1
|
Ugodnikov A, Persson H, Simmons CA. Bridging barriers: advances and challenges in modeling biological barriers and measuring barrier integrity in organ-on-chip systems. LAB ON A CHIP 2024; 24:3199-3225. [PMID: 38689569 DOI: 10.1039/d3lc01027a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Biological barriers such as the blood-brain barrier, skin, and intestinal mucosal barrier play key roles in homeostasis, disease physiology, and drug delivery - as such, it is important to create representative in vitro models to improve understanding of barrier biology and serve as tools for therapeutic development. Microfluidic cell culture and organ-on-a-chip (OOC) systems enable barrier modelling with greater physiological fidelity than conventional platforms by mimicking key environmental aspects such as fluid shear, accurate microscale dimensions, mechanical cues, extracellular matrix, and geometrically defined co-culture. As the prevalence of barrier-on-chip models increases, so does the importance of tools that can accurately assess barrier integrity and function without disturbing the carefully engineered microenvironment. In this review, we first provide a background on biological barriers and the physiological features that are emulated through in vitro barrier models. Then, we outline molecular permeability and electrical sensing barrier integrity assessment methods, and the related challenges specific to barrier-on-chip implementation. Finally, we discuss future directions in the field, as well important priorities to consider such as fabrication costs, standardization, and bridging gaps between disciplines and stakeholders.
Collapse
Affiliation(s)
- Alisa Ugodnikov
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Henrik Persson
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada.
| | - Craig A Simmons
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| |
Collapse
|
2
|
Leal F, Zeiringer S, Jeitler R, Costa PF, Roblegg E. A comprehensive overview of advanced dynamic in vitro intestinal and hepatic cell culture models. Tissue Barriers 2024; 12:2163820. [PMID: 36680530 PMCID: PMC10832944 DOI: 10.1080/21688370.2022.2163820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/22/2022] [Indexed: 01/22/2023] Open
Abstract
Orally administered drugs pass through the gastrointestinal tract before being absorbed in the small intestine and metabolised in the liver. To test the efficacy and toxicity of drugs, animal models are often employed; however, they are not suitable for investigating drug-tissue interactions and making reliable predictions, since the human organism differs drastically from animals in terms of absorption, distribution, metabolism and excretion of substances. Likewise, simple static in vitro cell culture systems currently used in preclinical drug screening often do not resemble the native characteristics of biological barriers. Dynamic models, on the other hand, provide in vivo-like cell phenotypes and functionalities that offer great potential for safety and efficacy prediction. Herein, current microfluidic in vitro intestinal and hepatic models are reviewed, namely single- and multi-tissue micro-bioreactors, which are associated with different methods of cell cultivation, i.e., scaffold-based versus scaffold-free.
Collapse
Affiliation(s)
- Filipa Leal
- BIOFABICS, Rua Alfredo Allen 455, 4200-135 Porto, Portugal
| | - Scarlett Zeiringer
- Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Institute of Pharmaceutical Sciences, Universitaetsplatz 1, Graz, Austria
| | - Ramona Jeitler
- Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Institute of Pharmaceutical Sciences, Universitaetsplatz 1, Graz, Austria
| | - Pedro F. Costa
- BIOFABICS, Rua Alfredo Allen 455, 4200-135 Porto, Portugal
| | - Eva Roblegg
- Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Institute of Pharmaceutical Sciences, Universitaetsplatz 1, Graz, Austria
| |
Collapse
|
3
|
Antypas H, Zhang T, Choong FX, Melican K, Richter-Dahlfors A. Dynamic single cell analysis in a proximal-tubule-on-chip reveals heterogeneous epithelial colonization strategies of uropathogenic Escherichia coli under shear stress. FEMS MICROBES 2023; 4:xtad007. [PMID: 37333433 PMCID: PMC10117878 DOI: 10.1093/femsmc/xtad007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/20/2022] [Accepted: 03/01/2023] [Indexed: 03/23/2024] Open
Abstract
The urinary tract is a hydrodynamically challenging microenvironment and uropathogenic Escherichia coli (UPEC) must overcome several physiological challenges in order to adhere and establish a urinary tract infection. Our previous work in vivo revealed a synergy between different UPEC adhesion organelles, which facilitated effective colonization of the renal proximal tubule. To allow high-resolution real-time analysis of this colonization behavior, we established a biomimetic proximal-tubule-on-chip (PToC). The PToC allowed for single-cell resolution analysis of the first stages of bacterial interaction with host epithelial cells, under physiological flow. Time-lapse microscopy and single-cell trajectory analysis in the PToC revealed that while the majority of UPEC moved directly through the system, a minority population initiated heterogeneous adhesion, identified as either rolling or bound. Adhesion was predominantly transient and mediated by P pili at the earliest time-points. These bound bacteria initiated a founder population which rapidly divided, leading to 3D microcolonies. Within the first hours, the microcolonies did not express extracellular curli matrix, but rather were dependent on Type 1 fimbriae as the key element in the microcolony structure. Collectively, our results show the application of Organ-on-chip technology to address bacterial adhesion behaviors, demonstrating a well-orchestrated interplay and redundancy between adhesion organelles that enables UPEC to form microcolonies and persist under physiological shear stress.
Collapse
Affiliation(s)
- Haris Antypas
- AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet and KTH Royal Institute of Technology, SE-171 77, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Tianqi Zhang
- AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet and KTH Royal Institute of Technology, SE-171 77, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Ferdinand X Choong
- AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet and KTH Royal Institute of Technology, SE-171 77, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Keira Melican
- AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet and KTH Royal Institute of Technology, SE-171 77, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Agneta Richter-Dahlfors
- AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet and KTH Royal Institute of Technology, SE-171 77, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| |
Collapse
|
4
|
Thomas DP, Zhang J, Nguyen NT, Ta HT. Microfluidic Gut-on-a-Chip: Fundamentals and Challenges. BIOSENSORS 2023; 13:bios13010136. [PMID: 36671971 PMCID: PMC9856111 DOI: 10.3390/bios13010136] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 06/03/2023]
Abstract
The human gut is responsible for food digestion and absorption. Recently, growing evidence has shown its vital role in the proper functioning of other organs. Advances in microfluidic technologies have made a significant impact on the biomedical field. Specifically, organ-on-a-chip technology (OoC), which has become a popular substitute for animal models, is capable of imitating complex systems in vitro and has been used to study pathology and pharmacology. Over the past decade, reviews published focused more on the applications and prospects of gut-on-a-chip (GOC) technology, but the challenges and solutions to these limitations were often overlooked. In this review, we cover the physiology of the human gut and review the engineering approaches of GOC. Fundamentals of GOC models including materials and fabrication, cell types, stimuli and gut microbiota are thoroughly reviewed. We discuss the present GOC model applications, challenges, possible solutions and prospects for the GOC models and technology.
Collapse
Affiliation(s)
- Dimple Palanilkunnathil Thomas
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, QLD 4111, Australia
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - Jun Zhang
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, QLD 4111, Australia
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - Hang Thu Ta
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, QLD 4111, Australia
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
5
|
Sahakyants T, Lieberthal TJ, Comer CD, Hancock MJ, Spann AP, Neville CM, Vacanti JP. Rodent Model for Orthotopic Implantation of Engineered Liver Devices. Tissue Eng Part C Methods 2023; 29:20-29. [PMID: 36565022 DOI: 10.1089/ten.tec.2022.0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
This study presents a novel surgical model developed to provide hematological support for implanted cellularized devices augmenting or replacing liver tissue function. Advances in bioengineering provide tools and materials to create living tissue replacements designed to restore that lost to disease, trauma, or congenital deformity. Such substitutes are often assembled and matured in vitro and need an immediate blood supply upon implantation, necessitating the development of supporting protocols. Animal translational models are required for continued development of engineered structures before clinical implementation, with rodent models often playing an essential early role. Our long-term goal has been generation of living tissue to provide liver function, utilizing advances in additive manufacturing technology to create 3D structures with intrinsic micron to millimeter scale channels modeled on natural vasculature. The surgical protocol developed enables testing various design iterations in vivo by anastomosis to the host rat vasculature. Lobation of rodent liver facilitates partial hepatectomy and repurposing the remaining vasculature to support implanted engineered tissue. Removal of the left lateral lobe exposes the underlying hepatic vasculature and can create space for a device. A shunt is created from the left portal vein to the left hepatic vein by cannulating each with separate silicone tubing. The device is then integrated into the shunt by connecting its inflow and outflow ports to the tubing and reestablishing blood flow. Sustained anticoagulation is maintained with an implanted osmotic pump. In our studies, animals were freely mobile after implantation; devices remained patent while maintaining blood flow through their millifluidic channels. This vascular anastomosis model has been greatly refined during the process of performing over 200 implantation procedures. We anticipate that the model described herein will find utility in developing preclinical translational protocols for evaluation of engineered liver tissue. Impact statement Tissue and organ transplantation are often the best clinically effective treatments for a variety of human ailments. However, the availability of suitable donor organs remains a critical problem. Advances in biotechnology hold potential in alleviating shortages, yet further work is required to surgically integrate large engineered tissues to host vasculature. Improved animal models such as the one described are valuable tools to support continued development and evaluation of novel therapies.
Collapse
Affiliation(s)
- Tatevik Sahakyants
- 3D BioLabs, LLC, Chadds Ford, Pennsylvania, USA.,Center for Regenerative Medicine, Massachusetts General Hospital, Boston Massachusetts, USA
| | | | - Carly D Comer
- 3D BioLabs, LLC, Chadds Ford, Pennsylvania, USA.,Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Craig M Neville
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston Massachusetts, USA.,Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph P Vacanti
- 3D BioLabs, LLC, Chadds Ford, Pennsylvania, USA.,Center for Regenerative Medicine, Massachusetts General Hospital, Boston Massachusetts, USA.,Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
McDuffie D, Barr D, Agarwal A, Thomas E. Physiologically relevant microsystems to study viral infection in the human liver. Front Microbiol 2022; 13:999366. [PMID: 36246284 PMCID: PMC9555087 DOI: 10.3389/fmicb.2022.999366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Viral hepatitis is a leading cause of liver disease and mortality. Infection can occur acutely or chronically, but the mechanisms that govern the clearance of virus or lack thereof are poorly understood and merit further investigation. Though cures for viral hepatitis have been developed, they are expensive, not readily accessible in vulnerable populations and some patients may remain at an increased risk of developing hepatocellular carcinoma (HCC) even after viral clearance. To sustain infection in vitro, hepatocytes must be fully mature and remain in a differentiated state. However, primary hepatocytes rapidly dedifferentiate in conventional 2D in vitro platforms. Physiologically relevant or physiomimetic microsystems, are increasingly popular alternatives to traditional two-dimensional (2D) monocultures for in vitro studies. Physiomimetic systems reconstruct and incorporate elements of the native cellular microenvironment to improve biologic functionality in vitro. Multiple elements contribute to these models including ancillary tissue architecture, cell co-cultures, matrix proteins, chemical gradients and mechanical forces that contribute to increased viability, longevity and physiologic function for the tissue of interest. These microsystems are used in a wide variety of applications to study biological phenomena. Here, we explore the use of physiomimetic microsystems as tools for studying viral hepatitis infection in the liver and how the design of these platforms is tailored for enhanced investigation of the viral lifecycle when compared to conventional 2D cell culture models. Although liver-based physiomimetic microsystems are typically applied in the context of drug studies, the platforms developed for drug discovery purposes offer a solid foundation to support studies on viral hepatitis. Physiomimetic platforms may help prolong hepatocyte functionality in order to sustain chronic viral hepatitis infection in vitro for studying virus-host interactions for prolonged periods.
