1
|
Yao Q, Duan R, Feng Y, Duan D. Alternative splicing analysis of stress tolerance to Al and flg22 in Vitis quinquangularis. PLANTA 2025; 261:139. [PMID: 40366460 DOI: 10.1007/s00425-025-04713-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 05/04/2025] [Indexed: 05/15/2025]
Abstract
MAIN CONCLUSION Alternative splicing of transcriptomes after Al and flg22 treatment for 12 h in response to plant defense of Chinese wild Vitis quinquangularis: genes related to stress resistance and splicing factors were identified in response to Al and flg22 treatment. Alternative splicing (AS) is one of the major post-transcriptional regulation processes that potentially regulates the response to biotic and abiotic stresses in plants. So far, the insight into potential roles of AS in grapevine response to aluminium (Al) and flagellin 22 (flg22) stresses remains poorly understood. We performed transcriptome sequencing of grape leaves before and after Al treatment and flg22 treatment, respectively, to identify AS genes. In this study, a total of 11,805 AS events were identified in Al treatment, of which the skipped exon (SE; 88.72%) type was the most frequent. 9156 AS events were identified under flg22 treatment, of which the SE (88.52%) type was the most frequent. Compared with Al-treated and flg22-treated 0 h, there were 42 and 147 differential alternative splicing (DAS) genes differentially expressed (DASEGs) in Al-treated and flg22-treated 12 h, respectively. Functional analysis showed that DASEGs after Al treatment were mainly enriched in glutathione metabolism pathway; DASEGs after flg22 treatment were enriched in MAPK signaling and plant hormone signal transduction. We further verified seven resistance-related DASEGs with up-regulated expression in Al-treated 12 h, including beta-glucosidase, calcineurin B-like protein, synaptotagmin-3, cysteine synthase and glutathione reductase. Several genes function as leucine-rich repeats receptor-like serine/threonine protein kinase, BRI1 associated receptor kinase 1 and receptor-like protein kinase were also verified by RT-qPCR. We also verified four serine/arginine (SR)-rich proteins SCL30A, SCL28, RS2Z32 and SR45A, which were up-regulated in both Al and flg22 stresses. In conclusion, this study provides an in-depth analysis of the correlation between alternative splicing and grapevine stress tolerance, which helps to identify potential candidate genes for useful traits, provides a theoretical basis for grapevine breeding in plant stress tolerance, and offers new perspectives for understanding grapevine environmental adaptation strategies.
Collapse
Affiliation(s)
- Qian Yao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Ruiwei Duan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yang Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Dong Duan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
2
|
Xu C, Gao KK, Cui MQ, Wang YX, Cen ZY, Xu JM, Wu YR, Ding WN, Yan JY, Li GX, Benhamed M, Jin CW, Zheng SJ, Ding ZJ. The PP2CH- and PBL27-mediated phosphorylation switch of aluminium ion receptor PSKR1/ALR1 controls plant aluminum sensing ability. NATURE PLANTS 2025; 11:1074-1088. [PMID: 40216985 DOI: 10.1038/s41477-025-01983-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/11/2025] [Indexed: 05/23/2025]
Abstract
The ability of plants to sense toxic and nutrient ions is critical for their growth and survival, yet how this ability is regulated remains largely unknown. We previously identified the receptor-like kinase PSKR1/ALR1 (ALR1) in Arabidopsis as a receptor that senses phytotoxic aluminium (Al) ions, which cause severe crop yield loss and forest decline on acidic soils widely distributed over the world. Here we further show that the phosphorylation status of specific Ser residues in ALR1(Ser696/698) controls plant Al-sensing ability. ALR1(Ser696/698) phosphorylation levels are rapidly reduced by Al ions, and the dephosphorylation promotes the interaction and inter-phosphorylation of ALR1 and the BAK1 coreceptor, thereby activating STOP1-dependent Al signalling and resistance. We next identify a clade of PP2C-type phosphatases (PP2CH1 and PP2CH2) that mediate the dephosphorylation of ALR1(Ser696/698). We show that Al ions rapidly increase the protein accumulation of PP2CH1/2 and promote their interaction with ALR1. The lack of both PP2CHs notably increases the phosphorylation levels of ALR1(Ser696/698), therefore reducing the strength of Al signalling. Additionally, we found a receptor-like cytoplasmic kinase, PBL27, responsible for phosphorylating ALR1(Ser696/698) and playing a negative role in the regulation of ALR1-mediated Al signalling. These findings uncover a phosphatase/kinase-mediated phosphorylation switching mechanism of ALR1 that controls plant Al-sensing ability, providing insights into ion-sensing mechanisms in living organisms.
Collapse
Affiliation(s)
- Chen Xu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ke Ke Gao
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Meng Qi Cui
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yu Xuan Wang
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ze Yu Cen
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ji Ming Xu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yun Rong Wu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wo Na Ding
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Ningbo, China
| | - Jing Ying Yan
- Agricultural Experimental Station, Zhejiang University, Hangzhou, China
| | - Gui Xin Li
- College of Agronomy and Biotechnology, Zhejiang University, Hangzhou, China
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Chong Wei Jin
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, China.
| | - Zhong Jie Ding
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Allam G, Sakariyahu SK, McDowell T, Pitambar TA, Papadopoulos Y, Bernards MA, Hannoufa A. miR156 Is a Negative Regulator of Aluminum Response in Medicago sativa. PLANTS (BASEL, SWITZERLAND) 2025; 14:958. [PMID: 40265915 PMCID: PMC11945701 DOI: 10.3390/plants14060958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/11/2025] [Accepted: 03/15/2025] [Indexed: 04/24/2025]
Abstract
Aluminum (Al) toxicity is a serious environmental constraint facing crop production in acidic soils, primarily due to the oxidative damage it causes to plant tissues. Alfalfa (Medicago sativa), a globally important forage crop, is highly susceptible to Al-induced stress, necessitating the development of Al-tolerant cultivars for sustainable forage production. In this study, we investigated the regulatory role of miR156 in Al stress response in alfalfa. Transcript analysis revealed significant downregulation of miR156 in alfalfa roots after 8 h of Al exposure, suggesting a negative role for miR156 in response to Al. To further investigate the role of miR156 in regulating agronomic traits and alfalfa's Al tolerance, we utilized the short tandem target mimic (STTM) method to silence miR156 in alfalfa (MsSTTM156), which led to an upregulation of SQUAMOSA PROMOTER BINDING-LIKE (SPL) target genes, albeit with variable miR156 dose-dependent effects across different transgenic genotypes. Morphological characterization of MsSTTM156 plants revealed significant negative changes in root architecture, root and shoot biomass, as well as flowering time. Under Al stress, overexpression of miR156 in alfalfa (MsmiR156OE) resulted in stunted growth and reduced biomass, whereas moderate MsmiR156 silencing enhanced root dry weight and increased stem basal diameter. In contrast, MsmiR156OE reduced plant height, stem basal diameter, shoot branching, and overall biomass under Al stress conditions. At the molecular level, silencing miR156 modulated the transcription of cell wall-related genes linked to Al tolerance, such as polygalacturonase 1(MsPG1) and polygalacturonase 4 (MsPG4). Furthermore, miR156 influenced the expression of indole-3-acetic acid (IAA) transport-related genes auxin transporter-like protein (MsAUX1) and auxin efflux carrier components 2 (MsPIN2), with MsSTTM156 and MsmiR156OE plants showing lower and higher transcript levels, respectively, upon Al exposure. These findings reveal the multi-layered role of miR156 in mediating Al tolerance, providing valuable insights into the genetic strategies that regulate response to Al stress in alfalfa.
Collapse
Affiliation(s)
- Gamalat Allam
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (G.A.); (S.K.S.); (T.A.P.)
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada;
| | - Solihu K. Sakariyahu
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (G.A.); (S.K.S.); (T.A.P.)
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada;
| | - Tim McDowell
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (G.A.); (S.K.S.); (T.A.P.)
| | - Tevon A. Pitambar
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (G.A.); (S.K.S.); (T.A.P.)
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada;
| | | | - Mark A. Bernards
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada;
| | - Abdelali Hannoufa
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (G.A.); (S.K.S.); (T.A.P.)
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada;
| |
Collapse
|
4
|
Schaefer PE, Tabaldi LA, Müller TM, Ribeiro LP, Martin TN. Development of maize under different pH values, humidity and presence of Azospirillum brasilense. BRAZ J BIOL 2025; 84:e287643. [PMID: 39907340 DOI: 10.1590/1519-6984.287643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/11/2024] [Indexed: 02/06/2025] Open
Abstract
Abiotic factors play a crucial role in the productivity of agricultural systems, and stress resulting from these factors can significantly restrict crop yields. To address this challenge, the use of tools capable of mitigating adverse effects, such as growth-promoting bacteria, is essential. This study aimed to investigate the growth of maize plants inoculated or not with Azospirillum brasilense, subjected to variations in soil pH and moisture. Two experiments were conducted under controlled conditions, in which maize plants inoculated with A. brasilense were subjected to variations in (i) soil moisture (100, 75, 50, and 25% of field capacity) and (ii) hydrogenic potential (pH 4.5; 5.5; 5.0; 6.0; and 6.5). It was observed that low moisture favored root growth but limited the development of leaves and stems of maize plants at the V4 phenological stage. The increased root development provided by A. brasilense under conditions of water restriction resulted in a reduction in water use efficiency by the leaves. Additionally, more acidic and/or alkaline pH levels also reduced the dry mass of roots and aboveground parts, as well as the carboxylation efficiency of rubisco, but increased water use efficiency (At 25% FC water deficit, WUE increased by 9.5% in rhizobacterium-treated seeds and by 16% in the control). Inoculation with A. brasilense promoted greater development of maize plants, as evidenced by increased volume, root length, and leaf area. Although maize plants showed better initial development without water restriction and in soil with a pH of 5.9, A. brasilense allowed maize plant growth even at pH 5.1, without significant adverse impacts.
Collapse
Affiliation(s)
- P E Schaefer
- Universidade Federal de Santa Maria - UFSM, Departamento de Fitotecnia, Santa Maria, RS, Brasil
| | - L A Tabaldi
- Universidade Federal de Santa Maria - UFSM, Departamento de Biologia, Santa Maria, RS, Brasil
| | - T M Müller
- Universidade Federal de Santa Maria - UFSM, Departamento de Fitotecnia, Santa Maria, RS, Brasil
| | - L P Ribeiro
- Universidade Federal de Santa Maria - UFSM, Departamento de Fitotecnia, Santa Maria, RS, Brasil
| | - T N Martin
- Universidade Federal de Santa Maria - UFSM, Departamento de Fitotecnia, Santa Maria, RS, Brasil
| |
Collapse
|
5
|
Puntel RT, Stefanello R, Jesus da Silva Garcia W, Strazzabosco Dorneles L. Aluminum and UV-C light on seed germination and initial growth of white oats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:989-998. [PMID: 39302011 DOI: 10.1080/15287394.2024.2405720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Aluminum (Al) may be beneficial to crops, but in excess becomes detrimental to the germination and initial development of seedlings. The main determining indicators are the type of crop and exposure duration. The aim of this study was to examine the influence of Al and of UV-C light on the germination and initial growth of white oats. Seeds were sown on germitest paper in a solution of 100, 200, 300, 400, or 500 mg/L of aluminum chloride and kept in a germination chamber at 20°C for a 12-hr photoperiod. Germination and seedling growth parameters were determined after 5 and 10 days. The seeds were also exposed to two doses of UV-C (0.85 and 3.42 kJ m-2) under aluminum chloride stress (200 mg/L). Data demonstrated that treatment with aluminum chloride significantly decrease in germination at 200 mg/L and total seedling length at 100 mg/L. Exposure of seeds to UV-C light under excess Al (200 mg/L) did not show a significant effect on germination and growth compared to control (non-irradiated). Results indicated that exposure to high concentration of Al in the medium adversely altered germination and initial growth of white oat seedlings. Although UV-C light alone was not detrimental to the germination process, treatment with UV-C light also failed to mitigate the toxic effects of Al.
Collapse
Affiliation(s)
- Raissa Tainá Puntel
- Department of Agronomy, Federal University of Santa Maria, Santa Maria, Brazil
| | - Raquel Stefanello
- Department of Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | | | - Lucio Strazzabosco Dorneles
- Laboratory of Nanostructured Magnetic Materials, Department of Physics, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
6
|
Cao J, Wang T, Yu D, He J, Qian W, Tang B, Bi X, Wang H, Zhang Y. MsDUF3700 overexpression enhances aluminum tolerance in alfalfa shoots. PLANT CELL REPORTS 2024; 43:301. [PMID: 39630276 DOI: 10.1007/s00299-024-03385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024]
Abstract
KEY MESSAGE This study identified a gene associated with aluminum stress through GWAS, which regulates aluminum tolerance in alfalfa by contributing to the antioxidant system. Aluminum (Al) ions precipitate in acidic soils with a pH < 5.5, where they are absorbed alongside other nutrients by plants, negatively impacting plant growth. Alfalfa, the most widely grown perennial legume forage in the world, is especially vulnerable to acidic soil conditions. Our research pinpointed MsDUF3700 as a potential gene linked to Al-response traits via genome-wide association analysis in Medicago sativa. MsDUF3700 encodes the domain of unknown function (DUF). We observed higher expression of MsDUF3700 in Al-tolerant alfalfa compared to Al-sensitive ecotypes. MsDUF3700-overexpressing transgenic alfalfa (MsDUF3700-OE) showed shorter root elongation and higher Al accumulation in roots than wild type (WT) under Al conditions. However, the shoots of MsDUF3700-OE lines showed enhanced growth rates under both normal and Al stress conditions. Under Al stress, MsDUF3700-OE lines showed increased H2O2 and malondialdehyde (MDA) levels in the roots, alongside reduced catalase activity, In contrast, the shoots showed an inverse trend. In addition, we found that MsDUF3700-OE alfalfa plants had high Al accumulation in the roots and low Al accumulation in the shoots. Transcripts of MsALS3 and MsPALT1, homologs of Al translocation in alfalfa, were downregulated, while MsNrat1, a homolog of transporters absorb Al, was upregulated in the roots of MsDUF3700-OE in alfalfa. Our research indicates that MsDUF3700 plays a role in aluminum stress by participating in antioxidative defense and facilitating aluminum transport from roots to shoots.
