1
|
Wang Y, Yang X, Zhang X, Wang Y, Pei W. Implantable intracortical microelectrodes: reviewing the present with a focus on the future. MICROSYSTEMS & NANOENGINEERING 2023; 9:7. [PMID: 36620394 PMCID: PMC9814492 DOI: 10.1038/s41378-022-00451-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/08/2022] [Accepted: 08/22/2022] [Indexed: 06/17/2023]
Abstract
Implantable intracortical microelectrodes can record a neuron's rapidly changing action potentials (spikes). In vivo neural activity recording methods often have either high temporal or spatial resolution, but not both. There is an increasing need to record more neurons over a longer duration in vivo. However, there remain many challenges to overcome before achieving long-term, stable, high-quality recordings and realizing comprehensive, accurate brain activity analysis. Based on the vision of an idealized implantable microelectrode device, the performance requirements for microelectrodes are divided into four aspects, including recording quality, recording stability, recording throughput, and multifunctionality, which are presented in order of importance. The challenges and current possible solutions for implantable microelectrodes are given from the perspective of each aspect. The current developments in microelectrode technology are analyzed and summarized.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xinze Yang
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiwen Zhang
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yijun Wang
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- Chinese Institute for Brain Research, 102206 Beijing, China
| | - Weihua Pei
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
2
|
Merken L, Schelles M, Ceyssens F, Kraft M, Janssen P. Thin flexible arrays for long-term multi-electrode recordings in macaque primary visual cortex. J Neural Eng 2022; 19. [PMID: 36215972 DOI: 10.1088/1741-2552/ac98e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/10/2022] [Indexed: 01/11/2023]
Abstract
Objective.Basic, translational and clinical neuroscience are increasingly focusing on large-scale invasive recordings of neuronal activity. However, in large animals such as nonhuman primates and humans-in which the larger brain size with sulci and gyri imposes additional challenges compared to rodents, there is a huge unmet need to record from hundreds of neurons simultaneously anywhere in the brain for long periods of time. Here, we tested the electrical and mechanical properties of thin, flexible multi-electrode arrays (MEAs) inserted into the primary visual cortex of two macaque monkeys, and assessed their magnetic resonance imaging (MRI) compatibility and their capacity to record extracellular activity over a period of 1 year.Approach.To allow insertion of the floating arrays into the visual cortex, the 20 by 100µm2shafts were temporarily strengthened by means of a resorbable poly(lactic-co-glycolic acid) coating.Main results. After manual insertion of the arrays, theex vivoandin vivoMRI compatibility of the arrays proved to be excellent. We recorded clear single-unit activity from up to 50% of the electrodes, and multi-unit activity (MUA) on 60%-100% of the electrodes, which allowed detailed measurements of the receptive fields and the orientation selectivity of the neurons. Even 1 year after insertion, we obtained significant MUA responses on 70%-100% of the electrodes, while the receptive fields remained remarkably stable over the entire recording period.Significance.Thus, the thin and flexible MEAs we tested offer several crucial advantages compared to existing arrays, most notably in terms of brain tissue compliance, scalability, and brain coverage. Future brain-machine interface applications in humans may strongly benefit from this new generation of chronically implanted MEAs.
Collapse
Affiliation(s)
- Lara Merken
- Laboratory for Neuro- and Psychophysiology, KU Leuven, Leuven 3000, Belgium.,Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Maarten Schelles
- Micro- and Nanosystems (MNS), Electrical Engineering Department (ESAT), KU Leuven, Leuven 3000, Belgium.,ReVision Implant NV, Haasrode 3053, Belgium
| | | | - Michael Kraft
- Micro- and Nanosystems (MNS), Electrical Engineering Department (ESAT), KU Leuven, Leuven 3000, Belgium.,Leuven Institute for Micro- and Nanotechnology (LIMNI), Leuven 3000, Belgium
| | - Peter Janssen
- Laboratory for Neuro- and Psychophysiology, KU Leuven, Leuven 3000, Belgium.,Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
3
|
Balakrishnan G, Song J, Mou C, Bettinger CJ. Recent Progress in Materials Chemistry to Advance Flexible Bioelectronics in Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106787. [PMID: 34751987 PMCID: PMC8917047 DOI: 10.1002/adma.202106787] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/15/2021] [Indexed: 05/09/2023]
Abstract
Designing bioelectronic devices that seamlessly integrate with the human body is a technological pursuit of great importance. Bioelectronic medical devices that reliably and chronically interface with the body can advance neuroscience, health monitoring, diagnostics, and therapeutics. Recent major efforts focus on investigating strategies to fabricate flexible, stretchable, and soft electronic devices, and advances in materials chemistry have emerged as fundamental to the creation of the next generation of bioelectronics. This review summarizes contemporary advances and forthcoming technical challenges related to three principal components of bioelectronic devices: i) substrates and structural materials, ii) barrier and encapsulation materials, and iii) conductive materials. Through notable illustrations from the literature, integration and device fabrication strategies and associated challenges for each material class are highlighted.
Collapse
Affiliation(s)
| | - Jiwoo Song
- Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Chenchen Mou
- Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | | |
Collapse
|
4
|
Zhao H, Liu R, Zhang H, Cao P, Liu Z, Li Y. Research Progress on the Flexibility of an Implantable Neural Microelectrode. MICROMACHINES 2022; 13:386. [PMID: 35334680 PMCID: PMC8954487 DOI: 10.3390/mi13030386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/25/2021] [Accepted: 01/16/2022] [Indexed: 12/22/2022]
Abstract
Neural microelectrode is the important bridge of information exchange between the human body and machines. By recording and transmitting nerve signals with electrodes, people can control the external machines. At the same time, using electrodes to electrically stimulate nerve tissue, people with long-term brain diseases will be safely and reliably treated. Young's modulus of the traditional rigid electrode probe is not matched well with that of biological tissue, and tissue immune rejection is easy to generate, resulting in the electrode not being able to achieve long-term safety and reliable working. In recent years, the choice of flexible materials and design of electrode structures can achieve modulus matching between electrode and biological tissue, and tissue damage is decreased. This review discusses nerve microelectrodes based on flexible electrode materials and substrate materials. Simultaneously, different structural designs of neural microelectrodes are reviewed. However, flexible electrode probes are difficult to implant into the brain. Only with the aid of certain auxiliary devices, can the implant be safe and reliable. The implantation method of the nerve microelectrode is also reviewed.