Collapse
Affiliation(s)
- Dennis McDuffie
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - David Barr
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ashutosh Agarwal
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Emmanuel Thomas
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
- Schiff Center for Liver Diseases, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
7
|
Sugiura S, Satoh T, Shin K, Onuki-Nagasaki R, Kanamori T. Perfusion culture of multi-layered HepG2 hepatocellular carcinoma cells in a pressure-driven microphysiological system. J Biosci Bioeng 2022; 134:348-355. [PMID: 35963667 DOI: 10.1016/j.jbiosc.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022]
Abstract
Here we report the perfusion culture of a multi-layered tissue composed of HepG2 cells (a human hepatoma line) in a pressure-driven microphysiological system (PD-MPS), which we developed previously as a multi-throughput perfusion culture platform. The perfusion culture of multi-layered tissue model was constructed by inserting a modified commercially available permeable membrane insert into the PD-MPS. HepG2 cells were layered on the membrane, and culture medium was perfused both through and below the membrane. The seeded density (number of cells/cm2) of the culture model is 70 times that of static culture in a conventional 35-mm culture dish. Pressure-driven circulation of the medium in our compact device (8.6 × 7.0 × 4.5 cm3), which comprised two perfusion-culture modules and a pneumatic connection port, enabled perfusion culture of two multi-layered tissues (initially 1 × 105 cells). To obtain insight into the basic functionality of the multi-layered tissues as hepatocytes, we compared albumin production and urea synthesis between perfusion cultures and static cultures. The HepG2 cells grew and secreted increasing amounts of albumin throughout 20 days of perfusion culture, whereas albumin secretion did not increase under static culture conditions. In addition, on day 20, the amount of albumin secreted by the HepG2 cells in the microfluidic device was 68% of that in the conventional culture dish, which was seeded with the same number of cells but had a 70 times larger culture area. These features of high-density culture of functioning cells in a compact device support the application of PD-MPS in single- and multi-organ MPS.
Collapse
Affiliation(s)
- Shinji Sugiura
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Taku Satoh
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan; Stem Cell Evaluation Technology Research Association, Astellas Pharma, 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Kazumi Shin
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Reiko Onuki-Nagasaki
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan; Stem Cell Evaluation Technology Research Association, Astellas Pharma, 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Toshiyuki Kanamori
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
8
|
Filippi M, Buchner T, Yasa O, Weirich S, Katzschmann RK. Microfluidic Tissue Engineering and Bio-Actuation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108427. [PMID: 35194852 DOI: 10.1002/adma.202108427] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Bio-hybrid technologies aim to replicate the unique capabilities of biological systems that could surpass advanced artificial technologies. Soft bio-hybrid robots consist of synthetic and living materials and have the potential to self-assemble, regenerate, work autonomously, and interact safely with other species and the environment. Cells require a sufficient exchange of nutrients and gases, which is guaranteed by convection and diffusive transport through liquid media. The functional development and long-term survival of biological tissues in vitro can be improved by dynamic flow culture, but only microfluidic flow control can develop tissue with fine structuring and regulation at the microscale. Full control of tissue growth at the microscale will eventually lead to functional macroscale constructs, which are needed as the biological component of soft bio-hybrid technologies. This review summarizes recent progress in microfluidic techniques to engineer biological tissues, focusing on the use of muscle cells for robotic bio-actuation. Moreover, the instances in which bio-actuation technologies greatly benefit from fusion with microfluidics are highlighted, which include: the microfabrication of matrices, biomimicry of cell microenvironments, tissue maturation, perfusion, and vascularization.
Collapse
Affiliation(s)
- Miriam Filippi
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Thomas Buchner
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Oncay Yasa
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Stefan Weirich
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Robert K Katzschmann
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| |
Collapse
|
9
|
|
10
|
Tirumala MG, Anchi P, Raja S, Rachamalla M, Godugu C. Novel Methods and Approaches for Safety Evaluation of Nanoparticle Formulations: A Focus Towards In Vitro Models and Adverse Outcome Pathways. Front Pharmacol 2021; 12:612659. [PMID: 34566630 PMCID: PMC8458898 DOI: 10.3389/fphar.2021.612659] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 08/05/2021] [Indexed: 12/18/2022] Open
Abstract
Nanotoxicology is an emerging field employed in the assessment of unintentional hazardous effects produced by nanoparticles (NPs) impacting human health and the environment. The nanotoxicity affects the range between induction of cellular stress and cytotoxicity. The reasons so far reported for these toxicological effects are due to their variable sizes with high surface areas, shape, charge, and physicochemical properties, which upon interaction with the biological components may influence their functioning and result in adverse outcomes (AO). Thus, understanding the risk produced by these materials now is an important safety concern for the development of nanotechnology and nanomedicine. Since the time nanotoxicology has evolved, the methods employed have been majorly relied on in vitro cell-based evaluations, while these simple methods may not predict the complexity involved in preclinical and clinical conditions concerning pharmacokinetics, organ toxicity, and toxicities evidenced through multiple cellular levels. The safety profiles of nanoscale nanomaterials and nanoformulations in the delivery of drugs and therapeutic applications are of considerable concern. In addition, the safety assessment for new nanomedicine formulas lacks regulatory standards. Though the in vivo studies are greatly needed, the end parameters used for risk assessment are not predicting the possible toxic effects produced by various nanoformulations. On the other side, due to increased restrictions on animal usage and demand for the need for high-throughput assays, there is a need for developing and exploring novel methods to evaluate NPs safety concerns. The progress made in molecular biology and the availability of several modern techniques may offer novel and innovative methods to evaluate the toxicological behavior of different NPs by using single cells, cell population, and whole organisms. This review highlights the recent novel methods developed for the evaluation of the safety impacts of NPs and attempts to solve the problems that come with risk assessment. The relevance of investigating adverse outcome pathways (AOPs) in nanotoxicology has been stressed in particular.
Collapse
Affiliation(s)
- Mounika Gayathri Tirumala
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pratibha Anchi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Susmitha Raja
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
11
|
Larsen JB, Taebnia N, Dolatshahi-Pirouz A, Eriksen AZ, Hjørringgaard C, Kristensen K, Larsen NW, Larsen NB, Marie R, Mündler AK, Parhamifar L, Urquhart AJ, Weller A, Mortensen KI, Flyvbjerg H, Andresen TL. Imaging therapeutic peptide transport across intestinal barriers. RSC Chem Biol 2021; 2:1115-1143. [PMID: 34458827 PMCID: PMC8341777 DOI: 10.1039/d1cb00024a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022] Open
Abstract
Oral delivery is a highly preferred method for drug administration due to high patient compliance. However, oral administration is intrinsically challenging for pharmacologically interesting drug classes, in particular pharmaceutical peptides, due to the biological barriers associated with the gastrointestinal tract. In this review, we start by summarizing the pharmacological performance of several clinically relevant orally administrated therapeutic peptides, highlighting their low bioavailabilities. Thus, there is a strong need to increase the transport of peptide drugs across the intestinal barrier to realize future treatment needs and further development in the field. Currently, progress is hampered by a lack of understanding of transport mechanisms that govern intestinal absorption and transport of peptide drugs, including the effects of the permeability enhancers commonly used to mediate uptake. We describe how, for the past decades, mechanistic insights have predominantly been gained using functional assays with end-point read-out capabilities, which only allow indirect study of peptide transport mechanisms. We then focus on fluorescence imaging that, on the other hand, provides opportunities to directly visualize and thus follow peptide transport at high spatiotemporal resolution. Consequently, it may provide new and detailed mechanistic understanding of the interplay between the physicochemical properties of peptides and cellular processes; an interplay that determines the efficiency of transport. We review current methodology and state of the art in the field of fluorescence imaging to study intestinal barrier transport of peptides, and provide a comprehensive overview of the imaging-compatible in vitro, ex vivo, and in vivo platforms that currently are being developed to accelerate this emerging field of research.
Collapse
Affiliation(s)
- Jannik Bruun Larsen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Nayere Taebnia
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Alireza Dolatshahi-Pirouz
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Anne Zebitz Eriksen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Claudia Hjørringgaard
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Kasper Kristensen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Nanna Wichmann Larsen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Niels Bent Larsen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Rodolphe Marie
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Ann-Kathrin Mündler
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Ladan Parhamifar
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Andrew James Urquhart
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Arjen Weller
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Kim I Mortensen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Henrik Flyvbjerg
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| | - Thomas Lars Andresen
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark DK-2800, Kgs. Lyngby Denmark
| |
Collapse
|
12
|
Murray BO, Flores C, Williams C, Flusberg DA, Marr EE, Kwiatkowska KM, Charest JL, Isenberg BC, Rohn JL. Recurrent Urinary Tract Infection: A Mystery in Search of Better Model Systems. Front Cell Infect Microbiol 2021; 11:691210. [PMID: 34123879 PMCID: PMC8188986 DOI: 10.3389/fcimb.2021.691210] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Urinary tract infections (UTIs) are among the most common infectious diseases worldwide but are significantly understudied. Uropathogenic E. coli (UPEC) accounts for a significant proportion of UTI, but a large number of other species can infect the urinary tract, each of which will have unique host-pathogen interactions with the bladder environment. Given the substantial economic burden of UTI and its increasing antibiotic resistance, there is an urgent need to better understand UTI pathophysiology - especially its tendency to relapse and recur. Most models developed to date use murine infection; few human-relevant models exist. Of these, the majority of in vitro UTI models have utilized cells in static culture, but UTI needs to be studied in the context of the unique aspects of the bladder's biophysical environment (e.g., tissue architecture, urine, fluid flow, and stretch). In this review, we summarize the complexities of recurrent UTI, critically assess current infection models and discuss potential improvements. More advanced human cell-based in vitro models have the potential to enable a better understanding of the etiology of UTI disease and to provide a complementary platform alongside animals for drug screening and the search for better treatments.
