1
|
Exploration of the Potential Transcriptional Regulatory Mechanisms of DNA Methyltransferases and MBD Genes in Petunia Anther Development and Multi-Stress Responses. Genes (Basel) 2022; 13:genes13020314. [PMID: 35205359 PMCID: PMC8872020 DOI: 10.3390/genes13020314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
Cytosine-5 DNA methyltransferases (C5-MTases) and methyl-CpG-binding-domain (MBD) genes can be co-expressed. They directly control target gene expression by enhancing their DNA methylation levels in humans; however, the presence of this kind of cooperative relationship in plants has not been determined. A popular garden plant worldwide, petunia (Petunia hybrida) is also a model plant in molecular biology. In this study, 9 PhC5-MTase and 11 PhMBD proteins were identified in petunia, and they were categorized into four and six subgroups, respectively, on the basis of phylogenetic analyses. An expression correlation analysis was performed to explore the co-expression relationships between PhC5-MTases and PhMBDs using RNA-seq data, and 11 PhC5-MTase/PhMBD pairs preferentially expressed in anthers were identified as having the most significant correlations (Pearson’s correlation coefficients > 0.9). Remarkably, the stability levels of the PhC5-MTase and PhMBD pairs significantly decreased in different tissues and organs compared with that in anthers, and most of the selected PhC5-MTases and PhMBDs responded to the abiotic and hormonal stresses. However, highly correlated expression relationships between most pairs were not observed under different stress conditions, indicating that anther developmental processes are preferentially influenced by the co-expression of PhC5-MTases and PhMBDs. Interestingly, the nuclear localization genes PhDRM2 and PhMBD2 still had higher correlations under GA treatment conditions, implying that they play important roles in the GA-mediated development of petunia. Collectively, our study suggests a regulatory role for DNA methylation by C5-MTase and MBD genes in petunia anther maturation processes and multi-stress responses, and it provides a framework for the functional characterization of C5-MTases and MBDs in the future.
Collapse
|
2
|
Bennett M, Cleaves K, Hewezi T. Expression Patterns of DNA Methylation and Demethylation Genes during Plant Development and in Response to Phytohormones. Int J Mol Sci 2021; 22:ijms22189681. [PMID: 34575855 PMCID: PMC8470644 DOI: 10.3390/ijms22189681] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 01/02/2023] Open
Abstract
DNA methylation and demethylation precisely and effectively modulate gene expression during plant growth and development and in response to stress. However, expression profiles of genes involved in DNA methylation and demethylation during plant development and their responses to phytohormone treatments remain largely unknown. We characterized the spatiotemporal expression patterns of genes involved in de novo methylation, methyl maintenance, and active demethylation in roots, shoots, and reproductive organs using β-glucuronidase (GUS) reporter lines. Promoters of DNA demethylases were generally more highly active at the mature root tissues, whereas the promoters of genes involved in DNA methylation were more highly active at fast-growing root tissues. The promoter activity also implies that methylation status in shoot apex, leaf primordia, floral organs, and developing embryos is under tight equilibrium through the activity of genes involved in DNA methylation and demethylation. The promoter activity of DNA methylation and demethylation-related genes in response to various phytohormone treatments revealed that phytohormones can alter DNA methylation status in specific and redundant ways. Overall, our results illustrate that DNA methylation and demethylation pathways act synergistically and antagonistically in various tissues and in response to phytohormone treatments and point to the existence of hormone-linked methylome regulation mechanisms that may contribute to tissue differentiation and development.
Collapse
|
3
|
Synthesis, Antitumor Activity, and Docking Analysis of New Pyrido[3',2':4,5]furo(thieno)[3,2- d]pyrimidin-8-amines. Molecules 2019; 24:molecules24213952. [PMID: 31683699 PMCID: PMC6864781 DOI: 10.3390/molecules24213952] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 12/17/2022] Open
Abstract
Continuing our research in the field of new heterocyclic compounds, herein we report on the synthesis and antitumor activity of new amino derivatives of pyrido[3',2':4,5](furo)thieno[3,2-d]pyrimidines as well as of two new heterocyclic systems: furo[2-e]imidazo[1,2-c]pyrimidine and furo[2,3-e]pyrimido[1,2-c]pyrimidine. Thus, by refluxing the 8-chloro derivatives of pyrido[3',2':4,5]thieno(furo)[3,2-d]pyrimidines with various amines, the relevant pyrido[3',2':4,5]thieno(furo)[3,2-d]pyrimidin-8-amines were obtained. Further, the cyclization of some amines under the action of phosphorus oxychloride led to the formation of new heterorings: imidazo[1,2-c]pyrimidine and pyrimido[1,2-c]pyrimidine. The possible antitumor activity of the newly synthesized compounds was evaluated in vitro. The biological tests evidenced that some of them showed pronounced antitumor activity. A study of the structure-activity relationships revealed that the compound activity depended mostly on the nature of the amine fragments. A docking analysis was also performed for the most active compounds.
Collapse
|
4
|
Li Z, Ren T, Li W, Zhou Y, Han R, Li H, Jiang R, Yan F, Sun G, Liu X, Tian Y, Kang X. Association Between the Methylation Statuses at CpG Sites in the Promoter Region of the SLCO1B3, RNA Expression and Color Change in Blue Eggshells in Lushi Chickens. Front Genet 2019; 10:161. [PMID: 30863430 PMCID: PMC6399514 DOI: 10.3389/fgene.2019.00161] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/14/2019] [Indexed: 12/31/2022] Open
Abstract
The formation mechanism underlying the blue eggshell characteristic has been discovered in birds, and SLCO1B3 is the key gene that regulates the blue eggshell color. Insertion of an endogenous retrovirus, EAV-HP, in the SLCO1B3 5′ flanking region promotes SLCO1B3 expression in the chicken shell gland, and this expression causes bile salts to enter the shell gland, where biliverdin is secreted into the eggshell, forming a blue shell. However, at different laying stages of the same group of chickens, the color of the eggshell can vary widely, and the molecular mechanism underlying the eggshell color change remains unknown. Therefore, to reveal the molecular mechanism of the blue eggshell color variations, we analyzed the change in the eggshell color during the laying period. The results indicated that the eggshell color in Lushi chickens can be divided into three stages: 20–25 weeks for dark blue, 26–45 weeks for medium blue, and 46–60 weeks for light blue. We further investigated the expression and methylation levels of the SLCO1B3 gene at eight different weeks, finding that the relative expression of SLCO1B3 was significantly higher at 25 and 30 weeks than at other laying weeks. Furthermore, the overall methylation rate of the SLCO1B3 gene in Lushi chickens increased gradually with increasing weeks of egg production, as shown by bisulfite sequencing PCR. Pearson correlation analysis showed that methylation of the promoter region of SLCO1B3 was significantly negatively correlated with both SLCO1B3 expression in the shell gland tissue and eggshell color. In addition, we predicted that CpG5 and CpG8 may be key sites for regulating SLCO1B3 gene transcription. Our findings show that as the level of methylation increases, methylation of the CpG5 and CpG8 sites hinders the binding of transcription factors to the promoter, reducing SLCO1B3 expression during the late period and resulting in a lighter eggshell color.
