1
|
Rossiaud L, Miagoux Q, Benabides M, Reiss O, Jauze L, Jarrige M, Polvèche H, Malfatti E, Laforêt P, Ronzitti G, Nissan X, Hoch L. Galectin-3: a novel biomarker of glycogen storage disease type III. Cell Death Discov 2025; 11:173. [PMID: 40229243 PMCID: PMC11997124 DOI: 10.1038/s41420-025-02452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/06/2025] [Accepted: 03/27/2025] [Indexed: 04/16/2025] Open
Abstract
Glycogen storage disease type III (GSDIII) is a rare genetic disorder leading to abnormal glycogen storage in the liver and skeletal muscle. In this study, we conducted a comparative gene expression analysis of several in vitro and in vivo models and identified galectin-3 as a potential biomarker of the disease. Interestingly, we also observed a significant decrease in galectin-3 expression in mice treated with an AAV gene therapy. Finally, galectin-3 expression was studied in muscle biopsies of GSDIII patients, confirming its increase in patient tissue. Beyond the identification of this novel biomarker, our study offers a new perspective for future therapeutic developments.
Collapse
Affiliation(s)
- Lucille Rossiaud
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- IStem, CECS, Corbeil-Essonnes, France
- IStem, CECS, The Research and Innovation Team, Corbeil-Essonnes, France
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research Unit UMR_S951, Evry, France
| | - Quentin Miagoux
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- IStem, CECS, Corbeil-Essonnes, France
- IStem, CECS, The Research and Innovation Team, Corbeil-Essonnes, France
| | - Manon Benabides
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- IStem, CECS, Corbeil-Essonnes, France
- IStem, CECS, The Research and Innovation Team, Corbeil-Essonnes, France
| | - Océane Reiss
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- IStem, CECS, Corbeil-Essonnes, France
- IStem, CECS, The Research and Innovation Team, Corbeil-Essonnes, France
| | - Louisa Jauze
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research Unit UMR_S951, Evry, France
| | - Margot Jarrige
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- IStem, CECS, Corbeil-Essonnes, France
- IStem, CECS, The Research and Innovation Team, Corbeil-Essonnes, France
| | - Hélène Polvèche
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- IStem, CECS, Corbeil-Essonnes, France
- IStem, CECS, The Research and Innovation Team, Corbeil-Essonnes, France
| | - Edoardo Malfatti
- Reference Center for Neuromuscular Disorders, APHP Henri Mondor University Hospital, Créteil, France
- Université Paris Est Créteil, Inserm, U955, IMRB, Créteil, France
| | - Pascal Laforêt
- Neurology Department, Nord/Est/Île-de-France Neuromuscular Reference Center, FHU PHENIX, AP-HP, Raymond-Poincaré Hospital, Garches, France
| | - Giuseppe Ronzitti
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research Unit UMR_S951, Evry, France
| | - Xavier Nissan
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France
- IStem, CECS, Corbeil-Essonnes, France
- IStem, CECS, The Research and Innovation Team, Corbeil-Essonnes, France
| | - Lucile Hoch
- Université Paris-Saclay, Université d'Evry, Inserm, IStem, UMR861, Corbeil-Essonnes, France.
- IStem, CECS, Corbeil-Essonnes, France.
- IStem, CECS, The Research and Innovation Team, Corbeil-Essonnes, France.
| |
Collapse
|
2
|
Darras BT, Volpe JJ. Muscle Involvement and Restricted Disorders. VOLPE'S NEUROLOGY OF THE NEWBORN 2025:1074-1121.e18. [DOI: 10.1016/b978-0-443-10513-5.00037-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Colpaert M, Singh PK, Donohue KJ, Pires NT, Fuller DD, Corti M, Byrne BJ, Sun RC, Vander Kooi CW, Gentry MS. Neurological glycogen storage diseases and emerging therapeutics. Neurotherapeutics 2024; 21:e00446. [PMID: 39277505 PMCID: PMC11581880 DOI: 10.1016/j.neurot.2024.e00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024] Open
Abstract
Glycogen storage diseases (GSDs) comprise a group of inherited metabolic disorders characterized by defects in glycogen metabolism, leading to abnormal glycogen accumulation in multiple tissues, most notably affecting the liver, skeletal muscle, and heart. Recent findings have uncovered the importance of glycogen metabolism in the brain, sustaining a myriad of physiological functions and linking its perturbation to central nervous system (CNS) pathology. This link resulted in classification of neurological-GSDs (n-GSDs), a group of diseases with shared deficits in neurological glycogen metabolism. The n-GSD patients exhibit a spectrum of clinical presentations with common etiology while requiring tailored therapeutic approaches from the traditional GSDs. Recent research has elucidated the genetic and biochemical mechanisms and pathophysiological basis underlying different n-GSDs. Further, the last decade has witnessed some promising developments in novel therapeutic approaches, including enzyme replacement therapy (ERT), substrate reduction therapy (SRT), small molecule drugs, and gene therapy targeting key aspects of glycogen metabolism in specific n-GSDs. This preclinical progress has generated noticeable success in potentially modifying disease course and improving clinical outcomes in patients. Herein, we provide an overview of current perspectives on n-GSDs, emphasizing recent advances in understanding their molecular basis, therapeutic developments, underscore key challenges and the need to deepen our understanding of n-GSDs pathogenesis to develop better therapeutic strategies that could offer improved treatment and sustainable benefits to the patients.
Collapse
Affiliation(s)
- Matthieu Colpaert
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Pankaj K Singh
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | | | - David D Fuller
- Department of Physical Therapy and Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Manuela Corti
- Department of Pediatrics, Powell Gene Therapy Center, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Barry J Byrne
- Department of Pediatrics, Powell Gene Therapy Center, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ramon C Sun
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research (CASBR), University of Florida, Gainesville, FL, USA
| | - Craig W Vander Kooi
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research (CASBR), University of Florida, Gainesville, FL, USA
| | - Matthew S Gentry
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research (CASBR), University of Florida, Gainesville, FL, USA.
| |
Collapse
|
4
|
Rauber C, Pfeiffenberger J, Mehrabi A, Mieth M, Zizer E, Merle U. Exacerbation of Myopathy in Glycogen Debrancher Deficiency After Liver Transplantation: Case Report and Review of the Literature. Transplant Proc 2024; 56:1153-1156. [PMID: 38834415 DOI: 10.1016/j.transproceed.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/26/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Glycogen storage disorder (GSD) type IIIa is a rare inherited genetic disorder affecting liver and muscle tissue. Liver transplantation (LT) improves metabolic control, but muscle involvement persists. CASE We report the case of a 31-year-old man who underwent orthotopic LT for end-stage liver disease caused by GSD type IIIa. After LT, he developed worsening clinical signs of myopathy, along with exponentially increasing levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) and creatine kinase. Liver-related elevations of AST and ALT were excluded through liver biopsy and endoscopic cholangiography; consequently, AST and ALT elevations were attributed to the underlying muscle involvement. Exacerbation of muscle disease after LT could be attributed to restoration of liver glycogen metabolism after LT, leading to increased glucose accumulation in muscle cells, where the gene defect persists. A dietary intervention with a high-protein, ketogenic diet was initiated but did not lead to significant improvement of myalgia. CONCLUSION LT exacerbated muscle disease in a patient with GSD type IIIa. Patients should be counseled about this possible side effect of LT in GSD type IIIa.
Collapse
Affiliation(s)
- Conrad Rauber
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany.
| | - Jan Pfeiffenberger
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Arianeb Mehrabi
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Markus Mieth
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Eugen Zizer
- Department of Gastroenterology, University Hospital Ulm, Ulm, Germany
| | - Uta Merle
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
5
|
Jauze L, Vie M, Miagoux Q, Rossiaud L, Vidal P, Montalvo-Romeral V, Saliba H, Jarrige M, Polveche H, Nozi J, Le Brun PR, Bocchialini L, Francois A, Cosette J, Rouillon J, Collaud F, Bordier F, Bertil-Froidevaux E, Georger C, van Wittenberghe L, Miranda A, Daniele NF, Gross DA, Hoch L, Nissan X, Ronzitti G. Synergism of dual AAV gene therapy and rapamycin rescues GSDIII phenotype in muscle and liver. JCI Insight 2024; 9:e172614. [PMID: 38753465 PMCID: PMC11382881 DOI: 10.1172/jci.insight.172614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Glycogen storage disease type III (GSDIII) is a rare metabolic disorder due to glycogen debranching enzyme (GDE) deficiency. Reduced GDE activity leads to pathological glycogen accumulation responsible for impaired hepatic metabolism and muscle weakness. To date, there is no curative treatment for GSDIII. We previously reported that 2 distinct dual AAV vectors encoding for GDE were needed to correct liver and muscle in a GSDIII mouse model. Here, we evaluated the efficacy of rapamycin in combination with AAV gene therapy. Simultaneous treatment with rapamycin and a potentially novel dual AAV vector expressing GDE in the liver and muscle resulted in a synergic effect demonstrated at biochemical and functional levels. Transcriptomic analysis confirmed synergy and suggested a putative mechanism based on the correction of lysosomal impairment. In GSDIII mice livers, dual AAV gene therapy combined with rapamycin reduced the effect of the immune response to AAV observed in this disease model. These data provide proof of concept of an approach exploiting the combination of gene therapy and rapamycin to improve efficacy and safety and to support clinical translation.
Collapse
Affiliation(s)
- Louisa Jauze
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | - Mallaury Vie
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | - Quentin Miagoux
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Lucille Rossiaud
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Patrice Vidal
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | - Valle Montalvo-Romeral
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | - Hanadi Saliba
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | - Margot Jarrige
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Helene Polveche
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Justine Nozi
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | | | - Luca Bocchialini
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | - Amandine Francois
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | | | - Jérémy Rouillon
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | - Fanny Collaud
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | | | | | | | | | | | | | - David-Alexandre Gross
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| | - Lucile Hoch
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Xavier Nissan
- CECS, I-STEM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Corbeil-Essonnes, France
| | - Giuseppe Ronzitti
- Généthon, Évry, France
- Université Paris-Saclay, Univ Évry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Évry, France
| |
Collapse
|
6
|
Zeng Q, Machado M, Bie C, van Zijl PCM, Malvar S, Li Y, D’souza V, Poon KA, Grimm A, Yadav NN. In vivo characterization of glycogen storage disease type III in a mouse model using glycoNOE MRI. Magn Reson Med 2024; 91:1115-1121. [PMID: 38009988 PMCID: PMC10842402 DOI: 10.1002/mrm.29923] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/28/2023] [Accepted: 10/24/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE Glycogen storage disease type III (GSD III) is a rare inherited metabolic disease characterized by excessive accumulation of glycogen in liver, skeletal muscle, and heart. Currently, there are no widely available noninvasive methods to assess tissue glycogen levels and disease load. Here, we use glycogen nuclear Overhauser effect (glycoNOE) MRI to quantify hepatic glycogen levels in a mouse model of GSD III. METHODS Agl knockout mice (n = 13) and wild-type controls (n = 10) were scanned for liver glycogen content using glycoNOE MRI. All mice were fasted for 12 to 16 h before MRI scans. GlycoNOE signal was quantified by fitting the Z-spectrum using a four-pool Voigt lineshape model. Next, the fitted direct water saturation pool was removed and glycoNOE signal was estimated from the integral of the residual Z spectrum within -0.6 to -1.4 ppm. Glycogen concentration was also measured ex vivo using a biochemical assay. RESULTS GlycoNOE MRI clearly distinguished Agl knockout mice from wild-type controls, showing a statistically significant difference in glycoNOE signals in the livers across genotypes. There was a linear correlation between glycoNOE signal and glycogen concentration determined by the biochemical assay. The obtained glycoNOE maps of mouse livers also showed higher glycogen levels in Agl knockout mice compared to wild-type mice. CONCLUSION GlycoNOE MRI was used successfully as a noninvasive method to detect liver glycogen levels in mice, suggesting the potential of this method to be applied to assess glycogen storage diseases.