Collapse
Affiliation(s)
- Benjamin O. Murray
- Centre for Urological Biology, Department of Renal Medicine, University College London, London, United Kingdom
| | - Carlos Flores
- Centre for Urological Biology, Department of Renal Medicine, University College London, London, United Kingdom
| | - Corin Williams
- Department of Bioengineering, Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Deborah A. Flusberg
- Department of Bioengineering, Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Elizabeth E. Marr
- Department of Bioengineering, Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Karolina M. Kwiatkowska
- Centre for Urological Biology, Department of Renal Medicine, University College London, London, United Kingdom
| | - Joseph L. Charest
- Department of Bioengineering, Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Brett C. Isenberg
- Department of Bioengineering, Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Jennifer L. Rohn
- Centre for Urological Biology, Department of Renal Medicine, University College London, London, United Kingdom
| |
Collapse
|
13
|
Schneider S, Gruner D, Richter A, Loskill P. Membrane integration into PDMS-free microfluidic platforms for organ-on-chip and analytical chemistry applications. LAB ON A CHIP 2021; 21:1866-1885. [PMID: 33949565 DOI: 10.1039/d1lc00188d] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Membranes play a crucial role in many microfluidic systems, enabling versatile applications in highly diverse research fields. However, the tight and robust integration of membranes into microfluidic systems requires complex fabrication processes. Most integration approaches, so far, rely on polydimethylsiloxane (PDMS) as base material for the microfluidic chips. Several limitations of PDMS have resulted in the transition of many microfluidic approaches to PDMS-free systems using alternative materials such as thermoplastics. To integrate membranes in those PDMS-free systems, novel alternative approaches are required. This review provides an introduction into microfluidic systems applying membrane technology for analytical systems and organ-on-chip as well as a comprehensive overview of methods for the integration of membranes into PDMS-free systems. The overview and examples will provide a valuable resource and starting point for any researcher that is aiming at implementing membranes in microfluidic systems without using PDMS.
Collapse
Affiliation(s)
- Stefan Schneider
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart, Germany
| | - Denise Gruner
- Institut für Halbleiter- und Mikrosystemtechnik, Technische Universität Dresden, 01062 Dresden, Germany and Universitätsklinikum Carl Gustav Carus Dresden, Institut für Klinische Chemie und Laboratoriumsmedizin, 01307 Dresden, Germany
| | - Andreas Richter
- Institut für Halbleiter- und Mikrosystemtechnik, Technische Universität Dresden, 01062 Dresden, Germany
| | - Peter Loskill
- Department of Biomedical Science, Faculty of Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany. and NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| |
Collapse
|
14
|
Migration of immortalized nasopharyngeal epithelia and carcinoma cells through porous membrane in 3D platforms. Biosci Rep 2021; 40:224916. [PMID: 32440676 PMCID: PMC7273909 DOI: 10.1042/bsr20194113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 12/16/2022] Open
Abstract
In the present study, 3D biomimetic platforms were fabricated with guiding grating to mimic extracellular matrix topography, porous membrane to resemble the epithelial porous interface and trenches below to represent blood vessels as an in vitro tissue microenvironment. Fabrication technologies were developed to integrate the transparent biocompatible polydimethylsiloxane platforms with preciously controlled dimensions. Cell migration behaviors of an immortalized nasopharyngeal epithelial cell line (NP460) and a nasopharyngeal carcinoma cell line (NPC43) were studied on the 2D and 3D platforms. The NP460 and NPC43 cells traversing through the porous membrane and migrating in the trenches below were studied by time-lapse imaging. Before traversing through the pores, NP460 and NPC43 cells migrated around the pores but NPC43 cells had a lower migration speed with less lamellipodia spreading. After traversing to trenches below, NPC43 cells moved faster with an alternated elongated morphology (mesenchymal migration mode) and round morphology (amoeboid migration mode) compared with only mesenchymal migration mode for NP460 cells. The cell traversing probability through porous membrane on platforms with 30 μm wide trenches below was found to be the highest when the guiding grating was perpendicular to the trenches below and the lowest when the guiding grating was parallel to the trenches below. The present study shows important information on cell migration in complex 3D microenvironment with various dimensions and could provide insight for pathology and treatment of nasopharyngeal carcinoma.
Collapse
|
15
|
De Chiara F, Ferret-Miñana A, Ramón-Azcón J. The Synergy between Organ-on-a-Chip and Artificial Intelligence for the Study of NAFLD: From Basic Science to Clinical Research. Biomedicines 2021; 9:248. [PMID: 33801289 PMCID: PMC7999375 DOI: 10.3390/biomedicines9030248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic fatty liver affects about 25% of global adult population. On the long-term, it is associated with extra-hepatic compliances, multiorgan failure, and death. Various invasive and non-invasive methods are employed for its diagnosis such as liver biopsies, CT scan, MRI, and numerous scoring systems. However, the lack of accuracy and reproducibility represents one of the biggest limitations of evaluating the effectiveness of drug candidates in clinical trials. Organ-on-chips (OOC) are emerging as a cost-effective tool to reproduce in vitro the main NAFLD's pathogenic features for drug screening purposes. Those platforms have reached a high degree of complexity that generate an unprecedented amount of both structured and unstructured data that outpaced our capacity to analyze the results. The addition of artificial intelligence (AI) layer for data analysis and interpretation enables those platforms to reach their full potential. Furthermore, the use of them do not require any ethic and legal regulation. In this review, we discuss the synergy between OOC and AI as one of the most promising ways to unveil potential therapeutic targets as well as the complex mechanism(s) underlying NAFLD.
Collapse
Affiliation(s)
- Francesco De Chiara
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac 10–12, 08028 Barcelona, Spain; (A.F.-M.); (J.R.-A.)
| | - Ainhoa Ferret-Miñana
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac 10–12, 08028 Barcelona, Spain; (A.F.-M.); (J.R.-A.)
| | - Javier Ramón-Azcón
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac 10–12, 08028 Barcelona, Spain; (A.F.-M.); (J.R.-A.)
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
16
|
Baddal B, Marrazzo P. Refining Host-Pathogen Interactions: Organ-on-Chip Side of the Coin. Pathogens 2021; 10:203. [PMID: 33668558 PMCID: PMC7918822 DOI: 10.3390/pathogens10020203] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Bioinspired organ-level in vitro platforms that recapitulate human organ physiology and organ-specific responses have emerged as effective technologies for infectious disease research, drug discovery, and personalized medicine. A major challenge in tissue engineering for infectious diseases has been the reconstruction of the dynamic 3D microenvironment reflecting the architectural and functional complexity of the human body in order to more accurately model the initiation and progression of host-microbe interactions. By bridging the gap between in vitro experimental models and human pathophysiology and providing alternatives for animal models, organ-on-chip microfluidic devices have so far been implemented in multiple research areas, contributing to major advances in the field. Given the emergence of the recent pandemic, plug-and-play organ chips may hold the key for tackling an unmet clinical need in the development of effective therapeutic strategies. In this review, latest studies harnessing organ-on-chip platforms to unravel host-pathogen interactions are presented to highlight the prospects for the microfluidic technology in infectious diseases research.
Collapse
Affiliation(s)
- Buket Baddal
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, Nicosia 99138, Cyprus
| | - Pasquale Marrazzo
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
17
|
Current and Future Perspectives of the Use of Organoids in Radiobiology. Cells 2020; 9:cells9122649. [PMID: 33317153 PMCID: PMC7764598 DOI: 10.3390/cells9122649] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
The majority of cancer patients will be treated with radiotherapy, either alone or together with chemotherapy and/or surgery. Optimising the balance between tumour control and the probability of normal tissue side effects is the primary goal of radiation treatment. Therefore, it is imperative to understand the effects that irradiation will have on both normal and cancer tissue. The more classical lab models of immortal cell lines and in vivo animal models have been fundamental to radiobiological studies to date. However, each of these comes with their own limitations and new complementary models are required to fill the gaps left by these traditional models. In this review, we discuss how organoids, three-dimensional tissue-resembling structures derived from tissue-resident, embryonic or induced pluripotent stem cells, overcome the limitations of these models and thus have a growing importance in the field of radiation biology research. The roles of organoids in understanding radiation-induced tissue responses and in moving towards precision medicine are examined. Finally, the limitations of organoids in radiobiology and the steps being made to overcome these limitations are considered.
Collapse
|
18
|
Virumbrales-Muñoz M, Ayuso JM, Gong MM, Humayun M, Livingston MK, Lugo-Cintrón KM, McMinn P, Álvarez-García YR, Beebe DJ. Microfluidic lumen-based systems for advancing tubular organ modeling. Chem Soc Rev 2020; 49:6402-6442. [PMID: 32760967 PMCID: PMC7521761 DOI: 10.1039/d0cs00705f] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microfluidic lumen-based systems are microscale models that recapitulate the anatomy and physiology of tubular organs. These technologies can mimic human pathophysiology and predict drug response, having profound implications for drug discovery and development. Herein, we review progress in the development of microfluidic lumen-based models from the 2000s to the present. The core of the review discusses models for mimicking blood vessels, the respiratory tract, the gastrointestinal tract, renal tubules, and liver sinusoids, and their application to modeling organ-specific diseases. We also highlight emerging application areas, such as the lymphatic system, and close the review discussing potential future directions.