Collapse
Affiliation(s)
- Huiqing Zhao
- Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Ruping Liu
- Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Huiling Zhang
- Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Peng Cao
- Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Zilong Liu
- Division of Optics, National Institute of Metrology, Beijing 100029, China
| | - Ye Li
- Beijing Institute of Graphic Communication, Beijing 102600, China
| |
Collapse
|
5
|
Directional Growth of cm-Long PLGA Nanofibers by a Simple and Fast Wet-Processing Method. MATERIALS 2022; 15:ma15020687. [PMID: 35057400 PMCID: PMC8777905 DOI: 10.3390/ma15020687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 01/25/2023]
Abstract
The development of aligned nanofibers as useful scaffolds for tissue engineering is an actively sought-for research objective. Here, we propose a novel improvement of an existing self-assembly-based nanofabrication technique (ASB-SANS). This improvement, which we termed Directional ASB-SANS, allows one to produce cm2-large domains of highly aligned poly(lactic-co-glycolic acid) (PLGA) nanofibers in a rapid, inexpensive, and easy way. The so-grown aligned PLGA nanofibers exhibited remarkable adhesion to different substrates (glass, polyimide, and Si/SiOx), even when immersed in PBS solution and kept at physiological temperature (37 °C) for up to two weeks. Finally, the Directional ASB-SANS technique allowed us to grow PLGA fibers also on highly heterogeneous substrates such as polyimide-based, gold-coated flexible electrodes. These results suggest the viability of Directional ASB-SANS method for realizing biocompatible/bioresorbable, nanostructured coatings, potentially suitable for neural interface systems.
Collapse
|
6
|
Lee Y, Shin H, Lee D, Choi S, Cho I, Seo J. A Lubricated Nonimmunogenic Neural Probe for Acute Insertion Trauma Minimization and Long-Term Signal Recording. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100231. [PMID: 34085402 PMCID: PMC8336494 DOI: 10.1002/advs.202100231] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/29/2021] [Indexed: 05/06/2023]
Abstract
Brain-machine interfaces (BMIs) that link the brain to a machine are promising for the treatment of neurological disorders through the bi-directional translation of neural information over extended periods. However, the longevity of such implanted devices remains limited by the deterioration of their signal sensitivity over time due to acute inflammation from insertion trauma and chronic inflammation caused by the foreign body reaction. To address this challenge, a lubricated surface is fabricated to minimize friction during insertion and avoid immunogenicity during neural signal recording. Reduced friction force leads to 86% less impulse on the brain tissue, and thus immediately increases the number of measured signal electrodes by 102% upon insertion. Furthermore, the signal measurable period increases from 8 to 16 weeks due to the prevention of gliosis. By significantly reducing insertion damage and the foreign body reaction, the lubricated immune-stealthy probe surface (LIPS) can maximize the longevity of implantable BMIs.
Collapse
Affiliation(s)
- Yeontaek Lee
- School of Electrical and Electronic EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Hyogeun Shin
- Center for BioMicrosystemsBrain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science & Technology, KIST SchoolKorea University of Science and Technology (UST)Seoul02792Republic of Korea
| | - Dongwon Lee
- School of Electrical and Electronic EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Sungah Choi
- School of Electrical and Electronic EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Il‐Joo Cho
- School of Electrical and Electronic EngineeringYonsei UniversitySeoul03722Republic of Korea
- Center for BioMicrosystemsBrain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science & Technology, KIST SchoolKorea University of Science and Technology (UST)Seoul02792Republic of Korea
- Yonsei‐KIST Convergence Research InstituteYonsei UniversitySeoul03722Republic of Korea
| | - Jungmok Seo
- School of Electrical and Electronic EngineeringYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
7
|
Liu X, Bibineyshvili Y, Robles DA, Boreland AJ, Margolis DJ, Shreiber DI, Zahn JD. Fabrication of a Multilayer Implantable Cortical Microelectrode Probe to Improve Recording Potential. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS : A JOINT IEEE AND ASME PUBLICATION ON MICROSTRUCTURES, MICROACTUATORS, MICROSENSORS, AND MICROSYSTEMS 2021; 30:569-581. [PMID: 34539168 PMCID: PMC8445332 DOI: 10.1109/jmems.2021.3092230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Intracortical neural probes are a key enabling technology for acquiring high fidelity neural signals within the cortex. They are viewed as a crucial component of brain-computer interfaces (BCIs) in order to record electrical activities from neurons within the brain. Smaller, more flexible, polymer-based probes have been investigated for their potential to limit the acute and chronic neural tissue response. Conventional methods of patterning electrodes and connecting traces on a single supporting layer can limit the number of recording sites which can be defined, particularly when designing narrower probes. We present a novel strategy of increasing the number of recording sites without proportionally increasing the size of the probe by using a multilayer fabrication process to vertically layer recording traces on multiple Parylene support layers, allowing more recording traces to be defined on a smaller probe width. Using this approach, we are able to define 16 electrodes on 4 supporting layers (4 electrodes per layer), each with a 30 μm diameter recording window and 5 μm wide connecting trace defined by conventional LWUV lithography, on an 80 μm wide by 9 μm thick microprobe. Prior to in vitro and in vivo validation, the multilayer probes are electrically characterized via impedance spectroscopy and evaluating crosstalk between adjacent layers. Demonstration of acute in vitro recordings in a cerebral organoid model and in vivo recordings in a murine model indicate the probe's capability for single unit recordings. This work demonstrates the ability to fabricate smaller, more compliant neural probes without sacrificing electrode density.
Collapse
Affiliation(s)
- Xin Liu
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 USA
| | - Yelena Bibineyshvili
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854 USA
| | - Denise A Robles
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 USA
| | - Andrew J Boreland
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854 USA
| | - David J Margolis
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854 USA
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 USA
| | - Jeffrey D Zahn
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 USA
| |
Collapse
|
8
|
Thielen B, Meng E. A comparison of insertion methods for surgical placement of penetrating neural interfaces. J Neural Eng 2021; 18:10.1088/1741-2552/abf6f2. [PMID: 33845469 PMCID: PMC8600966 DOI: 10.1088/1741-2552/abf6f2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Many implantable electrode arrays exist for the purpose of stimulating or recording electrical activity in brain, spinal, or peripheral nerve tissue, however most of these devices are constructed from materials that are mechanically rigid. A growing body of evidence suggests that the chronic presence of these rigid probes in the neural tissue causes a significant immune response and glial encapsulation of the probes, which in turn leads to gradual increase in distance between the electrodes and surrounding neurons. In recording electrodes, the consequence is the loss of signal quality and, therefore, the inability to collect electrophysiological recordings long term. In stimulation electrodes, higher current injection is required to achieve a comparable response which can lead to tissue and electrode damage. To minimize the impact of the immune response, flexible neural probes constructed with softer materials have been developed. These flexible probes, however, are often not strong enough to be inserted on their own into the tissue, and instead fail via mechanical buckling of the shank under the force of insertion. Several strategies have been developed to allow the insertion of flexible probes while minimizing tissue damage. It is critical to keep these strategies in mind during probe design in order to ensure successful surgical placement. In this review, existing insertion strategies will be presented and evaluated with respect to surgical difficulty, immune response, ability to reach the target tissue, and overall limitations of the technique. Overall, the majority of these insertion techniques have only been evaluated for the insertion of a single probe and do not quantify the accuracy of probe placement. More work needs to be performed to evaluate and optimize insertion methods for accurate placement of devices and for devices with multiple probes.