Collapse
Affiliation(s)
- Jiamin Cao
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Tingting Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dian Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Junyi He
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wenwu Qian
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Bingxia Tang
- Chongqing Yubei District Rural Property Rights Transfer Service Co, Chongqing, 401120, China
| | - Xiaojing Bi
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hui Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Yunwei Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Lima TMDE, Costa MVDA, Lana RMQ, Nascimento AGG, Dias DCP, Ribeiro BT. Diagnose of soil fertility properties of a representative agricultural mesoregion in the Cerrado biome as affected by land use. AN ACAD BRAS CIENC 2024; 96:e20240116. [PMID: 39607127 DOI: 10.1590/0001-3765202420240116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/08/2024] [Indexed: 11/29/2024] Open
Abstract
In Brazil, most of cereal production is concentrated in the Cerrado which is characterized by poor soils. Thus, the soil fertility management is important for suitable use of Cerrado's soils. After 40 years of increasing use of Cerrado for agricultural purposes, this work aimed to evaluate the soil fertility of a representative area known as Triângulo Mineiro and Alto Paranaíba (TMAP) mesoregion. Different land uses from 126 farms were selected for soil sampling and assessed the following properties: pH; exchangeable Al3+, Ca2+, Mg2+; available P, K+, S, B, Fe, Cu, Mn, and Zn; soil organic matter (SOM); and cation exchange capacity (CEC) effective and potential at pH 7.0. Land uses improved the soil fertility properties compared to native Cerrado vegetation, except planted forests. The pH increased and Al3+ was neutralized, however, satisfactory contents of Ca2+ and Mg2+ were not reached. CEC is still considered low to medium, since SOM was not significantly increased. Available P, S, Fe, Mn, Zn, and Cu contents increased, being considered satisfactory. In general, our findings suggest that the nutrients can be considered adequate for crop production and sustainability. However, continuous monitoring for maintenance of soil fertility and adoption of best management practices are needed.
Collapse
Affiliation(s)
- Tatiane M DE Lima
- Universidade Federal de Uberlândia, Instituto de Ciências Agrárias, Rodovia LMG, 746, Km 01, Bairro Araras, 38500-000 Monte Carmelo, MG, Brazil
| | - Marcela V DA Costa
- Universidade Federal de Lavras, Departamento de Ciência do Solo, Trevo Rotatório Professor Edmir Sá Santos, s/n, Caixa Postal 3037, 37203-202 Lavras, MG, Brazil
| | - Regina Maria Q Lana
- Universidade Federal de Uberlândia, Instituto de Ciências Agrárias, Rodovia LMG, 746, Km 01, Bairro Araras, 38500-000 Monte Carmelo, MG, Brazil
| | - Athos Gabriel G Nascimento
- Universidade Federal de Uberlândia, Instituto de Ciências Agrárias, Rodovia LMG, 746, Km 01, Bairro Araras, 38500-000 Monte Carmelo, MG, Brazil
| | - Diogo César P Dias
- Universidade Federal de Uberlândia, Instituto de Ciências Agrárias, Rodovia LMG, 746, Km 01, Bairro Araras, 38500-000 Monte Carmelo, MG, Brazil
| | - Bruno T Ribeiro
- Universidade Federal de Lavras, Departamento de Ciência do Solo, Trevo Rotatório Professor Edmir Sá Santos, s/n, Caixa Postal 3037, 37203-202 Lavras, MG, Brazil
| |
Collapse
|
8
|
Mu SY, Yang YT, Qu XY, Wang FF, Ma FF, Ding ZN, Ye LP, Zhang YL, Zhang JJ, Lyu MM, Li SB, Cao GQ, Wu C, Ding GC, Chen Y. A potential role of a special type of abortive seeds in Cunninghamia lanceolata: promoting the growth of healthy seedlings in active aluminum ions-rich soil. FRONTIERS IN PLANT SCIENCE 2024; 15:1482355. [PMID: 39582627 PMCID: PMC11581864 DOI: 10.3389/fpls.2024.1482355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/11/2024] [Indexed: 11/26/2024]
Abstract
Background and aims "Astringent seed" is a type of abortive seed frequently observed in Chinese fir (Cunninghamia lanceolata). It is widely recognized but poorly understood for its underlying causes. This study investigates the potential of astringent seeds to alleviate the toxic effects of active aluminum ions. Methods This study involved treating seeds and seedlings with two distinct concentrations of astringent seeds water extracts under the aluminum ion stress. Then the germination of seeds and growth of seedlings were evaluated and compared. Results Under aluminum stress, both seed germination and seedling growth were notably inhibited. Treatment with a low-concentration of the extract significantly alleviated this inhibition. Root elongation in the seedlings increased by 36.95% compared to the control group, and the aluminum ion accumulation at the root tips was reduced by 38.89% relative to the aluminum-stressed group. This treatment also normalized the levels of malondialdehyde (MDA) in the roots and leaves, enhanced the activities of antioxidative enzymes such as superoxide dismutase (SOD) and catalase (CAT), and restored the levels of endogenous hormones including gibberellin (GA3), indole-3-acetic acid (IAA), methyl jasmonate (Ja-ME), and abscisic acid (ABA). Furthermore, the low-concentration of the extract positively impacted the disorganized chloroplast structures. In contrast, a high-concentration of the extract failed to revert most of these stress indicators. Conclusion Low concentrations of astringent seed water extract effectively alleviate the inhibitory effects of aluminum ions on seed and seedling. This implies that in natural environments, the proximity of healthy seeds to astringent seeds could potentially enhance their growth.
Collapse
Affiliation(s)
- Shi-Yan Mu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ya-Ting Yang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiao-Yu Qu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fang-Fang Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fang-Fang Ma
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhen-Ning Ding
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ling-Peng Ye
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ya-Ling Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jia-Jun Zhang
- Key Laboratory for Forest Stress Physiological Ecology and Molecular Biology of Fujian Provincial Department of Education at College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Meng-Meng Lyu
- Key Laboratory for Forest Stress Physiological Ecology and Molecular Biology of Fujian Provincial Department of Education at College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shu-Bin Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guang-Qiu Cao
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration at College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chao Wu
- College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guo-Chang Ding
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration at College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu Chen
- Key Laboratory for Forest Stress Physiological Ecology and Molecular Biology of Fujian Provincial Department of Education at College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
9
|
Lin Y, Liu G, Liu P, Chen Q, Guo X, Lu X, Cai Z, Sun L, Liu J, Chen K, Liu G, Tian J, Liang C. Border-like cell formation mediated by SgPG1 confers aluminum resistance in Stylosanthes guianensis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1605-1624. [PMID: 39453443 DOI: 10.1111/tpj.17073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 09/28/2024] [Indexed: 10/26/2024]
Abstract
Stylosanthes is an important forage legume in tropical areas with strong resistance to aluminum (Al) toxicity, though knowledge of mechanisms underlying this resistance remains fragmentary. We found that border-like cells (BLCs) were constitutively produced surrounding the root tips of all 54 examined Stylosanthes guianensis genotypes, but not the Stylosanthes viscose genotype TF0140. In genotypic comparisons under Al conditions, the S. guianensis genotype RY#2 retained significantly more Al in BLCs and thereby showed higher relative root growth than TF0140. Formation of BLCs accompanied changes in cell wall pectin epitopes and differential expression of genes involved in pectin metabolism, including a polygalacturonase (SgPG1). The expression pattern of SgPG1 was consistent with the formation of BLCs in both RY#2 and TF0140. SgPG1 was localized in cell walls and exhibited high activities mediating demethyl-esterified homogalacturonan degradation. Overexpressing SgPG1 changed cell wall pectin epitopes, enhanced BLCs production, and Al resistance in both Arabidopsis and Stylosanthes hairy roots. Furthermore, combining protein-DNA binding assays in vitro and in vivo, a bHLH transcription factor SgbHLH19 was demonstrated to be the upstream regulator of SgPG1. Our study demonstrates that S. guianensis Al resistance mainly relies on BLCs, whose formation involves cell wall pectin epitope modification by SgPG1.
Collapse
Affiliation(s)
- Yan Lin
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Guoxuan Liu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Pandao Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agriculture Sciences, Haikou, 571101, P. R. China
| | - Qianqian Chen
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Xueqiong Guo
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Xing Lu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Zefei Cai
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Lili Sun
- Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| | - Jiping Liu
- Robert Holley Center, US Department of Agriculture, Agricultural Research Service, Cornell University, Ithaca, New York, 14853, USA
| | - Kang Chen
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Guodao Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agriculture Sciences, Haikou, 571101, P. R. China
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Cuiyue Liang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| |
Collapse
|
10
|
Nie G, Huang Y, Wang Y, He J, Zhang R, Yan L, Huang L, Zhang X. Physiological and comprehensive transcriptome analysis reveals distinct regulatory mechanisms for aluminum tolerance of Trifolium repens. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:117001. [PMID: 39236654 DOI: 10.1016/j.ecoenv.2024.117001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
It is estimated that up to 50 % of arable lands worldwide are acidic, and most crops are severely inhibited due to the high active aluminum (Al). Trifolium repens is an excellent legume forage with a certain acid tolerance, although it is affected by Al toxicity in acidic soil. In this study, physiological and transcriptomic responses of different white clover varieties were analyzed when exposed to a high-level of Al stress. The results revealed that Trifolium repens had a high level of Al toxicity tolerance, and accumulated nearly 70 % of Al3+ in its roots. Al toxicity significantly inhibited the root length and root activity, decreased the chlorophyll (Chl) content and photosynthetic pigments, while significantly increased the intercellular CO2 concentration (Ci). The content of malondialdehyde (MDA), electrolyte leakage (EL), proline and reactive oxygen species (ROS) were significantly accumulated under Al stress. Furthermore, a total of 27,480 differentially expressed genes (DEGs) were identified after the treatment. Gene ontology (GO) and Kyoto encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that most Al-responsive genes enriched to chloroplast thylakoid membrane, chloroplast stroma and photosynthesis in Haifa leaf while in MAG leaf highly enriched in response to regulation of defense response, which could induce the different tolerance of the two cultivars to Al stress. Besides, pectin methylesterase (PME), glycosyl transferases (GT1) and chalcone synthase genes associated with cell wall biosynthesis may improve the Al accumulation and enhance tolerance of Al toxicity. The results established here would help to understand the morphological structure, physiological and biochemical response, and molecular mechanism of white clover under Al tolerance.
Collapse
Affiliation(s)
- Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yizhi Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jie He
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Rui Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lijun Yan
- Sichuan Academy of Grassland Science, Chengdu 611731, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
11
|
Feng X, Chen X, Meng Q, Song Z, Zeng J, He X, Wu F, Ma W, Liu W. Comparative Long Non-Coding Transcriptome Analysis of Three Contrasting Barley Varieties in Response to Aluminum Stress. Int J Mol Sci 2024; 25:9181. [PMID: 39273130 PMCID: PMC11395258 DOI: 10.3390/ijms25179181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Aluminum toxicity is a major abiotic stress on acidic soils, leading to restricted root growth and reduced plant yield. Long non-coding RNAs are crucial signaling molecules regulating the expression of downstream genes, particularly under abiotic stress conditions. However, the extent to which lncRNAs participate in the response to aluminum (Al) stress in barley remains largely unknown. Here, we conducted RNA sequencing of root samples under aluminum stress and compared the lncRNA transcriptomes of two Tibetan wild barley genotypes, XZ16 (Al-tolerant) and XZ61 (Al-sensitive), as well as the aluminum-tolerant cultivar Dayton. In total, 268 lncRNAs were identified as aluminum-responsive genes on the basis of their differential expression profiles under aluminum treatment. Through target gene prediction analysis, we identified 938 candidate lncRNA-messenger RNA (mRNA) pairs that function in a cis-acting manner. Subsequently, enrichment analysis showed that the genes targeted by aluminum-responsive lncRNAs were involved in diterpenoid biosynthesis, peroxisome function, and starch/sucrose metabolism. Further analysis of genotype differences in the transcriptome led to the identification of 15 aluminum-responsive lncRNAs specifically altered by aluminum stress in XZ16. The RNA sequencing data were further validated by RT-qPCR. The functional roles of lncRNA-mRNA interactions demonstrated that these lncRNAs are involved in the signal transduction of secondary messengers, and a disease resistance protein, such as RPP13-like protein 4, is probably involved in aluminum tolerance in XZ16. The current findings significantly contribute to our understanding of the regulatory roles of lncRNAs in aluminum tolerance and extend our knowledge of their importance in plant responses to aluminum stress.
Collapse
Affiliation(s)
- Xue Feng
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Xiaoya Chen
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Quan Meng
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Ziyan Song
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Jianbin Zeng
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyan He
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Wujun Ma
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenxing Liu
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
12
|
Chakraborty N, Das A, Pal S, Roy S, Sil SK, Adak MK, Hassanzamman M. Exploring Aluminum Tolerance Mechanisms in Plants with Reference to Rice and Arabidopsis: A Comprehensive Review of Genetic, Metabolic, and Physiological Adaptations in Acidic Soils. PLANTS (BASEL, SWITZERLAND) 2024; 13:1760. [PMID: 38999600 PMCID: PMC11243567 DOI: 10.3390/plants13131760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
Aluminum (Al) makes up a third of the Earth's crust and is a widespread toxic contaminant, particularly in acidic soils. It impacts crops at multiple levels, from cellular to whole plant systems. This review delves into Al's reactivity, including its cellular transport, involvement in oxidative redox reactions, and development of specific metabolites, as well as the influence of genes on the production of membrane channels and transporters, alongside its role in triggering senescence. It discusses the involvement of channel proteins in calcium influx, vacuolar proton pumping, the suppression of mitochondrial respiration, and the initiation of programmed cell death. At the cellular nucleus level, the effects of Al on gene regulation through alterations in nucleic acid modifications, such as methylation and histone acetylation, are examined. In addition, this review outlines the pathways of Al-induced metabolic disruption, specifically citric acid metabolism, the regulation of proton excretion, the induction of specific transcription factors, the modulation of Al-responsive proteins, changes in citrate and nucleotide glucose transporters, and overall metal detoxification pathways in tolerant genotypes. It also considers the expression of phenolic oxidases in response to oxidative stress, their regulatory feedback on mitochondrial cytochrome proteins, and their consequences on root development. Ultimately, this review focuses on the selective metabolic pathways that facilitate Al exclusion and tolerance, emphasizing compartmentalization, antioxidative defense mechanisms, and the control of programmed cell death to manage metal toxicity.