Collapse
Affiliation(s)
- María Virumbrales-Muñoz
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA. and University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - José M Ayuso
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA. and University of Wisconsin Carbone Cancer Center, Madison, WI, USA and Morgridge Institute for Research, Madison, WI, USA
| | - Max M Gong
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA. and University of Wisconsin Carbone Cancer Center, Madison, WI, USA and Department of Biomedical Engineering, Trine University, Angola, IN, USA
| | - Mouhita Humayun
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA. and University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Megan K Livingston
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA. and University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Karina M Lugo-Cintrón
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA. and University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Patrick McMinn
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA. and University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Yasmín R Álvarez-García
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA. and University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - David J Beebe
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA. and University of Wisconsin Carbone Cancer Center, Madison, WI, USA and Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
19
|
Ramadan Q, Zourob M. Organ-on-a-chip engineering: Toward bridging the gap between lab and industry. BIOMICROFLUIDICS 2020; 14:041501. [PMID: 32699563 PMCID: PMC7367691 DOI: 10.1063/5.0011583] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/22/2020] [Indexed: 05/03/2023]
Abstract
Organ-on-a-chip (OOC) is a very ambitious emerging technology with a high potential to revolutionize many medical and industrial sectors, particularly in preclinical-to-clinical translation in the pharmaceutical arena. In vivo, the function of the organ(s) is orchestrated by a complex cellular structure and physiochemical factors within the extracellular matrix and secreted by various types of cells. The trend in in vitro modeling is to simplify the complex anatomy of the human organ(s) to the minimal essential cellular structure "micro-anatomy" instead of recapitulating the full cellular milieu that enables studying the absorption, metabolism, as well as the mechanistic investigation of drug compounds in a "systemic manner." However, in order to reflect the human physiology in vitro and hence to be able to bridge the gap between the in vivo and in vitro data, simplification should not compromise the physiological relevance. Engineering principles have long been applied to solve medical challenges, and at this stage of organ-on-a-chip technology development, the work of biomedical engineers, focusing on device engineering, is more important than ever to accelerate the technology transfer from the academic lab bench to specialized product development institutions and to the increasingly demanding market. In this paper, instead of presenting a narrative review of the literature, we systemically present a synthesis of the best available organ-on-a-chip technology from what is found, what has been achieved, and what yet needs to be done. We emphasized mainly on the requirements of a "good in vitro model that meets the industrial need" in terms of the structure (micro-anatomy), functions (micro-physiology), and characteristics of the device that hosts the biological model. Finally, we discuss the biological model-device integration supported by an example and the major challenges that delay the OOC technology transfer to the industry and recommended possible options to realize a functional organ-on-a-chip system.
Collapse
Affiliation(s)
- Qasem Ramadan
- Alfaisal University, Al Zahrawi Street, Riyadh 11533, Kingdom of Saudi Arabia
| | - Mohammed Zourob
- Alfaisal University, Al Zahrawi Street, Riyadh 11533, Kingdom of Saudi Arabia
| |
Collapse
|
20
|
Sidar B, Jenkins BR, Huang S, Spence JR, Walk ST, Wilking JN. Long-term flow through human intestinal organoids with the gut organoid flow chip (GOFlowChip). LAB ON A CHIP 2019; 19:3552-3562. [PMID: 31556415 PMCID: PMC8327675 DOI: 10.1039/c9lc00653b] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Human intestinal organoids (HIOs) are millimeter-scale models of the human intestinal epithelium and hold tremendous potential for advancing fundamental and applied biomedical research. HIOs resemble the native gut in that they consist of a fluid-filled lumen surrounded by a polarized epithelium and associated mesenchyme; however, their topologically-closed, spherical shape prevents flow through the interior luminal space, making the system less physiological and leading to the buildup of cellular and metabolic waste. These factors ultimately limit experimentation inside the HIOs. Here, we present a millifluidic device called the gut organoid flow chip (GOFlowChip), which we use to "port" HIOs and establish steady-state liquid flow through the lumen for multiple days. This long-term flow is enabled by the use of laser-cut silicone gaskets, which allow liquid in the device to be slightly pressurized, suppressing bubble formation. To demonstrate the utility of the device, we establish separate luminal and extraluminal flow and use luminal flow to remove accumulated waste. This represents the first demonstration of established liquid flow through the luminal space of a gastrointestinal organoid over physiologically relevant time scales. Flow cytometry results reveal that HIO cell viability is unaffected by long-term porting and luminal flow. We expect the real-time, long-term control over luminal and extraluminal contents provided by the GOFlowChip will enable a wide variety of studies including intestinal secretion, absorption, transport, and co-culture with intestinal microorganisms.
Collapse
Affiliation(s)
- Barkan Sidar
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Liu G, Betts C, Cunoosamy DM, Åberg PM, Hornberg JJ, Sivars KB, Cohen TS. Use of precision cut lung slices as a translational model for the study of lung biology. Respir Res 2019; 20:162. [PMID: 31324219 PMCID: PMC6642541 DOI: 10.1186/s12931-019-1131-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/09/2019] [Indexed: 12/28/2022] Open
Abstract
Animal models remain invaluable for study of respiratory diseases, however, translation of data generated in genetically homogeneous animals housed in a clean and well-controlled environment does not necessarily provide insight to the human disease situation. In vitro human systems such as air liquid interface (ALI) cultures and organ-on-a-chip models have attempted to bridge the divide between animal models and human patients. However, although 3D in nature, these models struggle to recreate the architecture and complex cellularity of the airways and parenchyma, and therefore cannot mimic the complex cell-cell interactions in the lung. To address this issue, lung slices have emerged as a useful ex vivo tool for studying the respiratory responses to inflammatory stimuli, infection, and novel drug compounds. This review covers the practicality of precision cut lung slice (PCLS) generation and benefits of this ex vivo culture system in modeling human lung biology and disease pathogenesis.
Collapse
Affiliation(s)
- Guanghui Liu
- RIA Safety, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Catherine Betts
- Pathology, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Danen M Cunoosamy
- Bioscience, Respiratory Inflammation and Autoimmunity, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Present Address: Sanofi, Cambridge, MA, USA
| | - Per M Åberg
- RIA Safety, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jorrit J Hornberg
- RIA Safety, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Kinga Balogh Sivars
- RIA Safety, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Taylor S Cohen
- Microbial Sciences, BioPharmaceuticals R&D, AstraZeneca, One Medimmune Way, Gaithersburg, MD, 20877, USA.
| |
Collapse
|
22
|
Renggli K, Rousset N, Lohasz C, Nguyen OTP, Hierlemann A. Integrated Microphysiological Systems: Transferable Organ Models and Recirculating Flow. ADVANCED BIOSYSTEMS 2019; 3:e1900018. [PMID: 32627410 PMCID: PMC7610576 DOI: 10.1002/adbi.201900018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/28/2019] [Indexed: 01/09/2023]
Abstract
Studying and understanding of tissue and disease mechanisms largely depend on the availability of suitable and representative biological model systems. These model systems should be carefully engineered and faithfully reproduce the biological system of interest to understand physiological effects, pharmacokinetics, and toxicity to better identify new drug compounds. By relying on microfluidics, microphysiological systems (MPSs) enable the precise control of culturing conditions and connections of advanced in vitro 3D organ models that better reproduce in vivo environments. This review focuses on transferable in vitro organ models and integrated MPSs that host these transferable biological units and enable interactions between different tissue types. Interchangeable and transferrable in vitro organ models allow for independent quality control of the biological model before system assembly and building MPS assays on demand. Due to the complexity and different maturation times of individual in vitro tissues, off-chip production and quality control entail improved stability and reproducibility of the systems and results, which is important for large-scale adoption of the technology. Lastly, the technical and biological challenges and open issues for realizing and implementing integrated MPSs with transferable in vitro organ models are discussed.
Collapse
Affiliation(s)
- Kasper Renggli
- ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland
| | | | | | | | | |
Collapse
|
23
|
Morss Clyne A, Swaminathan S, Díaz Lantada A. Biofabrication strategies for creating microvascular complexity. Biofabrication 2019; 11:032001. [PMID: 30743247 DOI: 10.1088/1758-5090/ab0621] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Design and fabrication of effective biomimetic vasculatures constitutes a relevant and yet unsolved challenge, lying at the heart of tissue repair and regeneration strategies. Even if cell growth is achieved in 3D tissue scaffolds or advanced implants, tissue viability inevitably requires vascularization, as diffusion can only transport nutrients and eliminate debris within a few hundred microns. This engineered vasculature may need to mimic the intricate branching geometry of native microvasculature, referred to herein as vascular complexity, to efficiently deliver blood and recreate critical interactions between the vascular and perivascular cells as well as parenchymal tissues. This review first describes the importance of vascular complexity in labs- and organs-on-chips, the biomechanical and biochemical signals needed to create and maintain a complex vasculature, and the limitations of current 2D, 2.5D, and 3D culture systems in recreating vascular complexity. We then critically review available strategies for design and biofabrication of complex vasculatures in cell culture platforms, labs- and organs-on-chips, and tissue engineering scaffolds, highlighting their advantages and disadvantages. Finally, challenges and future directions are outlined with the hope of inspiring researchers to create the reliable, efficient and sustainable tools needed for design and biofabrication of complex vasculatures.
Collapse
Affiliation(s)
- Alisa Morss Clyne
- Vascular Kinetics Laboratory, Mechanical Engineering & Mechanics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, United States of America
| | | | | |
Collapse
|
24
|
Marx U, Walles H, Hoffmann S, Lindner G, Horland R, Sonntag F, Klotzbach U, Sakharov D, Tonevitsky A, Lauster R. ‘Human-on-a-chip’ Developments: A Translational Cutting-edge Alternative to Systemic Safety Assessment and Efficiency Evaluation of Substances in Laboratory Animals and Man? Altern Lab Anim 2019; 40:235-57. [DOI: 10.1177/026119291204000504] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Uwe Marx
- Technische Universität Berlin, Department of Biotechnology, Berlin, Germany
| | | | - Silke Hoffmann
- Technische Universität Berlin, Department of Biotechnology, Berlin, Germany
| | - Gerd Lindner
- Technische Universität Berlin, Department of Biotechnology, Berlin, Germany
| | - Reyk Horland
- Technische Universität Berlin, Department of Biotechnology, Berlin, Germany
| | - Frank Sonntag
- Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS, Dresden, Germany
| | - Udo Klotzbach
- Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS, Dresden, Germany
| | | | | | - Roland Lauster
- Technische Universität Berlin, Department of Biotechnology, Berlin, Germany
| |
Collapse
|
25
|
Han W, Wu Q, Zhang X, Duan Z. Innovation for hepatotoxicity in vitro research models: A review. J Appl Toxicol 2018; 39:146-162. [PMID: 30182494 DOI: 10.1002/jat.3711] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 12/18/2022]
Abstract
Many categories of drugs can induce hepatotoxicity, so improving the prediction of toxic drugs is important. In vitro models using human hepatocytes are more accurate than in vivo animal models. Good in vitro models require an abundance of metabolic enzyme activities and normal cellular polarity. However, none of the in vitro models can completely simulate hepatocytes in the human body. There are two ways to overcome this limitation: enhancing the metabolic function of hepatocytes and changing the cultural environment. In this review, we summarize the current state of research, including the main characteristics of in vitro models and their limitations, as well as improved technology and developmental prospects. We hope that this review provides some new ideas for hepatotoxicity research.