Collapse
Affiliation(s)
- Brianna Thielen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Ellis Meng
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
9
|
Monney B, Hess-Dunning AE, Gloth P, Capadona JR, Weder C. Mechanically adaptive implants fabricated with poly(2-hydroxyethyl methacrylate)-based negative photoresists. J Mater Chem B 2021; 8:6357-6365. [PMID: 32555874 DOI: 10.1039/d0tb00980f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neural implants that are based on mechanically adaptive polymers (MAPs) and soften upon insertion into the body have previously been demonstrated to elicit a reduced chronic tissue response than more rigid devices fabricated from silicon or metals, but their processability has been limited. Here we report a negative photoresist approach towards physiologically responsive MAPs. We exploited this framework to create cross-linked terpolymers of 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate and 2-ethylhexyl methacrylate by photolithographic processes. Our systematic investigation of this platform afforded an optimized composition that exhibits a storage modulus E' of 1.8 GPa in the dry state. Upon exposure to simulated physiological conditions the material swells slightly (21% w/w) leading to a reduction of E' to 2 MPa. The large modulus change is mainly caused by plasticization, which shifts the glass transition from above to below 37 °C. Single shank probes fabricated by photolithography could readily be implanted into a brain-mimicking gel without buckling and viability studies with microglial cells show that the materials display excellent biocompatibility.
Collapse
Affiliation(s)
- Baptiste Monney
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland.
| | - Allison E Hess-Dunning
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA and Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Cleveland, OH 44106, USA
| | - Paul Gloth
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA and Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Cleveland, OH 44106, USA
| | - Jeffrey R Capadona
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA and Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Cleveland, OH 44106, USA
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland.
| |
Collapse
|
10
|
Zhang W, Zhou X, He Y, Xu L, Xie J. Implanting mechanics of PEG/DEX coated flexible neural probe: impacts of fabricating methods. Biomed Microdevices 2021; 23:17. [PMID: 33730217 DOI: 10.1007/s10544-021-00552-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 12/15/2022]
Abstract
Resorbable coatings are processed on flexible implants to facilitate penetrations. However, impacts of fabricating methods on implantation damage of coated probes are unclear. Herein, photosensitive polyimide (PSPI) based flexible neural implants are fabricated through clean-room technology. Polyethyleneglycol (PEG) - dexamethasone (DEX) coatings are processed through an improved micro moulding protocol in micro channels, fabricated by computer-numerical-controlled (CNC) micro milling, laser machining, and deep reactive ion etching (DRIE), respectively. An in vitro testing system is developed, using maximum insertion force [Formula: see text] and mean region-of-interest strain [Formula: see text] to accurately evaluate effects of the three fabricating methods on implantation damage at different insertion speed. Rat cerebrum, agarose gel, and silicone rubber are used as brain phantoms for tests. Results show that lower insertion speed, and micro channels fabricated by CNC micro milling or DRIE can minimize implantation damage. The decrease of insertion speed from 2.0 mm/s to 0.5 mm/s reduces [Formula: see text] by 76.2% ~85.1% and [Formula: see text] by 11.6% ~14.7%, respectively. Compared with laser machining, CNC micro milling and DRIE ensure dimensional accuracy of the PEG/DEX coating, reducing [Formula: see text] by 20.2% ~51.4% and [Formula: see text] by 8.0% ~11.6%, respectively. Compared with biological rat cerebrum, [Formula: see text] reduces by 5.8% ~25.1% in agarose gel phantom and increases by 7.7% ~21.0% in silicone rubber phantom, respectively. This study improves processing methods of polymer coatings and reveals mechanical difference between current used abiotic brain phantoms and biological brain tissues. Implantation tests establish quantitative relationship among insertion speed, fabricating methods, and implantation damage.
Collapse
Affiliation(s)
- Wenguang Zhang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Xuhui Zhou
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yuxin He
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Liyue Xu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Xie
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Apollo NV, Murphy B, Prezelski K, Driscoll N, Richardson AG, Lucas TH, Vitale F. Gels, jets, mosquitoes, and magnets: a review of implantation strategies for soft neural probes. J Neural Eng 2020; 17:041002. [PMID: 32759476 PMCID: PMC8152109 DOI: 10.1088/1741-2552/abacd7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Implantable neuroelectronic interfaces have enabled breakthrough advances in the clinical diagnosis and treatment of neurological disorders, as well as in fundamental studies of brain function, behavior, and disease. Intracranial electroencephalography (EEG) mapping with stereo-EEG (sEEG) depth electrodes is routinely adopted for precise epilepsy diagnostics and surgical treatment, while deep brain stimulation has become the standard of care for managing movement disorders. Intracortical microelectrode arrays for high-fidelity recordings of neural spiking activity have led to impressive demonstrations of the power of brain-machine interfaces for motor and sensory functional recovery. Yet, despite the rapid pace of technology development, the issue of establishing a safe, long-term, stable, and functional interface between neuroelectronic devices and the host brain tissue still remains largely unresolved. A body of work spanning at least the last 15 years suggests that safe, chronic integration between invasive electrodes and the brain requires a close match between the mechanical properties of man-made components and the neural tissue. In other words, the next generation of invasive electrodes should be soft and compliant, without sacrificing biological and chemical stability. Soft neuroelectronic interfaces, however, pose a new and significant surgical challenge: bending and buckling during implantation that can preclude accurate and safe device placement. In this topical review, we describe the next generation of soft electrodes and the surgical implantation methods for safe and precise insertion into brain structures. We provide an overview of the most recent innovations in the field of insertion strategies for flexible neural electrodes such as dissolvable or biodegradable carriers, microactuators, biologically-inspired support structures, and electromagnetic drives. In our analysis, we also highlight approaches developed in different fields, such as robotic surgery, which could be potentially adapted and translated to the insertion of flexible neural probes.