Collapse
Affiliation(s)
- Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
| | - Tuanhui Ren
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Wenya Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yu Zhou
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Ruili Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
| | - Hong Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
| | - Ruirui Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
| | - Fengbin Yan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
| | - Guirong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
| | - Xiaojun Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China
| |
Collapse
|
5
|
Lin KN, Grandhi TSP, Goklany S, Rege K. Chemotherapeutic Drug-Conjugated Microbeads Demonstrate Preferential Binding to Methylated Plasmid DNA. Biotechnol J 2018; 13:e1700701. [DOI: 10.1002/biot.201700701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/25/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Kevin N. Lin
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University; Tempe AZ 85287 USA
| | - Taraka Sai Pavan Grandhi
- Biomedical Engineering, School of Biological and Health Systems Engineering, Arizona State University; Tempe AZ 85287 USA
| | - Sheba Goklany
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University; Tempe AZ 85287 USA
| | - Kaushal Rege
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University; Tempe AZ 85287 USA
| |
Collapse
|
6
|
Zhu J, Fang L, Yu J, Zhao Y, Chen F, Xia G. 5-Azacytidine treatment and TaPBF-D over-expression increases glutenin accumulation within the wheat grain by hypomethylating the Glu-1 promoters. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:735-746. [PMID: 29214328 DOI: 10.1007/s00122-017-3032-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 12/01/2017] [Indexed: 05/12/2023]
Abstract
5-azaC treatment and TaPBF - D over-expression decrease C-methylation status of three Glu - 1 gene promoters, and aid in enhancing the expression of the Glu - 1 genes. The wheat glutenins exert a strong influence over dough elasticity, but the regulation of their encoding genes has not been firmly established. Following treatment with 5-azacytidine (5-azaC), both the weight and glutenin content of the developing and mature grains were significantly increased. The abundance of transcript produced by the Glu-1 genes (encoding high-molecular-weight glutenin subunits), as well as those encoding demethylases and transcriptional factors associated with prolamin synthesis was higher than in grain of non-treated plants. These grains also contained an enhanced content of the prolamin box binding factor (PBF) protein. Bisulfite sequencing indicated that the Glu-1 promoters were less strongly C-methylated in the developing grain than in the flag leaf, while in the developing grain of 5-azaC treated plants, the C-methylation level was lower than in equivalent grains of non-treated plants. Both Glu-1 transcript abundance and glutenin content were higher in the grain set by three independent over-expressors of the D genome homoeolog of TaPBF than in the grain set by wild type plants. When assessed 10 days after flowering, the Glu-1 promoters' methylation level was lower in the developing grains set by the TaPBF-D over-expressor than in the wild type control. An electrophoretic mobility shift assay showed that PBF-D was able to bind in vitro to the P-box of Glu-1By8 and -1Dx2, while a ChIP-qPCR analysis revealed that a lower level of C-methylation in the Glu-1By8 and -1Dx2 promoters improved the TaPBF binding. We suggest that promoter DNA C-methylation is a key determinant of Glu-1 transcription.
Collapse
Affiliation(s)
- Jiantang Zhu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Linlin Fang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Jiaqi Yu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Ying Zhao
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Fanguo Chen
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China.
| | - Guangmin Xia
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| |
Collapse
|
7
|
Yang C, Zhang Y, Liu W, Lu X, Li C. Genome-wide analysis of DNA methylation in five tissues of sika deer (Cervus nippon). Gene 2017; 645:48-54. [PMID: 29253609 DOI: 10.1016/j.gene.2017.12.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023]
Abstract
DNA methylation plays an important role in regulating gene expression during tissue development and differentiation in eukaryotes. In contrast to domestic animals, epigenetic studies have been seldom conducted in wild animals. In the present study, we conducted the genome-wide profiling of DNA methylation for five tissues of sika deer using the fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) technique. Overall, a total of 104,131 fragments were amplified including 41,951 methylated fragments using 32 pairs of selected primers. The average incidence of DNA methylation was approximately 38.18% in muscle, 40.32% in heart, 41.86% in liver, 41.20% in lung, and 41.68% in kidney, respectively. Also, the significant differences of the DNA methylation levels were found between the different tissue types (P<0.05), which indicates that the differences of genome-wide DNA methylation levels may be related to gene expression during tissue development and differentiation. In addition, 37 tissue-specific differentially methylated regions (T-DMRs) were identified and recovered by MSAP in five tissues, and were further confirmed by Southern blot analysis. Our study presents the first look at the T-DMRs in sika deer and represents an initial step towards understanding of epigenetic regulatory mechanism underlying tissue development and differentiation in sika deer.
Collapse
Affiliation(s)
- Chun Yang
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, PR China; State Key Laboratory for Molecular Biology of Special Economic Animals, Changchun, PR China
| | - Yan Zhang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, PR China
| | - Wenyuan Liu
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, PR China; State Key Laboratory for Molecular Biology of Special Economic Animals, Changchun, PR China
| | - Xiao Lu
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, PR China; State Key Laboratory for Molecular Biology of Special Economic Animals, Changchun, PR China
| | - Chunyi Li
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, PR China; State Key Laboratory for Molecular Biology of Special Economic Animals, Changchun, PR China.
| |
Collapse
|
8
|
Romanov GA, Sukhoverov VS. Arginine CGA codons as a source of nonsense mutations: a possible role in multivariant gene expression, control of mRNA quality, and aging. Mol Genet Genomics 2017; 292:1013-1026. [DOI: 10.1007/s00438-017-1328-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/11/2017] [Indexed: 12/21/2022]
|
9
|
Giribet CG, Ruiz de Azúa MC. IPPP-CLOPPA Analysis of the Influence of the Methylation on the Potential Energy and the Molecular Polarizability of the Hydrogen Bonds in the Cytosine-Guanine Base Pair. J Phys Chem A 2017; 121:2960-2970. [PMID: 28350166 DOI: 10.1021/acs.jpca.6b10059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The IPPP-CLOPPA method is applied to investigate the influence of a methyl group on the energy of the hydrogen bonds and the potential energy curve of the bridge protons in model compounds, which mimic the methylated and unmethylated cytosine-guanine base pairs. On the same grounds, this influence on the polarizability of the intermolecular hydrogen bonds of these compounds is also addressed, in order to determine whether this linear response property provides a significant proof of the electronic mechanisms that affect the stabilization of the hydrogen bonds. Results obtained show that the methyl electronic system delocalizes on the hydrogen bond region, and changes of these intermolecular hydrogen bonds are due to this effect of delocalization.
