - John P Kaszuba
- Department of Geology and Geophysics and School of Energy Resources, University of Wyoming, Laramie, Wyoming 82071, United States
| | - John R Bargar
- DOE EFRC─Center for Mechanistic Control of Water-Hydrocarbon-Rock Interactions in Unconventional and Tight Oil Formations, Stanford University, Stanford, California 94305, United States.,Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Gordon E Brown
- DOE EFRC─Center for Mechanistic Control of Water-Hydrocarbon-Rock Interactions in Unconventional and Tight Oil Formations, Stanford University, Stanford, California 94305, United States.,Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States.,Department of Geological Sciences, School of Earth, Energy and Environmental Sciences, Stanford University, Stanford, California 94305-2115, United States
| |
Collapse
|
6
|
Peukert C, Langer LNB, Wegener SM, Tutov A, Bankstahl JP, Karge B, Bengel FM, Ross TL, Brönstrup M. Optimization of Artificial Siderophores as 68Ga-Complexed PET Tracers for In Vivo Imaging of Bacterial Infections. J Med Chem 2021; 64:12359-12378. [PMID: 34370949 DOI: 10.1021/acs.jmedchem.1c01054] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The diagnosis of bacterial infections at deep body sites benefits from noninvasive imaging of molecular probes that can be traced by positron emission tomography (PET). We specifically labeled bacteria by targeting their iron transport system with artificial siderophores. The cyclen-based probes contain different binding sites for iron and the PET nuclide gallium-68. A panel of 11 siderophores with different iron coordination numbers and geometries was synthesized in up to 8 steps, and candidates with the best siderophore potential were selected by a growth recovery assay. The probes [68Ga]7 and [68Ga]15 were found to be suitable for PET imaging based on their radiochemical yield, radiochemical purity, and complex stability in vitro and in vivo. Both showed significant uptake in mice infected with Escherichia coli and were able to discern infection from lipopolysaccharide-triggered, sterile inflammation. The study qualifies cyclen-based artificial siderophores as readily accessible scaffolds for the in vivo imaging of bacteria.
Collapse
Affiliation(s)
- Carsten Peukert
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Laura N B Langer
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Sophie M Wegener
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Anna Tutov
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Jens P Bankstahl
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Bianka Karge
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Tobias L Ross
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Center for Biomolecular Drug Research (BMWZ), Schneiderberg 38, 30167 Hannover, Germany
| |
Collapse
|
7
|
Structural insights into a novel family of integral membrane siderophore reductases. Proc Natl Acad Sci U S A 2021; 118:2101952118. [PMID: 34417315 DOI: 10.1073/pnas.2101952118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gram-negative bacteria take up the essential ion Fe3+ as ferric-siderophore complexes through their outer membrane using TonB-dependent transporters. However, the subsequent route through the inner membrane differs across many bacterial species and siderophore chemistries and is not understood in detail. Here, we report the crystal structure of the inner membrane protein FoxB (from Pseudomonas aeruginosa) that is involved in Fe-siderophore uptake. The structure revealed a fold with two tightly bound heme molecules. In combination with in vitro reduction assays and in vivo iron uptake studies, these results establish FoxB as an inner membrane reductase involved in the release of iron from ferrioxamine during Fe-siderophore uptake.
Collapse
|
8
|
Sun Y, Wang S, Liu X, He Y, Wu H, Xie W, Li N, Hou W, Dong H. Iron availability is a key factor for freshwater cyanobacterial survival against saline stress. ENVIRONMENTAL RESEARCH 2021; 194:110592. [PMID: 33333036 DOI: 10.1016/j.envres.2020.110592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Estuaries are among the most productive ecosystems and dynamic environments on Earth. Varying salinity is the most important challenge for phytoplankton survival in estuaries. In order to investigate the role of iron nutrition on phytoplankton survival under salinity stress, a freshwater cyanobacterial strain was cultivated in media added with different proportions of seawater (measured with siderophore activities), and supplied with gel-immobilized ferrihydrite as iron source. Results showed that the strain grew well in media with 0% seawater supplied with ferrihydrite as iron source. Surprisingly, the biomasses in media with 50% seawater, with more newly excreted siderophore, were similar to those with 0% seawater, but better than those with 6.25%, 12.5% and 25% seawater. Smaller iron isotopic discriminations between the cyanobacterial cells associated iron and dissolved iron were observed in media with 0% and 50% seawater suggested that higher fractions of iron uptake from aqueous dissolved iron reservoir by these comparatively larger biomasses. In summary, this study proved that iron availability plays a key role in cyanobacterial survival under varying salinity stress, and suggested that siderophores introduced by seawater may accelerate iron dissolution, increase iron availability, and make cyanobacterial cells overcome the adverse effects of high-salinity, and indicated that siderophore excretion is a kind of survival strategy for phytoplankton in face of salinity stress.