Collapse
Affiliation(s)
- Qing Zeng
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | | | - Chongxue Bie
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Peter C. M. van Zijl
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Sofi Malvar
- Ultragenyx Pharmaceutical Inc., Novato, CA, United States
| | - Yuguo Li
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Valentina D’souza
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | | | - Andrew Grimm
- Ultragenyx Pharmaceutical Inc., Novato, CA, United States
| | - Nirbhay N. Yadav
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
7
|
Wicker C, Cano A, Decostre V, Froissart R, Maillot F, Perry A, Petit F, Voillot C, Wahbi K, Wenz J, Laforêt P, Labrune P. French recommendations for the management of glycogen storage disease type III. Eur J Med Res 2023; 28:253. [PMID: 37488624 PMCID: PMC10364360 DOI: 10.1186/s40001-023-01212-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 07/05/2023] [Indexed: 07/26/2023] Open
Abstract
The aim of the Protocole National De Diagnostic et de Soins/French National Protocol for Diagnosis and Healthcare (PNDS) is to provide advice for health professionals on the optimum care provision and pathway for patients with glycogen storage disease type III (GSD III).The protocol aims at providing tools that make the diagnosis, defining the severity and different damages of the disease by detailing tests and explorations required for monitoring and diagnosis, better understanding the different aspects of the treatment, defining the modalities and organisation of the monitoring. This is a practical tool, to which health care professionals can refer. PNDS cannot, however, predict all specific cases, comorbidities, therapeutic particularities or hospital care protocols, and does not seek to serve as a substitute for the individual responsibility of the physician in front of his/her patient.
Collapse
Affiliation(s)
- Camille Wicker
- Maladies métaboliques et hépatiques pédiatriques, CHRU Hautepierre, 1 Avenue Molière, 67200, Strasbourg, France
| | - Aline Cano
- Centre de Référence des Maladies Héréditaires du Métabolisme- CHU La Timone Enfants, 264 rue Saint-Pierre, 13385, Marseille cedex 5, France
| | - Valérie Decostre
- Institut de myologie, Groupe Hospitalier Pitié-Salpêtrière, APHP. Université Paris Sorbonne, 47-83 boulevard de l'Hôpital, 75651, Paris Cedex 13, France
| | - Roseline Froissart
- Centre de Biologie et pathologie Est, maladies héréditaires du métabolisme, HFME, 59, Boulevard Pinel, 69677, Bron Cedex, France
| | - François Maillot
- Médecine Interne, Centre Référence Maladies Métaboliques, hôpital Bretonneau, 2 boulevard Tonnelé, 37044, Tours cedex 9, France
| | - Ariane Perry
- Pédiatrie, Centre de Référence Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, APHP Université Paris-Saclay, 92141, Clamart Cedex, France
| | - François Petit
- Laboratoire de génétique, Hôpital Antoine Béclère, APHP. Université Paris-Saclay, 92141, Clamart Cedex, France
| | - Catherine Voillot
- Pédiatrie, Centre de Référence Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, APHP Université Paris-Saclay, 92141, Clamart Cedex, France
| | - Karim Wahbi
- Service de cardiologie - Hôpital Cochin, APHP. Université Paris Centre, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Joëlle Wenz
- Service d'hépatologie et transplantation hépatique pédiatriques, hôpital Bicêtre, APHP. Université Paris-Saclay, 94276, Le Kremlin Bicêtre Cedex, France
| | - Pascal Laforêt
- Neurologie, Centre de Référence Maladies Neuromusculaires Nord/Est/Ile de France Hôpital Raymond Poincaré, AP-HP, Université Paris Saclay, 104 Boulevard Raymond Poincaré, 92380, Garches, France
| | - Philippe Labrune
- Pédiatrie, Centre de Référence Maladies Héréditaires du Métabolisme Hépatique, Hôpital Antoine Béclère, APHP Université Paris-Saclay, 92141, Clamart Cedex, France.
| |
Collapse
|
8
|
Massimino E, Amoroso AP, Lupoli R, Rossi A, Capaldo B. Nutritional management of glycogen storage disease type III: a case report and a critical appraisal of the literature. Front Nutr 2023; 10:1178348. [PMID: 37252245 PMCID: PMC10213733 DOI: 10.3389/fnut.2023.1178348] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
Glycogen storage disease Type III (GSD III) is an autosomal recessive disease due to the deficiency of the debranching enzyme, which has two main consequences: a reduced availability of glucose due to the incomplete degradation of glycogen, and the accumulation of abnormal glycogen in liver and cardiac/skeletal muscle. The role of dietary lipid manipulations in the nutritional management of GSD III is still debated. A literature overview shows that low-carbohydrate (CHO) / high-fat diets may be beneficial in reducing muscle damage. We present a 24-year GSD IIIa patient with severe myopathy and cardiomyopathy in whom a gradual shift from a high-CHO diet (61% total energy intake), low-fat (18%), high-protein (21%) to a low-CHO (32 %) high-fat (45%) / high-protein (23%) diet was performed. CHO was mainly represented by high-fiber, low glycemic index food, and fat consisted prevalently of mono and polyunsaturated fatty acids. After a 2-year follow-up, all biomarkers of muscle and heart damage markedly decreased (by 50-75%), glucose levels remained within the normal range and lipid profile was unchanged. At echocardiography, there was an improvement in geometry and left ventricular function. A low -CHO, high-fat, high-protein diet seems to be safe, sustainable and effective in reducing muscle damage without worsening cardiometabolic profile in GSDIIIa. This dietary approach could be started as early as possible in GSD III displaying skeletal/cardiac muscle disease in order to prevent/minimize organ damage.
Collapse
Affiliation(s)
- Elena Massimino
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Anna Paola Amoroso
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Roberta Lupoli
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Alessandro Rossi
- Department of Translational Medicine, Section of Pediatrics, University Federico II, Naples, Italy
| | - Brunella Capaldo
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| |
Collapse
|
9
|
Rossiaud L, Fragner P, Barbon E, Gardin A, Benabides M, Pellier E, Cosette J, El Kassar L, Giraud-Triboult K, Nissan X, Ronzitti G, Hoch L. Pathological modeling of glycogen storage disease type III with CRISPR/Cas9 edited human pluripotent stem cells. Front Cell Dev Biol 2023; 11:1163427. [PMID: 37250895 PMCID: PMC10213880 DOI: 10.3389/fcell.2023.1163427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction: Glycogen storage disease type III (GSDIII) is a rare genetic disease caused by mutations in the AGL gene encoding the glycogen debranching enzyme (GDE). The deficiency of this enzyme, involved in cytosolic glycogen degradation, leads to pathological glycogen accumulation in liver, skeletal muscles and heart. Although the disease manifests with hypoglycemia and liver metabolism impairment, the progressive myopathy is the major disease burden in adult GSDIII patients, without any curative treatment currently available. Methods: Here, we combined the self-renewal and differentiation capabilities of human induced pluripotent stem cells (hiPSCs) with cutting edge CRISPR/Cas9 gene editing technology to establish a stable AGL knockout cell line and to explore glycogen metabolism in GSDIII. Results: Following skeletal muscle cells differentiation of the edited and control hiPSC lines, our study reports that the insertion of a frameshift mutation in AGL gene results in the loss of GDE expression and persistent glycogen accumulation under glucose starvation conditions. Phenotypically, we demonstrated that the edited skeletal muscle cells faithfully recapitulate the phenotype of differentiated skeletal muscle cells of hiPSCs derived from a GSDIII patient. We also demonstrated that treatment with recombinant AAV vectors expressing the human GDE cleared the accumulated glycogen. Discussion: This study describes the first skeletal muscle cell model of GSDIII derived from hiPSCs and establishes a platform to study the mechanisms that contribute to muscle impairments in GSDIII and to assess the therapeutic potential of pharmacological inducers of glycogen degradation or gene therapy approaches.