Collapse
Affiliation(s)
- Nilakshi Chakraborty
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Abir Das
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Sayan Pal
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Soumita Roy
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Sudipta Kumar Sil
- Department of Botany, University of Gour Banga, Malda 732103, West Bengal, India
| | - Malay Kumar Adak
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Mirza Hassanzamman
- Department of Agronomy, Faculty of Agriculture, Shar-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
13
|
Zhang F, Wang W, Yuan A, Li Q, Chu M, Jiang S, An Y. Investigating the involvement of potato ( Solanum tuberosum L.) StPHR1 gene in the combined stress response to phosphorus deficiency and aluminum toxicity. FRONTIERS IN PLANT SCIENCE 2024; 15:1413755. [PMID: 38974976 PMCID: PMC11225713 DOI: 10.3389/fpls.2024.1413755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024]
Abstract
Phosphorus deficiency and aluminum toxicity in acidic soils are important factors that limit crop yield. To further explore this issue, we identified 18 members of the StPHR gene family in the potato genome in this study. Through bioinformatics analysis, we found that the StPHR1 gene, an important member of this family, exhibited high expression levels in potato roots, particularly under conditions of phosphorus deficiency and aluminum toxicity stress. This suggested that the StPHR1 gene may play a crucial regulatory role in potato's resistance to phosphorus deficiency and aluminum toxicity. To validate this hypothesis, we conducted a series of experiments on the StPHR1 gene, including subcellular localization, GUS staining for tissue expression, heterologous overexpression, yeast two-hybrid hybridization, and bimolecular fluorescence complementation (BiFC). The results demonstrated that the StPHR1 gene is highly conserved in plants and is localized in the nucleus of potato cells. The heterologous overexpression of the gene in Arabidopsis plants resulted in a growth phenotype that exhibited resistance to both aluminum toxicity and phosphorus deficiency. Moreover, the heterologous overexpressing plants showed reduced aluminum content in the root system compared to the control group. Furthermore, we also identified an interaction between StPHR1 and StALMT6. These results highlight the potential application of regulating the expression of the StPHR1 gene in potato production to enhance its adaptation to the dual stress of phosphorus deficiency and high aluminum toxicity in acidic soils.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Food Science and Engineering, Moutai Institute, Luban Street, Renhuai, Guizhou, China
| | - Wenlun Wang
- Department of Food Science and Engineering, Moutai Institute, Luban Street, Renhuai, Guizhou, China
| | - Anping Yuan
- Department of Food Science and Engineering, Moutai Institute, Luban Street, Renhuai, Guizhou, China
| | - Qiong Li
- Department of Brewing Engineering, Moutai Institute, Luban Street, Renhuai, Guizhou, China
| | - Moli Chu
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources/College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Sixia Jiang
- Department of Food Science and Engineering, Moutai Institute, Luban Street, Renhuai, Guizhou, China
| | - Yanlin An
- Department of Food Science and Engineering, Moutai Institute, Luban Street, Renhuai, Guizhou, China
| |
Collapse
|
14
|
Dhandapani S, Sng YH, Agisha VN, Suraby EJ, Park BS. Mitigating aluminum toxicity and promoting plant resilience in acidic soil with Penicillium olsonii TLL1. FRONTIERS IN PLANT SCIENCE 2024; 15:1423617. [PMID: 38974977 PMCID: PMC11225409 DOI: 10.3389/fpls.2024.1423617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024]
Abstract
Aluminum (Al), prevalent in the crust of the Earth, jeopardizes plant health in acidic soils, hindering root growth and overall development. In this study, we first analysed the Al- and pH- tolerance of the Penicillium olsonii TLL1 strain (POT1; NRRL:68252) and investigated the potential for enhancing plant resilience under Al-rich acidic soil conditions. Our research illustrates the extraordinary tolerance of POT1 to both high Al concentrations and acidic conditions, showcasing its potential to alleviate Al-induced stress in plants. Metabolite analysis revealed that POT1 detoxifies Al through organic acid-dependent chelation mechanisms, significantly reducing Al stress in Arabidopsis and Pak Choi plants. Consequently, plant growth conditions improved, and the Al content in plant tissues decreased. Transcriptome analysis indicated that POT1 treatment downregulates genes associated with Al and oxidative stress such as MATE, ALS3, NIP1-2 and several peroxidases, highlighting its effectiveness in lessening Al-induced damage. Comparative assessments highlight the superior performance of POT1 compared to other Al-tolerant Penicillium species, attributed to its ability to thrive in diverse pH levels and effectively detoxify Al. These findings position POT1 as a promising agent for enhancing crop resilience in Al-compromised acidic soils, offering new avenues for promoting plant health and bolstering food security through increased crop yield and safety.
Collapse
Affiliation(s)
| | | | | | | | - Bong Soo Park
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Singapore
| |
Collapse
|
15
|
Wang J, Guo J, Yang H, Deng X, Zhang C. Low levels of Al stimulate the aboveground growth of Davidia involucrata saplings. BMC PLANT BIOLOGY 2024; 24:465. [PMID: 38807074 PMCID: PMC11131280 DOI: 10.1186/s12870-024-05173-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Davidia involucrata is a woody perennial and the only living species in the Genus Davidia. It is native to southern China where it holds cultural and scientific importance. However, D. involucrata is now an endangered species and its natural range includes low pH soils which are increasingly impacted by acid rain, nitrogen deposition and imbalanced nutrient cycling. The combination of these stresses also poses the additional risk of aluminum (Al) toxicity. Since the responses of D. involucrata to low pH and aluminum toxicity have not been investigated previously, a hydroponic experiment was conducted to examine the growth of one year old D. involucrata saplings after 50 d growth in a range of pH and Al conditions. Plant biomass, morphology, antioxidant enzyme activity, mineral concentrations and plant ecological strategy were compared at pH 5.8 and pH 4.0 without added Al (AlCl3) and in 0.1, 0.2 and 0.5 mM Al at pH 4.0. Our results showed that compared with pH 5.8, pH 4.0 (without added Al) not only inhibited root and shoot growth but also limited accumulation of nitrogen (N) and phosphorus (P) in leaves of D. involucrate. However, low Al concentrations (0.1 and 0.2 mM Al) at pH 4.0 partially restored the aboveground growth and leaf N concentrations, suggesting an alleviation of H+ toxicity by low Al concentrations. Compared with low Al concentrations, 0.5 mM Al treatment decreased plant growth and concentrations of N, P, and magnesium (Mg) in the leaves, which demonstrated the toxicity of high Al concentration. The results based on plant ecological strategy showed that D. involucrate decreased the competitiveness and favored its stress tolerance as pH changed from 5.8 to 4.0. Meanwhile, the competitiveness and stress tolerance of D. involucrata increased and decreased at low Al concentrations, respectively, and decreased and increased at high Al concentration, respectively. These trade-offs in ecological strategy were consistent with the responses of growth and antioxidant enzyme activity, reflecting a sensitive adaptation of D. involucrata to acid and Al stresses, which may aid in sustaining population dynamics. These findings are meaningful for understanding the population dynamics of D. involucrata in response to aluminum toxicity in acid soils.
Collapse
Affiliation(s)
- Jun Wang
- Key Laboratory of Southwest China Wildlife Resources Conservation (China West Normal University), Ministry of Education, Nanchong, 637009, Sichuan, China
- Institute of Environmental Science, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Jiong Guo
- Key Laboratory of Southwest China Wildlife Resources Conservation (China West Normal University), Ministry of Education, Nanchong, 637009, Sichuan, China
- College of Life Science, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Houqi Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (China West Normal University), Ministry of Education, Nanchong, 637009, Sichuan, China
- College of Life Science, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Xinqi Deng
- Key Laboratory of Southwest China Wildlife Resources Conservation (China West Normal University), Ministry of Education, Nanchong, 637009, Sichuan, China
- College of Life Science, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Chunyan Zhang
- Key Laboratory of Southwest China Wildlife Resources Conservation (China West Normal University), Ministry of Education, Nanchong, 637009, Sichuan, China.
- College of Life Science, China West Normal University, Nanchong, Sichuan, 637009, China.
| |
Collapse
|
16
|
Wang S, Cheng H, Wei Y. Supplemental Silicon and Boron Alleviates Aluminum-Induced Oxidative Damage in Soybean Roots. PLANTS (BASEL, SWITZERLAND) 2024; 13:821. [PMID: 38592832 PMCID: PMC10975118 DOI: 10.3390/plants13060821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/09/2024] [Accepted: 03/10/2024] [Indexed: 04/11/2024]
Abstract
Aluminum (Al) toxicity in acidic soils is a major abiotic stress that negatively impacts plant growth and development. The toxic effects of Al manifest primarily in the root system, leading to inhibited root elongation and functionality, which impairs the above-ground organs of the plant. Recent research has greatly improved our understanding of the applications of small molecule compounds in alleviating Al toxicity. This study aimed to investigate the role of boron (B), silicon (Si), and their combination in alleviating Al toxicity in soybeans. The results revealed that the combined application significantly improved the biomass and length of soybean roots exposed to Al toxicity compared to B and Si treatments alone. Our results also indicated that Al toxicity causes programmed cell death (PCD) in soybean roots, while B, Si, and their combination all alleviated the PCD induced by Al toxicity. The oxidative damage induced by Al toxicity was noticeably alleviated, as evidenced by lower MAD and H2O2 accumulation in the soybean roots treated with the B and Si combination. Moreover, B, Si, and combined B and Si significantly enhanced plant antioxidant systems by up-regulating antioxidant enzymes including CAT, POD, APX, and SOD. Overall, supplementation with B, Si, and their combination was found to alleviate oxidative damage and reduce PCD caused by Al toxicity, which may be one of the mechanisms by which they alleviate root growth inhibition due to Al toxicity. Our results suggest that supplementation with B, Si, and their combination may be an effective strategy to improve soybean growth and productivity against Al toxicity.
Collapse
Affiliation(s)
- Shuwei Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (S.W.); (H.C.)
| | - Haijing Cheng
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (S.W.); (H.C.)
| | - Yunmin Wei
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (S.W.); (H.C.)
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
17
|
Lu L, Chen X, Tan Q, Li W, Sun Y, Zhang Z, Song Y, Zeng R. Gibberellin-Mediated Sensitivity of Rice Roots to Aluminum Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:543. [PMID: 38498546 PMCID: PMC10892994 DOI: 10.3390/plants13040543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 03/20/2024]
Abstract
Aluminum toxicity poses a significant constraint on crop production in acidic soils. While phytohormones are recognized for their pivotal role in mediating plant responses to aluminum stress, the specific involvement of gibberellin (GA) in regulating aluminum tolerance remains unexplored. In this study, we demonstrate that external GA exacerbates the inhibitory impact of aluminum stress on root growth of rice seedlings, concurrently promoting reactive oxygen species (ROS) accumulation. Furthermore, rice plants overexpressing the GA synthesis gene SD1 exhibit enhanced sensitivity to aluminum stress. In contrast, the slr1 gain-of-function mutant, characterized by impeded GA signaling, displays enhanced tolerance to aluminum stress, suggesting the negative regulatory role of GA in rice resistance to aluminum-induced toxicity. We also reveal that GA application suppresses the expression of crucial aluminum tolerance genes in rice, including Al resistance transcription factor 1 (ART1), Nramp aluminum transporter 1 (OsNramp4), and Sensitive to Aluminum 1 (SAL1). Conversely, the slr1 mutant exhibits up-regulated expression of these genes compared to the wild type. In summary, our results shed light on the inhibitory effect of GA in rice resistance to aluminum stress, contributing to a theoretical foundation for unraveling the intricate mechanisms of plant hormones in regulating aluminum tolerance.
Collapse
Affiliation(s)
- Long Lu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (X.C.); (Q.T.); (W.L.); (Y.S.); (Z.Z.)
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinyu Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (X.C.); (Q.T.); (W.L.); (Y.S.); (Z.Z.)
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qinyan Tan
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (X.C.); (Q.T.); (W.L.); (Y.S.); (Z.Z.)
| | - Wenqian Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (X.C.); (Q.T.); (W.L.); (Y.S.); (Z.Z.)
| | - Yanyan Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (X.C.); (Q.T.); (W.L.); (Y.S.); (Z.Z.)
| | - Zaoli Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (X.C.); (Q.T.); (W.L.); (Y.S.); (Z.Z.)
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (X.C.); (Q.T.); (W.L.); (Y.S.); (Z.Z.)
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (X.C.); (Q.T.); (W.L.); (Y.S.); (Z.Z.)
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
18
|
Donnelly CP, De Sousa A, Cuypers B, Laukens K, Al-Huqail AA, Asard H, Beemster GTS, AbdElgawad H. Malate production, sugar metabolism, and redox homeostasis in the leaf growth zone of Rye (Secale cereale) increase stress tolerance to aluminum stress: A biochemical and genome-wide transcriptional study. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132956. [PMID: 37976853 DOI: 10.1016/j.jhazmat.2023.132956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/23/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Global soil acidification is increasing, enlarging aluminum (Al) availability in soils, leading to reductions in plant growth. This study investigates the effect of Al stress on the leaf growth zones of Rye (Secale cereale, cv Beira). Kinematic analysis showed that the effect of Al on leaf growth rates was mainly due to a reduced cell production rate in the meristem. Transcriptomic analysis identified 2272 significantly (log2fold > |0.5| FDR < 0.05) differentially expressed genes (DEGs) for Al stress. There was a downregulation in several DEGs associated with photosynthetic processes and an upregulation in genes for heat/light response, and H2O2 production in all leaf zones. DEGs associated with heavy metals and malate transport were increased, particularly, in the meristem. To determine the putative function of these processes in Al tolerance, we performed biochemical analyses comparing the tolerant Beira with an Al sensitive variant RioDeva. Beira showed improved sugar metabolism and redox homeostasis, specifically in the meristem compared to RioDeva. Similarly, a significant increase in malate and citrate production, which are known to aid in Al detoxification in plants, was found in Beira. This suggests that Al tolerance in Rye is linked to its ability for Al exclusion from the leaf meristem.