Collapse
Affiliation(s)
- Yuxuan Sun
- State Key Laboratory of Biogeosciences and Environmental Geology and Institute of Earth Sciences, China University of Geosciences, Beijing, 100083, China
| | - Shang Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiaolei Liu
- State Key Laboratory of Biogeosciences and Environmental Geology and Institute of Earth Sciences, China University of Geosciences, Beijing, 100083, China
| | - Yongsheng He
- State Key Laboratory of Biogeosciences and Environmental Geology and Institute of Earth Sciences, China University of Geosciences, Beijing, 100083, China
| | - Hongjie Wu
- State Key Laboratory of Biogeosciences and Environmental Geology and Institute of Earth Sciences, China University of Geosciences, Beijing, 100083, China
| | - Wei Xie
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China
| | - Nan Li
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, 530001, China
| | - Weiguo Hou
- State Key Laboratory of Biogeosciences and Environmental Geology and Institute of Earth Sciences, China University of Geosciences, Beijing, 100083, China.
| | - Hailiang Dong
- State Key Laboratory of Biogeosciences and Environmental Geology and Institute of Earth Sciences, China University of Geosciences, Beijing, 100083, China.
| |
Collapse
|
9
|
Abstract
Tropolonate complexes of Ru(II), Ru(III), and Os(II) with hinokitiol, also termed β-thuljaplicin, or 4-isopropyltropolone, readily formed by chloride and triarylphosphine substitution in RuCl2(PPh3)3 and MHCl(CO)(PR3)3 (M = Ru, R = Ph; M = Os, R = Ph and p-tolyl). The resulting colorful complexes have variable and strong charge transfer bands and also have a surprising combination of stereochemical selectivity and lability. For the Os(II) d6 examples, the tropolone chelate has a fluxionality with a barrier of only 90 kJ/mol for the R = aryl examples, as determined by variable-temperature 31P NMR. Chlorination with N-chlorosuccinimide results in MCl(CO)(hino)(PPh3)2 (M = Ru and Os). Together these results quantify the fluxionality of this important chelate which in turn has consequences for its biochemistry.
Collapse
Affiliation(s)
- Quentin Gaydon
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Ian J Bohle
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - David Scott Bohle
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
10
|
Wang G, Tang K, Jiang Y, Andersen HR, Zhang Y. Regeneration of Fe(II) from Fenton-derived ferric sludge using a novel biocathode. BIORESOURCE TECHNOLOGY 2020; 318:124195. [PMID: 33038620 DOI: 10.1016/j.biortech.2020.124195] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 05/25/2023]
Abstract
Fenton reactions are widely applied when degrading recalcitrant pollutants, but reusing the resulting ferric sludge remains a challenge. A novel concept for regenerating Fe(II) solution at pH 6 based on ferric sludge from neutral Fenton was herein proposed. The microbial fuel cell (MFC) with biocathode and citric acid was used for the first time to promote the regenerated rate of Fe(II) from ferric sludge. The concentration of dissolved Fe(II) reached 120 mg/L in biocathode, which was much higher than that obtained in abiotic cathode (<1 mg/L). The main chemical cost of regenerating Fe(II) was only 3.3% of the commercial Fe(II). Subsequently, the regenerated Fe(II) solution was used to activate H2O2, to remove pharmaceuticals from the municipal wastewater effluent. A wide range of pharmaceuticals was successfully removed at neutral pH in 60 min, and the efficiency of the treatment was similar to when the same dosage of commercial Fe(II) was applied.
Collapse
Affiliation(s)
- Guan Wang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Kai Tang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yufeng Jiang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Henrik Rasmus Andersen
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| |
Collapse
|
11
|
Shaked Y, Buck KN, Mellett T, Maldonado MT. Insights into the bioavailability of oceanic dissolved Fe from phytoplankton uptake kinetics. THE ISME JOURNAL 2020; 14:1182-1193. [PMID: 32024947 PMCID: PMC7174416 DOI: 10.1038/s41396-020-0597-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/12/2020] [Accepted: 01/21/2020] [Indexed: 12/05/2022]
Abstract
Phytoplankton growth in large parts of the world ocean is limited by low availability of dissolved iron (dFe), restricting oceanic uptake of atmospheric CO2. The bioavailability of dFe in seawater is however difficult to appraise since it is bound by a variety of poorly characterized organic ligands. Here, we propose a new approach for evaluating seawater dFe bioavailability based on its uptake rate constant by Fe-limited cultured phytoplankton. We utilized seven phytoplankton species of diverse classes, sizes, and provenances to probe for dFe bioavailability in 12 seawater samples from several ocean basins and depths. All tested phytoplankton acquired organically bound Fe in any given sample at similar rates (after normalizing to cellular surface area), confirming that multiple, Fe-limited phytoplankton species can be used to probe dFe bioavailability in seawater. These phytoplankton-based uptake rate constants allowed us to compare water types, and obtain a grand average estimate of seawater dFe bioavailability. Among water types, dFe bioavailability varied by approximately four-fold, and did not clearly correlate with Fe concentrations or any of the measured Fe speciation parameters. Compared with well-studied Fe complexes, seawater dFe is more available than model siderophore Fe, but less available than inorganic Fe. Exposure of seawater to sunlight, however, significantly enhanced dFe bioavailability. The rate constants established in this work, not only facilitate comparison between water types, but also allow calculation of Fe uptake rates by phytoplankton in the ocean based on measured dFe concentrations. The approach established and verified in this study, opens a new way for determining dFe bioavailability in samples across the ocean, and enables modeling of in situ Fe uptake rates by phytoplankton using dFe concentrations from GEOTRACES datasets.
Collapse
Affiliation(s)
- Yeala Shaked
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel.