Collapse
Affiliation(s)
- Claudia G Giribet
- Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires , 1428 Buenos Aires, Argentina.,Instituto de Física de Buenos Aires (IFIBA), CONICET, Universidad de Buenos Aires , 1428 Buenos Aires, Argentina
| | - Martín C Ruiz de Azúa
- Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires , 1428 Buenos Aires, Argentina.,Instituto de Física de Buenos Aires (IFIBA), CONICET, Universidad de Buenos Aires , 1428 Buenos Aires, Argentina
| |
Collapse
|
10
|
Menezo YJ, Silvestris E, Dale B, Elder K. Oxidative stress and alterations in DNA methylation: two sides of the same coin in reproduction. Reprod Biomed Online 2016; 33:668-683. [DOI: 10.1016/j.rbmo.2016.09.006] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/27/2016] [Accepted: 09/15/2016] [Indexed: 12/31/2022]
|
11
|
Li S, Zhu Y, Zhi L, Han X, Shen J, Liu Y, Yao J, Yang X. DNA Methylation Variation Trends during the Embryonic Development of Chicken. PLoS One 2016; 11:e0159230. [PMID: 27438711 PMCID: PMC4954715 DOI: 10.1371/journal.pone.0159230] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/29/2016] [Indexed: 11/18/2022] Open
Abstract
The embryogenesis period is critical for epigenetic reprogramming and is thus of great significance in the research field of poultry epigenetics for elucidation of the trends in DNA methylation variations during the embryonic development of birds, particularly due to differences in embryogenesis between birds and mammals. Here, we first examined the variations in genomic DNA methylation during chicken embryogenesis through high-performance liquid chromatography using broilers as the model organism. We then identified the degree of DNA methylation of the promoters and gene bodies involved in two specific genes (IGF2 and TNF-α) using the bisulfite sequencing polymerase chain reaction method. In addition, we measured the expression levels of IGF2, TNF-α and DNA methyltransferase (DNMT) 1, 3a and 3b. Our results showed that the genomic DNA methylation levels in the liver, heart and muscle increased during embryonic development and that the methylation level of the liver was significantly higher in mid-anaphase. In both the muscle and liver, the promoter methylation levels of TNF-α first increased and then decreased, whereas the gene body methylation levels remained lower at embryonic ages E8, 11 and 14 before increasing notably at E17. The promoter methylation level of IGF2 decreased persistently, whereas the methylation levels in the gene body showed a continuous increase. No differences in the expression of TNF-α were found among E8, 11 and 14, whereas a significant increase was observed at E17. IGF2 showed increasing expression level during the examined embryonic stages. In addition, the mRNA and protein levels of DNMTs increased with increasing embryonic ages. These results suggest that chicken shows increasing genomic DNA methylation patterns during the embryonic period. Furthermore, the genomic DNA methylation levels in tissues are closely related to the genes expression levels, and gene expression may be simultaneously regulated by promoter hypomethylation and gene body hypermethylation.
Collapse
Affiliation(s)
- Shizhao Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yufei Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Lihui Zhi
- School of Mathematics and Computer Science, ShanXi Normal University, Linfen, Shanxi, People's Republic of China
| | - Xiaoying Han
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jing Shen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- * E-mail:
| |
Collapse
|
12
|
Xu Y, Liu L, Pan B, Zhu J, Nan C, Huang X, Tian J. DNA methylation regulates mouse cardiac myofibril gene expression during heart development. J Biomed Sci 2015; 22:88. [PMID: 26475623 PMCID: PMC4609054 DOI: 10.1186/s12929-015-0203-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/09/2015] [Indexed: 12/31/2022] Open
Abstract
Background It is well known that epigenetic modifications play an important role in controlling the regulation of gene expression during the development. Our previous studies have demonstrated that the expression of fetal troponin I gene (also called slow skeletal troponin I, ssTnI) is predominated in the fetal stage, reduced after birth and disappeared in the adulthood. The mechanism underlying the developmentally related ssTnI gene regulation is not clear. In this study, we have explored the epigenetic role of DNA methylation in the regulation of ssTnI expression in the heart during the development. Results The DNA methylation levels of CpG island and CpG dinucleotides region were detected using methylation specific PCR (MSP) and bisulfite sequence PCR (BSP) in 2000 bp upstream and 100 bp upstream of ssTnI gene promoter. Real time RT-PCR and Western blot were used to detect ssTnI mRNA and protein expression levels. We found that DNA methylation levels of the CpG dinucleotides region in ssTnI gene promoter were increased with the development, corresponding to a decreased expression of ssTnI gene in mouse heart. However the DNA methylation levels of CpG islands in this gene were not changed during the development. Application of a methylation inhibitor, 5-Azacytidine, in cultured myocardial cells partially prevented the decline of ssTnI expression. Conclusion Our results indicate that DNA methylation, as an epigenetic intervention, plays a role in the regulation of the fetal TnI gene expression in the heat during the development.
Collapse
Affiliation(s)
- Yang Xu
- Department of Cardiology, Heart Centre, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing, 400014, P.R. of China
| | - Lingjuan Liu
- Department of Cardiology, Heart Centre, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing, 400014, P.R. of China.,Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, P.R. of China
| | - Bo Pan
- Department of Cardiology, Heart Centre, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing, 400014, P.R. of China
| | - Jing Zhu
- Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, P.R. of China
| | - Changlong Nan
- Department of Biomedical Science, Charlie E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA
| | - Xupei Huang
- Department of Biomedical Science, Charlie E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA.
| | - Jie Tian
- Department of Cardiology, Heart Centre, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing, 400014, P.R. of China.
| |
Collapse
|
13
|
Romanov GA, Sukhoverov VS, Vanyushin BF. Epigenetic mutagenesis as program of age-related protein dysfunction and aging. Russ J Dev Biol 2015. [DOI: 10.1134/s106236041502006x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Kornienko AV, Podvigina OA, Zhuzhzhalova TP, Fedulova TP, Bogomolov MA, Oshevnev VP, Butorina AK. High-priority research directions in genetics and the breeding of the sugar beet (Beta vulgaris L.) in the 21st century. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414110064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Hui AWH, Lau HW, Cao CY, Zhou JW, Lai PBS, Tsui SKW. Downregulation of PLZF in human hepatocellular carcinoma and its clinical significance. Oncol Rep 2014; 33:397-402. [PMID: 25369784 DOI: 10.3892/or.2014.3578] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/10/2014] [Indexed: 11/06/2022] Open
Abstract
Promyelocytic leukemia zinc finger (PLZF) acts as a tumor-suppressor gene in a series of cancers including prostate, melanoma, colon cancer and leukemia. However, its role in hepatocellular carcinoma (HCC) has not yet been illustrated. The present study aimed to investigate the expression and epigenetic regulation of PLZF as well as its clinical significance in HCC. We found that the expression of PLZF was significantly downregulated in HCC samples at both the RNA level (P<0.001) and protein level compared with these levels in adjacent normal tissues. The relative expression level of PLZF was also positively correlated with the ALP level (P=0.026) noted in the HCC patients. However, hypermethylation was only detected in one out of 5 paired HCC samples, indicating that methylation of the selected promoter region (from -1702 to -1388) may not be the major regulatory mechanism for the downregulation of PLZF in HCC. A receiver operating characteristic (ROC) curve was created to evaluate the diagnostic value for differentiating between HCC and benign diseases. The area under the ROC curve (AUC) for indicating the value of PLZF as an HCC biomarker was 0.794 (95% CI, 0.697-0.892; P<0.001). Taken together, our results suggest that PLZF may play an important role in HCC development and may be a potential biomarker for the diagnosis of HCC.