Collapse
Affiliation(s)
- Chase P Donnelly
- ADReM Data Lab, Department of Computer Science, University of Antwerp, Antwerp 2020, Belgium
| | - Alexandra De Sousa
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp 2020, Belgium
| | - Bart Cuypers
- ADReM Data Lab, Department of Computer Science, University of Antwerp, Antwerp 2020, Belgium
| | - Kris Laukens
- ADReM Data Lab, Department of Computer Science, University of Antwerp, Antwerp 2020, Belgium
| | - Asma A Al-Huqail
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Han Asard
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp 2020, Belgium
| | - Gerrit T S Beemster
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp 2020, Belgium
| | - Hamada AbdElgawad
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp 2020, Belgium; Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt.
| |
Collapse
|
19
|
Ur Rahman S, Han JC, Ahmad M, Ashraf MN, Khaliq MA, Yousaf M, Wang Y, Yasin G, Nawaz MF, Khan KA, Du Z. Aluminum phytotoxicity in acidic environments: A comprehensive review of plant tolerance and adaptation strategies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115791. [PMID: 38070417 DOI: 10.1016/j.ecoenv.2023.115791] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024]
Abstract
Aluminum (Al), a non-essential metal for plant growth, exerts significant phytotoxic effects, particularly on root growth. Anthropogenic activities would intensify Al's toxic effects by releasing Al3+ into the soil solution, especially in acidic soils with a pH lower than 5.5 and rich mineral content. The severity of Al-induced phytotoxicity varies based on factors such as Al concentration, ionic form, plant species, and growth stages. Al toxicity leads to inhibited root and shoot growth, reduced plant biomass, disrupted water uptake causing nutritional imbalance, and adverse alterations in physiological, biochemical, and molecular processes. These effects collectively lead to diminished plant yield and quality, along with reduced soil fertility. Plants employ various mechanisms to counter Al toxicity under stress conditions, including sequestering Al in vacuoles, exuding organic acids (OAs) like citrate, oxalate, and malate from root tip cells to form Al-complexes, activating antioxidative enzymes, and overexpressing Al-stress regulatory genes. Recent advancements focus on enhancing the exudation of OAs to prevent Al from entering the plant, and developing Al-tolerant varieties. Gene transporter families, such as ATP-Binding Cassette (ABC), Aluminum-activated Malate Transporter (ALMT), Natural resistance-associated macrophage protein (Nramp), Multidrug and Toxic compounds Extrusion (MATE), and aquaporin, play a crucial role in regulating Al toxicity. This comprehensive review examined recent progress in understanding the cytotoxic impact of Al on plants at the cellular and molecular levels. Diverse strategies developed by both plants and scientists to mitigate Al-induced phytotoxicity were discussed. Furthermore, the review explored recent genomic developments, identifying candidate genes responsible for OAs exudation, and delved into genome-mediated breeding initiatives, isolating transgenic and advanced breeding lines to cultivate Al-tolerant plants.
Collapse
Affiliation(s)
- Shafeeq Ur Rahman
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jing-Cheng Han
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Muhammad Ahmad
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Muhammad Nadeem Ashraf
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | | | - Maryam Yousaf
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yuchen Wang
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ghulam Yasin
- Department of Forestry and Range Management, FAS & T, Bahauddin Zakariya University Multan, Multan 60000, Pakistan
| | | | - Khalid Ali Khan
- Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia; Applied College, King Khalid University, Abha 61413, Saudi Arabia
| | - Zhenjie Du
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; Water Environment Factor Risk Assessment Laboratory of Agricultural Products Quality and Safety, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, China.
| |
Collapse
|
20
|
Cheng J, Li T, Wei S, Jiang W, Li J, Wang Y, Li Y. Physiological and Proteomic Changes in Camellia semiserrata in Response to Aluminum Stress. Genes (Basel) 2023; 15:55. [PMID: 38254944 PMCID: PMC10815133 DOI: 10.3390/genes15010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Camellia semiserrata is an important woody edible oil tree species in southern China that is characterized by large fruits and seed kernels with high oil contents. Increasing soil acidification due to increased use of fossil fuels, misuse of acidic fertilizers, and irrational farming practices has led to leaching of aluminum (Al) in the form of free Al3+, Al(OH)2+, and Al(OH)2+, which inhibits the growth and development of C. semiserrata in South China. To investigate the mechanism underlying C. semiserrata responses to Al stress, we determined the changes in photosynthetic parameters, antioxidant enzyme activities, and osmoregulatory substance contents of C. semiserrata leaves under different concentrations of Al stress treatments (0, 1, 2, 3, and 4 mmol/L Alcl3) using a combination of physiological and proteomics approaches. In addition, we identified the differentially expressed proteins (DEPs) under 0 (CK or GNR0), 2 mmol/L (GNR2), and 4 mmol/L (GNR4) Al stress using a 4D-label-free technique. With increasing stress concentration, the photosynthetic indexes of C. semiserrata leaves, peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), soluble protein (SP), and soluble sugar (SS) showed an overall trend of increasing and then decreasing, and proline (Pro) and malondialdehyde (MDA) contents tended to continuously increase overall. Compared with the control group, we identified 124 and 192 DEPs in GNR2 and GNR4, respectively, which were mainly involved in metabolic processes such as photosynthesis, flavonoid metabolism, oxidative stress response, energy and carbohydrate metabolism, and signal transduction. At 2 mmol/L Al stress, carbon metabolism, amino sugar and nucleotide sugar metabolism, and flavonoid metabolism-related proteins were significantly changed, and when the stress was increased to 4 mmol/L Al, the cells accumulated reactive oxygen species (ROS) at a rate exceeding the antioxidant system scavenging capacity. To deal with this change, C. semiserrata leaves enhanced their glutathione metabolism, drug metabolism-cytochrome P450, metabolism of xenobiotics by cytochrome P450, and other metabolic processes to counteract peroxidative damage to the cytoplasmic membrane caused by stress. In addition, we found that C. semiserrata resisted aluminum toxicity mainly by synthesizing anthocyanidins under 2 mmol/L stress, whereas proanthocyanidins were alleviated by the generation of proanthocyanidins under 4 mmol/L stress, which may be a special mechanism by which C. semiserrata responds to different concentrations of aluminum stress.
Collapse
Affiliation(s)
- Junsen Cheng
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.C.); (T.L.); (S.W.); (W.J.); (J.L.)
| | - Tong Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.C.); (T.L.); (S.W.); (W.J.); (J.L.)
| | - Shanglin Wei
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.C.); (T.L.); (S.W.); (W.J.); (J.L.)
| | - Wei Jiang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.C.); (T.L.); (S.W.); (W.J.); (J.L.)
| | - Jingxuan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.C.); (T.L.); (S.W.); (W.J.); (J.L.)
| | - Yi Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.C.); (T.L.); (S.W.); (W.J.); (J.L.)
| | - Yongquan Li
- Scarce and Quality Economic Forest Engineering Technology Research Center, Guangzhou 510225, China
| |
Collapse
|
21
|
Liu C, Cheng H, Wang S, Yu D, Wei Y. Physiological and Transcriptomic Analysis Reveals That Melatonin Alleviates Aluminum Toxicity in Alfalfa ( Medicago sativa L.). Int J Mol Sci 2023; 24:17221. [PMID: 38139053 PMCID: PMC10743983 DOI: 10.3390/ijms242417221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Aluminum (Al) toxicity is the most common factor limiting the growth of alfalfa in acidic soil conditions. Melatonin (MT), a significant pleiotropic molecule present in both plants and animals, has shown promise in mitigating Al toxicity in various plant species. This study aims to elucidate the underlying mechanism by which melatonin alleviates Al toxicity in alfalfa through a combined physiological and transcriptomic analysis. The results reveal that the addition of 5 μM melatonin significantly increased alfalfa root length by 48% and fresh weight by 45.4% compared to aluminum treatment alone. Moreover, the 5 μM melatonin application partially restored the enlarged and irregular cell shape induced by aluminum treatment, resulting in a relatively compact arrangement of alfalfa root cells. Moreover, MT application reduces Al accumulation in alfalfa roots and shoots by 28.6% and 27.6%, respectively. Additionally, MT plays a crucial role in scavenging Al-induced excess H2O2 by enhancing the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), consequently reducing malondialdehyde (MDA) levels. More interestingly, the RNA-seq results reveal that MT application significantly upregulates the expression of xyloglucan endotransglucosylase/hydrolase (XTH) and carbon metabolism-related genes, including those involved in the glycolysis process, as well as sucrose and starch metabolism, suggesting that MT application may mitigate Al toxicity by facilitating the binding of Al to the cell walls, thereby reducing intracellular Al accumulation, and improving respiration and the content of sucrose and trehalose. Taken together, our study demonstrates that MT alleviates Al toxicity in alfalfa by reducing Al accumulation and restoring redox homeostasis. These RNA-seq results suggest that the alleviation of Al toxicity by MT may occur through its influence on cell wall composition and carbon metabolism. This research advances our understanding of the mechanisms underlying MT's effectiveness in mitigating Al toxicity, providing a clear direction for our future investigations into the underlying mechanisms by which MT alleviates Al toxicity in alfalfa.
Collapse
Affiliation(s)
| | | | | | - Dashi Yu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (C.L.); (H.C.); (S.W.)
| | - Yunmin Wei
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (C.L.); (H.C.); (S.W.)
| |
Collapse
|
22
|
Pinto VB, Vidigal PMP, Dal-Bianco M, Almeida-Silva F, Venancio TM, Viana JMS. Transcriptome-based strategies for identifying aluminum tolerance genes in popcorn (Zea mays L. var. everta). Sci Rep 2023; 13:19400. [PMID: 37938583 PMCID: PMC10632369 DOI: 10.1038/s41598-023-46810-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/06/2023] [Indexed: 11/09/2023] Open
Abstract
Aluminum (Al) toxicity limits crop production worldwide. Although studies have identified genes associated with Al tolerance in crops, a large amount of data remains unexplored using other strategies. Here, we searched for single substitutions and InDels across differentially expressed genes (DEGs), linked DEGs to Al-tolerance QTLs reported in the literature for common maize, and investigated the alternative splicing regulated by Al3+ toxicity. We found 929 substitutions between DEGs in Al-tolerant and 464 in Al-sensitive inbred lines, of which 165 and 80 were non-synonymous, respectively. Only 12 NS variants had deleterious predicted effect on protein function in Al-tolerant and 13 in Al-sensitive. Moreover, 378 DEGs were mapped in Al-QTL regions for the Al-tolerant and 213 for the Al-sensitive. Furthermore, Al stress is primarily regulated at the transcriptional level in popcorn. Important genes identified, such as HDT1, SWEET4a, GSTs, SAD9, PIP2-2, CASP-like 5, and AGP, may benefit molecular assisted popcorn breeding or be useful in biotechnological approaches. These findings offer insights into the mechanisms of Al tolerance in popcorn and provide a 'hypothesis-free' strategy for identifying and prioritizing candidate genes that could be used to develop molecular markers or cultivars resilient to acidic soils.
Collapse
Affiliation(s)
- Vitor Batista Pinto
- Departamento de Biologia Geral, Universidade Federal de Viçosa (UFV), Viçosa, MG, 36570-000, Brazil.
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, 28013-602, Brazil.
| | | | - Maximiller Dal-Bianco
- Laboratório de Bioquímica Genética de Plantas/BIOAGRO. UFV, Viçosa, MG, 36570-000, Brazil
| | - Fabricio Almeida-Silva
- Laboratório de Química e Função de Proteínas e Peptídeos, CBB. UENF, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Thiago Motta Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, CBB. UENF, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | | |
Collapse
|
23
|
Liao G, Luo S, Li X, Li A, Mo Y, Wang A, Xiao D, He LF, Zhan J. Identification and functional characterization of REGULATORY PARTICLE NON-ATPASE 1a-like (AhRPN1a-like) in peanuts during aluminum-induced programmed cell death. JOURNAL OF PLANT PHYSIOLOGY 2023; 289:154079. [PMID: 37703767 DOI: 10.1016/j.jplph.2023.154079] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023]
Abstract
The toxicity of aluminum (Al) in acidic soil is a prevalent problem and causes reduced crop yields. In the plant response to Al toxicity, programmed cell death (PCD) appears to be one of the important mechanisms. However, the regulation of Al-induced PCD remains poorly understood. Here, we found that an uncharacterized protein REGULATORY PARTICLE NON-ATPASE 1a-like in peanut (AhRPN1a-like), located in the nucleus and cytoplasm, directly interacted with type I metacaspase in peanut (AhMC1). The overexpression of AhRPN1a-like in Arabidopsis strongly enhanced Al inhibition of root growth with a loss of root tip cell viability. Furthermore, in response to Al treatment, the VIGS knockdown line of AhRPN1a-like in peanut displayed decreased transcription of AhMC1, increased root growth, reduced Al-induced PCD and decreased 26S proteasomal activity. Taken together, these findings demonstrated that AhRPN1a-like interacted directly with AhMC1, and promotes the occurrence of Al-induced PCD via the 26S proteasome pathway, thereby reducing Al-resistance.