- Interuniversity Institute for Marine Sciences, Eilat, Israel.
| | - Kristen N Buck
- College of Marine Science, University of South Florida, Tampa, FL, USA
| | - Travis Mellett
- College of Marine Science, University of South Florida, Tampa, FL, USA
| | - Maria T Maldonado
- Earth, Ocean and Atmospheric Sciences Department, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
12
|
Abstract
Diatoms can access inorganic iron with remarkable efficiency, but this process is contingent on carbonate ion concentration. As ocean acidification reduces carbonate concentration, inorganic iron uptake may be discouraged in favor of carbonate-independent uptake. We report details of an iron assimilation process that needs no carbonate but requires exogenous compounds produced by cooccurring organisms. We show this process to be critical for diatom growth at high siderophore concentrations, but ineffective at acquiring iron from low-affinity organic chelators or lithogenic particulates. Understanding the caveats associated with iron source preference in diatoms will help predict the impacts of climate change on microbial community structure in high-nitrate low-chlorophyll ecosystems. Iron uptake by diatoms is a biochemical process with global biogeochemical implications. In large regions of the surface ocean diatoms are both responsible for the majority of primary production and frequently experiencing iron limitation of growth. The strategies used by these phytoplankton to extract iron from seawater constrain carbon flux into higher trophic levels and sequestration into sediments. In this study we use reverse genetic techniques to target putative iron-acquisition genes in the model pennate diatom Phaeodactylum tricornutum. We describe components of a reduction-dependent siderophore acquisition pathway that relies on a bacterial-derived receptor protein and provides a viable alternative to inorganic iron uptake under certain conditions. This form of iron uptake entails a close association between diatoms and siderophore-producing organisms during low-iron conditions. Homologs of these proteins are found distributed across diatom lineages, suggesting the significance of siderophore utilization by diatoms in the marine environment. Evaluation of specific proteins enables us to confirm independent iron-acquisition pathways in diatoms and characterize their preferred substrates. These findings refine our mechanistic understanding of the multiple iron-uptake systems used by diatoms and help us better predict the influence of iron speciation on taxa-specific iron bioavailability.
Collapse
|
13
|
Koh EI, Robinson AE, Bandara N, Rogers BE, Henderson JP. Copper import in Escherichia coli by the yersiniabactin metallophore system. Nat Chem Biol 2017; 13:1016-1021. [PMID: 28759019 PMCID: PMC5562518 DOI: 10.1038/nchembio.2441] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/20/2017] [Indexed: 12/13/2022]
Abstract
Copper plays a dual role as nutrient and toxin during bacterial infections. While uropathogenic Escherichia coli (UPEC) strains can use the copper-binding metallophore yersiniabactin (Ybt) to resist copper toxicity, Ybt also converts bioavailable copper to Cu(II)-Ybt in low copper conditions. Although E. coli have long been considered to lack a copper import pathway, we observed Ybt-mediated copper import in UPEC using canonical Fe(III)-Ybt transport proteins. UPEC removed copper from Cu(II)-Ybt with subsequent re-export of metal-free Ybt to the extracellular space. Copper released through this process became available to an E. coli cuproenzyme (the amine oxidase TynA), linking this import pathway to a nutrient acquisition function. Ybt-expressing E. coli thus engage in nutritional passivation, a strategy of minimizing a metal ion's toxicity while preserving its nutritional availability. Copper acquisition through this process may contribute to the marked virulence defect of Ybt transport-deficient UPEC.
Collapse
Affiliation(s)
- Eun-Ik Koh
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, St. Louis, Missouri, USA.,Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Anne E Robinson
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, St. Louis, Missouri, USA.,Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nilantha Bandara
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Buck E Rogers
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeffrey P Henderson
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, St. Louis, Missouri, USA.,Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
14
|
Fazary AE, Al-Shihri AS, Alfaifi MY, Saleh KA, Alshehri MA, Elbehairi SEI, Ju YH. Microbial production of four biodegradable siderophores under submerged fermentation. Int J Biol Macromol 2016; 88:527-41. [DOI: 10.1016/j.ijbiomac.2016.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 03/03/2016] [Accepted: 03/07/2016] [Indexed: 11/29/2022]
|
15
|
Rudolf M, Kranzler C, Lis H, Margulis K, Stevanovic M, Keren N, Schleiff E. Multiple modes of iron uptake by the filamentous, siderophore-producing cyanobacterium, Anabaena sp. PCC 7120. Mol Microbiol 2015; 97:577-88. [PMID: 25943160 DOI: 10.1111/mmi.13049] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2015] [Indexed: 11/28/2022]
Abstract
Iron is a member of a small group of nutrients that limits aquatic primary production. Mechanisms for utilizing iron have to be efficient and adapted according to the ecological niche. In respect to iron acquisition cyanobacteria, prokaryotic oxygen evolving photosynthetic organisms can be divided into siderophore- and non-siderophore-producing strains. The results presented in this paper suggest that the situation is far more complex. To understand the bioavailability of different iron substrates and the advantages of various uptake strategies, we examined iron uptake mechanisms in the siderophore-producing cyanobacterium Anabaena sp. PCC 7120. Comparison of the uptake of iron complexed with exogenous (desferrioxamine B, DFB) or to self-secreted (schizokinen) siderophores by Anabaena sp. revealed that uptake of the endogenous produced siderophore complexed to iron is more efficient. In addition, Anabaena sp. is able to take up dissolved, ferric iron hydroxide species (Fe') via a reductive mechanism. Thus, Anabaena sp. exhibits both, siderophore- and non-siderophore-mediated iron uptake. While assimilation of Fe' and FeDFB are not induced by iron starvation, FeSchizokinen uptake rates increase with increasing iron starvation. Consequently, we suggest that Fe' reduction and uptake is advantageous for low-density cultures, while at higher densities siderophore uptake is preferred.