Collapse
Affiliation(s)
- Weijia Han
- Artificial Liver Center, Beijing Youan Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Liver Failure; Artificial Liver Treatment and Research; Beijing China
| | - Qiao Wu
- Artificial Liver Center, Beijing Youan Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Liver Failure; Artificial Liver Treatment and Research; Beijing China
| | - Xiaohui Zhang
- Artificial Liver Center, Beijing Youan Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Liver Failure; Artificial Liver Treatment and Research; Beijing China
| | - Zhongping Duan
- Artificial Liver Center, Beijing Youan Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Liver Failure; Artificial Liver Treatment and Research; Beijing China
| |
Collapse
|
26
|
Raj A, Sen AK. Entry and passage behavior of biological cells in a constricted compliant microchannel. RSC Adv 2018; 8:20884-20893. [PMID: 35542327 PMCID: PMC9080859 DOI: 10.1039/c8ra02763c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/28/2018] [Indexed: 11/30/2022] Open
Abstract
We report an experimental and theoretical investigation of the entry and passage behaviour of biological cells (HeLa and MDA-MB-231) in a constricted compliant microchannel. Entry of a cell into a micro-constriction takes place in three successive regimes: protrusion and contact (cell protrudes its leading edge and makes a contact with the channel wall), squeeze (cell deforms to enter into the constriction) and release (cell starts moving forward). While the protrusion and contact regime is insensitive to the flexibility of the channel, the squeeze zone is significantly smaller in the case of a more compliant channel. Similarly, in the release zone, the acceleration of the cells into the microconstriction is higher in the case of a more compliant channel. The results showed that for a fixed size ratio ρ and E c, the extension ratio λ decreases and transit velocity U c increases with increase in the compliance parameter f p. The variation in the cell velocity is governed by force due to the cell stiffness F s as well as that due to the viscous dampening F d, explained using the Kelvin-Voigt viscoelastic model. The entry time t e = m(ρ) k 1 (1 + f p) k 2 (E c) k 3 and induced hydrodynamic resistance of a cell ΔR c/R = k(ρ) a (1 + k f f p) b (k E E c) c were correlated with cell size ratio ρ, Young's modulus E c and compliance parameter f p, which showed that both entry time t e and the induced hydrodynamic resistance ΔR c are most sensitive to the change in the compliance parameter f p. This study provides understanding of the passage of cells in compliant micro-confinements that can have significant impact on mechanophenotyping of single cells.
Collapse
Affiliation(s)
- A Raj
- Department of Mechanical Engineering, Indian Institute of Technology Madras Chennai-600036 India
| | - A K Sen
- Department of Mechanical Engineering, Indian Institute of Technology Madras Chennai-600036 India
| |
Collapse
|
27
|
Mao M, He J, Lu Y, Li X, Li T, Zhou W, Li D. Leaf-templated, microwell-integrated microfluidic chips for high-throughput cell experiments. Biofabrication 2018; 10:025008. [PMID: 29350200 DOI: 10.1088/1758-5090/aaa900] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As an alternative to conventional cell culture and animal testing, an organ-on-a-chip is applied to study the biological phenomena of organ development and disease, as well as the interactions between human tissues and external stimuli such as chemicals, forces and electricity. The pattern design of a microfluidic channel is one of the key approaches to regulate cell growth and differentiation, because these channels work as a crucial vasculature system to control the fluidic flow throughout the organ-on-a-chip device. In this study, we introduce a novel leaf-templated, microwell-integrated microfluidic chip for high-throughput cell experiments, consisting of a leaf-venation layer for fluent fluid flow, and a microwell-array layer for cell to reside. Computational fluid dynamics analysis was carried out to study the fluidic flow within leaf-venation network, which was further used to optimize the design of microwell arrays. A simple leaf-venation-mold-based microreplication method was developed to transfer the intact native leaf venation network into leaf-venation layer and 3D printing technology was used to fabricate the microwell-array layer. The layers were then assembled and used for perfusion culture, showing that leaf-templated microfluidic channels provided a sufficient culture medium for cells within each microwell. These results indicate a novel and effective strategy to generate a biomimetic microfluidic chip with an effective vascular transport system for high-throughput cell experiments.
Collapse
Affiliation(s)
- Mao Mao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
28
|
A perfusion incubator liver chip for 3D cell culture with application on chronic hepatotoxicity testing. Sci Rep 2017; 7:14528. [PMID: 29109520 PMCID: PMC5673965 DOI: 10.1038/s41598-017-13848-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/07/2017] [Indexed: 01/09/2023] Open
Abstract
Liver chips have been developed to recapitulate in vivo physiological conditions to enhance hepatocyte functions for assessing acute responses to drugs. To develop liver chips that can assess repeated dosing chronic hepatotoxicity, we need to ensure that hepatocyte functions be maintained at constant values over two weeks in stable culture conditions of sterility, temperature, pH, fluidic-flow of culture media and drugs. We have designed a perfusion-incubator-liver-chip (PIC) for 3D cell culture, that assures a tangential flow of the media over the spheroids culture. Rat hepatocyte spheroids constrained between a cover glass and a porous-ultrathin Parylene C membrane experienced optimal mass transfer and limited shear stress from the flowing culture media; maintained cell viability over 24 days. Hepatocyte functions were significantly improved and maintained at constant values (urea, albumin synthesis, and CYP450 enzyme activities) for 14 days. The chip act as an incubator, having 5% CO2 pressure-driven culture-media flow, on-chip heater and active debubbler. It operates in a biosafety cabinet, thus minimizing risk of contamination. The chronic drug response to repeated dosing of Diclofenac and Acetaminophen evaluated in PIC were more sensitive than the static culture control.
Collapse
|
29
|
Lee-Montiel FT, George SM, Gough AH, Sharma AD, Wu J, DeBiasio R, Vernetti LA, Taylor DL. Control of oxygen tension recapitulates zone-specific functions in human liver microphysiology systems. Exp Biol Med (Maywood) 2017; 242:1617-1632. [PMID: 28409533 PMCID: PMC5661766 DOI: 10.1177/1535370217703978] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/07/2017] [Indexed: 12/20/2022] Open
Abstract
This article describes our next generation human Liver Acinus MicroPhysiology System (LAMPS). The key demonstration of this study was that Zone 1 and Zone 3 microenvironments can be established by controlling the oxygen tension in individual devices over the range of ca. 3 to 13%. The oxygen tension was computationally modeled using input on the microfluidic device dimensions, numbers of cells, oxygen consumption rates of hepatocytes, the diffusion coefficients of oxygen in different materials and the flow rate of media in the MicroPhysiology System (MPS). In addition, the oxygen tension was measured using a ratiometric imaging method with the oxygen sensitive dye, Tris(2,2'-bipyridyl) dichlororuthenium(II) hexahydrate (RTDP) and the oxygen insensitive dye, Alexa 488. The Zone 1 biased functions of oxidative phosphorylation, albumin and urea secretion and Zone 3 biased functions of glycolysis, α1AT secretion, Cyp2E1 expression and acetaminophen toxicity were demonstrated in the respective Zone 1 and Zone 3 MicroPhysiology System. Further improvements in the Liver Acinus MicroPhysiology System included improved performance of selected nonparenchymal cells, the inclusion of a porcine liver extracellular matrix to model the Space of Disse, as well as an improved media to support both hepatocytes and non-parenchymal cells. In its current form, the Liver Acinus MicroPhysiology System is most amenable to low to medium throughput, acute through chronic studies, including liver disease models, prioritizing compounds for preclinical studies, optimizing chemistry in structure activity relationship (SAR) projects, as well as in rising dose studies for initial dose ranging. Impact statement Oxygen zonation is a critical aspect of liver functions. A human microphysiology system is needed to investigate the impact of zonation on a wide range of liver functions that can be experimentally manipulated. Because oxygen zonation has such diverse physiological effects in the liver, we developed and present a method for computationally modeling and measuring oxygen that can easily be implemented in all MPS models. We have applied this method in a liver MPS in which we are then able to control oxygenation in separate devices and demonstrate that zonation-dependent hepatocyte functions in the MPS recapitulate what is known about in vivo liver physiology. We believe that this advance allows a deep experimental investigation on the role of zonation in liver metabolism and disease. In addition, modeling and measuring oxygen tension will be required as investigators migrate from PDMS to plastic and glass devices.
Collapse
Affiliation(s)
| | - Subin M George
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260,USA
| | - Albert H Gough
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260,USA
| | - Anup D Sharma
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260,USA
| | - Juanfang Wu
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Richard DeBiasio
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Lawrence A Vernetti
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260,USA
| | - D Lansing Taylor
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260,USA
- Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
30
|
On-chip immune cell activation and subsequent time-resolved magnetic bead-based cytokine detection. Biomed Microdevices 2017; 18:93. [PMID: 27628061 DOI: 10.1007/s10544-016-0117-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Cytokine profiling and immunophenotyping offer great potential for understanding many disease mechanisms, personalized diagnosis, and immunotherapy. Here, we demonstrate a time-resolved detection of cytokine from a single cell cluster using an in situ magnetic immune assay. An array of triple-layered microfluidic chambers was fabricated to enable simultaneous cell culture under perfusion flow and detection of the induced cytokines at multiple time-points. Each culture chamber comprises three fluidic compartments which are dedicated to, cell culture, perfusion and immunoassay. The three compartments are separated by porous membranes, which allow the diffusion of fresh nutrient from the perfusion compartment into the cell culture compartment and cytokines secretion from the cell culture compartment into the immune assay compartment. This structure hence enables capturing the released cytokines without disturbing the cell culture and without minimizing benefit gain from perfusion. Functionalized magnetic beads were used as a solid phase carrier for cytokine capturing and quantification. The cytokines released from differential stimuli were quantified in situ in non-differentiated U937 monocytes and differentiated macrophages.