Collapse
Affiliation(s)
- Nicholas V Apollo
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, 19104, United States of America
| | - Brendan Murphy
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, 19104, United States of America
- These authors contributed equally
| | - Kayla Prezelski
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, 19104, United States of America
- These authors contributed equally
| | - Nicolette Driscoll
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, 19104, United States of America
| | - Andrew G Richardson
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
| | - Timothy H Lucas
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
| | - Flavia Vitale
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, 19104, United States of America
- These authors contributed equally
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Department of Physical Medicine & Rehabilitation, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States of America
| |
Collapse
|
12
|
Wang X, Weltman Hirschberg A, Xu H, Slingsby-Smith Z, Lecomte A, Scholten K, Song D, Meng E. A Parylene Neural Probe Array for Multi-Region Deep Brain Recordings. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS : A JOINT IEEE AND ASME PUBLICATION ON MICROSTRUCTURES, MICROACTUATORS, MICROSENSORS, AND MICROSYSTEMS 2020; 29:499-513. [PMID: 35663261 PMCID: PMC9164222 DOI: 10.1109/jmems.2020.3000235] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A Parylene C polymer neural probe array with 64 electrodes purposefully positioned across 8 individual shanks to anatomically match specific regions of the hippocampus was designed, fabricated, characterized, and implemented in vivo for enabling recording in deep brain regions in freely moving rats. Thin film polymer arrays were fabricated using surface micromachining techniques and mechanically braced to prevent buckling during surgical implantation. Importantly, the mechanical bracing technique developed in this work involves a novel biodegradable polymer brace that temporarily reduces shank length and consequently, increases its stiffness during implantation, therefore enabling access to deeper brain regions while preserving a low original cross-sectional area of the shanks. The resulting mechanical properties of braced shanks were evaluated at the benchtop. Arrays were then implemented in vivo in freely moving rats, achieving both acute and chronic recordings from the pyramidal cells in the cornu ammonis (CA) 1 and CA3 regions of the hippocampus which are responsible for memory encoding. This work demonstrated the potential for minimally invasive polymer-based neural probe arrays for multi-region recording in deep brain structures.
Collapse
Affiliation(s)
- Xuechun Wang
- Biomedical Engineering Department, University of Southern California, Los Angeles, CA 90089 USA
| | | | - Huijing Xu
- Biomedical Engineering Department, University of Southern California, Los Angeles, CA 90089 USA
| | | | - Aziliz Lecomte
- Fondazione Istituto Italiano di Technologia, 16163 Genova, Italy
| | - Kee Scholten
- Biomedical Engineering Department, University of Southern California, Los Angeles, CA 90089 USA
| | - Dong Song
- Biomedical Engineering Department, University of Southern California, Los Angeles, CA 90089 USA
| | - Ellis Meng
- Biomedical Engineering and Electrical and Computer Engineering Department, University of Southern California, Los Angeles, CA 90089 USA
| |
Collapse
|
13
|
Stiller AM, Usoro JO, Lawson J, Araya B, González-González MA, Danda VR, Voit WE, Black BJ, Pancrazio JJ. Mechanically Robust, Softening Shape Memory Polymer Probes for Intracortical Recording. MICROMACHINES 2020; 11:E619. [PMID: 32630553 PMCID: PMC7344527 DOI: 10.3390/mi11060619] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023]
Abstract
While intracortical microelectrode arrays (MEAs) may be useful in a variety of basic and clinical scenarios, their implementation is hindered by a variety of factors, many of which are related to the stiff material composition of the device. MEAs are often fabricated from high modulus materials such as silicon, leaving devices vulnerable to brittle fracture and thus complicating device fabrication and handling. For this reason, polymer-based devices are being heavily investigated; however, their implementation is often difficult due to mechanical instability that requires insertion aids during implantation. In this study, we design and fabricate intracortical MEAs from a shape memory polymer (SMP) substrate that remains stiff at room temperature but softens to 20 MPa after implantation, therefore allowing the device to be implanted without aids. We demonstrate chronic recordings and electrochemical measurements for 16 weeks in rat cortex and show that the devices are robust to physical deformation, therefore making them advantageous for surgical implementation.
Collapse
Affiliation(s)
- Allison M. Stiller
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (J.O.U.); (J.L.); (B.A.); (W.E.V.); (B.J.B.); (J.J.P.)
| | - Joshua O. Usoro
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (J.O.U.); (J.L.); (B.A.); (W.E.V.); (B.J.B.); (J.J.P.)
| | - Jennifer Lawson
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (J.O.U.); (J.L.); (B.A.); (W.E.V.); (B.J.B.); (J.J.P.)
| | - Betsiti Araya
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (J.O.U.); (J.L.); (B.A.); (W.E.V.); (B.J.B.); (J.J.P.)
| | | | | | - Walter E. Voit
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (J.O.U.); (J.L.); (B.A.); (W.E.V.); (B.J.B.); (J.J.P.)
- Qualia, Inc., Dallas, TX 75252, USA;
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Bryan J. Black
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (J.O.U.); (J.L.); (B.A.); (W.E.V.); (B.J.B.); (J.J.P.)
| | - Joseph J. Pancrazio
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (J.O.U.); (J.L.); (B.A.); (W.E.V.); (B.J.B.); (J.J.P.)
| |
Collapse
|
14
|
Influence of a Biocompatible Hydrophilic Needle Surface Coating on a Puncture Biopsy Process for Biomedical Applications. COATINGS 2020. [DOI: 10.3390/coatings10020178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A puncture biopsy is a widely used, minimally invasive surgery process. During the needle insertion process, the needle body is always in direct contact with a biological soft tissue. Tissue adhesion and different degrees of tissue damage occur frequently. Optimization of the needle surface, and especially the lubrication of the needle surface, can deal with these problems efficiently. Therefore, in this paper, a biocompatible hydrophilic coating was applied onto the surface of a needle to improve the surface quality of the needle surface. Further, a simplified finite element model of insertion was established, and extracorporeal insertion experiments were used to verify the accuracy of the model. Then, by analyzing a simulation model of a coated needle and a conventional needle, the influence of the application of the coated needle on the insertion process was obtained. It can be seen from the results that the coating application relieved the force on the needle and the soft tissue during the insertion process and could significantly reduce friction during the insertion process. At the same time, the deformation of biological soft tissue was reduced, and the adhesion situation between the needle and tissue improved, which optimized the puncture needle.