Collapse
Affiliation(s)
- Mareike Rudolf
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Chana Kranzler
- Department of Plant and Environmental Science, The Alexander Silberman Institute of Life Sciences, The Hebrew University in Jerusalem, Jerusalem, Israel
| | - Hagar Lis
- Department of Plant and Environmental Science, The Alexander Silberman Institute of Life Sciences, The Hebrew University in Jerusalem, Jerusalem, Israel
| | - Ketty Margulis
- Department of Plant and Environmental Science, The Alexander Silberman Institute of Life Sciences, The Hebrew University in Jerusalem, Jerusalem, Israel
| | - Mara Stevanovic
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Nir Keren
- Department of Plant and Environmental Science, The Alexander Silberman Institute of Life Sciences, The Hebrew University in Jerusalem, Jerusalem, Israel
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany.,Cluster of Excellence Macromolecular Complexes, Goethe University Frankfurt, Frankfurt, Germany.,Buchman Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
16
|
Ji C, Miller MJ. Siderophore-fluoroquinolone conjugates containing potential reduction-triggered linkers for drug release: synthesis and antibacterial activity. Biometals 2015; 28:541-51. [PMID: 25663417 PMCID: PMC5808879 DOI: 10.1007/s10534-015-9830-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 02/01/2015] [Indexed: 11/25/2022]
Abstract
Syntheses of two Siderophore-fluoroquinolone conjugates with a potential reduction triggered linker for drug release are described. The "trimethyl lock" based linker incorporated in the conjugates was designed to be activated by taking advantage of the reductive pathway of bacterial iron metabolism. Electrochemical and LC-MS studies indicated that the linker is thermodynamically reducible by common biological reductants and the expected lactonization proceeds rapidly with concomitant release of the drug. Antibacterial activity assays revealed that conjugates with the reduction-triggered linker were more potent than their counterparts with a stable linker, which suggests that drug release occurs inside bacterial cells.
Collapse
Affiliation(s)
- Cheng Ji
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana, 46556, United States
| | - Marvin J. Miller
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana, 46556, United States
| |
Collapse
|
17
|
|
18
|
Abstract
Gram-positive Streptococcus species are responsible for millions of cases of meningitis, bacterial pneumonia, endocarditis, erysipelas and necrotizing fasciitis. Iron is essential for the growth and survival of Streptococcus in the host environment. Streptococcus species have developed various mechanisms to uptake iron from an environment with limited available iron. Streptococcus can directly extract iron from host iron-containing proteins such as ferritin, transferrin, lactoferrin and hemoproteins, or indirectly by relying on the employment of specialized secreted hemophores (heme chelators) and small siderophore molecules (high affinity ferric chelators). This review presents the most recent discoveries in the iron acquisition system of Streptococcus species - the transporters as well as the regulators.
Collapse
Affiliation(s)
- Ruiguang Ge
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | | |
Collapse
|
19
|
Baars O, Morel FMM, Perlman DH. ChelomEx: Isotope-assisted discovery of metal chelates in complex media using high-resolution LC-MS. Anal Chem 2014; 86:11298-305. [PMID: 25333600 DOI: 10.1021/ac503000e] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chelating agents can control the speciation and reactivity of trace metals in biological, environmental, and laboratory-derived media. A large number of trace metals (including Fe, Cu, Zn, Hg, and others) show characteristic isotopic fingerprints that can be exploited for the discovery of known and unknown organic metal complexes and related chelating ligands in very complex sample matrices using high-resolution liquid chromatography mass spectrometry (LC-MS). However, there is currently no free open-source software available for this purpose. We present a novel software tool, ChelomEx, which identifies isotope pattern-matched chromatographic features associated with metal complexes along with free ligands and other related adducts in high-resolution LC-MS data. High sensitivity and exclusion of false positives are achieved by evaluation of the chromatographic coherence of the isotope pattern within chromatographic features, which we demonstrate through the analysis of bacterial culture media. A built-in graphical user interface and compound library aid in identification and efficient evaluation of results. ChelomEx is implemented in MatLab. The source code, binaries for MS Windows and MAC OS X as well as test LC-MS data are available for download at SourceForge ( http://sourceforge.net/projects/chelomex ).
Collapse
Affiliation(s)
- Oliver Baars
- Department of Geosciences, Princeton University , Princeton, New Jersey 08544, United States
| | | | | |
Collapse
|
20
|
Banerjee S, Weerasinghe AJ, Parker Siburt CJ, Kreulen RT, Armstrong SK, Brickman TJ, Lambert LA, Crumbliss AL. Bordetella pertussis FbpA binds both unchelated iron and iron siderophore complexes. Biochemistry 2014; 53:3952-60. [PMID: 24873326 PMCID: PMC4075987 DOI: 10.1021/bi5002823] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
![]()
Bordetella pertussis is the causative
agent of whooping cough. This pathogenic bacterium can obtain the
essential nutrient iron using its native alcaligin siderophore and
by utilizing xeno-siderophores such as desferrioxamine B, ferrichrome,
and enterobactin. Previous genome-wide expression profiling identified
an iron repressible B. pertussis gene
encoding a periplasmic protein (FbpABp). A previously reported
crystal structure shows significant similarity between FbpABp and previously characterized bacterial iron binding proteins, and
established its iron-binding ability. Bordetella growth studies determined that FbpABp was required for
utilization of not only unchelated iron, but also utilization of iron
bound to both native and xeno-siderophores. In this in vitro solution study, we quantified the binding of unchelated ferric iron
to FbpABp in the presence of various anions and importantly,
we demonstrated that FbpABp binds all the ferric siderophores
tested (native and xeno) with μM affinity. In silico modeling augmented solution data. FbpABp was incapable
of iron removal from ferric xeno-siderophores in vitro. However, when FbpABp was reacted with native ferric-alcaligin,
it elicited a pronounced change in the iron coordination environment,
which may signify an early step in FbpABp-mediated iron
removal from the native siderophore. To our knowledge, this is the
first time the periplasmic component of an iron uptake system has
been shown to bind iron directly as Fe3+ and indirectly
as a ferric siderophore complex.