Collapse
|
31
|
Zhang YS, Zhang YN, Zhang W. Cancer-on-a-chip systems at the frontier of nanomedicine. Drug Discov Today 2017; 22:1392-1399. [PMID: 28390929 DOI: 10.1016/j.drudis.2017.03.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/23/2017] [Accepted: 03/29/2017] [Indexed: 01/08/2023]
Abstract
Nanomedicine provides a unique opportunity for promoting drug efficacy through enhanced delivery mechanisms. However, its translation into the clinics has been relatively slow compared with the large amount of research occurring in laboratory settings. Given the limitations of conventional cell culture models and preclinical animal models, we discuss the potential utility of recently developed cancer-on-a-chip platforms, which maximally replicate the pathophysiology of the human tumor microenvironments, as alternatives for effective evaluation of nanomedicine. We begin with a brief discussion of nanomedicine, then chart the history of organ-on-a-chip platform development and their recent evolution as tools for modeling different cancers for assessing nanomedicine efficacy, concluding with future perspectives for the field.
Collapse
Affiliation(s)
- Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| | - Yi-Nan Zhang
- Institute of Biomaterial and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Weijia Zhang
- Department of Chemistry and Institute of Biomedical Science, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
32
|
He J, Chen W, Deng S, Xie L, Feng J, Geng J, Jiang D, Dai H, Wang C. Modeling alveolar injury using microfluidic co-cultures for monitoring bleomycin-induced epithelial/fibroblastic cross-talk disorder. RSC Adv 2017. [DOI: 10.1039/c7ra06752f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Epithelial/fibroblastic cross-talk is consider to lead to pulmonary fibrosis, but its pathogenesis remains unclear because no appropriate models allow to visualize the complex disease processes at the human lung epithelial–interstitial interface.
Collapse
Affiliation(s)
- Jiarui He
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders
- Beijing Chao-Yang Hospital-Beijing Institute of Respiratory Medicine
- Capital Medical University
- Beijing
- P. R. China
| | - Weixing Chen
- Medical Systems Biology Research Center
- School of Medicine
- Tsinghua University
- Beijing
- P. R. China
| | - Shijie Deng
- State Key Laboratory of Precision Measurement Technology and Instruments
- Tsinghua University
- Beijing
- P. R. China
| | - Lan Xie
- Medical Systems Biology Research Center
- School of Medicine
- Tsinghua University
- Beijing
- P. R. China
| | - Juan Feng
- Medical Systems Biology Research Center
- School of Medicine
- Tsinghua University
- Beijing
- P. R. China
| | - Jing Geng
- Department of Pulmonary and Critical Care Medicine
- Center for Respiratory Diseases
- China-Japan Friendship Hospital
- National Clinical Research Center for Respiratory Diseases
- Beijing
| | - Dingyuan Jiang
- Department of Pulmonary and Critical Care Medicine
- Center for Respiratory Diseases
- China-Japan Friendship Hospital
- National Clinical Research Center for Respiratory Diseases
- Beijing
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine
- Center for Respiratory Diseases
- China-Japan Friendship Hospital
- National Clinical Research Center for Respiratory Diseases
- Beijing
| | - Chen Wang
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders
- Beijing Chao-Yang Hospital-Beijing Institute of Respiratory Medicine
- Capital Medical University
- Beijing
- P. R. China
| |
Collapse
|
33
|
Rashidi H, Hay D. Generation and Application of 3DCulture Systems in Human Drug Discovery and Medicine. STEM CELLS IN TOXICOLOGY AND MEDICINE 2016:265-287. [DOI: 10.1002/9781119135449.ch14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
34
|
Ugolini GS, Cruz-Moreira D, Visone R, Redaelli A, Rasponi M. Microfabricated Physiological Models for In Vitro Drug Screening Applications. MICROMACHINES 2016; 7:E233. [PMID: 30404405 PMCID: PMC6189704 DOI: 10.3390/mi7120233] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022]
Abstract
Microfluidics and microfabrication have recently been established as promising tools for developing a new generation of in vitro cell culture microdevices. The reduced amounts of reagents employed within cell culture microdevices make them particularly appealing to drug screening processes. In addition, latest advancements in recreating physiologically relevant cell culture conditions within microfabricated devices encourage the idea of using such advanced biological models in improving the screening of drug candidates prior to in vivo testing. In this review, we discuss microfluidics-based models employed for chemical/drug screening and the strategies to mimic various physiological conditions: fine control of 3D extra-cellular matrix environment, physical and chemical cues provided to cells and organization of co-cultures. We also envision future directions for achieving multi-organ microfluidic devices.
Collapse
Affiliation(s)
- Giovanni Stefano Ugolini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy.
| | - Daniela Cruz-Moreira
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy.
| | - Roberta Visone
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy.
| | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy.
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy.
| |
Collapse
|
35
|
Rezaei Kolahchi A, Khadem Mohtaram N, Pezeshgi Modarres H, Mohammadi MH, Geraili A, Jafari P, Akbari M, Sanati-Nezhad A. Microfluidic-Based Multi-Organ Platforms for Drug Discovery. MICROMACHINES 2016; 7:E162. [PMID: 30404334 PMCID: PMC6189912 DOI: 10.3390/mi7090162] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 12/18/2022]
Abstract
Development of predictive multi-organ models before implementing costly clinical trials is central for screening the toxicity, efficacy, and side effects of new therapeutic agents. Despite significant efforts that have been recently made to develop biomimetic in vitro tissue models, the clinical application of such platforms is still far from reality. Recent advances in physiologically-based pharmacokinetic and pharmacodynamic (PBPK-PD) modeling, micro- and nanotechnology, and in silico modeling have enabled single- and multi-organ platforms for investigation of new chemical agents and tissue-tissue interactions. This review provides an overview of the principles of designing microfluidic-based organ-on-chip models for drug testing and highlights current state-of-the-art in developing predictive multi-organ models for studying the cross-talk of interconnected organs. We further discuss the challenges associated with establishing a predictive body-on-chip (BOC) model such as the scaling, cell types, the common medium, and principles of the study design for characterizing the interaction of drugs with multiple targets.
Collapse
Affiliation(s)
- Ahmad Rezaei Kolahchi
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| | - Nima Khadem Mohtaram
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Hassan Pezeshgi Modarres
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| | - Mohammad Hossein Mohammadi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Ave., Tehran 11155-9516, Iran.
| | - Armin Geraili
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Ave., Tehran 11155-9516, Iran.
| | - Parya Jafari
- Department of Electrical Engineering, Sharif University of Technology, Azadi Ave., Tehran 11155-9516, Iran.
| | - Mohsen Akbari
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada.
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
- Center for Bioengineering Research and Education, Biomedical Engineering Program, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
36
|
Chin LK, Lee CH, Chen BC. Imaging live cells at high spatiotemporal resolution for lab-on-a-chip applications. LAB ON A CHIP 2016; 16:2014-24. [PMID: 27121367 DOI: 10.1039/c5lc01556a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Conventional optical imaging techniques are limited by the diffraction limit and difficult-to-image biomolecular and sub-cellular processes in living specimens. Novel optical imaging techniques are constantly evolving with the desire to innovate an imaging tool that is capable of seeing sub-cellular processes in a biological system, especially in three dimensions (3D) over time, i.e. 4D imaging. For fluorescence imaging on live cells, the trade-offs among imaging depth, spatial resolution, temporal resolution and photo-damage are constrained based on the limited photons of the emitters. The fundamental solution to solve this dilemma is to enlarge the photon bank such as the development of photostable and bright fluorophores, leading to the innovation in optical imaging techniques such as super-resolution microscopy and light sheet microscopy. With the synergy of microfluidic technology that is capable of manipulating biological cells and controlling their microenvironments to mimic in vivo physiological environments, studies of sub-cellular processes in various biological systems can be simplified and investigated systematically. In this review, we provide an overview of current state-of-the-art super-resolution and 3D live cell imaging techniques and their lab-on-a-chip applications, and finally discuss future research trends in new and breakthrough research areas of live specimen 4D imaging in controlled 3D microenvironments.
Collapse
Affiliation(s)
- Lip Ket Chin
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
| | - Chau-Hwang Lee
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan. and Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan and Department of Physics, National Taiwan University, Taipei 10671, Taiwan
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
37
|
Marx U, Andersson TB, Bahinski A, Beilmann M, Beken S, Cassee FR, Cirit M, Daneshian M, Fitzpatrick S, Frey O, Gaertner C, Giese C, Griffith L, Hartung T, Heringa MB, Hoeng J, de Jong WH, Kojima H, Kuehnl J, Luch A, Maschmeyer I, Sakharov D, Sips AJAM, Steger-Hartmann T, Tagle DA, Tonevitsky A, Tralau T, Tsyb S, van de Stolpe A, Vandebriel R, Vulto P, Wang J, Wiest J, Rodenburg M, Roth A. Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing. ALTEX 2016; 33:272-321. [PMID: 27180100 PMCID: PMC5396467 DOI: 10.14573/altex.1603161] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/11/2016] [Indexed: 01/09/2023]
Abstract
The recent advent of microphysiological systems - microfluidic biomimetic devices that aspire to emulate the biology of human tissues, organs and circulation in vitro - is envisaged to enable a global paradigm shift in drug development. An extraordinary US governmental initiative and various dedicated research programs in Europe and Asia have led recently to the first cutting-edge achievements of human single-organ and multi-organ engineering based on microphysiological systems. The expectation is that test systems established on this basis would model various disease stages, and predict toxicity, immunogenicity, ADME profiles and treatment efficacy prior to clinical testing. Consequently, this technology could significantly affect the way drug substances are developed in the future. Furthermore, microphysiological system-based assays may revolutionize our current global programs of prioritization of hazard characterization for any new substances to be used, for example, in agriculture, food, ecosystems or cosmetics, thus, replacing laboratory animal models used currently. Thirty-six experts from academia, industry and regulatory bodies present here the results of an intensive workshop (held in June 2015, Berlin, Germany). They review the status quo of microphysiological systems available today against industry needs, and assess the broad variety of approaches with fit-for-purpose potential in the drug development cycle. Feasible technical solutions to reach the next levels of human biology in vitro are proposed. Furthermore, key organ-on-a-chip case studies, as well as various national and international programs are highlighted. Finally, a roadmap into the future is outlined, to allow for more predictive and regulatory-accepted substance testing on a global scale.