Collapse
Affiliation(s)
- Anselm Wang-Hei Hui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, SAR, P.R. China
| | - Hon-Wai Lau
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, SAR, P.R. China
| | - Cyanne Ye Cao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, SAR, P.R. China
| | - Jun-Wei Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, SAR, P.R. China
| | - Paul Bo-San Lai
- Department of Surgery, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, SAR, P.R. China
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, SAR, P.R. China
| |
Collapse
|
16
|
Huang J, Wang H, Liang W, Xie X, Guo G. Developmental expression of Arabidopsis methyltransferase genes MET1, DRM2, and CMT3. Mol Biol 2014. [DOI: 10.1134/s0026893314050057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Epigenetics and autism. AUTISM RESEARCH AND TREATMENT 2013; 2013:826156. [PMID: 24151554 PMCID: PMC3787640 DOI: 10.1155/2013/826156] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/17/2013] [Accepted: 08/01/2013] [Indexed: 12/19/2022]
Abstract
This review identifies mechanisms for altering DNA-histone interactions of cell chromatin to upregulate or downregulate gene expression that could serve as epigenetic targets for therapeutic interventions in autism. DNA methyltransferases (DNMTs) can phosphorylate histone H3 at T6. Aided by protein kinase C β 1, the DNMT lysine-specific demethylase-1 prevents demethylation of H3 at K4. During androgen-receptor-(AR-) dependent gene activation, this sequence may produce AR-dependent gene overactivation which may partly explain the male predominance of autism. AR-dependent gene overactivation in conjunction with a DNMT mechanism for methylating oxytocin receptors could produce high arousal inputs to the amygdala resulting in aberrant socialization, a prime characteristic of autism. Dysregulation of histone methyltransferases and histone deacetylases (HDACs) associated with low activity of methyl CpG binding protein-2 at cytosine-guanine sites in genes may reduce the capacity for condensing chromatin and silencing genes in frontal cortex, a site characterized by decreased cortical interconnectivity in autistic subjects. HDAC1 inhibition can overactivate mRNA transcription, a putative mechanism for the increased number of cerebral cortical columns and local frontal cortex hyperactivity in autistic individuals. These epigenetic mechanisms underlying male predominance, aberrant social interaction, and low functioning frontal cortex may be novel targets for autism prevention and treatment strategies.
Collapse
|
18
|
Gryzinska M, Blaszczak E, Strachecka A, Jezewska-Witkowska G. Analysis of age-related global DNA methylation in chicken. Biochem Genet 2013; 51:554-63. [PMID: 23553491 PMCID: PMC3712131 DOI: 10.1007/s10528-013-9586-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 09/11/2012] [Indexed: 11/24/2022]
Abstract
DNA methylation is an epigenetic modification that plays an important role in the normal development and function of organisms. The level of DNA methylation is species-, tissue-, and organelle-specific, and the methylation pattern is determined during embryogenesis. DNA methylation has also been correlated with age. The aim of this study was to determine the global DNA methylation levels and their correlation with age in the chicken, using a Polish autosexing chicken breed, Polbar. A quantitative technique based on an immunoenzymatic assay was used for global DNA methylation analysis. The results show increased global DNA methylation levels with older Polbar embryos. Global DNA methylation levels decrease with the age of hens in the postembryonic stage. This study expands the current knowledge of the Polbar epigenome and the general knowledge of the function of epigenetic mechanisms in birds.
Collapse
Affiliation(s)
- Magdalena Gryzinska
- Department of Biological Basis of Animal Production, Faculty of Biology and Animal Breeding, University of Life Sciences in Lubin, Lublin, Poland
| | - Ewa Blaszczak
- Department of Biological Basis of Animal Production, Faculty of Biology and Animal Breeding, University of Life Sciences in Lubin, Lublin, Poland
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes, 5043 Rennes, France
- Faculté de Médecine, Université de Rennes 1, UEB, IFR 140, 5043 Rennes, France
| | - Aneta Strachecka
- Department of Biological Basis of Animal Production, Faculty of Biology and Animal Breeding, University of Life Sciences in Lubin, Lublin, Poland
| | - Grazyna Jezewska-Witkowska
- Department of Biological Basis of Animal Production, Faculty of Biology and Animal Breeding, University of Life Sciences in Lubin, Lublin, Poland
| |
Collapse
|
19
|
Song QX, Ding ZD, Liu JH, Li Y, Wang HJ. Theoretical study on the binding mechanism between N6-methyladenine and natural DNA bases. J Mol Model 2012; 19:1089-98. [PMID: 23138643 DOI: 10.1007/s00894-012-1628-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 10/03/2012] [Indexed: 11/30/2022]
Abstract
N6-methyladenine (m(6)A) is a rare base naturally occurring in DNA. It is different from the base adenine due to its N-CH(3). Therefore, the base not only pairs with thymine, but also with other DNA bases (cytosine, adenine and guanine). In this work, Møller-Plesset second-order (MP2) method has been used to investigate the binding mechanism between m(6)A and natural DNA bases in gas phase and in aqueous solution. The results show that N-CH(3) changed the way of N6-methyladenine binding to natural DNA bases. The binding style significantly influences the stability of base pairs. The trans-m(6)A:G and trans-m(6)A:C conformers are the most stable among all the base pairs. The existence of solvent can remarkably reduce the stability of the base pairs, and the DNA bases prefer pairing with trans-m(6)A to cis-m(6)A. Besides, the properties of these hydrogen bonds have been analyzed by atom in molecules (AIM) theory, natural bond orbital (NBO) analysis and Wiberg bond indexes (WBI). In addition, pairing with m(6)A decreases the binding energies compared to the normal Watson-Crick base pairs, it may explain the instability of the N6 site methylated DNA in theory.