Collapse
Affiliation(s)
- Lucille Rossiaud
- CECS, I-Stem, Corbeil-Essonnes, France
- INSERM U861, I-Stem, Corbeil-Essonnes, France
- UEVE U861, I-Stem, Corbeil-Essonnes, France
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
| | - Pascal Fragner
- CECS, I-Stem, Corbeil-Essonnes, France
- INSERM U861, I-Stem, Corbeil-Essonnes, France
- UEVE U861, I-Stem, Corbeil-Essonnes, France
| | - Elena Barbon
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
| | - Antoine Gardin
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
| | - Manon Benabides
- CECS, I-Stem, Corbeil-Essonnes, France
- INSERM U861, I-Stem, Corbeil-Essonnes, France
- UEVE U861, I-Stem, Corbeil-Essonnes, France
| | - Emilie Pellier
- CECS, I-Stem, Corbeil-Essonnes, France
- INSERM U861, I-Stem, Corbeil-Essonnes, France
- UEVE U861, I-Stem, Corbeil-Essonnes, France
| | | | - Lina El Kassar
- CECS, I-Stem, Corbeil-Essonnes, France
- INSERM U861, I-Stem, Corbeil-Essonnes, France
- UEVE U861, I-Stem, Corbeil-Essonnes, France
| | - Karine Giraud-Triboult
- CECS, I-Stem, Corbeil-Essonnes, France
- INSERM U861, I-Stem, Corbeil-Essonnes, France
- UEVE U861, I-Stem, Corbeil-Essonnes, France
| | - Xavier Nissan
- CECS, I-Stem, Corbeil-Essonnes, France
- INSERM U861, I-Stem, Corbeil-Essonnes, France
- UEVE U861, I-Stem, Corbeil-Essonnes, France
| | - Giuseppe Ronzitti
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
| | - Lucile Hoch
- CECS, I-Stem, Corbeil-Essonnes, France
- INSERM U861, I-Stem, Corbeil-Essonnes, France
- UEVE U861, I-Stem, Corbeil-Essonnes, France
| |
Collapse
|
10
|
Conte F, Sam JE, Lefeber DJ, Passier R. Metabolic Cardiomyopathies and Cardiac Defects in Inherited Disorders of Carbohydrate Metabolism: A Systematic Review. Int J Mol Sci 2023; 24:ijms24108632. [PMID: 37239976 DOI: 10.3390/ijms24108632] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Heart failure (HF) is a progressive chronic disease that remains a primary cause of death worldwide, affecting over 64 million patients. HF can be caused by cardiomyopathies and congenital cardiac defects with monogenic etiology. The number of genes and monogenic disorders linked to development of cardiac defects is constantly growing and includes inherited metabolic disorders (IMDs). Several IMDs affecting various metabolic pathways have been reported presenting cardiomyopathies and cardiac defects. Considering the pivotal role of sugar metabolism in cardiac tissue, including energy production, nucleic acid synthesis and glycosylation, it is not surprising that an increasing number of IMDs linked to carbohydrate metabolism are described with cardiac manifestations. In this systematic review, we offer a comprehensive overview of IMDs linked to carbohydrate metabolism presenting that present with cardiomyopathies, arrhythmogenic disorders and/or structural cardiac defects. We identified 58 IMDs presenting with cardiac complications: 3 defects of sugar/sugar-linked transporters (GLUT3, GLUT10, THTR1); 2 disorders of the pentose phosphate pathway (G6PDH, TALDO); 9 diseases of glycogen metabolism (GAA, GBE1, GDE, GYG1, GYS1, LAMP2, RBCK1, PRKAG2, G6PT1); 29 congenital disorders of glycosylation (ALG3, ALG6, ALG9, ALG12, ATP6V1A, ATP6V1E1, B3GALTL, B3GAT3, COG1, COG7, DOLK, DPM3, FKRP, FKTN, GMPPB, MPDU1, NPL, PGM1, PIGA, PIGL, PIGN, PIGO, PIGT, PIGV, PMM2, POMT1, POMT2, SRD5A3, XYLT2); 15 carbohydrate-linked lysosomal storage diseases (CTSA, GBA1, GLA, GLB1, HEXB, IDUA, IDS, SGSH, NAGLU, HGSNAT, GNS, GALNS, ARSB, GUSB, ARSK). With this systematic review we aim to raise awareness about the cardiac presentations in carbohydrate-linked IMDs and draw attention to carbohydrate-linked pathogenic mechanisms that may underlie cardiac complications.
Collapse
Affiliation(s)
- Federica Conte
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7522 NH Enschede, The Netherlands
| | - Juda-El Sam
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Robert Passier
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7522 NH Enschede, The Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Glycogen storage disease is a group of disorders primarily characterized by hepatomegaly and fasting hypoglycemia. This group of disorders may also affect the muscle, kidneys, and neurodevelopment. With an overall prevalence of 1 : 20 000, GSDs are disorders that clinicians should diagnose in a timely manner because adequate management can prevent complications, such as neurodevelopmental delay and liver disease [1] . As there are numerous types of GSDs, being able to distinguish one type from another can be overwhelming. In this review, we focus on hepatic GSDs to provide a concise review of clinical presentation, diagnosis, and current management. RECENT FINDINGS GSDs are considered rare disorders, and one of the main challenges is the delay in diagnosis, misdiagnosis, or under diagnosis. However, with molecular genetic testing now readily available, confirming the diagnosis is no longer as difficult or invasive as it was in the past. SUMMARY Current therapy for this group of disorders requires maintaining stable glucose levels. Avoiding hypoglycemia, as well as hyperglycemia, is critical in managing these patients. Being able to distinguish the types of GSDs and understanding the specific treatments for each enzymatic defect will optimize patient care.
Collapse
Affiliation(s)
- Tiffany L Freeney Wright
- Division of Pediatric Gastroenterology, Nutrition and Hepatology, Department of Pediatrics, University of Texas Southwestern Medical Center
- Children's Medical Center Dallas
| | - Luis A Umaña
- Children's Medical Center Dallas
- Division of Pediatric Genetics and Metabolism, Department of Pediatrics, University of Texas Southwestern Medical Center, Texas, USA
| | - Charina M Ramirez
- Division of Pediatric Gastroenterology, Nutrition and Hepatology, Department of Pediatrics, University of Texas Southwestern Medical Center
- Children's Medical Center Dallas
| |
Collapse
|
12
|
Kumru Akin B, Ozturk Hismi B, Daly A. Improvement in hypertrophic cardiomyopathy after using a high-fat, high-protein and low-carbohydrate diet in a non-adherent child with glycogen storage disease type IIIa. Mol Genet Metab Rep 2022; 32:100904. [PMID: 36046398 PMCID: PMC9421467 DOI: 10.1016/j.ymgmr.2022.100904] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/23/2022] [Accepted: 07/23/2022] [Indexed: 11/26/2022] Open
Abstract
Background Glycogen storage diseases type IIIa and b (GSDIII) are rare inherited metabolic disorders that are caused by deficiencies of the glycogen debranching enzyme, resulting in the accumulation of abnormal glycogen (‘limit dextrin’) in the muscles. The cardiac storage of limit dextrin causes a form of cardiomyopathy similar to primary hypertrophic cardiomyopathy. Treatment with a high fat diet is controversial but we report a positive outcome in a child with cardiomyopathy. Case presentation A 9-year-old boy with GSDIIIa developed left ventricular hypertrophy at 4.3 years of age. A high-fat (50%), high protein (20%), low-carbohydrates (30%) diet was introduced. After 18 months, echocardiogram, biochemical and clinical parameters improved (Creatine Kinase (CK), 1628➔1125 U/L; left ventricular outflow tract (LVOT), 35➔20 mmHg; interventricular septum (IVS), 21➔10 mm). The diet was abandoned for 2 years resulting in reversal of symptoms, but recommencement showed improvement after 6 months. Conclusion A high fat, high protein and low carbohydrate diet was successful in reversing cardiomyopathy. This form of treatment should be considered in children with GSD IIIa with cardiomyopathy.
Collapse
Affiliation(s)
- Burcu Kumru Akin
- Division of Nutrition and Diet, Gaziantep Cengiz Gökçek Maternity and Children's Hospital, Gaziantep, Turkey
| | - Burcu Ozturk Hismi
- Division of Pediatric Metabolic Disorders and Nutrition, Marmara University School of Medicine, Istanbul, Turkey
| | - Anne Daly
- Birmingham Women's and Children's Hospital, NHS Foundation Trust, Birmingham B4 6NH, UK
| |
Collapse
|
13
|
Wang J, Yu Y, Cai C, Zhi X, Zhang Y, Zhao Y, Shu J. The biallelic novel pathogenic variants in AGL gene in a chinese patient with glycogen storage disease type III. BMC Pediatr 2022; 22:284. [PMID: 35578201 PMCID: PMC9109368 DOI: 10.1186/s12887-022-03252-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 03/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glycogen storage disease type III (GSD III) is a rare autosomal recessive glycogenolysis disorder due to AGL gene variants, characterized by hepatomegaly, fasting hypoglycemia, hyperlipidemia, elevated hepatic transaminases, growth retardation, progressive myopathy, and cardiomyopathy. However, it is not easy to make a definite diagnosis in early stage of disease only based on the clinical phenotype and imageology due to its clinical heterogeneity. CASE PRESENTATION We report a two-year-old girl with GSD III from a nonconsanguineous Chinese family, who presented with hepatomegaly, fasting hypoglycemia, hyperlipidemia, elevated levels of transaminases. Accordingly, Sanger sequencing, whole‑exome sequencing of family trios, and qRT-PCR was performed, which revealed that the patient carried the compound heterogeneous variants, a novel frameshift mutation c.597delG (p. Q199Hfs*2) and a novel large gene fragment deletion of the entire exon 13 in AGL gene. The deletion of AGL was inherited from the proband's father and the c.597delG variant was from the mother. CONCLUSIONS In this study, we identified two novel variants c.597delG (p. Q199Hfs*2) and deletion of the entire exon 13 in AGL in a Chinese GSD III patient. We extend the mutation spectrum of AGL. We suggest that high-throughput sequencing technology can detect and screen pathogenic variant, which is a scientific basis about genetic counseling and clinical diagnosis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Gastroenterology, Tianjin Children's Hospital, 300134, Tianjin, China.,Tianjin Children's Hospital (Children's Hospital of Tianjin University), 300134, Tianjin, China
| | - Yuping Yu
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), 300134, Tianjin, China.,Graduate College of Tianjin Medical University, 300070, Tianjin, China
| | - Chunquan Cai
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), 300134, Tianjin, China.,Tianjin Pediatric Research Institute, 300134, Tianjin, China.,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, 300134, Tianjin, China
| | - Xiufang Zhi
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), 300134, Tianjin, China.,Graduate College of Tianjin Medical University, 300070, Tianjin, China
| | - Ying Zhang
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), 300134, Tianjin, China.,Graduate College of Tianjin Medical University, 300070, Tianjin, China
| | - Yu Zhao
- Department of Gastroenterology, Tianjin Children's Hospital, 300134, Tianjin, China.,Tianjin Children's Hospital (Children's Hospital of Tianjin University), 300134, Tianjin, China
| | - Jianbo Shu
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), 300134, Tianjin, China. .,Tianjin Pediatric Research Institute, 300134, Tianjin, China. .,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, 300134, Tianjin, China. .,Tianjin Pediatric Research Institute, Tianjin Children's Hospital, No. 238 Longyan Road, Beichen District, 300134, Tianjin, China.
| |
Collapse
|
14
|
Hijazi G, Paschall A, Young SP, Smith B, Case LE, Boggs T, Amarasekara S, Austin SL, Pendyal S, El-Gharbawy A, Deak KL, Muir AJ, Kishnani PS. A retrospective longitudinal study and comprehensive review of adult patients with glycogen storage disease type III. Mol Genet Metab Rep 2021; 29:100821. [PMID: 34820282 PMCID: PMC8600151 DOI: 10.1016/j.ymgmr.2021.100821] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/09/2021] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION A deficiency of glycogen debrancher enzyme in patients with glycogen storage disease type III (GSD III) manifests with hepatic, cardiac, and muscle involvement in the most common subtype (type a), or with only hepatic involvement in patients with GSD IIIb. OBJECTIVE AND METHODS To describe longitudinal biochemical, radiological, muscle strength and ambulation, liver histopathological findings, and clinical outcomes in adults (≥18 years) with glycogen storage disease type III, by a retrospective review of medical records. RESULTS Twenty-one adults with GSD IIIa (14 F & 7 M) and four with GSD IIIb (1 F & 3 M) were included in this natural history study. At the most recent visit, the median (range) age and follow-up time were 36 (19-68) and 16 years (0-41), respectively. For the entire cohort: 40% had documented hypoglycemic episodes in adulthood; hepatomegaly and cirrhosis were the most common radiological findings; and 28% developed decompensated liver disease and portal hypertension, the latter being more prevalent in older patients. In the GSD IIIa group, muscle weakness was a major feature, noted in 89% of the GSD IIIa cohort, a third of whom depended on a wheelchair or an assistive walking device. Older individuals tended to show more severe muscle weakness and mobility limitations, compared with younger adults. Asymptomatic left ventricular hypertrophy (LVH) was the most common cardiac manifestation, present in 43%. Symptomatic cardiomyopathy and reduced ejection fraction was evident in 10%. Finally, a urinary biomarker of glycogen storage (Glc4) was significantly associated with AST, ALT and CK. CONCLUSION GSD III is a multisystem disorder in which a multidisciplinary approach with regular clinical, biochemical, radiological and functional (physical therapy assessment) follow-up is required. Despite dietary modification, hepatic and myopathic disease progression is evident in adults, with muscle weakness as the major cause of morbidity. Consequently, definitive therapies that address the underlying cause of the disease to correct both liver and muscle are needed.