Collapse
|
38
|
Riahi R, Shaegh SAM, Ghaderi M, Zhang YS, Shin SR, Aleman J, Massa S, Kim D, Dokmeci MR, Khademhosseini A. Automated microfluidic platform of bead-based electrochemical immunosensor integrated with bioreactor for continual monitoring of cell secreted biomarkers. Sci Rep 2016; 6:24598. [PMID: 27098564 PMCID: PMC4838915 DOI: 10.1038/srep24598] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/30/2016] [Indexed: 02/08/2023] Open
Abstract
There is an increasing interest in developing microfluidic bioreactors and organs-on-a-chip platforms combined with sensing capabilities for continual monitoring of cell-secreted biomarkers. Conventional approaches such as ELISA and mass spectroscopy cannot satisfy the needs of continual monitoring as they are labor-intensive and not easily integrable with low-volume bioreactors. This paper reports on the development of an automated microfluidic bead-based electrochemical immunosensor for in-line measurement of cell-secreted biomarkers. For the operation of the multi-use immunosensor, disposable magnetic microbeads were used to immobilize biomarker-recognition molecules. Microvalves were further integrated in the microfluidic immunosensor chip to achieve programmable operations of the immunoassay including bead loading and unloading, binding, washing, and electrochemical sensing. The platform allowed convenient integration of the immunosensor with liver-on-chips to carry out continual quantification of biomarkers secreted from hepatocytes. Transferrin and albumin productions were monitored during a 5-day hepatotoxicity assessment in which human primary hepatocytes cultured in the bioreactor were treated with acetaminophen. Taken together, our unique microfluidic immunosensor provides a new platform for in-line detection of biomarkers in low volumes and long-term in vitro assessments of cellular functions in microfluidic bioreactors and organs-on-chips.
Collapse
Affiliation(s)
- Reza Riahi
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Seyed Ali Mousavi Shaegh
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Masoumeh Ghaderi
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Yu Shrike Zhang
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115 USA
| | - Su Ryon Shin
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115 USA
| | - Julio Aleman
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Solange Massa
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Duckjin Kim
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Mehmet Remzi Dokmeci
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115 USA
| | - Ali Khademhosseini
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115 USA
- Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
- College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul 143-701, Republic of Korea
| |
Collapse
|
39
|
Garziano A, Urciuolo F, Imparato G, Martorina F, Corrado B, Netti P. A micro-perfusion bioreactor for on line investigation of ECM remodeling under hydrodynamic and biochemical stimulation. LAB ON A CHIP 2016; 16:855-867. [PMID: 26860053 DOI: 10.1039/c5lc01481f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Tissue-on-chip (TOC) systems aim at replicating complex biological dynamics in vitro with the potential either to improve the understanding of human biology or to develop more accurate therapeutic strategies. To replicate faithfully the intricate interrelationships between cells and their surrounding microenvironment, the three-dimensional (3D) tissue model must possess a responsive extracellular matrix (ECM). ECM remodeling plays a pivotal role in guiding cells and tissues functions and such aspect is somewhat denied during in vitro studies. For this purpose, we fabricated a micro-perfusion bioreactor capable to sustain the viability of 3D engineered tissue models recapitulating the process of the native ECM deposition and assembly. Engineered human dermis micro-tissue precursors (HD-μTP) were used as building blocks to generate a final tissue. HD-μTP were loaded in the perfusion space of the micro-perfusion bioreactor and, under the superimposition of different fluid dynamic regimes and biochemical stimulation, they synthesized new collagen proteins that were, then, assembled in the perfusion space forming a continuum of cells embedded in their own ECM. The micro-perfusion bioreactor was fabricated to allow the on-line monitoring of the oxygen consumption and the assembly of the newly formed collagen network via real time acquisition of the second harmonic generation (SHG) signal. The possibility to detect the collagen reorganization due to both fluid dynamic and biochemical stimulation, let us to define the optimal perfusion configuration in order to obtain a TOC system based on an endogenous and responsive ECM.
Collapse
Affiliation(s)
- A Garziano
- Center for Advanced Biomaterials for Health Care@CRIB Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci n. 53, 80125 Napoli, Italy. and Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy and Interdisciplinary Research Centre on Biomaterials (CRIB), University of Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy
| | - F Urciuolo
- Center for Advanced Biomaterials for Health Care@CRIB Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci n. 53, 80125 Napoli, Italy.
| | - G Imparato
- Center for Advanced Biomaterials for Health Care@CRIB Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci n. 53, 80125 Napoli, Italy.
| | - F Martorina
- Center for Advanced Biomaterials for Health Care@CRIB Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci n. 53, 80125 Napoli, Italy.
| | - B Corrado
- Center for Advanced Biomaterials for Health Care@CRIB Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci n. 53, 80125 Napoli, Italy. and Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy and Interdisciplinary Research Centre on Biomaterials (CRIB), University of Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy
| | - P Netti
- Center for Advanced Biomaterials for Health Care@CRIB Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci n. 53, 80125 Napoli, Italy. and Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy and Interdisciplinary Research Centre on Biomaterials (CRIB), University of Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy
| |
Collapse
|
40
|
Komeya M, Kimura H, Nakamura H, Yokonishi T, Sato T, Kojima K, Hayashi K, Katagiri K, Yamanaka H, Sanjo H, Yao M, Kamimura S, Inoue K, Ogonuki N, Ogura A, Fujii T, Ogawa T. Long-term ex vivo maintenance of testis tissues producing fertile sperm in a microfluidic device. Sci Rep 2016; 6:21472. [PMID: 26892171 PMCID: PMC4759809 DOI: 10.1038/srep21472] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 01/25/2016] [Indexed: 12/21/2022] Open
Abstract
In contrast to cell cultures, particularly to cell lines, tissues or organs removed from the body cannot be maintained for long in any culture conditions. Although it is apparent that in vivo regional homeostasis is facilitated by the microvascular system, mimicking such a system ex vivo is difficult and has not been proved effective. Using the culture system of mouse spermatogenesis, we addressed this issue and devised a simple microfluidic device in which a porous membrane separates a tissue from the flowing medium, conceptually imitating the in vivo relationship between the microvascular flow and surrounding tissue. Testis tissues cultured in this device successfully maintained spermatogenesis for 6 months. The produced sperm were functional to generate healthy offspring with micro-insemination. In addition, the tissue kept producing testosterone and responded to stimulation by luteinizing hormone. These data suggest that the microfluidic device successfully created in vivo-like conditions, in which testis tissue maintained its physiologic functions and homeostasis. The present model of the device, therefore, would provide a valuable foundation of future improvement of culture conditions for various tissues and organs, and revolutionize the organ culture method as a whole.
Collapse
Affiliation(s)
- Mitsuru Komeya
- Laboratory of Proteomics, Institute of Molecular Medicine and Life Science, Yokohama City University Association of Medical Science, Yokohama, Kanagawa 236-0004, Japan
- Department of Urology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Hiroshi Kimura
- Department of Mechanical Engineering, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
| | - Hiroko Nakamura
- Department of Mechanical Engineering, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
| | - Tetsuhiro Yokonishi
- Laboratory of Proteomics, Institute of Molecular Medicine and Life Science, Yokohama City University Association of Medical Science, Yokohama, Kanagawa 236-0004, Japan
- Department of Urology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Takuya Sato
- Laboratory of Proteomics, Institute of Molecular Medicine and Life Science, Yokohama City University Association of Medical Science, Yokohama, Kanagawa 236-0004, Japan
| | - Kazuaki Kojima
- Laboratory of Proteomics, Institute of Molecular Medicine and Life Science, Yokohama City University Association of Medical Science, Yokohama, Kanagawa 236-0004, Japan
| | - Kazuaki Hayashi
- Laboratory of Proteomics, Institute of Molecular Medicine and Life Science, Yokohama City University Association of Medical Science, Yokohama, Kanagawa 236-0004, Japan
| | - Kumiko Katagiri
- Laboratory of Proteomics, Institute of Molecular Medicine and Life Science, Yokohama City University Association of Medical Science, Yokohama, Kanagawa 236-0004, Japan
| | - Hiroyuki Yamanaka
- Laboratory of Proteomics, Institute of Molecular Medicine and Life Science, Yokohama City University Association of Medical Science, Yokohama, Kanagawa 236-0004, Japan
- Department of Urology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Hiroyuki Sanjo
- Laboratory of Proteomics, Institute of Molecular Medicine and Life Science, Yokohama City University Association of Medical Science, Yokohama, Kanagawa 236-0004, Japan
- Department of Urology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Masahiro Yao
- Department of Urology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | | | - Kimiko Inoue
- RIKEN, Bioresource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Narumi Ogonuki
- RIKEN, Bioresource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Atsuo Ogura
- RIKEN, Bioresource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Teruo Fujii
- Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Takehiko Ogawa
- Laboratory of Proteomics, Institute of Molecular Medicine and Life Science, Yokohama City University Association of Medical Science, Yokohama, Kanagawa 236-0004, Japan
- Department of Urology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| |
Collapse
|
41
|
Sochol RD, Gupta NR, Bonventre JV. A Role for 3D Printing in Kidney-on-a-Chip Platforms. CURRENT TRANSPLANTATION REPORTS 2016; 3:82-92. [PMID: 28090431 DOI: 10.1007/s40472-016-0085-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The advancement of "kidney-on-a-chip" platforms - submillimeter-scale fluidic systems designed to recapitulate renal functions in vitro - directly impacts a wide range of biomedical fields, including drug screening, cell and tissue engineering, toxicity testing, and disease modelling. To fabricate kidney-on-a-chip technologies, researchers have primarily adapted traditional micromachining techniques that are rooted in the integrated circuit industry; hence the term, "chip." A significant challenge, however, is that such methods are inherently monolithic, which limits one's ability to accurately recreate the geometric and architectural complexity of the kidney in vivo. Better reproduction of the anatomical complexity of the kidney will allow for more instructive modelling of physiological and pathophysiological events. Emerging additive manufacturing or "three-dimensional (3D) printing" techniques could provide a promising alternative to conventional methodologies. In this article, we discuss recent progress in the development of both kidney-on-a-chip platforms and state-of-the-art submillimeter-scale 3D printing methods, with a focus on biophysical and architectural capabilities. Lastly, we examine the potential for 3D printing-based approaches to extend the efficacy of kidney-on-a-chip systems.