Collapse
|
15
|
Joo HR, Fan JL, Chen S, Pebbles JA, Liang H, Chung JE, Yorita AM, Tooker AC, Tolosa VM, Geaghan-Breiner C, Roumis DK, Liu DF, Haque R, Frank LM. A microfabricated, 3D-sharpened silicon shuttle for insertion of flexible electrode arrays through dura mater into brain. J Neural Eng 2019; 16:066021. [PMID: 31216526 PMCID: PMC7036288 DOI: 10.1088/1741-2552/ab2b2e] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Electrode arrays for chronic implantation in the brain are a critical technology in both neuroscience and medicine. Recently, flexible, thin-film polymer electrode arrays have shown promise in facilitating stable, single-unit recordings spanning months in rats. While array flexibility enhances integration with neural tissue, it also requires removal of the dura mater, the tough membrane surrounding the brain, and temporary bracing to penetrate the brain parenchyma. Durotomy increases brain swelling, vascular damage, and surgical time. Insertion using a bracing shuttle results in additional vascular damage and brain compression, which increase with device diameter; while a higher-diameter shuttle will have a higher critical load and more likely penetrate dura, it will damage more brain parenchyma and vasculature. One way to penetrate the intact dura and limit tissue compression without increasing shuttle diameter is to reduce the force required for insertion by sharpening the shuttle tip. APPROACH We describe a novel design and fabrication process to create silicon insertion shuttles that are sharp in three dimensions and can penetrate rat dura, for faster, easier, and less damaging implantation of polymer arrays. Sharpened profiles are obtained by reflowing patterned photoresist, then transferring its sloped profile to silicon with dry etches. MAIN RESULTS We demonstrate that sharpened shuttles can reliably implant polymer probes through dura to yield high quality single unit and local field potential recordings for at least 95 days. On insertion directly through dura, tissue compression is minimal. SIGNIFICANCE This is the first demonstration of a rat dural-penetrating array for chronic recording. This device obviates the need for a durotomy, reducing surgical time and risk of damage to the blood-brain barrier. This is an improvement to state-of-the-art flexible polymer electrode arrays that facilitates their implantation, particularly in multi-site recording experiments. This sharpening process can also be integrated into silicon electrode array fabrication.
Collapse
Affiliation(s)
- Hannah R Joo
- Medical Scientist Training Program and Neuroscience Graduate Program, University of California, San Francisco, CA 94158, United States of America. Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience, and Department of Physiology, University of California, San Francisco, CA 94158, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Stiller AM, González-González MA, Boothby JM, Sherman SE, Benavides J, Romero-Ortega M, Pancrazio JJ, Black BJ. Mechanical considerations for design and implementation of peripheral intraneural devices. J Neural Eng 2019; 16:064001. [DOI: 10.1088/1741-2552/ab4114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Ramadi KB, Cima MJ. Materials and Devices for Micro-invasive Neural Interfacing. ACTA ACUST UNITED AC 2019. [DOI: 10.1557/adv.2019.424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
18
|
Control of neural probe shank flexibility by fluidic pressure in embedded microchannel using PDMS/PI hybrid substrate. PLoS One 2019; 14:e0220258. [PMID: 31339963 PMCID: PMC6655783 DOI: 10.1371/journal.pone.0220258] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/11/2019] [Indexed: 11/19/2022] Open
Abstract
Implantable neural probes are widely used to record and stimulate neural activities. These probes should be stiff enough for insertion. However, it should also be flexible to minimize tissue damage after insertion. Therefore, having dynamic control of the neural probe shank flexibility will be useful. For the first time, we have successfully fabricated flexible neural probes with embedded microfluidic channels for dynamic control of neural probe stiffness by controlling fluidic pressure in the channels. The present hybrid neural probes consisted of polydimethylsiloxane (PDMS) and polyimide (PI) layers could provide the required stiffness for insertion and flexibility during operation. The PDMS channels were fabricated by reversal imprint using a silicon mold and bonded to a PI layer to form the embedded channels in the neural probe. The probe shape was patterned using an oxygen plasma generated by an inductively coupled plasma etching system. The critical buckling force of PDMS/PI neural probes could be tuned from 0.25-1.25 mN depending on the applied fluidic pressure in the microchannels and these probes were successfully inserted into a 0.6% agarose gel that mimicked the stiffness of the brain tissue. Polymer-based neural probes are typically more flexible than conventional metal wire-based probes, and they could potentially provide less tissue damage after implantation.
Collapse
|
19
|
Hess-Dunning A, Tyler DJ. A Mechanically-Adaptive Polymer Nanocomposite-Based Intracortical Probe and Package for Chronic Neural Recording. MICROMACHINES 2018; 9:E583. [PMID: 30413034 PMCID: PMC6265703 DOI: 10.3390/mi9110583] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/19/2018] [Accepted: 11/02/2018] [Indexed: 12/23/2022]
Abstract
Mechanical, materials, and biological causes of intracortical probe failure have hampered their utility in basic science and clinical applications. By anticipating causes of failure, we can design a system that will prevent the known causes of failure. The neural probe design was centered around a bio-inspired, mechanically-softening polymer nanocomposite. The polymer nanocomposite was functionalized with recording microelectrodes using a microfabrication process designed for chemical and thermal process compatibility. A custom package based upon a ribbon cable, printed circuit board, and a 3D-printed housing was designed to enable connection to external electronics. Probes were implanted into the primary motor cortex of Sprague-Dawley rats for 16 weeks, during which regular recording and electrochemical impedance spectroscopy measurement sessions took place. The implanted mechanically-softening probes had stable electrochemical impedance spectra across the 16 weeks and single units were recorded out to 16 weeks. The demonstration of chronic neural recording with the mechanically-softening probe suggests that probe architecture, custom package, and general design strategy are appropriate for long-term studies in rodents.
Collapse
Affiliation(s)
- Allison Hess-Dunning
- Rehabilitation Research and Development, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA.
- Advanced Platform Technology Center, Cleveland, OH 44106, USA.
| | - Dustin J Tyler
- Rehabilitation Research and Development, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA.
- Advanced Platform Technology Center, Cleveland, OH 44106, USA.