Collapse
Affiliation(s)
- Sambuddha Banerjee
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Duckworth OW, Akafia MM, Andrews MY, Bargar JR. Siderophore-promoted dissolution of chromium from hydroxide minerals. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2014; 16:1348-1359. [PMID: 24683601 DOI: 10.1039/c3em00717k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Biomolecules have significant impacts on the fate and transport of contaminant metals in soils and natural waters. Siderophores, Fe(iii)-binding agents that are exuded by microbes and plants, may form strong complexes with and promote the dissolution of contaminant metal ions, such as Co(iii), U(iv), or Pu(iv). Although aqueous Cr(iii)-siderophore complexes have been recognized in the laboratory setting for almost 40 years, few studies have explored interactions of siderophores with Cr-bearing minerals or considered their impacts on environmental chemistry. To better understand the possible effects of siderophores on chromium mobility, we conducted a series of dissolution experiments to quantify the dissolution rates of Cr(iii)(OH)3 in the presence of hydroxamate, catecholate, and α-hydroxycarboxylate siderophores over a range of environmentally relevant pH values. At pH = 5, dissolution rates in the presence of siderophores are similar to control experiments, suggesting a predominantly proton-promoted dissolution mechanism. At pH = 8, the sorption of the siderophores desferrioxamine B and rhizoferrin can be modeled by using Langmuir isotherms. The dissolution rates for these siderophores are proportional to the surface concentrations of sorbed siderophore, and extended X-ray absorption fine structure spectra of dissolution products indicates the formation of Cr(iii)HDFOB(+) and Cr(iii)rhizoferrin(3-) complexes, suggesting a ligand-promoted dissolution mechanism at alkaline pH. Because siderophores promote Cr(iii)(OH)3 dissolution at rates similar in magnitude to those of iron hydroxides and the resulting Cr(iii)-siderophore complexes may be persistent in solution, siderophores could potentially contribute to the mobilization of Cr in soils and sediments where it is abundant due to geological or anthropogenic sources.
Collapse
Affiliation(s)
- Owen W Duckworth
- Department of Soil Science, North Carolina State University, Raleigh, NC 27695-7619, USA.
| | | | | | | |
Collapse
|
22
|
Honarmand Ebrahimi K, Dienemann C, Hoefgen S, Than ME, Hagedoorn PL, Hagen WR. The amyloid precursor protein (APP) does not have a ferroxidase site in its E2 domain. PLoS One 2013; 8:e72177. [PMID: 23977245 PMCID: PMC3747053 DOI: 10.1371/journal.pone.0072177] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 07/02/2013] [Indexed: 02/07/2023] Open
Abstract
The ubiquitous 24-meric iron-storage protein ferritin and multicopper oxidases such as ceruloplasmin or hephaestin catalyze oxidation of Fe(II) to Fe(III), using molecular oxygen as oxidant. The ferroxidase activity of these proteins is essential for cellular iron homeostasis. It has been reported that the amyloid precursor protein (APP) also has ferroxidase activity. The activity is assigned to a ferroxidase site in the E2 domain of APP. A synthetic 22-residue peptide that carries the putative ferroxidase site of E2 domain (FD1 peptide) has been claimed to encompass the same activity. We previously tested the ferroxidase activity of the synthetic FD1 peptide but we did not observe any activity above the background oxidation of Fe(II) by molecular oxygen. Here we used isothermal titration calorimetry to study Zn(II) and Fe(II) binding to the natural E2 domain of APP, and we employed the transferrin assay and oxygen consumption measurements to test the ferroxidase activity of the E2 domain. We found that this domain neither in the presence nor in the absence of the E1 domain binds Fe(II) and it is not able to catalyze the oxidation of Fe(II). Binding of Cu(II) to the E2 domain did not induce ferroxidase activity contrary to the presence of redox active Cu(II) centers in ceruloplasmin or hephaestin. Thus, we conclude that E2 or E1 domains of APP do not have ferroxidase activity and that the potential involvement of APP as a ferroxidase in the pathology of Alzheimer’s disease must be re-evaluated.