Collapse
Affiliation(s)
- Guoting Liao
- College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Shuzhen Luo
- College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Xinyue Li
- College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Ailing Li
- College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Yunchuan Mo
- College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Aiqin Wang
- College of Agriculture, Guangxi University, Nanning, Guangxi, China; Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Agro-environment and Agric-products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Dong Xiao
- College of Agriculture, Guangxi University, Nanning, Guangxi, China; Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Agro-environment and Agric-products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Long-Fei He
- College of Agriculture, Guangxi University, Nanning, Guangxi, China; Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Agro-environment and Agric-products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Jie Zhan
- College of Agriculture, Guangxi University, Nanning, Guangxi, China; Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Agro-environment and Agric-products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi, China.
| |
Collapse
|
24
|
Hazarika DJ, Bora SS, Naorem RS, Sharma D, Boro RC, Barooah M. Genomic insights into Bacillus subtilis MBB3B9 mediated aluminium stress mitigation for enhanced rice growth. Sci Rep 2023; 13:16467. [PMID: 37777563 PMCID: PMC10542363 DOI: 10.1038/s41598-023-42804-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/14/2023] [Indexed: 10/02/2023] Open
Abstract
Aluminium (Al) toxicity in acid soil ecosystems is a major impediment to crop production as it drastically affects plant root growth, thereby acquisition of nutrients from the soil. Plant growth-promoting bacteria offers an interesting avenue for promoting plant growth under an Al-phytotoxic environment. Here, we report the plant growth-promoting activities of an acid-tolerant isolate of Bacillus subtilis that could ameliorate acid-induced Al-stress in rice (Oryza sativa L.). The whole genome sequence data identified the major genes and genetic pathways in B. subtilis MBB3B9, which contribute to the plant growth promotion in acidic pH. Genetic pathways for organic acid production, denitrification, urea metabolism, indole-3-acetic acid (IAA) production, and cytokinin biosynthesis were identified as major genetic machinery for plant growth promotion and mitigation of Al-stress in plants. The in-vitro analyses revealed the production of siderophores and organic acid production as primary mechanisms for mitigation of Al-toxicity. Other plant growth-promoting properties such as phosphate solubilization, zinc solubilization, and IAA production were also detected in significant levels. Pot experiments involving rice under acidic pH and elevated concentrations of aluminium chloride (AlCl3) suggested that soil treatment with bacterial isolate MBB3B9 could enhance plant growth and productivity compared to untreated plants. A significant increase in plant growth and productivity was recorded in terms of plant height, chlorophyll content, tiller number, panicle number, grain yield, root growth, and root biomass production.
Collapse
Affiliation(s)
- Dibya Jyoti Hazarika
- DBT - North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Sudipta Sankar Bora
- DBT - North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Romen Singh Naorem
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Darshana Sharma
- DBT - North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Robin Chandra Boro
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Madhumita Barooah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India.
| |
Collapse
|
25
|
Tao L, Xiao X, Huang Q, Zhu H, Feng Y, Li Y, Li X, Guo Z, Liu J, Wu F, Pirayesh N, Mahmud S, Shen RF, Shabala S, Baluška F, Shi L, Yu M. Boron supply restores aluminum-blocked auxin transport by the modulation of PIN2 trafficking in the root apical transition zone. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:176-192. [PMID: 36721978 DOI: 10.1111/tpj.16129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/07/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
The supply of boron (B) alleviates the toxic effects of aluminum (Al) on root growth; however, the mechanistic basis of this process remains elusive. This study filled this knowledge gap, demonstrating that boron modifies auxin distribution and transport in Al-exposed Arabidopsis roots. In B-deprived roots, treatment with Al induced an increase in auxin content in the root apical meristem zone (MZ) and transition zone (TZ), whereas in the elongation zone (EZ) the auxin content was decreased beyond the level required for adequate growth. These distribution patterns are explained by the fact that basipetal auxin transport from the TZ to the EZ was disrupted by Al-inhibited PIN-FORMED 2 (PIN2) endocytosis. Experiments involving the modulation of protein biosynthesis by cycloheximide (CHX) and transcriptional regulation by cordycepin (COR) demonstrated that the Al-induced increase of PIN2 membrane proteins was dependent upon the inhibition of PIN2 endocytosis, rather than on the transcriptional regulation of the PIN2 gene. Experiments reporting on the profiling of Al3+ and PIN2 proteins revealed that the inhibition of endocytosis of PIN2 proteins was the result of Al-induced limitation of the fluidity of the plasma membrane. The supply of B mediated the turnover of PIN2 endosomes conjugated with indole-3-acetic acid (IAA), and thus restored the Al-induced inhibition of IAA transport through the TZ to the EZ. Overall, the reported results demonstrate that boron supply mediates PIN2 endosome-based auxin transport to alleviate Al toxicity in plant roots.
Collapse
Affiliation(s)
- Lin Tao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- International Research Center for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, 528000, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoyi Xiao
- International Research Center for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Qiuyu Huang
- International Research Center for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Hu Zhu
- International Research Center for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Yingming Feng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- International Research Center for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, 528000, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yalin Li
- International Research Center for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Xuewen Li
- International Research Center for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Zhishan Guo
- International Research Center for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Jiayou Liu
- International Research Center for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Feihua Wu
- International Research Center for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Niloufar Pirayesh
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115, Bonn, Germany
| | - Sakil Mahmud
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115, Bonn, Germany
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, 210008, China
| | - Sergey Shabala
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, 7001, Australia
- School of Biological Sciences, University of Western Australia, Perth, 6009, Australia
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115, Bonn, Germany
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Min Yu
- International Research Center for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, 528000, China
| |
Collapse
|
26
|
Ofoe R, Thomas RH, Asiedu SK, Wang-Pruski G, Fofana B, Abbey L. Aluminum in plant: Benefits, toxicity and tolerance mechanisms. FRONTIERS IN PLANT SCIENCE 2023; 13:1085998. [PMID: 36714730 PMCID: PMC9880555 DOI: 10.3389/fpls.2022.1085998] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Aluminum (Al) is the third most ubiquitous metal in the earth's crust. A decrease in soil pH below 5 increases its solubility and availability. However, its impact on plants depends largely on concentration, exposure time, plant species, developmental age, and growing conditions. Although Al can be beneficial to plants by stimulating growth and mitigating biotic and abiotic stresses, it remains unknown how Al mediates these effects since its biological significance in cellular systems is still unidentified. Al is considered a major limiting factor restricting plant growth and productivity in acidic soils. It instigates a series of phytotoxic symptoms in several Al-sensitive crops with inhibition of root growth and restriction of water and nutrient uptake as the obvious symptoms. This review explores advances in Al benefits, toxicity and tolerance mechanisms employed by plants on acidic soils. These insights will provide directions and future prospects for potential crop improvement.
Collapse
Affiliation(s)
- Raphael Ofoe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Bible Hill, NS, Canada
| | - Raymond H. Thomas
- School of Science and the Environment, Memorial University of Newfoundland, Grenfell Campus, Corner Brook, NL, Canada
| | - Samuel K. Asiedu
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Bible Hill, NS, Canada
| | - Gefu Wang-Pruski
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Bible Hill, NS, Canada
| | - Bourlaye Fofana
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Bible Hill, NS, Canada
- Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, Charlottetown, PE, Canada
| | - Lord Abbey
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Bible Hill, NS, Canada
| |
Collapse
|
27
|
Luo S, Pan C, Liu S, Liao G, Li A, Wang Y, Wang A, Xiao D, He LF, Zhan J. Identification and functional characterization of the xyloglucan endotransglucosylase/hydrolase 32 (AhXTH32) in peanut during aluminum-induced programmed cell death. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:161-168. [PMID: 36410145 DOI: 10.1016/j.plaphy.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
The toxicity of aluminum (Al) in acidic soil is a prevalent problem and causes reduced crop yields. In the plant response to Al toxicity, programmed cell death (PCD) appears to be an important mechanism. The plant cell wall of crop roots is the predominant site targeted by Al. Here, studies of the capacities of different cell wall constituents (pectin, hemicellulose 1 {HC1} and HC2) to adsorb Al indicated that HC1 has the greater ability to bind Al. The activity of xyloglucan endotransglucosylase (XET) was significantly inhibited by Al in the Al-tolerant peanut cultivar '99-1507' compared to that in 'ZH 2' (Al-sensitive). Results from qPCR analysis suggested that the suppression of XET activity by Al was transcriptionally regulated and that xyloglucan endotransglucosylase/hydrolase 32 (AhXTH32) was the major contributor to these changes. The overexpression of AhXTH32 in Arabidopsis strongly inhibited root growth with a loss of viability in root cells and the occurrence of typical hallmarks of PCD, while largely opposite effects were observed after xth32 suppression. AhXTH32 contributed to the modulation XET and xyloglucan endohydrolase (XEH) activity in vivo. Taken together, our results demonstrate that Al-tolerant peanut cultivar root tips cell walls bind Al predominantly in the HC1 fraction, which results in the inhibition of AhXTH32, with consequences to root growth, Al sensitivity, the occurrence of PCD and the XET/XEH activity ratio.
Collapse
Affiliation(s)
- Shuzhen Luo
- College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Chunliu Pan
- College of Agriculture, Guangxi University, Nanning, Guangxi, China; Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi, China
| | - Songying Liu
- College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Guoting Liao
- College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Ailing Li
- College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Yalun Wang
- College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Aiqin Wang
- College of Agriculture, Guangxi University, Nanning, Guangxi, China; Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi, China; Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Dong Xiao
- College of Agriculture, Guangxi University, Nanning, Guangxi, China; Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi, China; Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Long-Fei He
- College of Agriculture, Guangxi University, Nanning, Guangxi, China; Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi, China; Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Jie Zhan
- College of Agriculture, Guangxi University, Nanning, Guangxi, China; Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi, China; Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi, China.
| |
Collapse
|
28
|
Liu H, Zhu R, Shu K, Lv W, Wang S, Wang C. Aluminum stress signaling, response, and adaptive mechanisms in plants. PLANT SIGNALING & BEHAVIOR 2022; 17:2057060. [PMID: 35467484 PMCID: PMC9045826 DOI: 10.1080/15592324.2022.2057060] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 05/27/2023]
Abstract
Over 40% of arable land in the world is acidic. Al stress has become a global agricultural problem affecting plant growth and limiting crop production in acidic soils. Plants have evolved different regulatory mechanisms of adaptation to exogenous environmental challenges, such as Al stress, by altering their growth patterns. In the past decades, several key genes involved in plant response to Al stress and the mechanism of Al detoxification have been revealed. However, the signaling pathways of plant response to Al stress and the regulatory mechanism of plant Al tolerance remain poorly understood. In this review, we summarized the findings of recent studies on the plant Al tolerance mechanism and the molecular regulation mechanism of phytohormones in response to Al stress. This review improves our understanding of the regulatory mechanisms of plants in response to Al stress and provides a reference for the breeding of Al-tolerant crops.
Collapse
Affiliation(s)
- Huabin Liu
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang, China
| | - Rong Zhu
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang, China
| | - Kai Shu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, China
| | - Weixiang Lv
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Nanchong, China
| | - Song Wang
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang, China
| | - Chengliang Wang
- Anhui Provincial Key Lab. of the Conservation and Exploitation of Biological Resources, School of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
29
|
Brhane H, Haileselassie T, Tesfaye K, Ortiz R, Hammenhag C, Abreha KB, Vetukuri RR, Geleta M. Finger millet RNA-seq reveals differential gene expression associated with tolerance to aluminum toxicity and provides novel genomic resources. FRONTIERS IN PLANT SCIENCE 2022; 13:1068383. [PMID: 36570897 PMCID: PMC9780683 DOI: 10.3389/fpls.2022.1068383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/21/2022] [Indexed: 06/01/2023]
Abstract
Eleusine coracana, finger millet, is a multipurpose crop cultivated in arid and semi-arid regions of Africa and Asia. RNA sequencing (RNA-seq) was used in this study to obtain valuable genomic resources and identify genes differentially expressed between Al-tolerant and Al-susceptible genotypes. Two groups of finger millet genotypes were used: Al-tolerant (215836, 215845, and 229722) and Al-susceptible (212462, 215804 and 238323). The analysis of the RNA-seq data resulted in 198,546 unigenes, 56.5% of which were annotated with significant hits in one or more of the following six databases: NR (48.8%), GO (29.7%), KEGG (45%), PlantTFDB (19.0%), Uniprot (49.2%), and NT (46.2%). It is noteworthy that only 220 unigenes in the NR database had significant hits against finger millet sequences suggesting that finger millet's genomic resources are scarce. The gene expression analysis revealed that 322 genes were significantly differentially expressed between the Al-tolerant and Al-susceptible genotypes, of which 40.7% were upregulated while 59.3% were downregulated in Al-tolerant genotypes. Among the significant DEGs, 54.7% were annotated in the GO database with the top hits being ATP binding (GO:0005524) and DNA binding (GO:0003677) in the molecular function, DNA integration (GO:0015074) and cell redox homeostasis in the biological process, as well as cellular anatomical entity and intracellular component in the cellular component GO classes. Several of the annotated DEGs were significantly enriched for their corresponding GO terms. The KEGG pathway analysis resulted in 60 DEGs that were annotated with different pathway classes, of which carbohydrate metabolism and signal transduction were the most prominent. The homologs of a number of significant DEGs have been previously reported as being associated with Al or other abiotic stress responses in various crops, including carboxypeptidase SOL1, HMA3, AP2, bZIP, C3H, and WRKY TF genes. A more detailed investigation of these and other DEGs will enable genomic-led breeding for Al tolerance in finger millet. RNA-seq data analysis also yielded 119,073 SNP markers, the majority of which had PIC values above 0.3, indicating that they are highly informative. Additionally, 3,553 single-copy SSR markers were identified, of which trinucleotide SSRs were the most prevalent. These genomic resources contribute substantially to the enrichment of genomic databases for finger millet, and facilitate future research on this crop.