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
20
|
Stiller AM, Usoro J, Frewin CL, Danda VR, Ecker M, Joshi-Imre A, Musselman KC, Voit W, Modi R, Pancrazio JJ, Black BJ. Chronic Intracortical Recording and Electrochemical Stability of Thiol-ene/Acrylate Shape Memory Polymer Electrode Arrays. MICROMACHINES 2018; 9:E500. [PMID: 30424433 PMCID: PMC6215160 DOI: 10.3390/mi9100500] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/24/2018] [Accepted: 09/27/2018] [Indexed: 11/20/2022]
Abstract
Current intracortical probe technology is limited in clinical implementation due to the short functional lifetime of implanted devices. Devices often fail several months to years post-implantation, likely due to the chronic immune response characterized by glial scarring and neuronal dieback. It has been demonstrated that this neuroinflammatory response is influenced by the mechanical mismatch between stiff devices and the soft brain tissue, spurring interest in the use of softer polymer materials for probe encapsulation. Here, we demonstrate stable recordings and electrochemical properties obtained from fully encapsulated shape memory polymer (SMP) intracortical electrodes implanted in the rat motor cortex for 13 weeks. SMPs are a class of material that exhibit modulus changes when exposed to specific conditions. The formulation used in these devices softens by an order of magnitude after implantation compared to its dry, room-temperature modulus of ~2 GPa.
Collapse
Affiliation(s)
- Allison M Stiller
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Joshua Usoro
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Christopher L Frewin
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Vindhya R Danda
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
- Qualia, Inc., Dallas, TX 75252, USA.
| | - Melanie Ecker
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Alexandra Joshi-Imre
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Kate C Musselman
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Walter Voit
- Qualia, Inc., Dallas, TX 75252, USA.
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | | | - Joseph J Pancrazio
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Bryan J Black
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
| |
Collapse
|
21
|
Deku F, Frewin CL, Stiller A, Cohen Y, Aqeel S, Joshi-Imre A, Black B, Gardner TJ, Pancrazio JJ, Cogan SF. Amorphous Silicon Carbide Platform for Next Generation Penetrating Neural Interface Designs. MICROMACHINES 2018; 9:E480. [PMID: 30424413 PMCID: PMC6215182 DOI: 10.3390/mi9100480] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/09/2018] [Accepted: 09/17/2018] [Indexed: 11/16/2022]
Abstract
Microelectrode arrays that consistently and reliably record and stimulate neural activity under conditions of chronic implantation have so far eluded the neural interface community due to failures attributed to both biotic and abiotic mechanisms. Arrays with transverse dimensions of 10 µm or below are thought to minimize the inflammatory response; however, the reduction of implant thickness also decreases buckling thresholds for materials with low Young's modulus. While these issues have been overcome using stiffer, thicker materials as transport shuttles during implantation, the acute damage from the use of shuttles may generate many other biotic complications. Amorphous silicon carbide (a-SiC) provides excellent electrical insulation and a large Young's modulus, allowing the fabrication of ultrasmall arrays with increased resistance to buckling. Prototype a-SiC intracortical implants were fabricated containing 8 - 16 single shanks which had critical thicknesses of either 4 µm or 6 µm. The 6 µm thick a-SiC shanks could penetrate rat cortex without an insertion aid. Single unit recordings from SIROF-coated arrays implanted without any structural support are presented. This work demonstrates that a-SiC can provide an excellent mechanical platform for devices that penetrate cortical tissue while maintaining a critical thickness less than 10 µm.
Collapse
Affiliation(s)
- Felix Deku
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Christopher L Frewin
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Allison Stiller
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Yarden Cohen
- Department of Biology and Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| | - Saher Aqeel
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Alexandra Joshi-Imre
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Bryan Black
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Timothy J Gardner
- Department of Biology and Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| | - Joseph J Pancrazio
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Stuart F Cogan
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA.
| |
Collapse
|
22
|
Pas J, Rutz AL, Quilichini PP, Slézia A, Ghestem A, Kaszas A, Donahue MJ, Curto VF, O’Connor RP, Bernard C, Williamson A, Malliaras GG. A bilayered PVA/PLGA-bioresorbable shuttle to improve the implantation of flexible neural probes. J Neural Eng 2018; 15:065001. [DOI: 10.1088/1741-2552/aadc1d] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Wellman SM, Eles JR, Ludwig KA, Seymour JP, Michelson NJ, McFadden WE, Vazquez AL, Kozai TDY. A Materials Roadmap to Functional Neural Interface Design. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1701269. [PMID: 29805350 PMCID: PMC5963731 DOI: 10.1002/adfm.201701269] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Advancement in neurotechnologies for electrophysiology, neurochemical sensing, neuromodulation, and optogenetics are revolutionizing scientific understanding of the brain while enabling treatments, cures, and preventative measures for a variety of neurological disorders. The grand challenge in neural interface engineering is to seamlessly integrate the interface between neurobiology and engineered technology, to record from and modulate neurons over chronic timescales. However, the biological inflammatory response to implants, neural degeneration, and long-term material stability diminish the quality of interface overtime. Recent advances in functional materials have been aimed at engineering solutions for chronic neural interfaces. Yet, the development and deployment of neural interfaces designed from novel materials have introduced new challenges that have largely avoided being addressed. Many engineering efforts that solely focus on optimizing individual probe design parameters, such as softness or flexibility, downplay critical multi-dimensional interactions between different physical properties of the device that contribute to overall performance and biocompatibility. Moreover, the use of these new materials present substantial new difficulties that must be addressed before regulatory approval for use in human patients will be achievable. In this review, the interdependence of different electrode components are highlighted to demonstrate the current materials-based challenges facing the field of neural interface engineering.