Collapse
|
23
|
Harrington JM, Gardner TG, Amoozegar A, Andrews MY, Rivera NA, Duckworth OW. A Workshop for Developing Learning Modules for Science Classes Based on Biogeochemical Research. ACTA ACUST UNITED AC 2013. [DOI: 10.4195/nse.2013.0004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- James M. Harrington
- Dep. of Soil Science, Box 7619; North Carolina State Univ.; Raleigh NC 27695-7619
| | - Terrence G. Gardner
- Dep. of Soil Science, Box 7619; North Carolina State Univ.; Raleigh NC 27695-7619
| | - Aziz Amoozegar
- Dep. of Soil Science, Box 7619; North Carolina State Univ.; Raleigh NC 27695-7619
| | - Megan Y. Andrews
- Dep. of Soil Science, Box 7619; North Carolina State Univ.; Raleigh NC 27695-7619
| | - Nelson A. Rivera
- Dep. of Soil Science, Box 7619; North Carolina State Univ.; Raleigh NC 27695-7619
| | - Owen W. Duckworth
- Dep. of Soil Science, Box 7619; North Carolina State Univ.; Raleigh NC 27695-7619
| |
Collapse
|
24
|
Fate of ferrisiderophores after import across bacterial outer membranes: different iron release strategies are observed in the cytoplasm or periplasm depending on the siderophore pathways. Amino Acids 2013; 44:1267-77. [PMID: 23443998 DOI: 10.1007/s00726-013-1468-2] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 02/09/2013] [Indexed: 12/22/2022]
Abstract
Siderophore production and utilization is one of the major strategies deployed by bacteria to get access to iron, a key nutrient for bacterial growth. The biological function of siderophores is to solubilize iron in the bacterial environment and to shuttle it back to the cytoplasm of the microorganisms. This uptake process for Gram-negative species involves TonB-dependent transporters for translocation across the outer membranes. In Escherichia coli and many other Gram-negative bacteria, ABC transporters associated with periplasmic binding proteins import ferrisiderophores across cytoplasmic membranes. Recent data reveal that in some siderophore pathways, this step can also be carried out by proton-motive force-dependent permeases, for example the ferrichrome and ferripyochelin pathways in Pseudomonas aeruginosa. Iron is then released from the siderophores in the bacterial cytoplasm by different enzymatic mechanisms depending on the nature of the siderophore. Another strategy has been reported for the pyoverdine pathway in P. aeruginosa: iron is released from the siderophore in the periplasm and only siderophore-free iron is transported into the cytoplasm by an ABC transporter having two atypical periplasmic binding proteins. This review presents recent findings concerning both ferrisiderophore and siderophore-free iron transport across bacterial cytoplasmic membranes and considers current knowledge about the mechanisms involved in iron release from siderophores.
Collapse
|
25
|
Wright W, Little J, Liu F, Chakraborty R. Isolation and structural identification of the trihydroxamate siderophore vicibactin and its degradative products from Rhizobium leguminosarum ATCC 14479 bv. trifolii. Biometals 2013; 26:271-83. [DOI: 10.1007/s10534-013-9609-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/21/2013] [Indexed: 10/27/2022]
|
26
|
Andrews S, Norton I, Salunkhe AS, Goodluck H, Aly WSM, Mourad-Agha H, Cornelis P. Control of iron metabolism in bacteria. Met Ions Life Sci 2013; 12:203-39. [PMID: 23595674 DOI: 10.1007/978-94-007-5561-1_7] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacteria depend upon iron as a vital cofactor that enables a wide range of key metabolic activities. Bacteria must therefore ensure a balanced supply of this essential metal. To do so, they invest considerable resourse into its acquisition and employ elaborate control mechanisms to eleviate both iron-induced toxitiy as well as iron deficiency. This chapter describes the processes that bacteria engage in maintaining iron homeostasis. The focus is Escherichia coli, as this bacterium provides a well studied example. A summary of the current status of understanding of iron management at the 'omics' level is also presented.
Collapse
Affiliation(s)
- Simon Andrews
- The School of Biological Sciences, The University of Reading, Whiteknights, Reading, RG6 6AJ, UK,
| | | | | | | | | | | | | |
Collapse
|
27
|
Bailão EFLC, Parente AFA, Parente JA, Silva-Bailão MG, de Castro KP, Kmetzsch L, Staats CC, Schrank A, Vainstein MH, Borges CL, Bailão AM, de Almeida Soares CM. Metal Acquisition and Homeostasis in Fungi. CURRENT FUNGAL INFECTION REPORTS 2012. [DOI: 10.1007/s12281-012-0108-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Characterization of the aqueous iron(III) chelation chemistry of a potential Trojan Horse antimicrobial agent: chelate structure, stability and pH dependent speciation. Biometals 2012; 25:1023-36. [DOI: 10.1007/s10534-012-9568-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 07/05/2012] [Indexed: 01/10/2023]
|
29
|
Shaked Y, Lis H. Disassembling iron availability to phytoplankton. Front Microbiol 2012; 3:123. [PMID: 22529839 PMCID: PMC3328120 DOI: 10.3389/fmicb.2012.00123] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 03/14/2012] [Indexed: 01/26/2023] Open
Abstract
The bioavailability of iron to microorganisms and its underlying mechanisms have far reaching repercussions to many natural systems and diverse fields of research, including ocean biogeochemistry, carbon cycling and climate, harmful algal blooms, soil and plant research, bioremediation, pathogenesis, and medicine. Within the framework of ocean sciences, short supply and restricted bioavailability of Fe to phytoplankton is thought to limit primary production and curtail atmospheric CO2 drawdown in vast ocean regions. Yet a clear-cut definition of bioavailability remains elusive, with elements of iron speciation and kinetics, phytoplankton physiology, light, temperature, and microbial interactions, to name a few, all intricately intertwined into this concept. Here, in a synthesis of published and new data, we attempt to disassemble the complex concept of iron bioavailability to phytoplankton by individually exploring some of its facets. We distinguish between the fundamentals of bioavailability – the acquisition of Fe-substrate by phytoplankton – and added levels of complexity involving interactions among organisms, iron, and ecosystem processes. We first examine how phytoplankton acquire free and organically bound iron, drawing attention to the pervasiveness of the reductive uptake pathway in both prokaryotic and eukaryotic autotrophs. Turning to acquisition rates, we propose to view the availability of various Fe-substrates to phytoplankton as a spectrum rather than an absolute “all or nothing.” We then demonstrate the use of uptake rate constants to make comparisons across different studies, organisms, Fe-compounds, and environments, and for gaging the contribution of various Fe-substrates to phytoplankton growth in situ. Last, we describe the influence of aquatic microorganisms on iron chemistry and fate by way of organic complexation and bio-mediated redox transformations and examine the bioavailability of these bio-modified Fe species.