Collapse
Affiliation(s)
- Qi-Xia Song
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | | | | | | | | |
Collapse
|
20
|
Li D, Delaney JC, Page CM, Yang X, Chen AS, Wong C, Drennan CL, Essigmann JM. Exocyclic carbons adjacent to the N6 of adenine are targets for oxidation by the Escherichia coli adaptive response protein AlkB. J Am Chem Soc 2012; 134:8896-901. [PMID: 22512456 PMCID: PMC3363417 DOI: 10.1021/ja3010094] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The DNA and RNA repair protein AlkB removes alkyl groups from nucleic acids by a unique iron- and α-ketoglutarate-dependent oxidation strategy. When alkylated adenines are used as AlkB targets, earlier work suggests that the initial target of oxidation can be the alkyl carbon adjacent to N1. Such may be the case with ethano-adenine (EA), a DNA adduct formed by an important anticancer drug, BCNU, whereby an initial oxidation would occur at the carbon adjacent to N1. In a previous study, several intermediates were observed suggesting a pathway involving adduct restructuring to a form that would not hinder replication, which would match biological data showing that AlkB almost completely reverses EA toxicity in vivo. The present study uses more sensitive spectroscopic methodology to reveal the complete conversion of EA to adenine; the nature of observed additional putative intermediates indicates that AlkB conducts a second oxidation event in order to release the two-carbon unit completely. The second oxidation event occurs at the exocyclic carbon adjacent to the N(6) atom of adenine. The observation of oxidation of a carbon at N(6) in EA prompted us to evaluate N(6)-methyladenine (m6A), an important epigenetic signal for DNA replication and many other cellular processes, as an AlkB substrate in DNA. Here we show that m6A is indeed a substrate for AlkB and that it is converted to adenine via its 6-hydroxymethyl derivative. The observation that AlkB can demethylate m6A in vitro suggests a role for AlkB in regulation of important cellular functions in vivo.
Collapse
Affiliation(s)
- Deyu Li
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Faux N. Single amino acid and trinucleotide repeats: function and evolution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 769:26-40. [PMID: 23560303 DOI: 10.1007/978-1-4614-5434-2_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The most well known effect of single amino acid repeat expansion, beyond a certain threshold, is the development of a specific disease, depending on the protein in which the expansion has occurred. For example, the expansion of the glutamine repeat in huntingtin leads to the debilitating neurodegenerative disease, Huntington's disease. Similarly, there are a range of other disorders caused by trinucleotide repeat expansions encoding polyglutamine or polyalanine tracts. The age of onset of the polyglutamine-induced neurodegenerative diseases is usually negatively correlated with the length of expanded CAG/glutamine repeat. However, recent studies have given evidence that single amino acid repeats may also play critical roles in normal protein function and that changes in the length of single amino acid repeats is likely to play a beneficial role in evolution. This chapter will look at the prevalence, function and possible role single amino acid repeats have in evolution and other biological processes.
Collapse
Affiliation(s)
- Noel Faux
- Mental Health Research Institute, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
22
|
Shabbeer S, Williams SA, Simons BW, Herman JG, Carducci MA. Progression of prostate carcinogenesis and dietary methyl donors: temporal dependence. Cancer Prev Res (Phila) 2011; 5:229-39. [PMID: 22139053 DOI: 10.1158/1940-6207.capr-11-0357] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Insufficient dose of dietary methyl groups are associated with a host of conditions ranging from neural tube defects to cancer. On the other hand, it is not certain what effect excess dietary methyl groups could have on cancer. This is especially true for prostate cancer, a disease that is characterized by increasing DNA methylation changes with increasing grade of the cancer. In this three-part study in animals, we look at (i) the effect of excess methyl donors on the growth rate of prostate cancer in vivo, (ii) the ability of 5-aza-2'-deoxycytidine (AdC), a demethylating agent, to demethylate in the presence of excess dietary methyl donors, and (iii) the effect of in utero feeding of excess methyl donors to the later onset of prostate cancer. The results show that when mice are fed a dietary excess of methyl donors, we do not see (i) an increase in the growth rate of DU-145 and PC-3 xenografts in vivo, or (ii) interference in the ability of AdC to demethylate the promoters of androgen receptor or Reprimo of prostate cancer xenografts but (iii) a protective effect on the development of higher grades of prostate cancer in the "Hi-myc" mouse model of prostate cancer which were fed the increased methyl donors in utero. We conclude that the impact of dietary methyl donors on prostate cancer progression depends upon the timing of exposure to the dietary agents. When fed before the onset of cancer, that is, in utero, excess methyl donors can have a protective effect on the progression of cancer.
Collapse
|
23
|
Drozdz M, Piekarowicz A, Bujnicki JM, Radlinska M. Novel non-specific DNA adenine methyltransferases. Nucleic Acids Res 2011; 40:2119-30. [PMID: 22102579 PMCID: PMC3299994 DOI: 10.1093/nar/gkr1039] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The mom gene of bacteriophage Mu encodes an enzyme that converts adenine to N6-(1-acetamido)-adenine in the phage DNA and thereby protects the viral genome from cleavage by a wide variety of restriction endonucleases. Mu-like prophage sequences present in Haemophilus influenzae Rd (FluMu), Neisseria meningitidis type A strain Z2491 (Pnme1) and H. influenzae biotype aegyptius ATCC 11116 do not possess a Mom-encoding gene. Instead, at the position occupied by mom in Mu they carry an unrelated gene that encodes a protein with homology to DNA adenine N6-methyltransferases (hin1523, nma1821, hia5, respectively). Products of the hin1523, hia5 and nma1821 genes modify adenine residues to N6-methyladenine, both in vitro and in vivo. All of these enzymes catalyzed extensive DNA methylation; most notably the Hia5 protein caused the methylation of 61% of the adenines in λ DNA. Kinetic analysis of oligonucleotide methylation suggests that all adenine residues in DNA, with the possible exception of poly(A)-tracts, constitute substrates for the Hia5 and Hin1523 enzymes. Their potential ‘sequence specificity’ could be summarized as AB or BA (where B = C, G or T). Plasmid DNA isolated from Escherichia coli cells overexpressing these novel DNA methyltransferases was resistant to cleavage by many restriction enzymes sensitive to adenine methylation.
Collapse
Affiliation(s)
- Marek Drozdz
- Department of Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | | | | | | |
Collapse
|
24
|
Paprotka T, Deuschle K, Metzler V, Jeske H. Conformation-selective methylation of geminivirus DNA. J Virol 2011; 85:12001-12. [PMID: 21835804 PMCID: PMC3209285 DOI: 10.1128/jvi.05567-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 07/29/2011] [Indexed: 12/16/2022] Open
Abstract
Geminiviruses with small circular single-stranded DNA genomes replicate in plant cell nuclei by using various double-stranded DNA (dsDNA) intermediates: distinct open circular and covalently closed circular as well as heterogeneous linear DNA. Their DNA may be methylated partially at cytosine residues, as detected previously by bisulfite sequencing and subsequent PCR. In order to determine the methylation patterns of the circular molecules, the DNAs of tomato yellow leaf curl Sardinia virus (TYLCSV) and Abutilon mosaic virus were investigated utilizing bisulfite treatment followed by rolling circle amplification. Shotgun sequencing of the products yielded a randomly distributed 50% rate of C maintenance after the bisulfite reaction for both viruses. However, controls with unmethylated single-stranded bacteriophage DNA resulted in the same level of C maintenance. Only one short DNA stretch within the C2/C3 promoter of TYLCSV showed hyperprotection of C, with the protection rate exceeding the threshold of the mean value plus 1 standard deviation. Similarly, the use of methylation-sensitive restriction enzymes suggested that geminiviruses escape silencing by methylation very efficiently, by either a rolling circle or recombination-dependent replication mode. In contrast, attempts to detect methylated bases positively by using methylcytosine-specific antibodies detected methylated DNA only in heterogeneous linear dsDNA, and methylation-dependent restriction enzymes revealed that the viral heterogeneous linear dsDNA was methylated preferentially.