Collapse
Affiliation(s)
- Steven M Wellman
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| | - James R Eles
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| | - Kip A Ludwig
- Department of Neurologic Surgery, 200 First St. SW, Rochester, MN 55905
| | - John P Seymour
- Electrical & Computer Engineering, 1301 Beal Ave., 2227 EECS, Ann Arbor, MI 48109
| | - Nicholas J Michelson
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| | - William E McFadden
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| | - Alberto L Vazquez
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| | - Takashi D Y Kozai
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| |
Collapse
|
24
|
Lecomte A, Descamps E, Bergaud C. A review on mechanical considerations for chronically-implanted neural probes. J Neural Eng 2018; 15:031001. [DOI: 10.1088/1741-2552/aa8b4f] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Lo MC, Wang S, Singh S, Damodaran VB, Ahmed I, Coffey K, Barker D, Saste K, Kals K, Kaplan HM, Kohn J, Shreiber DI, Zahn JD. Evaluating the in vivo glial response to miniaturized parylene cortical probes coated with an ultra-fast degrading polymer to aid insertion. J Neural Eng 2018; 15:036002. [PMID: 29485103 DOI: 10.1088/1741-2552/aa9fad] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Despite the feasibility of short-term neural recordings using implantable microelectrodes, attaining reliable, chronic recordings remains a challenge. Most neural recording devices suffer from a long-term tissue response, including gliosis, at the device-tissue interface. It was hypothesized that smaller, more flexible intracortical probes would limit gliosis by providing a better mechanical match with surrounding tissue. APPROACH This paper describes the in vivo evaluation of flexible parylene microprobes designed to improve the interface with the adjacent neural tissue to limit gliosis and thereby allow for improved recording longevity. The probes were coated with an ultrafast degrading tyrosine-derived polycarbonate (E5005(2K)) polymer that provides temporary mechanical support for device implantation, yet degrades within 2 h post-implantation. A parametric study of probes of varying dimensions and polymer coating thicknesses were implanted in rat brains. The glial tissue response and neuronal loss were assessed from 72 h to 24 weeks post-implantation via immunohistochemistry. MAIN RESULTS Experimental results suggest that both probe and polymer coating sizes affect the extent of gliosis. When an appropriate sized coating dimension (100 µm × 100 µm) and small probe (30 µm × 5 µm) was implanted, a minimal post-implantation glial response was observed. No discernible gliosis was detected when compared to tissue where a sham control consisting of a solid degradable polymer shuttle of the same dimensions was inserted. A larger polymer coating (200 µm × 200 µm) device induced a more severe glial response at later time points, suggesting that the initial insertion trauma can affect gliosis even when the polymer shuttle degrades rapidly. A larger degree of gliosis was also observed when comparing a larger sized probe (80 µm × 5 µm) to a smaller probe (30 µm × 5 µm) using the same polymer coating size (100 µm × 100 µm). There was no significant neuronal loss around the implantation sites for most device candidates except the group with largest polymer coating and probe sizes. SIGNIFICANCE These results suggest that: (1) the degree of mechanical trauma at device implantation and mechanical mismatches at the probe-tissue interface affect long term gliosis; (2) smaller, more flexible probes may minimize the glial response to provide improved tissue biocompatibility when used for chronic neural signal recording; and (3) some degree of glial scarring did not significantly affect neuronal distribution around the probe.
Collapse
Affiliation(s)
- Meng-Chen Lo
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
A Mosquito Inspired Strategy to Implant Microprobes into the Brain. Sci Rep 2018; 8:122. [PMID: 29317748 PMCID: PMC5760625 DOI: 10.1038/s41598-017-18522-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/13/2017] [Indexed: 02/05/2023] Open
Abstract
Mosquitos are among the deadliest insects on the planet due to their ability to transmit diseases like malaria through their bite. In order to bite, a mosquito must insert a set of micro-sized needles through the skin to reach vascular structures. The mosquito uses a combination of mechanisms including an insertion guide to enable it to bite and feed off of larger animals. Here, we report on a biomimetic strategy inspired by the mosquito insertion guide to enable the implantation of intracortical microelectrodes into the brain. Next generation microelectrode designs leveraging ultra-small dimensions and/or flexible materials offer the promise of increased performance, but present difficulties in reliable implantation. With the biomimetic guide in place, the rate of successful microprobe insertion increased from 37.5% to 100% due to the rise in the critical buckling force of the microprobes by 3.8-fold. The prototype guides presented here provide a reproducible method to augment the insertion of small, flexible devices into the brain. In the future, similar approaches may be considered and applied to the insertion of other difficult to implant medical devices.
Collapse
|
27
|
Prospects for a Robust Cortical Recording Interface. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00028-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Khilwani R, Gilgunn PJ, Kozai TDY, Ong XC, Korkmaz E, Gunalan PK, Cui XT, Fedder GK, Ozdoganlar OB. Ultra-miniature ultra-compliant neural probes with dissolvable delivery needles: design, fabrication and characterization. Biomed Microdevices 2016; 18:97. [DOI: 10.1007/s10544-016-0125-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Flexible, Penetrating Brain Probes Enabled by Advances in Polymer Microfabrication. MICROMACHINES 2016; 7:mi7100180. [PMID: 30404353 PMCID: PMC6190320 DOI: 10.3390/mi7100180] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022]
Abstract
The acquisition of high-fidelity, long-term neural recordings in vivo is critically important to advance neuroscience and brain⁻machine interfaces. For decades, rigid materials such as metal microwires and micromachined silicon shanks were used as invasive electrophysiological interfaces to neurons, providing either single or multiple electrode recording sites. Extensive research has revealed that such rigid interfaces suffer from gradual recording quality degradation, in part stemming from tissue damage and the ensuing immune response arising from mechanical mismatch between the probe and brain. The development of "soft" neural probes constructed from polymer shanks has been enabled by advancements in microfabrication; this alternative has the potential to mitigate mismatch-related side effects and thus improve the quality of recordings. This review examines soft neural probe materials and their associated microfabrication techniques, the resulting soft neural probes, and their implementation including custom implantation and electrical packaging strategies. The use of soft materials necessitates careful consideration of surgical placement, often requiring the use of additional surgical shuttles or biodegradable coatings that impart temporary stiffness. Investigation of surgical implantation mechanics and histological evidence to support the use of soft probes will be presented. The review concludes with a critical discussion of the remaining technical challenges and future outlook.
Collapse
|
30
|
Neural Probes for Chronic Applications. MICROMACHINES 2016; 7:mi7100179. [PMID: 30404352 PMCID: PMC6190051 DOI: 10.3390/mi7100179] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/12/2016] [Accepted: 09/26/2016] [Indexed: 12/11/2022]
Abstract
Developed over approximately half a century, neural probe technology is now a mature technology in terms of its fabrication technology and serves as a practical alternative to the traditional microwires for extracellular recording. Through extensive exploration of fabrication methods, structural shapes, materials, and stimulation functionalities, neural probes are now denser, more functional and reliable. Thus, applications of neural probes are not limited to extracellular recording, brain-machine interface, and deep brain stimulation, but also include a wide range of new applications such as brain mapping, restoration of neuronal functions, and investigation of brain disorders. However, the biggest limitation of the current neural probe technology is chronic reliability; neural probes that record with high fidelity in acute settings often fail to function reliably in chronic settings. While chronic viability is imperative for both clinical uses and animal experiments, achieving one is a major technological challenge due to the chronic foreign body response to the implant. Thus, this review aims to outline the factors that potentially affect chronic recording in chronological order of implantation, summarize the methods proposed to minimize each factor, and provide a performance comparison of the neural probes developed for chronic applications.