Collapse
Key Words
- AFP, Alpha-fetoprotein
- ALT, Alanine aminotransferase
- AST, Aspartate aminotransferase
- BG, Blood glucose
- BMI, Body mass index
- CEA, Carcinoembryonic antigen
- CPK, Creatine phosphokinase
- CT scan, Computerized tomography scan
- Cardiomyopathy
- Cirrhosis
- DM, Diabetes mellitus
- GDE, Glycogen debrancher enzyme
- GGT, Gamma glutamyl transferase
- GSD, Glycogen storage disease
- Glc4, Glucose tetrasaccharide
- Glycogen storage disease type III (GSD III)
- HDL, High density lipoprotein
- Hypoglycemia
- LDL, Low density lipoproteins
- LT, liver transplantation.
- Left ventricular hypertrophy (LVH)
- MRI, Magnetic resonance imaging
- TGs, Triglycerides
- US, Ultrasound
- and myopathy
Collapse
Affiliation(s)
- Ghada Hijazi
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Anna Paschall
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Sarah P. Young
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Brian Smith
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Laura E. Case
- Doctor of Physical Therapy Division, Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Tracy Boggs
- Duke University Health System, Department of Physical Therapy and Occupational Therapy, USA
| | | | - Stephanie L. Austin
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Surekha Pendyal
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Areeg El-Gharbawy
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | | | - Andrew J. Muir
- Division of Gastroenterology, Duke University School of Medicine, Durham, NC, USA
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
15
|
Sadeh M, Yosovich K, Dabby R. Glycogen Debrancher Enzyme Deficiency Myopathy. J Clin Neuromuscul Dis 2021; 22:224-227. [PMID: 34019008 DOI: 10.1097/cnd.0000000000000339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Glycogen storage disease type III is a rare inherited disease caused by decreased activity of glycogen debranching enzyme. It affects primarily the liver, cardiac muscle, and skeletal muscle. Pure involvement of the skeletal muscle with adult onset is extremely rare. We report on a patient with myopathy due to glycogen storage disease III, and describe the clinical features, and pathologic and genetic findings.
Collapse
Affiliation(s)
- Menachem Sadeh
- Department of Neurology, Wolfson Medical Center Holon, Affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; and
| | - Keren Yosovich
- Molecular Genetic Laboratory, Edith Wolfson Medical Center, Holon, Israel
| | - Ron Dabby
- Department of Neurology, Wolfson Medical Center Holon, Affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; and
| |
Collapse
|
16
|
Berling É, Laforêt P, Wahbi K, Labrune P, Petit F, Ronzitti G, O'Brien A. Narrative review of glycogen storage disorder type III with a focus on neuromuscular, cardiac and therapeutic aspects. J Inherit Metab Dis 2021; 44:521-533. [PMID: 33368379 DOI: 10.1002/jimd.12355] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 12/26/2022]
Abstract
Glycogen storage disorder type III (GSDIII) is a rare inborn error of metabolism due to loss of glycogen debranching enzyme activity, causing inability to fully mobilize glycogen stores and its consequent accumulation in various tissues, notably liver, cardiac and skeletal muscle. In the pediatric population, it classically presents as hepatomegaly with or without ketotic hypoglycemia and failure to thrive. In the adult population, it should also be considered in the differential diagnosis of left ventricular hypertrophy or hypertrophic cardiomyopathy, myopathy, exercise intolerance, as well as liver cirrhosis or fibrosis with subsequent liver failure. In this review article, we first present an overview of the biochemical and clinical aspects of GSDIII. We then focus on the recent findings regarding cardiac and neuromuscular impairment associated with the disease. We review new insights into the pathophysiology and clinical picture of this disorder, including symptomatology, imaging and electrophysiology. Finally, we discuss current and upcoming treatment strategies such as gene therapy aimed at the replacement of the malfunctioning enzyme to provide a stable and long-term therapeutic option for this debilitating disease.
Collapse
Affiliation(s)
- Édouard Berling
- Généthon, Evry, France
- Université Paris-Saclay, Univ Evry, INSERM, Généthon, Integrare Research Unit UMR_S951, Evry, France
| | - Pascal Laforêt
- APHP, Department of Neurology, Raymond Poincaré Hospital, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Garches, France
- INSERM U 1179, Université Versailles Saint Quentin en Yvelines, Paris-Saclay, France
| | - Karim Wahbi
- APHP, Cochin Hospital, Cardiology Department, FILNEMUS, Paris-Descartes, Sorbonne Paris Cité University, Paris, France
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France
- INSERM Unit 970, Paris Cardiovascular Research Centre (PARCC), Paris, France
| | - Philippe Labrune
- APHP, Université Paris-Saclay, Hôpital Antoine Béclère, Centre de Référence Maladies Héréditaires du Métabolisme Hépatique, Service de Pédiatrie, 92141 Clamart cedex, France
- INSERM U1195, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - François Petit
- Department of Genetics, APHP, Université Paris Saclay, Hôpital Antoine Béclère, Clamart, France
| | - Giuseppe Ronzitti
- Généthon, Evry, France
- Université Paris-Saclay, Univ Evry, INSERM, Généthon, Integrare Research Unit UMR_S951, Evry, France
| | - Alan O'Brien
- Généthon, Evry, France
- Service de Médecine Génique, Département de Médecine, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Quebec, Canada
| |
Collapse
|
17
|
Wolfsdorf JI, Stanley CA. Hypoglycemia in the Toddler and Child. SPERLING PEDIATRIC ENDOCRINOLOGY 2021:904-938. [DOI: 10.1016/b978-0-323-62520-3.00023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
18
|
Almodóvar-Payá A, Villarreal-Salazar M, de Luna N, Nogales-Gadea G, Real-Martínez A, Andreu AL, Martín MA, Arenas J, Lucia A, Vissing J, Krag T, Pinós T. Preclinical Research in Glycogen Storage Diseases: A Comprehensive Review of Current Animal Models. Int J Mol Sci 2020; 21:ijms21249621. [PMID: 33348688 PMCID: PMC7766110 DOI: 10.3390/ijms21249621] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
GSD are a group of disorders characterized by a defect in gene expression of specific enzymes involved in glycogen breakdown or synthesis, commonly resulting in the accumulation of glycogen in various tissues (primarily the liver and skeletal muscle). Several different GSD animal models have been found to naturally present spontaneous mutations and others have been developed and characterized in order to further understand the physiopathology of these diseases and as a useful tool to evaluate potential therapeutic strategies. In the present work we have reviewed a total of 42 different animal models of GSD, including 26 genetically modified mouse models, 15 naturally occurring models (encompassing quails, cats, dogs, sheep, cattle and horses), and one genetically modified zebrafish model. To our knowledge, this is the most complete list of GSD animal models ever reviewed. Importantly, when all these animal models are analyzed together, we can observe some common traits, as well as model specific differences, that would be overlooked if each model was only studied in the context of a given GSD.
Collapse
Affiliation(s)
- Aitana Almodóvar-Payá
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.A.-P.); (M.V.-S.); (A.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
| | - Mónica Villarreal-Salazar
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.A.-P.); (M.V.-S.); (A.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
| | - Noemí de Luna
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Laboratori de Malalties Neuromusculars, Institut de Recerca Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Gisela Nogales-Gadea
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Grup de Recerca en Malalties Neuromusculars i Neuropediàtriques, Department of Neurosciences, Institut d’Investigacio en Ciencies de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Alberto Real-Martínez
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.A.-P.); (M.V.-S.); (A.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
| | - Antoni L. Andreu
- EATRIS, European Infrastructure for Translational Medicine, 1081 HZ Amsterdam, The Netherlands;
| | - Miguel Angel Martín
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Mitochondrial and Neuromuscular Diseases Laboratory, 12 de Octubre Hospital Research Institute (i+12), 28041 Madrid, Spain
| | - Joaquin Arenas
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Mitochondrial and Neuromuscular Diseases Laboratory, 12 de Octubre Hospital Research Institute (i+12), 28041 Madrid, Spain
| | - Alejandro Lucia
- Faculty of Sport Sciences, European University, 28670 Madrid, Spain;
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark; (J.V.); (T.K.)
| | - Thomas Krag
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark; (J.V.); (T.K.)
| | - Tomàs Pinós
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.A.-P.); (M.V.-S.); (A.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Correspondence: ; Tel.: +34-934894057
| |
Collapse
|
19
|
Marusic T, Zerjav Tansek M, Sirca Campa A, Mezek A, Berden P, Battelino T, Groselj U. Normalization of obstructive cardiomyopathy and improvement of hepatopathy on ketogenic diet in patient with glycogen storage disease (GSD) type IIIa. Mol Genet Metab Rep 2020; 24:100628. [PMID: 32714838 PMCID: PMC7371897 DOI: 10.1016/j.ymgmr.2020.100628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/09/2023] Open
Abstract
Now 15-year-old girl with glycogen storage disease (GSD) type IIIa (OMIM 232400) developed severe left ventricular obstructive hypertrophy and hepatomegaly while treated with frequent cornstarch meals. Subsequently, she was introduced the ketogenic diet; continuous ketosis has been maintained for over the last 4 years. After the introduction of ketogenic diet, a normalization of the cardiomyopathy and improvement of hepatopathy was achieved, with enhanced overall quality of life.