Collapse
Affiliation(s)
- Ryan D Sochol
- Department of Mechanical Engineering, University of Maryland, College Park, MD
| | - Navin R Gupta
- Renal Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA
| | - Joseph V Bonventre
- Renal Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA; Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
42
|
Bhise NS, Manoharan V, Massa S, Tamayol A, Ghaderi M, Miscuglio M, Lang Q, Shrike Zhang Y, Shin SR, Calzone G, Annabi N, Shupe TD, Bishop CE, Atala A, Dokmeci MR, Khademhosseini A. A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication 2016; 8:014101. [PMID: 26756674 DOI: 10.1088/1758-5090/8/1/014101] [Citation(s) in RCA: 400] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The inadequacy of animal models in correctly predicting drug and biothreat agent toxicity in humans has resulted in a pressing need for in vitro models that can recreate the in vivo scenario. One of the most important organs in the assessment of drug toxicity is liver. Here, we report the development of a liver-on-a-chip platform for long-term culture of three-dimensional (3D) human HepG2/C3A spheroids for drug toxicity assessment. The bioreactor design allowed for in situ monitoring of the culture environment by enabling direct access to the hepatic construct during the experiment without compromising the platform operation. The engineered bioreactor could be interfaced with a bioprinter to fabricate 3D hepatic constructs of spheroids encapsulated within photocrosslinkable gelatin methacryloyl (GelMA) hydrogel. The engineered hepatic construct remained functional during the 30 days culture period as assessed by monitoring the secretion rates of albumin, alpha-1 antitrypsin, transferrin, and ceruloplasmin, as well as immunostaining for the hepatocyte markers, cytokeratin 18, MRP2 bile canalicular protein and tight junction protein ZO-1. Treatment with 15 mM acetaminophen induced a toxic response in the hepatic construct that was similar to published studies on animal and other in vitro models, thus providing a proof-of-concept demonstration of the utility of this liver-on-a-chip platform for toxicity assessment.
Collapse
Affiliation(s)
- Nupura S Bhise
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
In this chapter the state of the art of live cell microarrays for high-throughput biological assays are reviewed. The fabrication of novel microarrays with respect to material science and cell patterning methods is included. A main focus of the chapter is on various aspects of the application of cell microarrays by providing selected examples in research fields such as biomaterials, stem cell biology and neuroscience. Additionally, the importance of microfluidic technologies for high-throughput on-chip live-cell microarrays is highlighted for single-cell and multi-cell assays as well as for 3D tissue constructs.
Collapse
|
44
|
Validation of Bioreactor and Human-on-a-Chip Devices for Chemical Safety Assessment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 856:299-316. [PMID: 27671728 DOI: 10.1007/978-3-319-33826-2_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Equipment and device qualification and test assay validation in the field of tissue engineered human organs for substance assessment remain formidable tasks with only a few successful examples so far. The hurdles seem to increase with the growing complexity of the biological systems, emulated by the respective models. Controlled single tissue or organ culture in bioreactors improves the organ-specific functions and maintains their phenotypic stability for longer periods of time. The reproducibility attained with bioreactor operations is, per se, an advantage for the validation of safety assessment. Regulatory agencies have gradually altered the validation concept from exhaustive "product" to rigorous and detailed process characterization, valuing reproducibility as a standard for validation. "Human-on-a-chip" technologies applying micro-physiological systems to the in vitro combination of miniaturized human organ equivalents into functional human micro-organisms are nowadays thought to be the most elaborate solution created to date. They target the replacement of the current most complex models-laboratory animals. Therefore, we provide here a road map towards the validation of such "human-on-a-chip" models and qualification of their respective bioreactor and microchip equipment along a path currently used for the respective animal models.
Collapse
|
45
|
Recent advances and future applications of microfluidic live-cell microarrays. Biotechnol Adv 2015; 33:948-61. [DOI: 10.1016/j.biotechadv.2015.06.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/16/2015] [Accepted: 06/19/2015] [Indexed: 12/31/2022]
|
46
|
Tourlomousis F, Chang RC. Numerical investigation of dynamic microorgan devices as drug screening platforms. Part I: Macroscale modeling approach & validation. Biotechnol Bioeng 2015; 113:612-22. [DOI: 10.1002/bit.25822] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 08/17/2015] [Accepted: 08/27/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Filippos Tourlomousis
- Department of Mechanical Engineering; Stevens Institute of Technology; Hoboken New Jersey
| | - Robert C. Chang
- Department of Mechanical Engineering; Stevens Institute of Technology; Hoboken New Jersey
| |
Collapse
|
47
|
Cox MC, Reese LM, Bickford LR, Verbridge SS. Toward the Broad Adoption of 3D Tumor Models in the Cancer Drug Pipeline. ACS Biomater Sci Eng 2015; 1:877-894. [PMID: 33429520 DOI: 10.1021/acsbiomaterials.5b00172] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite a cost of approximately $1 billion to develop a new cancer drug, about 90% of drugs that enter clinical trials fail. A tremendous opportunity exists to streamline the drug selection and testing process, and innovative approaches promise to reduce the burdensome cost of health care for those suffering from cancer. There is great potential for 3D models of human tumors to complement more traditional testing methods; however, the shift from 2D to 3D assays at early stages of the drug discovery and development process is far from widely accepted. 3D platforms range from simple tumor spheroids to more complex microfluidic hydrogels that better mimic the tumor microenvironment. While several companies have developed and patented advanced high-throughput 3D platforms for drug screening, their cost and complexity have limited their adoption as an industry standard. In this review, we will highlight the various tumor platforms that have been developed, emphasizing the approaches that have successfully led to commercial products. We will then consider potential directions toward more relevant tumor models, advantages of the adoption of such platforms within the drug development and screening process, and new opportunities in personalized medicine that such platforms will uniquely enable.
Collapse
Affiliation(s)
- Megan C Cox
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, Virginia 24061, United States
| | - Laura M Reese
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, Virginia 24061, United States
| | - Lissett R Bickford
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, Virginia 24061, United States
| | - Scott S Verbridge
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
48
|
Sarker M, Chen X, Schreyer D. Experimental approaches to vascularisation within tissue engineering constructs. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:683-734. [DOI: 10.1080/09205063.2015.1059018] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
49
|
Ying L, Zhu Z, Xu Z, He T, Li E, Guo Z, Liu F, Jiang C, Wang Q. Cancer Associated Fibroblast-Derived Hepatocyte Growth Factor Inhibits the Paclitaxel-Induced Apoptosis of Lung Cancer A549 Cells by Up-Regulating the PI3K/Akt and GRP78 Signaling on a Microfluidic Platform. PLoS One 2015; 10:e0129593. [PMID: 26115510 PMCID: PMC4482748 DOI: 10.1371/journal.pone.0129593] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/11/2015] [Indexed: 11/29/2022] Open
Abstract
Tumor stroma and growth factors provide a survival environment to tumor cells and can modulate their chemoresistance by dysregulating several signal pathways. In this study, we fabricated a three-dimensional (3D) microfluidic chip using polydimethylsiloxane (PDMS) to investigate the impact of hepatocyte growth factor (HGF) from cancer-associated fibroblasts (CAF) on the Met/PI3K/AKT activation, glucose regulatory protein (GRP78) expression and the paclitaxel-induced A549 cell apoptosis. With a concentration gradient generator, the assembled chip was able to reconstruct a tumor microenvironment in vitro. We found high levels of HGF in the supernatants of CAF and the CAF matrix from the supernatants of activated HFL1 fibroblasts or HGF enhanced the levels of Met, PI3K and AKT phosphorylation and GRP78 expression in A549 cells cultured in a 3D cell chamber, which was abrogated by anti-HGF. Inhibition of Met attenuated the CAF matrix-enhanced PI3K/AKT phosphorylation and GRP78 expression while inhibition of PI3K reduced GRP78 expression, but not Met phosphorylation in A549 cells. Inhibition of GRP78 failed to modulate the CAF matrix-enhanced Met/PI3K/AKT phosphorylation in A549 cells. Furthermore, inhibition of PI3K or GRP78 enhanced spontaneous and paclitaxel-induced A549 cell apoptosis. Moreover, treatment with the CAF matrix inhibited spontaneous and medium or high dose of paclitaxel-induced A549 cell apoptosis. Inhibition of PI3K or GRP78 attenuated the CAF matrix-mediated inhibition on paclitaxel-induced A549 cell apoptosis. Our data indicated that HGF in the CAF matrix activated the Met/PI3K/AKT and up-regulated GRP78 expression, promoting chemoresistance to paclitaxel-mediated apoptosis in A549 cells. Our findings suggest that the microfluidic system may represent an ideal platform for signaling research and drug screening.
Collapse
Affiliation(s)
- Li Ying
- Department of Gastroenterology, the Second Hospital of Dalian Medical University, Dailan, China
| | - Ziwei Zhu
- Department of Respiratory, the Second Hospital of Dalian Medical University, Dailan, China
| | - Zhiyun Xu
- Department of Respiratory, the Second Hospital of Dalian Medical University, Dailan, China
| | - Tianrui He
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Encheng Li
- Department of Respiratory, the Second Hospital of Dalian Medical University, Dailan, China
| | - Zhe Guo
- Department of Respiratory, the Second Hospital of Dalian Medical University, Dailan, China
| | - Fen Liu
- Department of Respiratory, the Second Hospital of Dalian Medical University, Dailan, China
| | - Chunmeng Jiang
- Department of Gastroenterology, the Second Hospital of Dalian Medical University, Dailan, China
| | - Qi Wang
- Department of Respiratory, the Second Hospital of Dalian Medical University, Dailan, China
- * E-mail:
| |
Collapse
|
50
|
Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol 2015; 32:760-72. [PMID: 25093883 DOI: 10.1038/nbt.2989] [Citation(s) in RCA: 2052] [Impact Index Per Article: 205.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 07/10/2014] [Indexed: 02/07/2023]
Abstract
An organ-on-a-chip is a microfluidic cell culture device created with microchip manufacturing methods that contains continuously perfused chambers inhabited by living cells arranged to simulate tissue- and organ-level physiology. By recapitulating the multicellular architectures, tissue-tissue interfaces, physicochemical microenvironments and vascular perfusion of the body, these devices produce levels of tissue and organ functionality not possible with conventional 2D or 3D culture systems. They also enable high-resolution, real-time imaging and in vitro analysis of biochemical, genetic and metabolic activities of living cells in a functional tissue and organ context. This technology has great potential to advance the study of tissue development, organ physiology and disease etiology. In the context of drug discovery and development, it should be especially valuable for the study of molecular mechanisms of action, prioritization of lead candidates, toxicity testing and biomarker identification.
Collapse
Affiliation(s)
- Sangeeta N Bhatia
- 1] Department of Electrical Engineering &Computer Science, Koch Institute and Institute for Medical Engineering and Science, Massachusetts Institute of Technology and Broad Institute, Cambridge, Massachusetts, USA. [2] Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Donald E Ingber
- 1] Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA. [2] Vascular Biology Program, Departments of Pathology &Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA. [3] School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|