Collapse
|
31
|
Bhatnagar D, Dube K, Damodaran VB, Subramanian G, Aston K, Halperin F, Mao M, Pricer K, Murthy NS, Kohn J. Effects of Terminal Sterilization on PEG-Based Bioresorbable Polymers Used in Biomedical Applications. MACROMOLECULAR MATERIALS AND ENGINEERING 2016; 301:1211-1224. [PMID: 28280451 PMCID: PMC5340269 DOI: 10.1002/mame.201600133] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The effects of ethylene oxide (EO), vaporized hydrogen peroxide (VHP), gamma (γ) radiation, and electron-beam (E-beam) on the physiochemical and morphological properties of medical device polymers are investigated. Polymers with ether, carbonate, carboxylic acid, amide and ester functionalities are selected from a family of poly(ethylene glycol) (PEG) containing tyrosine-derived polycarbonates (TyrPCs) to include slow, medium, fast, and ultrafast degrading polymers. Poly(lactic acid) (PLA) is used for comparison. Molecular weight (Mw) of all tested polymers decreases upon gamma and E-beam, and this effect becomes more pronounced at higher PEG content. Gamma sterilization increases the glass transition temperature of polymers with high PEG content. EO esterifies the carboxylic acid groups in desaminotyrosol-tyrosine (DT) and causes significant degradation. VHP causes hydroxylation of the phenyl ring, and hydrolytic degradation. This study signifies the importance of the chemical composition when selecting a sterilization method, and provides suggested conditions for each of the sterilization methods.
Collapse
Affiliation(s)
- Divya Bhatnagar
- NJ Centre for Biomaterials, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Koustubh Dube
- NJ Centre for Biomaterials, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Vinod B Damodaran
- NJ Centre for Biomaterials, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Ganesan Subramanian
- NJ Centre for Biomaterials, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Kenneth Aston
- Johnson & Johnson Sterility Assurance, 930, US 202, Raritan, NJ 08669, USA
| | - Frederick Halperin
- Johnson & Johnson Sterility Assurance, 930, US 202, Raritan, NJ 08669, USA
| | - Meiyu Mao
- Johnson & Johnson Sterility Assurance, 930, US 202, Raritan, NJ 08669, USA
| | - Kurt Pricer
- Johnson & Johnson Sterility Assurance, 930, US 202, Raritan, NJ 08669, USA
| | - N Sanjeeva Murthy
- NJ Centre for Biomaterials, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Joachim Kohn
- NJ Centre for Biomaterials, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA
| |
Collapse
|
32
|
Ricapito NG, Mares J, Petralia D, Putnam D. Insight into the Unexpectedly Rapid Degradation of Dihydroxyacetone-Based Hydrogels. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nicole G. Ricapito
- Robert Frederick Smith School of Chemical and Biomolecular Engineering; Cornell University; 113 Ho Plaza Ithaca NY 14853 USA
| | - Jonathan Mares
- Robert Frederick Smith School of Chemical and Biomolecular Engineering; Cornell University; 113 Ho Plaza Ithaca NY 14853 USA
| | - Daniel Petralia
- Robert Frederick Smith School of Chemical and Biomolecular Engineering; Cornell University; 113 Ho Plaza Ithaca NY 14853 USA
| | - David Putnam
- Robert Frederick Smith School of Chemical and Biomolecular Engineering; Cornell University; 113 Ho Plaza Ithaca NY 14853 USA
- Meinig School of Biomedical Engineering; Cornell University; 237 Tower Road Ithaca NY 14853 USA
| |
Collapse
|
33
|
Modeling the Insertion Mechanics of Flexible Neural Probes Coated with Sacrificial Polymers for Optimizing Probe Design. SENSORS 2016; 16:s16030330. [PMID: 26959021 PMCID: PMC4813905 DOI: 10.3390/s16030330] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/18/2016] [Accepted: 02/29/2016] [Indexed: 01/20/2023]
Abstract
Single-unit recording neural probes have significant advantages towards improving signal-to-noise ratio and specificity for signal acquisition in brain-to-computer interface devices. Long-term effectiveness is unfortunately limited by the chronic injury response, which has been linked to the mechanical mismatch between rigid probes and compliant brain tissue. Small, flexible microelectrodes may overcome this limitation, but insertion of these probes without buckling requires supporting elements such as a stiff coating with a biodegradable polymer. For these coated probes, there is a design trade-off between the potential for successful insertion into brain tissue and the degree of trauma generated by the insertion. The objective of this study was to develop and validate a finite element model (FEM) to simulate insertion of coated neural probes of varying dimensions and material properties into brain tissue. Simulations were performed to predict the buckling and insertion forces during insertion of coated probes into a tissue phantom with material properties of brain. The simulations were validated with parallel experimental studies where probes were inserted into agarose tissue phantom, ex vivo chick embryonic brain tissue, and ex vivo rat brain tissue. Experiments were performed with uncoated copper wire and both uncoated and coated SU-8 photoresist and Parylene C probes. Model predictions were found to strongly agree with experimental results (<10% error). The ratio of the predicted buckling force-to-predicted insertion force, where a value greater than one would ideally be expected to result in successful insertion, was plotted against the actual success rate from experiments. A sigmoidal relationship was observed, with a ratio of 1.35 corresponding to equal probability of insertion and failure, and a ratio of 3.5 corresponding to a 100% success rate. This ratio was dubbed the “safety factor”, as it indicated the degree to which the coating should be over-designed to ensure successful insertion. Probability color maps were generated to visually compare the influence of design parameters. Statistical metrics derived from the color maps and multi-variable regression analysis confirmed that coating thickness and probe length were the most important features in influencing insertion potential. The model also revealed the effects of manufacturing flaws on insertion potential.
Collapse
|
34
|
Ricapito NG, Ghobril C, Zhang H, Grinstaff MW, Putnam D. Synthetic Biomaterials from Metabolically Derived Synthons. Chem Rev 2016; 116:2664-704. [PMID: 26821863 PMCID: PMC5810137 DOI: 10.1021/acs.chemrev.5b00465] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The utility of metabolic synthons as the building blocks for new biomaterials is based on the early application and success of hydroxy acid based polyesters as degradable sutures and controlled drug delivery matrices. The sheer number of potential monomers derived from the metabolome (e.g., lactic acid, dihydroxyacetone, glycerol, fumarate) gives rise to almost limitless biomaterial structural possibilities, functionality, and performance characteristics, as well as opportunities for the synthesis of new polymers. This review describes recent advances in new chemistries, as well as the inventive use of traditional chemistries, toward the design and synthesis of new polymers. Specific polymeric biomaterials can be prepared for use in varied medical applications (e.g., drug delivery, tissue engineering, wound repair, etc.) through judicious selection of the monomer and backbone linkage.
Collapse
Affiliation(s)
- Nicole G. Ricapito
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Cynthia Ghobril
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Heng Zhang
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Mark W. Grinstaff
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - David Putnam
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|