Collapse
Affiliation(s)
- Yeala Shaked
- Interuniversity Institute for Marine Sciences in Eilat Eilat, Israel
| | | |
Collapse
|
30
|
Voltammetric investigation of iron(III) complexes with siderophore chrysobactin in aqueous solution. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2011.11.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Miethke M, Hou J, Marahiel MA. The siderophore-interacting protein YqjH acts as a ferric reductase in different iron assimilation pathways of Escherichia coli. Biochemistry 2011; 50:10951-64. [PMID: 22098718 DOI: 10.1021/bi201517h] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Siderophore-interacting proteins (SIPs), such as YqjH from Escherichia coli, are widespread among bacteria and commonly associated with iron-dependent induction and siderophore utilization. In this study, we show by detailed biochemical and genetic analyses the reaction mechanism by which the YqjH protein is able to catalyze the release of iron from a variety of iron chelators, including ferric triscatecholates and ferric dicitrate, displaying the highest efficiency for the hydrolyzed ferric enterobactin complex ferric (2,3-dihydroxybenzoylserine)(3). Site-directed mutagenesis revealed that residues K55 and R130 of YqjH are crucial for both substrate binding and reductase activity. The NADPH-dependent iron reduction was found to proceed via single-electron transfer in a double-displacement-type reaction through formation of a transient flavosemiquinone. The capacity to reduce substrates with extremely negative redox potentials, though at low catalytic rates, was studied by displacing the native FAD cofactor with 5-deaza-5-carba-FAD, which is restricted to a two-electron transfer. In the presence of the reconstituted noncatalytic protein, the ferric enterobactin midpoint potential increased remarkably and partially overlapped with the effective E(1) redox range. Concurrently, the observed molar ratios of generated Fe(II) versus NADPH were found to be ~1.5-fold higher for hydrolyzed ferric triscatecholates and ferric dicitrate than for ferric enterobactin. Further, combination of a chromosomal yqjH deletion with entC single- and entC fes double-deletion backgrounds showed the impact of yqjH on growth during supplementation with ferric siderophore substrates. Thus, YqjH enhances siderophore utilization in different iron acquisition pathways, including assimilation of low-potential ferric substrates that are not reduced by common cellular cofactors.
Collapse
Affiliation(s)
- Marcus Miethke
- Department of Chemistry/Biochemistry, Philipps University Marburg, Hans Meerwein Strasse, D-35032 Marburg, Germany.
| | | | | |
Collapse
|
32
|
Bonnefoy V, Holmes DS. Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environments. Environ Microbiol 2011; 14:1597-611. [DOI: 10.1111/j.1462-2920.2011.02626.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Parker Siburt CJ, Mietzner TA, Crumbliss AL. FbpA--a bacterial transferrin with more to offer. Biochim Biophys Acta Gen Subj 2011; 1820:379-92. [PMID: 21933698 DOI: 10.1016/j.bbagen.2011.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 08/25/2011] [Accepted: 09/02/2011] [Indexed: 01/26/2023]
Abstract
BACKGROUND Gram negative bacteria require iron for growth and virulence. It has been shown that certain pathogenic bacteria such as Neisseria gonorrhoeae possess a periplasmic protein called ferric binding protein (FbpA), which is a node in the transport of iron from the cell exterior to the cytosol. SCOPE OF REVIEW The relevant literature is reviewed which establishes the molecular mechanism of FbpA mediated iron transport across the periplasm to the inner membrane. MAJOR CONCLUSIONS Here we establish that FbpA may be considered a bacterial transferrin on structural and functional grounds. Data are presented which suggest a continuum whereby FbpA may be considered as a naked iron carrier, as well as a Fe-chelate carrier, and finally a member of the larger family of periplasmic binding proteins. GENERAL SIGNIFICANCE An investigation of the molecular mechanisms of action of FbpA as a member of the transferrin super family enhances our understanding of bacterial mechanisms for acquisition of the essential nutrient iron, as well as the modes of action of human transferrin, and may provide approaches to the control of pathogenic diseases. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.
Collapse
|
34
|
Harrington JM, Park H, Ying Y, Hong J, Crumbliss AL. Characterization of Fe(iii) sequestration by an analog of the cytotoxic siderophore brasilibactin A: Implications for the iron transport mechanism in mycobacteria. Metallomics 2011; 3:464-71. [DOI: 10.1039/c0mt00109k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Miethke M, Pierik AJ, Peuckert F, Seubert A, Marahiel MA. Identification and characterization of a novel-type ferric siderophore reductase from a gram-positive extremophile. J Biol Chem 2010; 286:2245-60. [PMID: 21051545 DOI: 10.1074/jbc.m110.192468] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Iron limitation is one major constraint of microbial life, and a plethora of microbes use siderophores for high affinity iron acquisition. Because specific enzymes for reductive iron release in gram-positives are not known, we searched Firmicute genomes and found a novel association pattern of putative ferric siderophore reductases and uptake genes. The reductase from the schizokinen-producing alkaliphile Bacillus halodurans was found to cluster with a ferric citrate-hydroxamate uptake system and to catalyze iron release efficiently from Fe[III]-dicitrate, Fe[III]-schizokinen, Fe[III]-aerobactin, and ferrichrome. The gene was hence named fchR for ferric citrate and hydroxamate reductase. The tightly bound [2Fe-2S] cofactor of FchR was identified by UV-visible, EPR, CD spectroscopy, and mass spectrometry. Iron release kinetics were determined with several substrates by using ferredoxin as electron donor. Catalytic efficiencies were strongly enhanced in the presence of an iron-sulfur scaffold protein scavenging the released ferrous iron. Competitive inhibition of FchR was observed with Ga(III)-charged siderophores with K(i) values in the micromolar range. The principal catalytic mechanism was found to couple increasing K(m) and K(D) values of substrate binding with increasing k(cat) values, resulting in high catalytic efficiencies over a wide redox range. Physiologically, a chromosomal fchR deletion led to strongly impaired growth during iron limitation even in the presence of ferric siderophores. Inductively coupled plasma-MS analysis of ΔfchR revealed intracellular iron accumulation, indicating that the ferric substrates were not efficiently metabolized. We further show that FchR can be efficiently inhibited by redox-inert siderophore mimics in vivo, suggesting that substrate-specific ferric siderophore reductases may present future targets for microbial pathogen control.