Collapse
Affiliation(s)
- Haftom Brhane
- Biology Department, Aksum University, Aksum, Ethiopia
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | | | - Kassahun Tesfaye
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Ethiopian Biotechnology Institute, Ministry of Innovation and Technology, Addis Ababa, Ethiopia
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Cecilia Hammenhag
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Kibrom B. Abreha
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Ramesh R. Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Mulatu Geleta
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
30
|
Wang Y, Yang S, Li C, Hu T, Hou S, Bai Q, Ji X, Xu F, Guo C, Huang M, Cai Y, Liu J. The plasma membrane-localized OsNIP1;2 mediates internal aluminum detoxification in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:970270. [PMID: 36172551 PMCID: PMC9512054 DOI: 10.3389/fpls.2022.970270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Aluminum (Al) toxicity significantly restricts crop production on acidic soils. Although rice is highly resistant to Al stress, the underlying resistant mechanisms are not fully understood. Here, we characterized the function of OsNIP1;2, a plasma membrane-localized nodulin 26-like intrinsic protein (NIP) in rice. Aluminum stress specifically and quickly induced OsNIP1;2 expression in the root. Functional mutations of OsNIP1;2 in two independent rice lines led to significantly enhanced sensitivity to Al but not other metals. Moreover, the Osnip1;2 mutants had considerably more Al accumulated in the root cell wall but less in the cytosol than the wild-type rice. In addition, compared with the wild-type rice plants, the Osnip1;2 mutants contained more Al in the root but less in the shoot. When expressed in yeast, OsNIP1;2 led to enhanced Al accumulation in the cells and enhanced sensitivity to Al stress, suggesting that OsNIP1;2 facilitated Al uptake in yeast. These results suggest that OsNIP1;2 confers internal Al detoxification via taking out the root cell wall's Al, sequestering it to the root cell's vacuole, and re-distributing it to the above-ground tissues.
Collapse
Affiliation(s)
- Yuqi Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
- Robert W. Holley Center, United States Department of Agriculture, Agricultural Research Service, Cornell University, Ithaca, NY, United States
| | - Shaohua Yang
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Chune Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Taijiao Hu
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Siyu Hou
- School of Agriculture, Shanxi Agricultural University, Jinzhong, China
| | - Qing Bai
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Xiyue Ji
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Feng Xu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Chongdai Guo
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Min Huang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Yanfei Cai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Jiping Liu
- Robert W. Holley Center, United States Department of Agriculture, Agricultural Research Service, Cornell University, Ithaca, NY, United States
- Plant Breeding and Genetics Section, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
31
|
Ntambiyukuri A, Li X, Xiao D, Wang A, Zhan J, He L. Circadian Rhythm Regulates Reactive Oxygen Species Production and Inhibits Al-Induced Programmed Cell Death in Peanut. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081271. [PMID: 36013450 PMCID: PMC9410085 DOI: 10.3390/life12081271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
Peanut is among the most important oil crops in the world. In the southern part of China, peanut is highly produced; however, the arable land is acidic. In acidic soils, aluminum (Al) inhibits plant growth and development by changing the properties of the cell wall and causing the disorder of the intracellular metabolic process. Circadian rhythm is an internal mechanism that occurs about every 24 h and enables plants to maintain internal biological processes with a daily cycle. To investigate the effect of photoperiod and Al stress on the Al-induced programmed cell death (PCD), two peanut varieties were treated with 100 μM AlCl3 under three photoperiodic conditions (8/16, SD; 12/12, ND; 16/8 h, LD). The results show that Al toxicity was higher in ZH2 than in 99-1507 and higher under LD than under SD. Root length decreased by 30, 37.5, and 50% in ZH2 and decreased by 26.08, 34.78, and 47.82% in 99-1507 under SD, ND, and LD, respectively, under Al stress. Photoperiod and Al induced cell death and ROS production. MDA content, PME activity, and LOX activity increased under SD, ND, and LD, respectively, under Al stress both in ZH2 and 99-1507. APX, SOD, CAT, and POD activities were higher under SD, ND, and LD, respectively. Al stress increased the level of AhLHY expression under SD and ND but decreased it under LD in both ZH2 and 99-1507. Contrastingly, AhSTS expression levels increased exponentially and were higher under SD, LD, and ND, respectively, under Al stress. Our results will be a useful platform to research PCD induced by Al and gain new insights into the genetic manipulation of the circadian clock for plant stress response.
Collapse
Affiliation(s)
- Aaron Ntambiyukuri
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xia Li
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Dong Xiao
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning 530004, China
- Correspondence: (D.X.); (L.H.)
| | - Aiqin Wang
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning 530004, China
| | - Jie Zhan
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning 530004, China
| | - Longfei He
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning 530004, China
- Correspondence: (D.X.); (L.H.)
| |
Collapse
|
32
|
Low Concentration of Aluminum-Stimulated Pollen Tube Growth of Apples (Malus domestica). PLANTS 2022; 11:plants11131705. [PMID: 35807657 PMCID: PMC9269008 DOI: 10.3390/plants11131705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022]
Abstract
Aluminum (Al) is an important element in soil constitution. Previous studies have shown that high concentration of Al affects the normal growth of crops, resulting in crop yield reduction and inferior quality. Nevertheless, Al has also been referred to as a beneficial element, especially when used at low concentrations, but the cytological mechanism is not clear. Influences of low concentration AlCl3 on the pollen tube growth of apple (Malus domestica) and its possible cytological mechanism were investigated in this study. The results showed that 20 μM AlCl3 promoted pollen germination and tube elongation; 20 μM AlCl3 enhanced Ca2+ influx but did not affect [Ca2+]c of the pollen tube tip; and 20 μM AlCl3 decreased acid pectins in pollen tubes but increased esterified pectins and arabinan pectins in pollen tubes. According to the information provided in this research, 20 μM AlCl3 stimulated growth of pollen tubes by enhancing Ca2+ influx and changing cell wall components.
Collapse
|
33
|
Qin Z, Chen S, Feng J, Chen H, Qi X, Wang H, Deng Y. Identification of aluminum-activated malate transporters (ALMT) family genes in hydrangea and functional characterization of HmALMT5/9/11 under aluminum stress. PeerJ 2022; 10:e13620. [PMID: 35769137 PMCID: PMC9235816 DOI: 10.7717/peerj.13620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/02/2022] [Indexed: 01/17/2023] Open
Abstract
Hydrangea (Hydrangea macrophylla (Thunb.) Ser.) is a famous ornamental plant species with high resistance to aluminum (Al). The aluminum-activated malate transporter (ALMT) family encodes anion channels, which participate in many physiological processes, such as Al tolerance, pH regulation, stomatal movement, and mineral nutrition. However, systematic studies on the gene family have not been reported in hydrangea. In this study, 11 candidate ALMT family members were identified from the transcriptome data for hydrangea, which could be divided into three clusters according to the phylogenetic tree. The protein physicochemical properties, phylogeny, conserved motifs and protein structure were analyzed. The distribution of base conservative motifs of HmALMTs was consistent with that of other species, with a highly conserved WEP motif. Furthermore, tissue-specific analysis showed that most of the HmALMTs were highly expressed in the stem under Al treatment. In addition, overexpression of HmALMT5, HmALMT9 and HmALMT11 in yeasts enhanced their tolerance to Al stress. Therefore, the above results reveal the functional role of HmALMTs underlying the Al tolerance of hydrangea. The present study provides a reference for further research to elucidate the functional mechanism and expression regulation of the ALMT gene family in hydrangea.
Collapse
Affiliation(s)
- Ziyi Qin
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China,Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Shuangshuang Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Jing Feng
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Huijie Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Xiangyu Qi
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Huadi Wang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China,School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yanming Deng
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China,Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China,School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
34
|
Abstract
Pinus massoniana is a vital kind of coniferous species rich in rosin. Aluminum stress is a severe problem for P. massoniana growth in acidic soil causing root poisoning. However, the molecular mechanisms of aluminum-responsive are still unclear. We performed a transcriptome analysis of the P. massoniana root in response to aluminum stress. Through WGCNA analysis, we identified 338 early and 743 late response genes to aluminum stress. Gene Ontology analysis found many critical functional pathways, such as carbohydrate binding, cellulase activity, and phenylalanine ammonia-lyase activity. In addition, KEGG analysis revealed a significant enrichment of phenylpropanoid biosynthesis pathways. Further analysis showed that the expression of lignin synthesis genes 4CL, CAD, and COMT were up-regulated, indicating that they may play a crucial role in the process of aluminum tolerance in P. massoniana roots. These results provide method support for studying the regulation mechanism of P. massoniana aluminum stress.
Collapse
|
35
|
Han G, Qiao Z, Li Y, Yang Z, Wang C, Zhang Y, Liu L, Wang B. RING Zinc Finger Proteins in Plant Abiotic Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:877011. [PMID: 35498666 PMCID: PMC9047180 DOI: 10.3389/fpls.2022.877011] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/22/2022] [Indexed: 05/03/2023]
Abstract
RING zinc finger proteins have a conserved RING domain, mainly function as E3 ubiquitin ligases, and play important roles in plant growth, development, and the responses to abiotic stresses such as drought, salt, temperature, reactive oxygen species, and harmful metals. RING zinc finger proteins act in abiotic stress responses mainly by modifying and degrading stress-related proteins. Here, we review the latest progress in research on RING zinc finger proteins, including their structural characteristics, classification, subcellular localization, and physiological functions, with an emphasis on abiotic stress tolerance. Under abiotic stress, RING zinc finger proteins on the plasma membrane may function as sensors or abscisic acid (ABA) receptors in abiotic stress signaling. Some RING zinc finger proteins accumulate in the nucleus may act like transcription factors to regulate the expression of downstream abiotic stress marker genes through direct or indirect ways. Most RING zinc finger proteins usually accumulate in the cytoplasm or nucleus and act as E3 ubiquitin ligases in the abiotic stress response through ABA, mitogen-activated protein kinase (MAPK), and ethylene signaling pathways. We also highlight areas where further research on RING zinc finger proteins in plants is needed.
Collapse
Affiliation(s)
- Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
- Dongying Institute, Shandong Normal University, Dongying, China
| | - Ziqi Qiao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Yuxia Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Zongran Yang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Chengfeng Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Yuanyuan Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Lili Liu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
36
|
McEvoy SL, Sezen UU, Trouern‐Trend A, McMahon SM, Schaberg PG, Yang J, Wegrzyn JL, Swenson NG. Strategies of tolerance reflected in two North American maple genomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1591-1613. [PMID: 34967059 PMCID: PMC9304320 DOI: 10.1111/tpj.15657] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/22/2021] [Indexed: 05/24/2023]
Abstract
The first chromosome‐scale assemblies for North American members of the Acer genus, sugar maple (Acer saccharum) and boxelder (Acer negundo), as well as transcriptomic evaluation of the abiotic stress response in A. saccharum are reported. This integrated study describes in‐depth aspects contributing to each species' approach to tolerance and applies current knowledge in many areas of plant genome biology with Acer physiology to help convey the genomic complexities underlying tolerance in broadleaf tree species.
Collapse
Affiliation(s)
- Susan L. McEvoy
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269USA
| | - U. Uzay Sezen
- Smithsonian Environmental Research CenterEdgewaterMaryland21037USA
| | - Alexander Trouern‐Trend
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269USA
| | - Sean M. McMahon
- Smithsonian Environmental Research CenterEdgewaterMaryland21037USA
| | - Paul G. Schaberg
- Forest ServiceU.S. Department of Agriculture, Northern Research StationBurlingtonVermont05405USA
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMengla666303YunnanChina
| | - Jill L. Wegrzyn
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269USA
| | - Nathan G. Swenson
- Department of Biological SciencesUniversity of Notre DameNotre DameIndiana46556USA
| |
Collapse
|
37
|
Liu J, Shi B, Zhang M, Liu G, Ding Z, Tian H. Transition Zone1 Negatively Regulates Arabidopsis Aluminum Resistance Through Interaction With Aconitases. FRONTIERS IN PLANT SCIENCE 2022; 12:827797. [PMID: 35154218 PMCID: PMC8829429 DOI: 10.3389/fpls.2021.827797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The soluble form of aluminum (Al) is a major constraint to crop production in acidic soils. The Al exclusion correlated with the Al-induced organic acid is considered as an important mechanism of Al resistance. The regulation of organic acid exudation in response to Al stress mediated by the root organic acid transporters has been extensively studied. However, how plants respond to Al stress through the regulation of organic acid homeostasis is not well understood. In this study, we identified the functionally unknown Transition zone1 (TZ1) as an Al-inducible gene in the root transition zone, the most sensitive region to Al stress, in Arabidopsis. tz1 mutants showed enhanced Al resistance and displayed greatly reduced root growth inhibition. Furthermore, TZ1 was found to interact with the aconitases (ACOs) which can catalyze the conversion from citrate, one of the most important organic acids, into isocitrate. Consistently, in tz1 mutants, the citric acid content was highly increased. Collectively, this study provides evidence to show that TZ1 negatively regulates root growth response to Al stress through interacting with ACOs and regulating citric acid homeostasis.
Collapse
Affiliation(s)
- Jiajia Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, China
| | - Benhui Shi
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, China
| | - Mengxin Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, China
| | - Guangchao Liu
- Key Lab of Plant Biotechnology in Universities of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, China
| | - Huiyu Tian
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
38
|
Quiñones MA, Lucas MM, Pueyo JJ. Adaptive Mechanisms Make Lupin a Choice Crop for Acidic Soils Affected by Aluminum Toxicity. FRONTIERS IN PLANT SCIENCE 2022; 12:810692. [PMID: 35069669 PMCID: PMC8766672 DOI: 10.3389/fpls.2021.810692] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/14/2021] [Indexed: 05/25/2023]
Abstract
Almost half of the world's agricultural soils are acidic, and most of them present significant levels of aluminum (Al) contamination, with Al3+ as the prevailing phytotoxic species. Lupin is a protein crop that is considered as an optimal alternative to soybean cultivation in cold climates. Lupins establish symbiosis with certain soil bacteria, collectively known as rhizobia, which are capable of fixing atmospheric nitrogen. Moreover, some lupin species, especially white lupin, form cluster roots, bottlebrush-like structures specialized in the mobilization and uptake of nutrients in poor soils. Cluster roots are also induced by Al toxicity. They exude phenolic compounds and organic acids that chelate Al to form non-phytotoxic complexes in the rhizosphere and inside the root cells, where Al complexes are accumulated in the vacuole. Lupins flourish in highly acidic soils where most crops, including other legumes, are unable to grow. Some lupin response mechanisms to Al toxicity are common to other plants, but lupin presents specific tolerance mechanisms, partly as a result of the formation of cluster roots. Al-induced lupin organic acid secretion differs from P-induced secretion, and organic acid transporters functions differ from those in other legumes. Additionally, symbiotic rhizobia can contribute to Al detoxification. After revising the existing knowledge on lupin distinct Al tolerance mechanisms, we conclude that further research is required to elucidate the specific organic acid secretion and Al accumulation mechanisms in this unique legume, but definitely, white lupin arises as a choice crop for cultivation in Al-rich acidic soils in temperate climate regions.