Collapse
Affiliation(s)
| | - K. Deuschle
- Biologisches Institut, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
| | - V. Metzler
- Biologisches Institut, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
| | - H. Jeske
- Biologisches Institut, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
| |
Collapse
|
25
|
[Analysis of DNA methylation in different chicken tissues with MSAP]. YI CHUAN = HEREDITAS 2011; 33:620-6. [PMID: 21684868 DOI: 10.3724/sp.j.1005.2011.00620] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
With methylation sensitive amplified polymorphism (MSAP), the DNA methylation levels and patterns of CCGG sites in genomes was analyzed among four different tissues and between parents and offsprings from three groups of adult chicken, White Leghorn, White Plymouth Rock, and their F1 hybrids. The results indicated that the degree of methylation was approximate 29.7% in muscle, 27.5% in liver, 27.5% in heart, and 26.1% in kidney. There was significantly different in the level of methylation in the 3 different groups and in 4 different tissues (P<0.05). The fully-methylated sites were less than the hemi-methylated sites among the 4 tissues, which was different from that of plants. The two tissue-specific MSAP fragments were isolated, sequenced, and characterized, both of which were located in the coding regions. These results clearly demonstrated that there was difference in the methylation level among various tissues and different groups, which suggested that the genetic factor may have effect on the individual methylation level.
Collapse
|
26
|
Hjelmeland LM. Dark matters in AMD genetics: epigenetics and stochasticity. Invest Ophthalmol Vis Sci 2011; 52:1622-31. [PMID: 21429863 DOI: 10.1167/iovs.10-6765] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Leonard M Hjelmeland
- Department of Ophthalmology and Vision Science, School of Medicine, University of California, Davis, California, USA.
| |
Collapse
|
27
|
Yang C, Zhang M, Niu W, Yang R, Zhang Y, Qiu Z, Sun B, Zhao Z. Analysis of DNA methylation in various swine tissues. PLoS One 2011; 6:e16229. [PMID: 21283691 PMCID: PMC3025005 DOI: 10.1371/journal.pone.0016229] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 12/15/2010] [Indexed: 11/18/2022] Open
Abstract
DNA methylation is known to play an important role in regulating gene expression during biological development and tissue differentiation in eukaryotes. In this study, we used the fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) method to assess the extent and pattern of cytosine methylation in muscle, heart, liver, spleen, lung, kidney and stomach from the swine strain Laiwu, and we also examined specific methylation patterns in the seven tissues. In total, 96,371 fragments, each representing a recognition site cleaved by either or both EcoRI + HpaII and EcoRI + MspI, the HpaII and MspI are isoschizomeric enzymes, were amplified using 16 pairs of selective primers. A total of 50,094 sites were found to be methylated at cytosines in seven tissues. The incidence of DNA methylation was approximately 53.99% in muscle, 51.24% in the heart, 50.18% in the liver, 53.31% in the spleen, 51.97% in the lung, 51.15% in the kidney and 53.39% in the stomach, as revealed by the incidence of differential digestion. Additionally, differences in DNA methylation levels imply that such variations may be related to specific gene expression during tissue differentiation, growth and development. Three types of bands were generated in the F-MSAP profile, the total numbers of these three types of bands in the seven tissues were 46,277, 24,801 and 25,293, respectively. In addition, different methylation patterns were observed in seven tissues from pig, and almost all of the methylation patterns detected by F-MSAP could be confirmed by Southern analysis using the isolated amplified fragments as probes. The results clearly demonstrated that the F-MSAP technique can be adapted for use in large-scale DNA methylation detection in the pig genome.
Collapse
Affiliation(s)
- Chun Yang
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | - Mingjun Zhang
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | - Weiping Niu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | - Runjun Yang
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | - Yonghong Zhang
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | - Zhengyan Qiu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | - Boxing Sun
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
- * E-mail: (BS); (ZZ)
| | - Zhihui Zhao
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
- * E-mail: (BS); (ZZ)
| |
Collapse
|
28
|
Luo J, Li YN, Wang F, Zhang WM, Geng X. S-adenosylmethionine inhibits the growth of cancer cells by reversing the hypomethylation status of c-myc and H-ras in human gastric cancer and colon cancer. Int J Biol Sci 2010; 6:784-95. [PMID: 21152119 PMCID: PMC2999854 DOI: 10.7150/ijbs.6.784] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 12/03/2010] [Indexed: 02/07/2023] Open
Abstract
A global DNA hypomethylation might activate oncogene transcription, thus promoting carcinogenesis and tumor development. S-Adenosylmethionine (SAM) serves as a major methyl donor in biological transmethylation events. The object of this study is to explore the influence of SAM on the status of methylation at the promoter of the oncogenes c-myc, H-ras and tumor-suppressor gene p16 (INK4a), as well as its inhibitory effect on cancer cells. The results indicated that SAM treatment inhibited cell growth in gastric cancer cells and colon cancer cells, and the inhibition efficiency was significantly higher than that in the normal cells. Under standard growth conditions, C-myc and H-ras promoters were hypomethylated in gastric cancer cells and colon cancer cells. SAM treatment resulted in a heavy methylation of these promoters, which consequently downregulated mRNA and protein levels. In contrast, there was no significant difference in mRNA and protein levels of p16 (INK4a) with and without SAM treatment. SAM can effectively inhibit the tumor cells growth by reversing the DNA hypomethylation on promoters of oncogenes, thus down-regulating their expression. With no influence on the expression of the tumor suppressor genes, such as P16, SAM could be used as a potential drug for cancer therapy.
Collapse
Affiliation(s)
- Jin Luo
- Department of biochemistry, Tianjin Medical University, Tianjin, 300070 China
| | | | | | | | | |
Collapse
|
29
|
Castiglione MR, Kotseruba V, Cremonini R. Methylated-rich regions and tandem repeat arrays along the chromosome complement of Colpodium versicolor (Stev.) Schmalh. PROTOPLASMA 2009; 237:13-18. [PMID: 19621206 DOI: 10.1007/s00709-009-0063-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 07/02/2009] [Indexed: 05/26/2023]
Abstract
The grass Colpodium versicolor (Stev.) Schmalh is one of six angiosperms with extremely reduced chromosome set 2n = 2x = 4. The chromosome complement of this species was studied. The DNA methylation pattern was determined with a specific monoclonal antiboby. 5-Methylcytosine residues are present in different chromosomal sites, with specific occurrence, some methylated bands showing differences between homologous chromosomes. Moreover, a fluorescent in situ hybridisation with telomere repeats and 45S rDNA sequences were performed. Hybridisation signals of telomeric repeats are detectable at the distal ends of the two pair of chromosomes, while 45S rDNA is localised in one chromosomal site, corresponding to the secondary constriction. In addition, 45S rDNA, as well as telomere-associated sequences, results to be 5-methylcytosine-enriched. The results are discussed and compared with those previously obtained in other plant systems 2n = 4 with the aim to enable a better knowledge of the lengthwise differentiation of this chromosome complement.