Collapse
Affiliation(s)
- Marcus Miethke
- Fachbereich Chemie/Biochemie, Philipps Universität Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, Germany.
| | | | | | | | | |
Collapse
|
36
|
Harrington JM, Chittamuru S, Dhungana S, Jacobs HK, Gopalan AS, Crumbliss AL. Synthesis and iron sequestration equilibria of novel exocyclic 3-hydroxy-2-pyridinone donor group siderophore mimics. Inorg Chem 2010; 49:8208-21. [PMID: 20715813 PMCID: PMC3166231 DOI: 10.1021/ic902595c] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The synthesis of a novel class of exocyclic bis- and tris-3,2-hydroxypyridinone (HOPO) chelators built on N(2) and N(3) aza-macrocyclic scaffolds and the thermodynamic solution characterization of their complexes with Fe(III) are described. The chelators for this study were prepared by reaction of either piperazine or N,N',N''-1,4,7-triazacyclononane with a novel electrophilic HOPO iminium salt in good yields. Subsequent removal of the benzyl protecting groups using HBr/acetic acid gave bis-HOPO chelators N(2)(etLH)(2) and N(2)(prLH)(2), and tris-HOPO chelator N(3)(etLH)(3) in excellent yields. Solution thermodynamic characterization of their complexes with Fe(III) was accomplished using spectrophotometric, potentiometric, and electrospray ionization-mass spectrometry (ESI-MS) methods. The pK(a)'s of N(2)(etLH)(2), N(2)(prLH)(2), and N(3)(etLH)(3), were determined spectrophotometrically and potentiometrically. The Fe(III) complex stability constants for the tetradentate N(2)(etLH)(2) and N(2)(prLH)(2), and hexadentate N(3)(etLH)(3), were measured by spectrophotometric and potentiometric titration, and by competition with ethylenediaminetetraacetic acid (EDTA). N(3)(etLH)(3) forms a 1:1 complex with Fe(III) with log β(110) = 27.34 ± 0.04. N(2)(prLH)(2) forms a 3:2 L:Fe complex with Fe(III) where log β(230) = 60.46 ± 0.04 and log β(110) = 20.39 ± 0.02. While N(2)(etLH)(2) also forms a 3:2 L:Fe complex with Fe(III), solubility problems precluded determining log β(230); log β(110) was found to be 20.45 ± 0.04. The pFe values of 26.5 for N(3)(etLH)(3) and 24.78 for N(2)(prLH)(2) are comparable to other siderophore molecules used in the treatment of iron overload, suggesting that these hydroxypyridinone ligands may be useful in the development of new chelation therapy agents.
Collapse
Affiliation(s)
| | - Sumathi Chittamuru
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, 88003-8001
| | - Suraj Dhungana
- Department of Chemistry, Duke University, Durham, NC 27708-0346
| | - Hollie K. Jacobs
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, 88003-8001
| | - Aravamudan S. Gopalan
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, 88003-8001
| | | |
Collapse
|
37
|
Abstract
Siderophores are compounds produced by bacteria, fungi and graminaceous plants for scavenging iron from the environment. They are low-molecular-weight compounds (500-1500 daltons) possessing a high affinity for iron(III) (Kf > 1030), the biosynthesis of which is regulated by iron levels and the function of which is to supply iron to the cell. This article briefly describes the classification and chemical properties of siderophores, before outlining research on siderophore biosynthesis and transport. Clinically important siderophores and the therapeutic potential of siderophore design are described. Appendix 1 provides a comprehensive list of siderophore structures.
Collapse
Affiliation(s)
- Robert C Hider
- Division of Pharmaceutical Science, King's College, London, SE1 9NH, UK.
| | | |
Collapse
|
38
|
|
39
|
Orera I, Rodríguez-Castrillón JA, Moldovan M, García-Alonso JI, Abadía A, Abadía J, Álvarez-Fernández A. Using a dual-stable isotope tracer method to study the uptake, xylem transport and distribution of Fe and its chelating agent from stereoisomers of an Fe(iii)-chelate used as fertilizer in Fe-deficient Strategy I plants. Metallomics 2010; 2:646-57. [DOI: 10.1039/c0mt00018c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Crumbliss AL, Harrington JM. Iron sequestration by small molecules: Thermodynamic and kinetic studies of natural siderophores and synthetic model compounds. ADVANCES IN INORGANIC CHEMISTRY 2009. [DOI: 10.1016/s0898-8838(09)00204-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|