Collapse
|
39
|
Wen K, Pan H, Li X, Huang R, Ma Q, Nian H. Identification of an ATP-Binding Cassette Transporter Implicated in Aluminum Tolerance in Wild Soybean ( Glycine soja). Int J Mol Sci 2021; 22:13264. [PMID: 34948067 PMCID: PMC8706246 DOI: 10.3390/ijms222413264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 01/05/2023] Open
Abstract
The toxicity of aluminum (Al) in acidic soil limits global crop yield. The ATP-binding cassette (ABC) transporter-like gene superfamily has functions and structures related to transportation, so it responds to aluminum stress in plants. In this study, one half-size ABC transporter gene was isolated from wild soybeans (Glycine soja) and designated GsABCI1. By real-time qPCR, GsABCI1 was identified as not specifically expressed in tissues. Phenotype identification of the overexpressed transgenic lines showed increased tolerance to aluminum. Furthermore, GsABCI1 transgenic plants exhibited some resistance to aluminum treatment by ion translocation or changing root components. This work on the GsABCI1 identified the molecular function, which provided useful information for understanding the gene function of the ABC family and the development of new aluminum-tolerant soybean germplasm.
Collapse
Affiliation(s)
- Ke Wen
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (K.W.); (H.P.); (X.L.); (R.H.); (Q.M.)
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou 510642, China
| | - Huanting Pan
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (K.W.); (H.P.); (X.L.); (R.H.); (Q.M.)
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou 510642, China
| | - Xingang Li
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (K.W.); (H.P.); (X.L.); (R.H.); (Q.M.)
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou 510642, China
| | - Rong Huang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (K.W.); (H.P.); (X.L.); (R.H.); (Q.M.)
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou 510642, China
| | - Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (K.W.); (H.P.); (X.L.); (R.H.); (Q.M.)
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou 510642, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (K.W.); (H.P.); (X.L.); (R.H.); (Q.M.)
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
40
|
Zhang T, Zhang W, Li D, Zhou F, Chen X, Li C, Yu S, Brestic M, Liu Y, Yang X. Glycinebetaine: a versatile protectant to improve rice performance against aluminium stress by regulating aluminium uptake and translocation. PLANT CELL REPORTS 2021; 40:2397-2407. [PMID: 34524480 DOI: 10.1007/s00299-021-02780-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/03/2021] [Indexed: 05/11/2023]
Abstract
Glycinebetaine alleviates the detrimental effects of aluminium stress by regulating aluminium uptake and translocation, maintaining PSII activity, and activating the oxidative defence, thereby maintaining the growth and development of rice. Aluminium (Al) toxicity is one of the primary growth-limiting factors that limits plant growth and crop productivity in acidic soils. Rice (Oryza sativa L.) plants are susceptible to Al stress and do not naturally accumulate glycinebetaine (GB), one of the most effective protectants. Therefore, the objective of this study was to investigate whether exogenous GB can ameliorate the detrimental effects of Al stress on rice plants. Our results showed that the growth, development and biomass of rice were clearly inhibited under Al stress. However, exogenous GB application increased rice shoot growth and photosynthetic pigments contents, maintained photosystem II (PSII) activity, and activated the antioxidant defence system under Al stress. More importantly, GB may mediate the expression of Al uptake- and translocation-related genes, including OsALS1, OsNrat1, OsSTAR1 and OsSTAR2, and the galacturonic acid contents in rice roots under Al stress. Therefore, our findings highlight exogenous GB application is a valid approach to effectively combat Al toxicity by regulating physiological and biochemical processes in crops.
Collapse
Affiliation(s)
- Tianpeng Zhang
- College of Life Sciences, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Wenxiu Zhang
- College of Life Sciences, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Daxing Li
- College of Life Sciences, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Fengli Zhou
- College of Life Sciences, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Xiao Chen
- College of Life Sciences, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Chongyang Li
- College of Life Sciences, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Sang Yu
- College of Life Sciences, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, Nitra, 94976, Slovak Republic
| | - Yang Liu
- College of Life Sciences, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, Shandong, China.
| | - Xinghong Yang
- College of Life Sciences, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, Shandong, China.
| |
Collapse
|
41
|
Malangisha GK, Li C, Yang H, Mahmoud A, Ali A, Wang C, Yang Y, Yang J, Hu Z, Zhang M. Permissive action of H 2O 2 mediated ClUGT75 expression for auxin glycosylation and Al 3+- tolerance in watermelon. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:77-90. [PMID: 34340025 DOI: 10.1016/j.plaphy.2021.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/04/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Although Al3+-toxicity is one of the limiting factors for crop production in acidic soils, little is known about the Al3+-tolerance mechanism in watermelon, a fairly acid-tolerant crop. This work aimed to identify the interaction between the H2O2 scavenging pathway and auxin glycosylation relevant to watermelon Al3+-tolerance. By analyzing expressions of hormone-related ClUGTs and antioxidant enzyme genes in Al3+-tolerant (ZJ) and Al3+-sensitive (NBT) cultivars, we identified ClUGT75s (B1, B2, and D1) and ClSOD1-2-ClCAT as crucial components associated with Al3+-tolerance. Al3+-stress significantly increased H2O2 content by 92.7% in NBT and 42.3% in ZJ, accompanied by less Al3+-, auxin (IAA and IBA), and MDA contents in ZJ than NBT. These findings coincided with significant ClSOD1-2 expression and stable dismutation activity in NBT than ZJ. Hence, higher H2O2 content in the root apex of NBT than ZJ correlated with a significant increase in auxin content and ClSOD1-2 up-regulation. Moreover, Al3+-activated ClUGT75D1 and ClUGT75B2 in ZJ coincided with no considerable change in IBA content, suggesting that glycosylation-mediated changes in IBA content might be relevant to Al3+-tolerance in watermelon. Furthermore, exogenous H2O2 and IBA indicated ClUGT75D1 modulating IBA is likely dependent on H2O2 background. We hypothesize that a higher H2O2 level in NBT represses ClUGT75, resulting in increased auxin than those in ZJ roots. Thus, excess in both H2O2 and auxin aggravated the inhibition of root elongation under Al3+-stress. Our findings provide insights on the permissive action of H2O2 in the mediation of auxin glycosylation by ClUGT75 in root apex for Al3+-tolerance in watermelon.
Collapse
Affiliation(s)
- Guy Kateta Malangisha
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China; Hainan Institute of Zhejiang University, Yazhou District, Sanya, 572025, PR China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, PR China; Faculté des Sciences Agronomiques, Université de Lubumbashi, /UNILU, Lubumbashi, République Démocratique Du Congo/PO Box 1825, PR China
| | - Cheng Li
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China
| | - Haiyang Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China
| | - Ahmed Mahmoud
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China
| | - Abid Ali
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China
| | - Chi Wang
- Agriculture, Rural Development and Water Conservancy Bureau of Wenling, Wenling, 317500, PR China
| | - Yubin Yang
- Agriculture, Rural Development and Water Conservancy Bureau of Wenling, Wenling, 317500, PR China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China; Hainan Institute of Zhejiang University, Yazhou District, Sanya, 572025, PR China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, PR China
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China; Hainan Institute of Zhejiang University, Yazhou District, Sanya, 572025, PR China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, PR China.
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China; Hainan Institute of Zhejiang University, Yazhou District, Sanya, 572025, PR China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, PR China
| |
Collapse
|
42
|
Oliveira MDS, Rocha SV, Schneider VK, Henrique-Silva F, Soares MR, Soares-Costa A. Physiological, nutritional, and molecular responses of Brazilian sugarcane cultivars under stress by aluminum. PeerJ 2021; 9:e11461. [PMID: 34249482 PMCID: PMC8247702 DOI: 10.7717/peerj.11461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/26/2021] [Indexed: 11/20/2022] Open
Abstract
Background Sugarcane is a crop of global importance and has been expanding to areas with soils containing high levels of exchangeable aluminum (Al), which is a limiting factor for crop development in acidic soils. The study of the sugarcane physiological and nutritional behavior together with patterns of gene expression in response to Al stress may provide a basis for effective strategies to increase crop productivity in acidic soils. Methods Sugarcane cultivars were evaluated for physiological parameters (photosynthesis, stomatal conductance, and transpiration), nutrient (N, P, K, Ca, Mg, and S) and Al contents in leaves and roots and gene expression, of the genes MDH, SDH by qPCR, both related to the production of organic acids, and SOD, related to oxidative stress. Results Brazilian sugarcane RB867515, RB928064, and RB935744 cultivars exhibited very different responses to induced stress by Al. Exposure to Al caused up-regulation (SOD and MDH) or down-regulation (SDH, MDH, and SOD), depending on the cultivar, Al level, and plant tissue. The RB867515 cultivar was the most Al-tolerant, showing no decline of nutrient content in plant tissue, photosynthesis, transpiration, and stomatal conductance after exposure to Al; it exhibited the highest Al content in the roots, and showed important MDH and SOD gene expression in the roots. RB928064 only showed low expression of SOD in roots and leaves, while RB935744 showed important expression of the SOD gene only in the leaves. Sugarcane cultivars were classified in the following descending Al-tolerance order: RB867515 > RB928064 = RB935744. These results may contribute to the obtention of Al-tolerant cultivars that can play their genetic potential in soils of low fertility and with low demand for agricultural inputs; the selection of potential plants for breeding programs; the elucidation of Al detoxification mechanisms employed by sugarcane cultivars.
Collapse
Affiliation(s)
| | - Sâmara Vieira Rocha
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
| | | | - Flavio Henrique-Silva
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Marcio Roberto Soares
- Department of Natural Resources and Environmental Protection/Agrarian Sciences Center, Federal University of São Carlos, Araras, SP, Brazil
| | - Andrea Soares-Costa
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
| |
Collapse
|
43
|
Wang X, Wu MH, Xiao D, Huang RL, Zhan J, Wang AQ, He LF. Genome-wide identification and evolutionary analysis of RLKs involved in the response to aluminium stress in peanut. BMC PLANT BIOLOGY 2021; 21:281. [PMID: 34154532 PMCID: PMC8215822 DOI: 10.1186/s12870-021-03031-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 05/11/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND As an important cash crop, the yield of peanut is influenced by soil acidification and pathogen infection. Receptor-like protein kinases play important roles in plant growth, development and stress responses. However, little is known about the number, location, structure, molecular phylogeny, and expression of RLKs in peanut, and no comprehensive analysis of RLKs in the Al stress response in peanuts have been reported. RESULTS A total of 1311 AhRLKs were identified from the peanut genome. The AhLRR-RLKs and AhLecRLKs were further divided into 24 and 35 subfamilies, respectively. The AhRLKs were randomly distributed across all 20 chromosomes in the peanut. Among these AhRLKs, 9.53% and 61.78% originated from tandem duplications and segmental duplications, respectively. The ka/ks ratios of 96.97% (96/99) of tandem duplication gene pairs and 98.78% (646/654) of segmental duplication gene pairs were less than 1. Among the tested tandem duplication clusters, there were 28 gene conversion events. Moreover, all total of 90 Al-responsive AhRLKs were identified by mining transcriptome data, and they were divided into 7 groups. Most of the Al-responsive AhRLKs that clustered together had similar motifs and evolutionarily conserved structures. The gene expression patterns of these genes in different tissues were further analysed, and tissue-specifically expressed genes, including 14 root-specific Al-responsive AhRLKs were found. In addition, all 90 Al-responsive AhRLKs which were distributed unevenly in the subfamilies of AhRLKs, showed different expression patterns between the two peanut varieties (Al-sensitive and Al-tolerant) under Al stress. CONCLUSIONS In this study, we analysed the RLK gene family in the peanut genome. Segmental duplication events were the main driving force for AhRLK evolution, and most AhRLKs subject to purifying selection. A total of 90 genes were identified as Al-responsive AhRLKs, and the classification, conserved motifs, structures, tissue expression patterns and predicted functions of Al-responsive AhRLKs were further analysed and discussed, revealing their putative roles. This study provides a better understanding of the structures and functions of AhRLKs and Al-responsive AhRLKs.
Collapse
Affiliation(s)
- Xin Wang
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Ming-Hua Wu
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Dong Xiao
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, China.
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, China.
- Key Laboratory of Crop Cultivation and Tillage, GuangxiColleges and Universities, Nanning, 530004, China.
| | - Ruo-Lan Huang
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Jie Zhan
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, China
- Key Laboratory of Crop Cultivation and Tillage, GuangxiColleges and Universities, Nanning, 530004, China
| | - Ai-Qin Wang
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, China
- Key Laboratory of Crop Cultivation and Tillage, GuangxiColleges and Universities, Nanning, 530004, China
| | - Long-Fei He
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, China
- Key Laboratory of Crop Cultivation and Tillage, GuangxiColleges and Universities, Nanning, 530004, China
| |
Collapse
|
44
|
Phukunkamkaew S, Tisarum R, Pipatsitee P, Samphumphuang T, Maksup S, Cha-Um S. Morpho-physiological responses of indica rice (Oryza sativa sub. indica) to aluminum toxicity at seedling stage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29321-29331. [PMID: 33555471 DOI: 10.1007/s11356-021-12804-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Aluminum (Al) toxicity in acidic soils is a major problem in rice crop production, especially in the acid sulfate soil (pH < 4.0). Selecting Al-tolerant varieties of rice with low toxicity is one of the most appropriate strategies to overcome this problem. In the present study, we investigated the Al content in different rice genotypes, IR64 (high yielding), RD35 (local acidic-tolerant), and Azucena (AZU, positive-check Al-tolerant), and their physiological and morphological adaptations under a wide range Al (10, 25, 50 mM [Al2(SO4)3]) treatments in the greenhouse conditions. Under 50-mM Al treatment, Al levels in the root tissues of rice seedlings cvs. AZU and IR64 were increased by 2.74- and 2.10-fold over control. Interestingly, Al contents in the roots of cv. RD35 were also exhibited by 2.04-fold over control. Similarly, Al contents in the leaves trend to increase in relation to a degree of Al treatments, leading to increase leaf temperature, chlorophyll degradation, limited CO2 assimilation, and negative effect on root traits under 50 mM Al were evidently observed. Therefore, leaf temperature was considered a sensitive parameter regulated by high concentration of Al (50 mM), leading to increase in crop water stress index (CWSI > 0.6) and decrease in stomata conductance. Net photosynthetic rate (Pn) and transpiration rate (E) in rice seedlings of cv. RD35 subjected to 50 mM Al were significantly dropped by 74.76% and 47.71% over the control, respectively, resulting in reduced growth performances in terms of root length (26.57% reduction) and shoot fresh weight (46.15% reduction). An enrichment of Al in the root tissues without toxicity in rice cv. AZU may further help in discovering the Al homeostasis. In summary, Al enrichment in rice genotypes grown under Al-treatments was evidently observed in the root, leading to the limited root growth, root length, and root dry weight, especially in cv. RD35. Al restriction in the root tissues of cv. AZU (Al-tolerant) may play a key role as defense mechanisms to avoid translocation to other organs and the stomata closure was an alternative key factor to limit H2O transpiration.