Collapse
|
30
|
Nie DS, Liu YB, Lu GX. Cloning and primarily function study of two novel putative N5-glutamine methyltransferase (Hemk) splice variants from mouse stem cells. Mol Biol Rep 2008; 36:2221-8. [PMID: 19116772 DOI: 10.1007/s11033-008-9437-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2008] [Accepted: 12/12/2008] [Indexed: 12/31/2022]
Abstract
Methylation is one of epigenetic mechanisms regulating gene expression. The methylation pattern is determined during embryogenesis and passed over to differentiating cells and tissues. Beginning with the ESTs which were highly expressed in undifferentiated human ES cells and using homology research in mouse dbEST database, we cloned two novel putative (N (5))-glutamine methyltransferase (Hemk) splice variants termed mHemk1 and mHemk2 (Genbank accession number AY456393 and AY583759). Sequence analysis revealed that mHemk1 and mHemk2 cDNAs are 1,792 bp and 1,696 bp in length respectively. The deduced proteins have 214 amino acid residues (mHemk1) and 138 residues (mHemk2) in length and both share significant homology with (N (5))-glutamine methyltransferase (Hemk proteins) in database. Northern blot and RT-PCR analysis showed that mHemk mRNAs were abundantly expressed in undifferentiated ES cells, testis and brain, weakly expressed in differentiated ES cells and kidney, and not expressed in muscle, heart, placenta, pancreas, lung and stomach. Immunohistochemical analysis further revealed that the protein was most abundant in undifferentiated ES cells. The green fluorescent protein produced by pEGFP-C3/mHemk1 was detected mainly in the nucleus of COS7 cell lines after 24 h post-transfection. RNA interference (RNAi)-mediated knock-down method was established. Cell cycle analysis suggests that the cell proliferation decreases after RNAi with mHemk1. In vitro bioactivity assay showed that no evidence for a DNA adenine-methyltransferase activity was detected. The accumulating functional information from Hemk homology proteins in bacteria and yeast suggests that it may be an uncharacterized new mammalian N(5)-glutamine methyltransferase.
Collapse
Affiliation(s)
- Dong-Song Nie
- Institute of Human Reproduction and Stem Cell Engineering, Central South University, 88 Xiangya Road, Changsha, 410078 Hunan, People's Republic of China
| | | | | |
Collapse
|
31
|
Krum SA, Miranda-Carboni GA, Lupien M, Eeckhoute J, Carroll JS, Brown M. Unique ERalpha cistromes control cell type-specific gene regulation. Mol Endocrinol 2008; 22:2393-406. [PMID: 18818283 DOI: 10.1210/me.2008-0100] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Estrogens play an important role in normal physiology and in a variety of pathological states involving diverse tissues including breast and bone. The mechanism by which estrogens exert cell type- and disease-specific effects, however, remains to be explained. We have compared the gene expression profile of the MCF7 breast cancer cell line with that of the osteoblast-like cell line U2OS-ERalpha by expression microarrays. We find that fewer than 10% of the 17beta-estradiol (E2)-regulated genes are common to both cell types. We have validated this in primary calvarial osteoblasts. To dissect the mechanism underlying the cell type-specific E2 regulation of gene expression in MCF7 and U2OS-ERalpha cells, we compared the ERalpha binding sites on DNA in the two cell types by performing chromatin immunoprecipitation (ChIP) on genomic tiling arrays (ChIP-on-chip). Consistent with the distinct patterns of E2-regulated gene expression in these two cell lines, we find that the vast majority of ERalpha binding sites are also cell type specific and correlate both in position and number with cell type-specific gene regulation. Interestingly, although the forkhead factor FoxA1 plays a critical role in defining the ERalpha cistrome in MCF7 cells, it is not expressed in U2OS-ERalpha cells, and forkhead motifs are not enriched in the ERalpha cistrome in these cells. Finally, the ERalpha cistromes are correlated with cell type-specific epigenetic histone modifications. These results support a model for the cell type-specific action of E2 being driven primarily through specific ERalpha occupancy of epigenetically marked cis-regulatory regions of target genes.
Collapse
Affiliation(s)
- Susan A Krum
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, D730, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
32
|
Ruffini Castiglione M, Frediani M, Venora G, Cremonini R. Cytological investigation of Haplopappus gracilis (Nutt.) Gray: 5-methylcytosine-rich regions, fluorochrome banding and chromatin sensitivity to DNase I digestion. PROTOPLASMA 2008; 233:107-113. [PMID: 18615238 DOI: 10.1007/s00709-008-0296-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 10/21/2007] [Indexed: 05/26/2023]
Abstract
Haplopappus gracilis (Nutt.) Gray, one of the five known higher plants with a chromosome number of 2n = 4, was studied from a cytological point of view. The chromosome complement of this species was characterized by means of automated karyotype analysis. Moreover, the DNA methylation pattern and fluorochrome banding were determined and compared with cytological data present in the literature. DNA methylation distribution along metaphase chromosomes involved all chromosome territories evidenced by C-banding. Other methylated bands correlated positively with aceto-orcein-positive heterochromatic portions and/or with late replicating bands and/or fluorochrome bands. Some methylated bands showed differences between homologous chromosomes. These bands belonged partly to certain heterochromatic domains and partly to intercalary sites not defined by other standard banding techniques. Differences between the homologues were also indicated by our DNA content data obtained after DNase I digestion.
Collapse
|
33
|
Tomilin NV. Regulation of mammalian gene expression by retroelements and non-coding tandem repeats. Bioessays 2008; 30:338-48. [PMID: 18348251 DOI: 10.1002/bies.20741] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Genomes of higher eukaryotes contain abundant non-coding repeated sequences whose overall biological impact is unclear. They comprise two categories. The first consists of retrotransposon-derived elements. These are three major families of retroelements (LINEs, SINEs and LTRs). SINEs are clustered in gene-rich regions and are found in promoters of genes while LINEs are concentrated in gene-poor regions and are depleted from promoters. The second class consists of non-coding tandem repeats (satellite DNAs and TTAGGG arrays), which are associated with mammalian centromeres, heterochromatin and telomeres. Terminal TTAGGG arrays are involved in telomere capping and satellite DNAs are located in heterochromatin, which is implicated in transcription silencing by gene repositioning (relocalization). It is unknown whether interstitial TTAGGG sequences, which are present in many vertebrates, have a function. Here, evidence will be presented that retroelements and TTAGGG arrays are involved in regulation of gene expression. Retroelements can provide binding sites for transcription factors and protect promoter CpG islands from repressive chromatin modifications, and may be also involved in nuclear compartmentalization of transcriptionally active and inactive domains. Interstitial telomere-like sequences can form dynamically maintained three-dimensional nuclear networks of transcriptionally inactive domains, which may be involved in transcription silencing like classic heterochromatin.