Collapse
Affiliation(s)
- Tatiana Marusic
- University Children's Hospital, University Medical Center Ljubljana, Bohoričeva ulica 20, Ljubljana, Slovenia
| | - Mojca Zerjav Tansek
- University Children's Hospital, University Medical Center Ljubljana, Bohoričeva ulica 20, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Andreja Sirca Campa
- University Children's Hospital, University Medical Center Ljubljana, Bohoričeva ulica 20, Ljubljana, Slovenia
| | - Ajda Mezek
- University Children's Hospital, University Medical Center Ljubljana, Bohoričeva ulica 20, Ljubljana, Slovenia
| | - Pavel Berden
- Clinical Institute of Radiology, University Medical Center Ljubljana, Zaloška cesta 7, 1000 Ljubljana, Slovenia
| | - Tadej Battelino
- University Children's Hospital, University Medical Center Ljubljana, Bohoričeva ulica 20, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Urh Groselj
- University Children's Hospital, University Medical Center Ljubljana, Bohoričeva ulica 20, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
20
|
Du C, Wei H, Zhang M, Hu M, Li Z, Zhang C, Luo X, Liang Y. Genetic analysis and long-term treatment monitoring of 11 children with glycogen storage disease type IIIa. J Pediatr Endocrinol Metab 2020; 33:923-930. [PMID: 32623374 DOI: 10.1515/jpem-2019-0453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 03/16/2020] [Indexed: 11/15/2022]
Abstract
Objectives To investigate the clinical and genetic characteristics of children with glycogen storage disease type IIIa (GSD IIIa) and to explore the muscle involvement and manifestations of GSD IIIa patients. Methods The clinical data of 11 patients with GSD IIIa diagnosed by genetic testing from 2003 to 2019 were retrospectively analyzed. Results Twenty variants of AGL gene were detected in 11 patients, eight of which were novel variants. Before treatment, the height was significantly backward. All patients had hepatomegaly. Abnormal biochemical indicators were mainly manifested as significantly increased serum liver and muscle enzymes, accompanied by hypertriglyceridemia, hypoglycemia, hyperlactacidemia, slightly elevated pyruvic acid, and metabolic acidosis. After treatment, the height and liver size of the patients were significantly improved. At the same time, alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), lactic acid and pyruvic acid in children were significantly decreased, while creatine kinase (CK) was significantly increased. During follow-up monitoring, six patients developed ventricular hypertrophy. Lactate dehydrogenase (LDH) (691.67 ± 545.27 vs. 362.20 ± 98.66), lactic acid (3.18 ± 3.05 vs. 1.10 ± 0.40), and pyruvic acid (64.30 ± 39.69 vs. 32.06 ± 4.61) were significantly increased in patients with ventricular hypertrophy compared with those without ventricular hypertrophy. Conclusions In clinical cases of upper respiratory tract infection or gastrointestinal symptoms accompanied by hypoglycemia, dyslipidemia, metabolites disorders, elevated serum liver, and muscle enzymes, the possibility of GSD IIIa should be vigilant. During treatment monitoring, if lactic acid, pyruvic acid, LDH, and CK rise, it indicates that the disease is not well controlled and there is the possibility of cardiac hypertrophy.
Collapse
Affiliation(s)
- Caiqi Du
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Wei
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minghui Hu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuoguang Li
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cai Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Liang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030,China
| |
Collapse
|
21
|
Olgac A, İnci A, Okur İ, Biberoğlu G, Oğuz D, Ezgü FS, Kasapkara ÇS, Aktaş E, Tümer L. Beneficial Effects of Modified Atkins Diet in Glycogen Storage Disease Type IIIa. ANNALS OF NUTRITION AND METABOLISM 2020; 76:233-241. [DOI: 10.1159/000509335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/07/2020] [Indexed: 11/19/2022]
Abstract
<b><i>Introduction:</i></b> Glycogen storage disease Type III (GSD III) is an autosomal recessive disease caused by the deficiency of glycogen debranching enzyme, encoded by the AGL gene. Two clinical types of the disease are most prevalent: GSD IIIa involves the liver and muscle, whereas IIIb affects only the liver. The classical dietetic management of GSD IIIa involves prevention of fasting, frequent feeds with high complex carbohydrates in small children, and a low-carb-high-protein diet in older children and adults. Recently, diets containing high amount of fat, including ketogenic and modified Atkins diet (MAD), have been suggested to have favorable outcome in GSD IIIa. <b><i>Methods:</i></b> Six patients, aged 3–31 years, with GSD IIIa received MAD for a duration of 3–7 months. Serum glucose, transaminases, creatine kinase (CK) levels, capillary ketone levels, and cardiac parameters were followed-up. <b><i>Results:</i></b> In all patients, transaminase levels dropped in response to MAD. Decrease in CK levels were detected in 5 out of 6 patients. Hypoglycemia was evident in 2 patients but was resolved by adding uncooked cornstarch to diet. <b><i>Conclusion:</i></b> Our study demonstrates that GSD IIIa may benefit from MAD both clinically and biochemically.
Collapse
|
22
|
Fischer T, Njoroge H, Och U, Klawon I, Marquardt T. Ketogenic diet treatment in adults with glycogenosis type IIIa (Morbus Cori). CLINICAL NUTRITION EXPERIMENTAL 2019. [DOI: 10.1016/j.yclnex.2019.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Jauze L, Monteillet L, Mithieux G, Rajas F, Ronzitti G. Challenges of Gene Therapy for the Treatment of Glycogen Storage Diseases Type I and Type III. Hum Gene Ther 2019; 30:1263-1273. [PMID: 31319709 DOI: 10.1089/hum.2019.102] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glycogen storage diseases (GSDs) type I (GSDI) and type III (GSDIII), the most frequent hepatic GSDs, are due to defects in glycogen metabolism, mainly in the liver. In addition to hypoglycemia and liver pathology, renal, myeloid, or muscle complications affect GSDI and GSDIII patients. Currently, patient management is based on dietary treatment preventing severe hypoglycemia and increasing the lifespan of patients. However, most of the patients develop long-term pathologies. In the past years, gene therapy for GSDI has generated proof of concept for hepatic GSDs. This resulted in a recent clinical trial of adeno-associated virus (AAV)-based gene replacement for GSDIa. However, the current limitations of AAV-mediated gene transfer still represent a challenge for successful gene therapy in GSDI and GSDIII. Indeed, transgene loss over time was observed in GSDI liver, possibly due to the degeneration of hepatocytes underlying the physiopathology of both GSDI and GSDIII and leading to hepatic tumor development. Moreover, multitissue targeting requires high vector doses to target nonpermissive tissues such as muscle and kidney. Interestingly, recent pharmacological interventions or dietary regimen aiming at the amelioration of the hepatocyte abnormalities before the administration of gene therapy demonstrated improved efficacy in GSDs. In this review, we describe the advances in gene therapy and the limitations to be overcome to achieve efficient and safe gene transfer in GSDs.
Collapse
Affiliation(s)
- Louisa Jauze
- INTEGRARE, Genethon, Inserm, Université d'Evry, Université Paris-Saclay, Evry, France.,Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon I, Villeurbanne, France
| | - Laure Monteillet
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon I, Villeurbanne, France
| | - Gilles Mithieux
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon I, Villeurbanne, France
| | - Fabienne Rajas
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon I, Villeurbanne, France
| | - Giuseppe Ronzitti
- INTEGRARE, Genethon, Inserm, Université d'Evry, Université Paris-Saclay, Evry, France
| |
Collapse
|
24
|
FRANCINI-PESENTI FRANCESCO, TRESSO SILVIA, VITTURI NICOLA. Modified Atkins ketogenic diet improves heart and skeletal muscle function in glycogen storage disease type III. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2019; 38:17-20. [PMID: 31309177 PMCID: PMC6598403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Glycogen storage disease type III (GSDIII) management in adult patients includes a high-protein diet with cornstarch supplementation to maintain a normal level of glucose in the blood. This regimen can prevent hypoglycaemia but does not seem to improve skeletal muscle and heart function. A 34 years-old patient with GSD IIIa with hypertrophic cardiomyopathy was then treated with a modified Atkins ketogenic diet. After 12 months of treatment ejection fraction raised from 30 to 45%, liver enzymes were reduced and CK plasma level dropped from 568 to 327 U/l. Physical activity increased from about 1300 to 2800 steps per day and health-related quality of life assessment ameliorated. An increase in uric acid triglycerides plasma level was observed. This data obtained in an adult patient confirm previous reports evidencing the effectiveness of ketogenic diets in improving cardiac and muscular manifestations in children with GSDIII.
Collapse
Affiliation(s)
- FRANCESCO FRANCINI-PESENTI
- Address for correspondence: Francesco Francini-Pesenti, Department of Medicine, University of Padua, via Giustiniani 1, 35128 Padua, Italy. E-mail:
| | | | | |
Collapse
|
25
|
Hoogeveen IJ, Peeks F, de Boer F, Lubout CMA, de Koning TJ, Te Boekhorst S, Zandvoort RJ, Burghard R, van Spronsen FJ, Derks TGJ. A preliminary study of telemedicine for patients with hepatic glycogen storage disease and their healthcare providers: from bedside to home site monitoring. J Inherit Metab Dis 2018; 41:929-936. [PMID: 29600495 PMCID: PMC6326981 DOI: 10.1007/s10545-018-0167-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/22/2018] [Accepted: 03/01/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND The purpose of this project was to develop a telemedicine platform that supports home site monitoring and integrates biochemical, physiological, and dietary parameters for individual patients with hepatic glycogen storage disease (GSD). METHODS AND RESULTS The GSD communication platform (GCP) was designed with input from software developers, GSD patients, researchers, and healthcare providers. In phase 1, prototyping and software design of the GCP has occurred. The GCP was composed of a GSD App for patients and a GSD clinical dashboard for healthcare providers. In phase 2, the GCP was tested by retrospective patient data entry. The following software functionalities were included (a) dietary registration and prescription module, (b) emergency protocol module, and (c) data import functions for continuous glucose monitor devices and activity wearables. In phase 3, the GSD App was implemented in a pilot study of eight patients with GSD Ia (n = 3), GSD IIIa (n = 1), and GSD IX (n = 4). Usability was measured by the system usability scale (SUS). The mean SUS score was 64/100 [range: 38-93]. CONCLUSIONS This report describes the design, development, and validation process of a telemedicine platform for patients with hepatic GSD. The GCP can facilitate home site monitoring and data exchange between patients with hepatic GSD and healthcare providers under varying circumstances. In the future, the GCP may support cross-border healthcare, second opinion processes and clinical trials, and could possibly also be adapted for other diseases for which a medical diet is the cornerstone.