Collapse
Affiliation(s)
- Suwanna Phukunkamkaew
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Rujira Tisarum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Piyanan Pipatsitee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Thapanee Samphumphuang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Sarunyaporn Maksup
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Suriyan Cha-Um
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand.
| |
Collapse
|
45
|
Szurman-Zubrzycka M, Chwiałkowska K, Niemira M, Kwaśniewski M, Nawrot M, Gajecka M, Larsen PB, Szarejko I. Aluminum or Low pH - Which Is the Bigger Enemy of Barley? Transcriptome Analysis of Barley Root Meristem Under Al and Low pH Stress. Front Genet 2021; 12:675260. [PMID: 34220949 PMCID: PMC8244595 DOI: 10.3389/fgene.2021.675260] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
Aluminum (Al) toxicity is considered to be the most harmful abiotic stress in acidic soils that today comprise more than 50% of the world’s arable lands. Barley belongs to a group of crops that are most sensitive to Al in low pH soils. We present the RNA-seq analysis of root meristems of barley seedlings grown in hydroponics at optimal pH (6.0), low pH (4.0), and low pH with Al (10 μM of bioavailable Al3+ ions). Two independent experiments were conducted: with short-term (24 h) and long-term (7 days) Al treatment. In the short-term experiment, more genes were differentially expressed (DEGs) between root meristems grown at pH = 6.0 and pH = 4.0, than between those grown at pH = 4.0 with and without Al treatment. The genes upregulated by low pH were associated mainly with response to oxidative stress, cell wall organization, and iron ion binding. Among genes upregulated by Al, overrepresented were those related to response to stress condition and calcium ion binding. In the long-term experiment, the number of DEGs between hydroponics at pH = 4.0 and 6.0 were lower than in the short-term experiment, which suggests that plants partially adapted to the low pH. Interestingly, 7 days Al treatment caused massive changes in the transcriptome profile. Over 4,000 genes were upregulated and almost 2,000 genes were downregulated by long-term Al stress. These DEGs were related to stress response, cell wall development and metal ion transport. Based on our results we can assume that both, Al3+ ions and low pH are harmful to barley plants. Additionally, we phenotyped the root system of barley seedlings grown in the same hydroponic conditions for 7 days at pH = 6.0, pH = 4.0, and pH = 4.0 with Al. The results correspond to transcriptomic data and show that low pH itself is a stress factor that causes a significant reduction of root growth and the addition of aluminum further increases this reduction. It should be noted that in acidic arable lands, plants are exposed simultaneously to both of these stresses. The presented transcriptome analysis may help to find potential targets for breeding barley plants that are more tolerant to such conditions.
Collapse
Affiliation(s)
- Miriam Szurman-Zubrzycka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Karolina Chwiałkowska
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Bialystok, Poland
| | - Magdalena Niemira
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Mirosław Kwaśniewski
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Bialystok, Poland
| | - Małgorzata Nawrot
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Monika Gajecka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Paul B Larsen
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
| | - Iwona Szarejko
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
46
|
Chauhan DK, Yadav V, Vaculík M, Gassmann W, Pike S, Arif N, Singh VP, Deshmukh R, Sahi S, Tripathi DK. Aluminum toxicity and aluminum stress-induced physiological tolerance responses in higher plants. Crit Rev Biotechnol 2021; 41:715-730. [PMID: 33866893 DOI: 10.1080/07388551.2021.1874282] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Aluminum (Al) precipitates in acidic soils having a pH < 5.5, in the form of conjugated organic and inorganic ions. Al-containing minerals solubilized in the soil solution cause several negative impacts in plants when taken up along with other nutrients. Moreover, a micromolar concentration of Al present in the soil is enough to induce several irreversible toxicity symptoms such as the rapid and transient over-generation of reactive oxygen species (ROS) such as superoxide anion (O2•-), hydrogen peroxide (H2O2), and hydroxyl radical (•OH), resulting in oxidative bursts. In addition, significant reductions in water and nutrient uptake occur which imposes severe stress in the plants. However, some plants have developed Al-tolerance by stimulating the secretion of organic acids like citrate, malate, and oxalate, from plant roots. Genes responsible for encoding such organic acids, play a critical role in Al tolerance. Several transporters involved in Al resistance mechanisms are members of the Aluminum-activated Malate Transporter (ALMT), Multidrug and Toxic compound Extrusion (MATE), ATP-Binding Cassette (ABC), Natural resistance-associated macrophage protein (Nramp), and aquaporin gene families. Therefore, in the present review, the discussion of the global extension and probable cause of Al in the environment and mechanisms of Al toxicity in plants are followed by detailed emphasis on tolerance mechanisms. We have also identified and categorized the important transporters that secrete organic acids and outlined their role in Al stress tolerance mechanisms in crop plants. The information provided here will be helpful for efficient exploration of the available knowledge to develop Al tolerant crop varieties.
Collapse
Affiliation(s)
- Devendra Kumar Chauhan
- D D Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Allahabad, India
| | - Vaishali Yadav
- D D Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Allahabad, India
| | - Marek Vaculík
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia.,Institute of Botany, Plant Science and Biodiversity Centre of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Walter Gassmann
- Division of Plant Sciences, Bond Life Sciences Center, and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
| | - Sharon Pike
- Division of Plant Sciences, Bond Life Sciences Center, and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
| | - Namira Arif
- D D Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Allahabad, India
| | - Vijay Pratap Singh
- C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Allahabad, India
| | | | - Shivendra Sahi
- University of the Sciences in Philadelphia (USP), Philadelphia, PA, USA
| | | |
Collapse
|
47
|
Shetty R, Vidya CSN, Prakash NB, Lux A, Vaculík M. Aluminum toxicity in plants and its possible mitigation in acid soils by biochar: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142744. [PMID: 33092837 DOI: 10.1016/j.scitotenv.2020.142744] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/10/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Toxicity of aluminum (Al) is a serious problem for agricultural plants, especially due to excessive soil acidification caused by continuous intensive agriculture and modified environmental conditions related with global climate change. Decreased root elongation and shoot growth, reduced biomass production, nutrient imbalance and altered physiological and metabolic processes are responsible for lower yield and crop quality and therefore, decreased variability and productivity of the land. Recently, biochar is gaining popularity for ameliorating metal toxicity in soils. However, there is a lack of comprehensive information regarding the effects of biochar and its functioning. Multiple mechanisms are involved in ameliorating Al toxicity in which inherent properties of biochar influencing Al adsorption, absorption, complexation, cation exchange and electrostatic interaction are considered to play major roles. Modification of biochar to enhance these mechanisms might hold the key for long term solution. Present review indicates gaps for further research. Long term field studies are needed to understand the effects of biochar on Al toxicity.
Collapse
Affiliation(s)
- Rajpal Shetty
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, SK-842 15 Bratislava, Slovakia
| | - Chiruppurathu Sukumaran-Nair Vidya
- Institute of Botany, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 23 Bratislava, Slovakia
| | | | - Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, SK-842 15 Bratislava, Slovakia
| | - Marek Vaculík
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, SK-842 15 Bratislava, Slovakia; Institute of Botany, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 23 Bratislava, Slovakia.
| |
Collapse
|
48
|
Wang P, Dong Y, Zhu L, Hao Z, Hu L, Hu X, Wang G, Cheng T, Shi J, Chen J. The role of γ-aminobutyric acid in aluminum stress tolerance in a woody plant, Liriodendron chinense × tulipifera. HORTICULTURE RESEARCH 2021; 8:80. [PMID: 33790239 PMCID: PMC8012378 DOI: 10.1038/s41438-021-00517-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 02/01/2021] [Accepted: 02/06/2021] [Indexed: 05/26/2023]
Abstract
The aluminum (Al) cation Al3+ in acidic soil shows severe rhizotoxicity that inhibits plant growth and development. Most woody plants adapted to acidic soils have evolved specific strategies against Al3+ toxicity, but the underlying mechanism remains elusive. The four-carbon amino acid gamma-aminobutyric acid (GABA) has been well studied in mammals as an inhibitory neurotransmitter; GABA also controls many physiological responses during environmental or biotic stress. The woody plant hybrid Liriodendron (L. chinense × tulipifera) is widely cultivated in China as a horticultural tree and provides high-quality timber; studying its adaptation to high Al stress is important for harnessing its ecological and economic potential. Here, we performed quantitative iTRAQ (isobaric tags for relative and absolute quantification) to study how protein expression is altered in hybrid Liriodendron leaves subjected to Al stress. Hybrid Liriodendron shows differential accumulation of several proteins related to cell wall biosynthesis, sugar and proline metabolism, antioxidant activity, cell autophagy, protein ubiquitination degradation, and anion transport in response to Al damage. We observed that Al stress upregulated glutamate decarboxylase (GAD) and its activity, leading to increased GABA biosynthesis. Additional GABA synergistically increased Al-induced antioxidant enzyme activity to efficiently scavenge ROS, enhanced proline biosynthesis, and upregulated the expression of MATE1/2, which subsequently promoted the efflux of citrate for chelation of Al3+. We also showed similar effects of GABA on enhanced Al3+ tolerance in Arabidopsis. Thus, our findings suggest a function of GABA signaling in enhancing hybrid Liriodendron tolerance to Al stress through promoting organic acid transport and sustaining the cellular redox and osmotic balance.
Collapse
Affiliation(s)
- Pengkai Wang
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- Suzhou Polytechnic Institute of Agriculture, Suzhou, 215008, China
| | - Yini Dong
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Liming Zhu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhaodong Hao
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - LingFeng Hu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiangyang Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Guibin Wang
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Tielong Cheng
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jinhui Chen
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
49
|
Recent Advances in Understanding Mechanisms of Plant Tolerance and Response to Aluminum Toxicity. SUSTAINABILITY 2021. [DOI: 10.3390/su13041782] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aluminum (Al) toxicity is a major environmental stress that inhibits plant growth and development. There has been impressive progress in recent years that has greatly increased our understanding of the nature of Al toxicity and its mechanisms of tolerance. This review describes the transcription factors (TFs) and plant hormones involved in the adaptation to Al stress. In particular, it discusses strategies to confer plant resistance to Al stress, such as transgenic breeding, as well as small molecules and plant growth-promoting rhizobacteria (PGPRs) to alleviate Al toxicity. This paper provides a theoretical basis for the enhancement of plant production in acidic soils.
Collapse
|
50
|
Alkali-Hydrothermal Treatment of K-Rich Igneous Rocks for Their Direct Use as Potassic Fertilizers. MINERALS 2021. [DOI: 10.3390/min11020140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Due to the increasing demand for conventional sources of potassium (K) and their inaccessibility by African countries, K-rich igneous rocks are increasingly studied as potential alternative sources. In this study, six potassic igneous rocks (syenites and trachytes) from the Tamazeght, Jbel Boho, Ait Saoun, and El Glo’a regions (Morocco) were sampled and characterized. Then they were hydrothermally treated to enhance their K release for potential use as potassic fertilizers. The raw materials are mainly formed by microcline (up to 74%), orthoclase (20–68%), albite (36–57%), biotite-muscovite (15–23%), and titanite, calcite, hematite, and apatite as accessory minerals. These samples were crushed and milled to reach a particle size <150 µm and mixed with 4 N NaOH solution in an autoclave. The liquid/solid (L/S) ratio was about 44 mL/50 g. The powders were allowed to react with the solution at 170 °C for 7 h. For all tests, NaOH reacted completely with the powders and no liquid was observed after the treatment. X-ray diffraction (XRD), thermal gravimetric analysis (TGA), infrared spectroscopy (IRTF), and scanning electron microscopy (SEM-EDS) were carried out on treated samples to characterize the mineralogical and structural changes due to the alkali-hydrothermal treatment. Indeed, the treated samples revealed the presence of sodic neoformed phases such as thermonatrite, sodalite, analcime, and cancrinite. The treated material was leached for a week using deionized water and the elements released were measured using inductively coupled plasma–atomic emission spectroscopy (ICP-AES). The hydrothermal process showed a strong effect on structure breakdown as well as on the release of K and other nutrients such as P, Fe, Si, Mg, and Ca. Therefore, the alkali-hydrothermal treatment allowed the release of 50.5 wt% K. Moreover, the release of Mg, Ca, Fe, P, K, and Si were significantly increased. Mg, Ca, Fe, P, K, and Si release within raw materials was about (0.5–3.6), (3.5–31.4), (0.01–0.4), (0.01–0.3), (20–55), and (4.6–8) mg/kg, respectively, whereas treated samples showed a higher release of these elements. Quantitatively, Mg, Ca, Fe, P, K, and Si releases were about (10–11.8), (60–70), (7–20), (1.2–15), (218–1278), and (1119–2759) mg/kg, respectively. Consequently, the treated igneous rocks (syenite and trachyte) could be directly used as potassic fertilizers that would also be a source of other nutrients.
Collapse
|