Collapse
Affiliation(s)
- Nikolai V Tomilin
- Institute of Cytology, Russian Academy of Sciences, 194064 St.Petersburg, Tikchoretskii Av. 4, Russia.
| |
Collapse
|
34
|
RNAi-mediated knock-down of gene mN6A1 reduces cell proliferation and decreases protein translation. Mol Biol Rep 2008; 36:767-74. [PMID: 18389380 DOI: 10.1007/s11033-008-9243-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2008] [Accepted: 03/27/2008] [Indexed: 10/22/2022]
Abstract
Methyltransferases play essential roles in modulating important cellular and metabolic processes. A mouse putative N6-DNA methyltransferase gene (GenBank No AY456393) is a novel gene named mN6amt1(mN6A1). To investigate its function in cell fate and protein translation, RNA interference (RNAi)-mediated knock-down method was established. Cell cycle analysis suggests that the cell proliferation decreases after RNAi with mN6A1. The expression plasmid of luciferase was used to detect protein translation, and the results showed that luciferase expression decreased after RNAi with mN6A1, whereas increased after over-expression of mN6A1 or/and eRF1. The binding between mN6A1 and eRF1 was identified by co-immunoprecipitation and pull-down experiments. It might be suggested that mN6A1 participates in protein translation through interaction with eRF1.
Collapse
|
35
|
Vanyushin BF. A view of an elemental naturalist at the DNA world (Base composition, sequences, methylation). BIOCHEMISTRY (MOSCOW) 2007; 72:1289-98. [DOI: 10.1134/s0006297907120036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Xu Q, Zhang Y, Sun D, Wang Y, Yu Y. Analysis on DNA Methylation of Various Tissues in Chicken. Anim Biotechnol 2007; 18:231-41. [DOI: 10.1080/10495390701574838] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Lebedev IN, Puzyrev VP. Epigenetic perspectives of safety in assisted reproductive technologies. RUSS J GENET+ 2007. [DOI: 10.1134/s1022795407090013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Laprise SL, Gray MR. Covalent genomic DNA modification patterns revealed by denaturing gradient gel blots. Gene 2007; 391:45-52. [PMID: 17276628 PMCID: PMC1924925 DOI: 10.1016/j.gene.2006.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 11/10/2006] [Accepted: 12/01/2006] [Indexed: 10/23/2022]
Abstract
Several approaches are used to survey genomic DNA methylation patterns, including Southern blot, PCR, and microarray strategies. All of these methods are based on the use of methylation-sensitive isoschizomer restriction enzyme pairs and/or sodium bisulfite treatment of genomic DNA. They have many limitations, including PCR bias, lack of comprehensive assessment of methylated sites, labor-intensive protocols, and/or the need for expensive equipment. Since the presence of 5-methylcytosine alters the melting properties of DNA molecules, denaturing gradient gel blots (DGG blots), a gene scanning technique which detects differences in DNA fragments based on differential melting behavior, were used to examine genomic modification patterns in normal tissues. Variations in melting behavior, observed as restriction fragment melting polymorphisms (RFMPs), were detected in various tissues from single individuals in all human and mouse genes tested, suggesting the presence of widespread differential cell type-specific DNA modification. Additional DGG blot experiments comparing genomic DNA to unmethylated cloned DNA suggested that the melting variants were most likely caused by DNA methylation differences. The results suggest that the use of DGG blots can provide a comprehensive and rapid method for comparing complex in vivo DNA modification patterns in normal adult somatic cells.
Collapse
Affiliation(s)
- Shari L Laprise
- Math/Science Division, Babson College, Forest Street, Babson Park, MA 02457, USA.
| | | |
Collapse
|
39
|
Varriale A, Bernardi G. DNA methylation and body temperature in fishes. Gene 2006; 385:111-21. [PMID: 17067764 DOI: 10.1016/j.gene.2006.05.031] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 05/04/2006] [Accepted: 05/18/2006] [Indexed: 10/24/2022]
Abstract
Previous investigations from our laboratory [Jabbari, K., Cacciò, S., Pais de Barros, J.P., Desgres, J., Bernardi G., 1997. Evolutionary changes in CpG and methylation levels in the genome of vertebrates. Gene 205, 109-118.] led to the discovery of two different methylation levels in the genomes of vertebrates, a higher one exhibited by fishes and amphibians and a lower one shown by mammals and birds. It was also noted that data from the literature indicated a higher CpG level in fishes and amphibians compared to mammals and birds. Such observations led to suggesting the existence of two equilibria and to speculate that the transitions between the two equilibria in DNA methylation and CpG levels were due to a higher deamination rate in warm-blooded vertebrates related to their higher body temperature. Here we used Reverse-Phase High-Performance Liquid Chromatography (RP-HPLC) analysis to study methylation levels in a number of fish genomes living at different temperatures. We found that polar fishes exhibit DNA methylation levels that are higher than those of tropical and temperate fishes, the latter being in turn higher than the methylation levels of warm-blooded vertebrates, as expected from previous work. A closer analysis of the data revealed that, among Antarctic fishes, the Channichthyidae (the icefishes, deprived of haemoglobin) had the highest methylation level, and that, among temperate and tropical fishes the latter showed the lowest methylation level. These results confirm the existence of an inverse relationship between DNA methylation and body temperature, when the latter is maintained over evolutionary times.
Collapse
Affiliation(s)
- Annalisa Varriale
- Laboratory of Molecular Evolution, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | | |
Collapse
|
40
|
Ratel D, Ravanat JL, Charles MP, Platet N, Breuillaud L, Lunardi J, Berger F, Wion D. Undetectable levels of N6-methyl adenine in mouse DNA: Cloning and analysis of PRED28, a gene coding for a putative mammalian DNA adenine methyltransferase. FEBS Lett 2006; 580:3179-84. [PMID: 16684535 DOI: 10.1016/j.febslet.2006.04.074] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 04/25/2006] [Accepted: 04/26/2006] [Indexed: 10/24/2022]
Abstract
Three methylated bases, 5-methylcytosine, N4-methylcytosine and N6-methyladenine (m6A), can be found in DNA. However, to date, only 5-methylcytosine has been detected in mammalian genomes. To reinvestigate the presence of m6A in mammalian DNA, we used a highly sensitive method capable of detecting one N6-methyldeoxyadenosine per million nucleosides. Our results suggest that the total mouse genome contains, if any, less than 10(3) m6A. Experiments were next performed on PRED28, a putative mammalian N6-DNA methyltransferase. The murine PRED28 encodes two alternatively spliced RNA. However, although recombinant PRED28 proteins are found in the nucleus, no evidence for an adenine-methyltransferase activity was detected.
Collapse
Affiliation(s)
- David Ratel
- INSERM U318, UJFG, CHU Michallon, 38043 Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|