Collapse
Affiliation(s)
- Irene J Hoogeveen
- Section of Metabolic Diseases, Beatrix Children's Hospital University Medical Center Groningen, University of Groningen, PO Box 30 001, 9700 RB, Groningen, The Netherlands
| | - Fabian Peeks
- Section of Metabolic Diseases, Beatrix Children's Hospital University Medical Center Groningen, University of Groningen, PO Box 30 001, 9700 RB, Groningen, The Netherlands
| | - Foekje de Boer
- Section of Metabolic Diseases, Beatrix Children's Hospital University Medical Center Groningen, University of Groningen, PO Box 30 001, 9700 RB, Groningen, The Netherlands
| | - Charlotte M A Lubout
- Section of Metabolic Diseases, Beatrix Children's Hospital University Medical Center Groningen, University of Groningen, PO Box 30 001, 9700 RB, Groningen, The Netherlands
| | - Tom J de Koning
- Section of Metabolic Diseases, Beatrix Children's Hospital University Medical Center Groningen, University of Groningen, PO Box 30 001, 9700 RB, Groningen, The Netherlands
| | | | | | | | - Francjan J van Spronsen
- Section of Metabolic Diseases, Beatrix Children's Hospital University Medical Center Groningen, University of Groningen, PO Box 30 001, 9700 RB, Groningen, The Netherlands
| | - Terry G J Derks
- Section of Metabolic Diseases, Beatrix Children's Hospital University Medical Center Groningen, University of Groningen, PO Box 30 001, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
26
|
Ben Chehida A, Ben Messaoud S, Ben Abdelaziz R, Mansouri H, Boudabous H, Hakim K, Ben Ali N, Ben Ameur Z, Sassi Y, Kaabachi N, Abdelhak S, Abdelmoula MS, Azzouz H, Tebib N. A lower energetic, protein and uncooked cornstarch intake is associated with a more severe outcome in glycogen storage disease type III: an observational study of 50 patients. J Pediatr Endocrinol Metab 2018; 31:979-986. [PMID: 30110253 DOI: 10.1515/jpem-2018-0151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/28/2018] [Indexed: 11/15/2022]
Abstract
Background Glycogen storage disease type III (GSDIII), due to a deficiency of glycogen debrancher enzyme (GDE), is particularly frequent in Tunisia. Phenotypic particularities of Tunisian patients remain unknown. Our aim was to study complications of GSDIII in a Tunisian population and to explore factors interfering with its course. Methods A retrospective longitudinal study was conducted over 30 years (1986-2016) in the referral metabolic center in Tunisia. Results Fifty GSDIII patients (26 boys), followed for an average 6.75 years, were enrolled. At the last evaluation, the median age was 9.87 years and 24% of patients reached adulthood. Short stature persisted in eight patients and obesity in 19 patients. Lower frequency of hypertriglyceridemia (HTG) was associated with older patients (p<0.0001), higher protein diet (p=0.068) and lower caloric intake (p=0.025). Hepatic complications were rare. Cardiac involvement (CI) was frequent (91%) and occurred early at a median age of 2.6 years. Severe cardiomyopathy (50%) was related to lower doses of uncooked cornstarch (p=0.02). Neuromuscular involvement (NMI) was constant, leading to a functional discomfort in 64% of cases and was disabling in 34% of cases. Severe forms were related to lower caloric (p=0.005) and protein intake (p<0.015). Conclusions A low caloric, protein and uncooked cornstarch intake is associated with a more severe outcome in GSDIII Tunisian patients. Neuromuscular and CIs were particularly precocious and severe, even in childhood. Genetic and epigenetic factors deserve to be explored.
Collapse
Affiliation(s)
- Amel Ben Chehida
- Research Laboratory LR12SP02, Pediatric and Metabolic Department, La Rabta Hospital, Faculty of Medecine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Tunisian Association for Studying Inherited Metabolic Diseases (General Secretary), La Rabta Hospital, 1007, Jabberi, Jebal Lakhdhar, Tunis, Tunisia
| | - Sana Ben Messaoud
- Research Laboratory LR12SP02, Pediatric and Metabolic Department, La Rabta Hospital, Faculty of Medecine of Tunis, University of Tunis El Manar, Jabberi, Jebal Lakhdhar, Tunis, Tunisia
| | - Rim Ben Abdelaziz
- Research Laboratory LR12SP02, Pediatric and Metabolic Department, La Rabta Hospital, Faculty of Medecine of Tunis, University of Tunis El Manar, Jabberi, Jebal Lakhdhar, Tunis, Tunisia
| | - Hajer Mansouri
- Research Laboratory LR12SP02, Pediatric and Metabolic Department, La Rabta Hospital, Faculty of Medecine of Tunis, University of Tunis El Manar, Jabberi, Jebal Lakhdhar, Tunis, Tunisia
| | - Hela Boudabous
- Research Laboratory LR12SP02, Pediatric and Metabolic Department, La Rabta Hospital, Faculty of Medecine of Tunis, University of Tunis El Manar, Jabberi, Jebal Lakhdhar, Tunis, Tunisia
| | - Kaouthar Hakim
- Department of Pediatric Cardiology, La Rabta Hospital, Faculty of Medecine of Tunis, University of Tunis El Manar, Jabberi, Jebal Lakhdhar, Tunis, Tunisia
| | - Nadia Ben Ali
- Department of Neurology, Charles Nicoles Hospital, University of Tunis El Manar, Jabberi, Jebal Lakhdhar, Tunis, Tunisia
| | - Zeineb Ben Ameur
- Research Laboratory LR12SP02, Pediatric and Metabolic Department, La Rabta Hospital, Faculty of Medecine of Tunis, University of Tunis El Manar, Jabberi, Jebal Lakhdhar, Tunis, Tunisia
| | - Yosra Sassi
- Research Laboratory LR12SP02, Pediatric and Metabolic Department, La Rabta Hospital, Faculty of Medecine of Tunis, University of Tunis El Manar, Jabberi, Jebal Lakhdhar, Tunis, Tunisia
| | - Neziha Kaabachi
- Department of biochemistry, La Rabta Hospital, Faculty of Medecine of Tunis, University of Tunis El Manar, Jabberi, Jebal Lakhdhar, Tunis, Tunisia
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics (LR11IPT05), Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Mohamed Slim Abdelmoula
- Research Laboratory LR12SP02, Pediatric and Metabolic Department, La Rabta Hospital, Faculty of Medecine of Tunis, University of Tunis El Manar, Jabberi, Jebal Lakhdhar, Tunis, Tunisia
| | - Hatem Azzouz
- Research Laboratory LR12SP02, Pediatric and Metabolic Department, La Rabta Hospital, Faculty of Medecine of Tunis, University of Tunis El Manar, Jabberi, Jebal Lakhdhar, Tunis, Tunisia
| | - Neji Tebib
- Research Laboratory LR12SP02, Pediatric and Metabolic Department, La Rabta Hospital, Faculty of Medecine of Tunis, University of Tunis El Manar, Jabberi, Jebal Lakhdhar, Tunis, Tunisia
| |
Collapse
|
27
|
Pagliarani S, Lucchiari S, Ulzi G, Ripolone M, Violano R, Fortunato F, Bordoni A, Corti S, Moggio M, Bresolin N, Comi GP. Glucose-free/high-protein diet improves hepatomegaly and exercise intolerance in glycogen storage disease type III mice. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3407-3417. [PMID: 30076962 PMCID: PMC6134197 DOI: 10.1016/j.bbadis.2018.07.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/06/2018] [Accepted: 07/30/2018] [Indexed: 11/30/2022]
Abstract
Glycogen disease type III (GSDIII), a rare incurable autosomal recessive disorder due to glycogen debranching enzyme deficiency, presents with liver, heart and skeletal muscle impairment, hepatomegaly and ketotic hypoglycemia. Muscle weakness usually worsens to fixed myopathy and cardiac involvement may present in about half of the patients during disease. Management relies on careful follow-up of symptoms and diet. No common agreement was reached on sugar restriction and treatment in adulthood. We administered two dietary regimens differing in their protein and carbohydrate content, high-protein (HPD) and high-protein/glucose-free (GFD), to our mouse model of GSDIII, starting at one month of age. Mice were monitored, either by histological, biochemical and molecular analysis and motor functional tests, until 10 months of age. GFD ameliorated muscle performance up to 10 months of age, while HPD showed little improvement only in young mice. In GFD mice, a decreased muscle glycogen content and fiber vacuolization was observed, even in aged animals indicating a protective role of proteins against skeletal muscle degeneration, at least in some districts. Hepatomegaly was reduced by about 20%. Moreover, the long-term administration of GFD did not worsen serum parameters even after eight months of high-protein diet. A decreased phosphofructokinase and pyruvate kinase activities and an increased expression of Krebs cycle and gluconeogenesis genes were seen in the liver of GFD fed mice. Our data show that the concurrent use of proteins and a strictly controlled glucose supply could reduce muscle wasting, and indicate a better metabolic control in mice with a glucose-free/high-protein diet. GSDIII is a rare incurable disease due to lacking of glycogen debrancher enzyme. Essential features are liver, heart and skeletal muscle impairment. Two diets differing in protein and sugar amount were tested in Agl-mouse model. Glucose-free/high-protein diet decreased glycogen storage and hepatomegaly. Improved muscle performance and better metabolic compensation were achieved.
Collapse
Affiliation(s)
- Serena Pagliarani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; University of Milan, Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Milan, Italy.
| | - Sabrina Lucchiari
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; University of Milan, Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Milan, Italy
| | - Gianna Ulzi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; University of Milan, Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Milan, Italy
| | - Michela Ripolone
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Diseases Unit, Milan, Italy
| | - Raffaella Violano
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Diseases Unit, Milan, Italy
| | - Francesco Fortunato
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; University of Milan, Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Milan, Italy
| | - Andreina Bordoni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; University of Milan, Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Milan, Italy
| | - Stefania Corti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; University of Milan, Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Milan, Italy
| | - Maurizio Moggio
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Diseases Unit, Milan, Italy
| | - Nereo Bresolin
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; University of Milan, Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Milan, Italy
| | - Giacomo P Comi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; University of Milan, Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Milan, Italy
| |
Collapse
|
28
|
Weinstein DA, Steuerwald U, De Souza CFM, Derks TGJ. Inborn Errors of Metabolism with Hypoglycemia: Glycogen Storage Diseases and Inherited Disorders of Gluconeogenesis. Pediatr Clin North Am 2018; 65:247-265. [PMID: 29502912 DOI: 10.1016/j.pcl.2017.11.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although hyperinsulinism is the predominant inherited cause of hypoglycemia in the newborn period, inborn errors of metabolism are the primary etiologies after 1 month of age. Disorders of carbohydrate metabolism often present with hypoglycemia when fasting occurs. The presentation, diagnosis, and management of the hepatic glycogen storage diseases and disorders of gluconeogenesis are reviewed.
Collapse
Affiliation(s)
- David A Weinstein
- University of Connecticut School of Medicine, Farmington, CT, USA; Glycogen Storage Disease Program, Connecticut Children's Medical Center, 282 Washington Street, Hartford, CT 06106, USA.
| | | | - Carolina F M De Souza
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Terry G J Derks
- Section of Metabolic Diseases, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, The Netherlands
| |
Collapse
|
29
|
Darras BT, Volpe JJ. Muscle Involvement and Restricted Disorders. VOLPE'S NEUROLOGY OF THE NEWBORN 2018:922-970.e15. [DOI: 10.1016/b978-0-323-42876-7.00033-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
30
|
Vidal P, Pagliarani S, Colella P, Costa Verdera H, Jauze L, Gjorgjieva M, Puzzo F, Marmier S, Collaud F, Simon Sola M, Charles S, Lucchiari S, van Wittenberghe L, Vignaud A, Gjata B, Richard I, Laforet P, Malfatti E, Mithieux G, Rajas F, Comi GP, Ronzitti G, Mingozzi F. Rescue of GSDIII Phenotype with Gene Transfer Requires Liver- and Muscle-Targeted GDE Expression. Mol Ther 2017; 26:890-901. [PMID: 29396266 DOI: 10.1016/j.ymthe.2017.12.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 12/16/2017] [Accepted: 12/20/2017] [Indexed: 12/19/2022] Open
Abstract
Glycogen storage disease type III (GSDIII) is an autosomal recessive disorder caused by a deficiency of glycogen-debranching enzyme (GDE), which results in profound liver metabolism impairment and muscle weakness. To date, no cure is available for GSDIII and current treatments are mostly based on diet. Here we describe the development of a mouse model of GSDIII, which faithfully recapitulates the main features of the human condition. We used this model to develop and test novel therapies based on adeno-associated virus (AAV) vector-mediated gene transfer. First, we showed that overexpression of the lysosomal enzyme alpha-acid glucosidase (GAA) with an AAV vector led to a decrease in liver glycogen content but failed to reverse the disease phenotype. Using dual overlapping AAV vectors expressing the GDE transgene in muscle, we showed functional rescue with no impact on glucose metabolism. Liver expression of GDE, conversely, had a direct impact on blood glucose levels. These results provide proof of concept of correction of GSDIII with AAV vectors, and they indicate that restoration of the enzyme deficiency in muscle and liver is necessary to address both the metabolic and neuromuscular manifestations of the disease.
Collapse
Affiliation(s)
- Patrice Vidal
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France; University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France
| | - Serena Pagliarani
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Pasqualina Colella
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France; Genethon, 91002 Evry, France
| | - Helena Costa Verdera
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France; University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France
| | - Louisa Jauze
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France; Genethon, 91002 Evry, France
| | | | - Francesco Puzzo
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France; Genethon, 91002 Evry, France
| | - Solenne Marmier
- University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France
| | - Fanny Collaud
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France; Genethon, 91002 Evry, France
| | - Marcelo Simon Sola
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France; University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France
| | - Severine Charles
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France; Genethon, 91002 Evry, France
| | - Sabrina Lucchiari
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | | | | | | | - Isabelle Richard
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France; Genethon, 91002 Evry, France
| | - Pascal Laforet
- Myology Institute, Neuromuscular Morphology Unit, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Sorbonne Universités UPMC Univ Paris 06, 75005 Paris, France; Paris-Est neuromuscular center, Pitié-Salpêtrière Hospital, APHP, 75005 Paris, France; Raymond Poincaré Teaching Hospital, APHP, 92380 Garches, France
| | - Edoardo Malfatti
- Myology Institute, Neuromuscular Morphology Unit, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Sorbonne Universités UPMC Univ Paris 06, 75005 Paris, France
| | - Gilles Mithieux
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon 69008, France; Université Lyon 1, Villeurbanne 69622, France
| | - Fabienne Rajas
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon 69008, France; Université Lyon 1, Villeurbanne 69622, France
| | - Giacomo Pietro Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Giuseppe Ronzitti
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France; Genethon, 91002 Evry, France.
| | - Federico Mingozzi
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France; University Pierre and Marie Curie Paris 6 and INSERM U974, Paris, France; Genethon, 91002 Evry, France.
| |
Collapse
|
31
|
Derks TGJ, Nemeth A, Adrian K, Arnell H, Roskjær AB, Beijer E, te Boekhorst S, Heidenborg C, Landgren M, Nilsson M, Papadopoulou D, Ross K, Sjöqvist E, Stachelhaus-Theimer U, Steuerwald U, Törnhage CJ, Weinstein DA. Hepatic Glycogen Storage Diseases. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2017. [DOI: 10.1177/2326409817733009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Terry G. J. Derks
- Section of Metabolic Diseases, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Antal Nemeth
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Karolinska University Hospital, Stockholm, Sweden
| | - Katrin Adrian
- Department of Pediatrics, The Queen Silvia Children’s Hospital, Gothenburg, Sweden
| | - Henrik Arnell
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Bech Roskjær
- Division of Pediatric Nutrition, Department of Pediatrics, Juliane Marie Centre, Copenhagen University Hospital, Copenhagen, Denmark
| | - Eva Beijer
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Karolinska University Hospital, Stockholm, Sweden
| | | | - Carina Heidenborg
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Karolinska University Hospital, Stockholm, Sweden
| | - Marcus Landgren
- Scandinavian Association for Glycogen Storage Disease, Limhamn, Sweden
| | - Mikael Nilsson
- Department of Pediatrics, Skåne University Hospital, Lund, Sweden
| | | | - Katalin Ross
- Glycogen Storage Disease Program, University of Florida College of Medicine, Gainesville, FL, USA
| | | | | | | | - Carl-Johan Törnhage
- Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, Skaraborgs Hospital, Skövde, Sweden
| | - David A. Weinstein
- Glycogen Storage Disease Program, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
32
|
Sentner CP, Hoogeveen IJ, Weinstein DA, Santer R, Murphy E, McKiernan PJ, Steuerwald U, Beauchamp NJ, Taybert J, Laforêt P, Petit FM, Hubert A, Labrune P, Smit GPA, Derks TGJ. Glycogen storage disease type III: diagnosis, genotype, management, clinical course and outcome. J Inherit Metab Dis 2016; 39:697-704. [PMID: 27106217 PMCID: PMC4987401 DOI: 10.1007/s10545-016-9932-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 11/09/2022]
Abstract
Glycogen storage disease type III (GSDIII) is a rare disorder of glycogenolysis due to AGL gene mutations, causing glycogen debranching enzyme deficiency and storage of limited dextrin. Patients with GSDIIIa show involvement of liver and cardiac/skeletal muscle, whereas GSDIIIb patients display only liver symptoms and signs. The International Study on Glycogen Storage Disease (ISGSDIII) is a descriptive retrospective, international, multi-centre cohort study of diagnosis, genotype, management, clinical course and outcome of 175 patients from 147 families (86 % GSDIIIa; 14 % GSDIIIb), with follow-up into adulthood in 91 patients. In total 58 AGL mutations (non-missense mutations were overrepresented and 21 novel mutations were observed) were identified in 76 families. GSDIII patients first presented before the age of 1.5 years, hepatomegaly was the most common presenting clinical sign. Dietary management was very diverse and included frequent meals, uncooked cornstarch and continuous gastric drip feeding. Chronic complications involved the liver (hepatic cirrhosis, adenoma(s), and/or hepatocellular carcinoma in 11 %), heart (cardiac involvement and cardiomyopathy, in 58 % and 15 %, respectively, generally presenting in early childhood), and muscle (pain in 34 %). Type 2 diabetes mellitus was diagnosed in eight out of 91 adult patients (9 %). In adult patients no significant correlation was detected between (non-) missense AGL genotypes and hepatic, cardiac or muscular complications. This study demonstrates heterogeneity in a large cohort of ageing GSDIII patients. An international GSD patient registry is warranted to prospectively define the clinical course, heterogeneity and the effect of different dietary interventions in patients with GSDIII.
Collapse
Affiliation(s)
- Christiaan P Sentner
- Section of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, PO Box 30 001, 9700 RB, Groningen, The Netherlands
| | - Irene J Hoogeveen
- Section of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, PO Box 30 001, 9700 RB, Groningen, The Netherlands
| | - David A Weinstein
- Glycogen Storage Disease Program, University of Florida, Gainesville, FL, USA
| | - René Santer
- Department of Paediatrics, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Elaine Murphy
- Charles Dent Metabolic Unit, National Hospital for Neurology and Neurosurgery, London, UK
| | | | - Ulrike Steuerwald
- Department of Occupational and Public Health (DFAA), Tórshavn, Faroe Islands
| | - Nicholas J Beauchamp
- Sheffield Diagnostic Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Joanna Taybert
- Department of Metabolic Diseases, Children's Memorial Health Institute, Warsaw, Poland
| | - Pascal Laforêt
- Centre de Référence de Pathologie, Neuromusculaire Paris-Est, Institut de Myologie, GH Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - François M Petit
- Department of Genetics and Cytogenetics, AP-HP, Antoine Béclère University Hospital, University Paris Sud, Paris, France
| | - Aurélie Hubert
- APHP, Hôpitaux Universitaires Paris Sud, hôpital Antoine Béclère, Centre de Référence des Maladies héréditaires du Métabolisme Hépatique, and Paris Sud University, Clamart, France
| | - Philippe Labrune
- APHP, Hôpitaux Universitaires Paris Sud, hôpital Antoine Béclère, Centre de Référence des Maladies héréditaires du Métabolisme Hépatique, and Paris Sud University, Clamart, France
| | - G Peter A Smit
- Section of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, PO Box 30 001, 9700 RB, Groningen, The Netherlands
| | - Terry G J Derks
- Section of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, PO Box 30 001, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
33
|
Chen MA, Weinstein DA. Glycogen storage diseases: Diagnosis, treatment and outcome. ACTA ACUST UNITED AC 2016. [DOI: 10.3233/trd-160006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - David A. Weinstein
- Glycogen Storage Disease Program, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
34
|
Brooks ED, Yi H, Austin SL, Thurberg BL, Young SP, Fyfe JC, Kishnani PS, Sun B. Natural Progression of Canine Glycogen Storage Disease Type IIIa. Comp Med 2016; 66:41-51. [PMID: 26884409 PMCID: PMC4752035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/01/2015] [Accepted: 08/22/2015] [Indexed: 06/05/2023]
Abstract
Glycogen storage disease type IIIa (GSD IIIa) is caused by a deficiency of glycogen debranching enzyme activity. Hepatomegaly, muscle degeneration, and hypoglycemia occur in human patients at an early age. Long-term complications include liver cirrhosis, hepatic adenomas, and generalized myopathy. A naturally occurring canine model of GSD IIIa that mimics the human disease has been described, with progressive liver disease and skeletal muscle damage likely due to excess glycogen deposition. In the current study, long-term follow-up of previously described GSD IIIa dogs until 32 mo of age (n = 4) and of family-owned GSD IIIa dogs until 11 to 12 y of age (n = 2) revealed that elevated concentrations of liver and muscle enzyme (AST, ALT, ALP, and creatine phosphokinase) decreased over time, consistent with hepatic cirrhosis and muscle fibrosis. Glycogen deposition in many skeletal muscles; the tongue, diaphragm, and heart; and the phrenic and sciatic nerves occurred also. Furthermore, the urinary biomarker Glc4, which has been described in many types of GSD, was first elevated and then decreased later in life. This urinary biomarker demonstrated a similar trend as AST and ALT in GSD IIIa dogs, indicating that Glc4 might be a less invasive biomarker of hepatocellular disease. Finally, the current study further demonstrates that the canine GSD IIIa model adheres to the clinical course in human patients with this disorder and is an appropriate model for developing novel therapies.
Collapse
Affiliation(s)
- Elizabeth D Brooks
- Division of Medical Genetics and Laboratory Animal Resources, Duke University Medical Center, Durham, North Carolina, USA
| | - Haiqing Yi
- Division of Medical Genetics, Duke University Medical Center, Durham, North Carolina, USA
| | - Stephanie L Austin
- Division of Medical Genetics, Duke University Medical Center, Durham, North Carolina, USA
| | - Beth L Thurberg
- Department of Pathology, Genzyme, a Sanofi Company, Framingham, Massachusetts, USA
| | - Sarah P Young
- Division of Medical Genetics, Duke University Medical Center, Durham, North Carolina, USA
| | - John C Fyfe
- Laboratory of Comparative Medical Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Priya S Kishnani
- Division of Medical Genetics, Duke University Medical Center, Durham, North Carolina, USA
| | - Baodong Sun
- Division of Medical Genetics, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
35
|
Derks TGJ, Smit GPA. Dietary management in glycogen storage disease type III: what is the evidence? J Inherit Metab Dis 2015; 38:545-50. [PMID: 25164784 DOI: 10.1007/s10545-014-9756-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/18/2014] [Accepted: 07/23/2014] [Indexed: 11/26/2022]
Abstract
In childhood, GSD type III causes relatively severe fasting intolerance, classically associated with ketotic hypoglycaemia. During follow up, history of (documented) hypoglycaemia, clinical parameters (growth, liver size, motor development, neuromuscular parameters), laboratory parameters (glucose, lactate, ALAT, cholesterol, triglycerides, creatine kinase and ketones) and cardiac parameters all need to be integrated in order to titrate dietary management, for which age-dependent requirements need to be taken into account. Evidence from case studies and small cohort studies in both children and adults with GSD III demonstrate that prevention of hypoglycaemia and maintenance of euglycemia is not sufficient to prevent complications. Moreover, over-treatment with carbohydrates may even be harmful. The ageing cohort of GSD III patients, including the non-traditional clinical presentations in adulthood, raises new questions.
Collapse
Affiliation(s)
- Terry G J Derks
- Section of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, PO Box 30 001, 9700 RB, Groningen, The Netherlands,
| | | |
Collapse
|
36
|
Abstract
Metabolic and mitochondrial myopathies encompass a heterogeneous group of disorders that result in impaired energy production in skeletal muscle. Symptoms of premature muscle fatigue, sometimes leading to myalgia, rhabdomyolysis, and myoglobinuria, typically occur with exercise that would normally depend on the defective metabolic pathway. But in another group of these disorders, the dominant muscle symptom is weakness. This article reviews the clinical features, diagnosis, and management of these diseases with emphasis on the recent literature.
Collapse
Affiliation(s)
- Lydia J Sharp
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Neuromuscular Center, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, 7232 Greenville Avenue, Dallas, TX 75231, USA
| | - Ronald G Haller
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Neuromuscular Center, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, 7232 Greenville Avenue, Dallas, TX 75231, USA; North Texas VA Medical Center, 4500 South Lancaster Road, Dallas, TX 75216, USA.
| |
Collapse
|
37
|
Rousseau-Nepton I, Okubo M, Grabs R, Mitchell J, Polychronakos C, Rodd C. A founder AGL mutation causing glycogen storage disease type IIIa in Inuit identified through whole-exome sequencing: a case series. CMAJ 2015; 187:E68-E73. [PMID: 25602008 DOI: 10.1503/cmaj.140840] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Glycogen storage disease type III is caused by mutations in both alleles of the AGL gene, which leads to reduced activity of glycogen-debranching enzyme. The clinical picture encompasses hypoglycemia, with glycogen accumulation leading to hepatomegaly and muscle involvement (skeletal and cardiac). We sought to identify the genetic cause of this disease within the Inuit community of Nunavik, in whom previous DNA sequencing had not identified such mutations. METHODS Five Inuit children with a clinical and biochemical diagnosis of glycogen storage disease type IIIa were recruited to undergo genetic testing: 2 underwent whole-exome sequencing and all 5 underwent Sanger sequencing to confirm the identified mutation. Selected DNA regions near the AGL gene were also sequenced to identify a potential founder effect in the community. In addition, control samples from 4 adults of European descent and 7 family members of the affected children were analyzed for the specific mutation by Sanger sequencing. RESULTS We identified a homozygous frame-shift deletion, c.4456delT, in exon 33 of the AGL gene in 2 children by whole-exome sequencing. Confirmation by Sanger sequencing showed the same mutation in all 5 patients, and 5 family members were found to be carriers. With the identification of this mutation in 5 probands, the estimated prevalence of genetically confirmed glycogen storage disease type IIIa in this region is among the highest worldwide (1:2500). Despite identical mutations, we saw variations in clinical features of the disease. INTERPRETATION Our detection of a homozygous frameshift mutation in 5 Inuit children determines the cause of glycogen storage disease type IIIa and confirms a founder effect.
Collapse
Affiliation(s)
- Isabelle Rousseau-Nepton
- Department of Pediatrics (Rousseau-Nepton, Mitchell, Polychronakos), Montreal Children's Hospital, Montréal, Que.; Okinaka Memorial Institute for Medical Research (Okubo), Tokyo, Japan; Endocrine Genetics Laboratory (Grabs), Montreal Children's Hospital, McGill University Health Centre, Montréal, Que.; Department of Pediatrics and Child Health (Rodd), Winnipeg, Man
| | - Minoru Okubo
- Department of Pediatrics (Rousseau-Nepton, Mitchell, Polychronakos), Montreal Children's Hospital, Montréal, Que.; Okinaka Memorial Institute for Medical Research (Okubo), Tokyo, Japan; Endocrine Genetics Laboratory (Grabs), Montreal Children's Hospital, McGill University Health Centre, Montréal, Que.; Department of Pediatrics and Child Health (Rodd), Winnipeg, Man
| | - Rosemarie Grabs
- Department of Pediatrics (Rousseau-Nepton, Mitchell, Polychronakos), Montreal Children's Hospital, Montréal, Que.; Okinaka Memorial Institute for Medical Research (Okubo), Tokyo, Japan; Endocrine Genetics Laboratory (Grabs), Montreal Children's Hospital, McGill University Health Centre, Montréal, Que.; Department of Pediatrics and Child Health (Rodd), Winnipeg, Man
| | | | - John Mitchell
- Department of Pediatrics (Rousseau-Nepton, Mitchell, Polychronakos), Montreal Children's Hospital, Montréal, Que.; Okinaka Memorial Institute for Medical Research (Okubo), Tokyo, Japan; Endocrine Genetics Laboratory (Grabs), Montreal Children's Hospital, McGill University Health Centre, Montréal, Que.; Department of Pediatrics and Child Health (Rodd), Winnipeg, Man
| | - Constantin Polychronakos
- Department of Pediatrics (Rousseau-Nepton, Mitchell, Polychronakos), Montreal Children's Hospital, Montréal, Que.; Okinaka Memorial Institute for Medical Research (Okubo), Tokyo, Japan; Endocrine Genetics Laboratory (Grabs), Montreal Children's Hospital, McGill University Health Centre, Montréal, Que.; Department of Pediatrics and Child Health (Rodd), Winnipeg, Man
| | - Celia Rodd
- Department of Pediatrics (Rousseau-Nepton, Mitchell, Polychronakos), Montreal Children's Hospital, Montréal, Que.; Okinaka Memorial Institute for Medical Research (Okubo), Tokyo, Japan; Endocrine Genetics Laboratory (Grabs), Montreal Children's Hospital, McGill University Health Centre, Montréal, Que.; Department of Pediatrics and Child Health (Rodd), Winnipeg, Man.
| |
Collapse
|
38
|
Mayorandan S, Meyer U, Hartmann H, Das AM. Glycogen storage disease type III: modified Atkins diet improves myopathy. Orphanet J Rare Dis 2014; 9:196. [PMID: 25431232 PMCID: PMC4302571 DOI: 10.1186/s13023-014-0196-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/14/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Frequent feeds with carbohydrate-rich meals or continuous enteral feeding has been the therapy of choice in glycogen storage disease (Glycogenosis) type III. Recent guidelines on diagnosis and management recommend frequent feedings with high complex carbohydrates or cornstarch avoiding fasting in children, while in adults a low-carb-high-protein-diet is recommended. While this regimen can prevent hypoglycaemia in children it does not improve skeletal and heart muscle function, which are compromised in patients with glycogenosis IIIa. Administration of carbohydrates may elicit reactive hyperinsulinism, resulting in suppression of lipolysis, ketogenesis, gluconeogenesis, and activation of glycogen synthesis. Thus, heart and skeletal muscle are depleted of energy substrates. Modified Atkins diet leads to increased blood levels of ketone bodies and fatty acids. We hypothesize that this health care intervention improves the energetic balance of muscles. METHODS We treated 2 boys with glycogenosis IIIa aged 9 and 11 years with a modified Atkins diet (10 g carbohydrate per day, protein and fatty acids ad libitum) over a period of 32 and 26 months, respectively. RESULTS In both patients, creatine kinase levels in blood dropped in response to Atkins diet. When diet was withdrawn in one of the patients he complained of chest pain, reduced physical strength and creatine kinase levels rapidly increased. This was reversed when Atkins diet was reintroduced. One patient suffered from severe cardiomyopathy which significantly improved under diet. Patients with glycogenosis IIIa benefit from an improved energetic state of heart and skeletal muscle by introduction of Atkins diet both on a biochemical and clinical level. Apart from transient hypoglycaemia no serious adverse effects were observed.
Collapse
Affiliation(s)
- Sebene Mayorandan
- Clinic for Paediatric Kidney-, Liver and Metabolic Diseases, Carl-Neuberg-Str.1, D-30625, Hannover, Germany. .,Present address: Department of Paediatrics, University Hospital Münster, Albert-Schweitzer-Campus 1, D-48161, Münster, Germany.
| | - Uta Meyer
- Clinic for Paediatric Kidney-, Liver and Metabolic Diseases, Carl-Neuberg-Str.1, D-30625, Hannover, Germany.
| | - Hans Hartmann
- Clinic for Paediatric Kidney-, Liver and Metabolic Diseases, Carl-Neuberg-Str.1, D-30625, Hannover, Germany.
| | - Anibh Martin Das
- Clinic for Paediatric Kidney-, Liver and Metabolic Diseases, Carl-Neuberg-Str.1, D-30625, Hannover, Germany.
| |
Collapse
|
39
|
Improvement of Cardiomyopathy After High-Fat Diet in Two Siblings with Glycogen Storage Disease Type III. JIMD Rep 2014; 17:91-5. [PMID: 25308556 DOI: 10.1007/8904_2014_343] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/19/2014] [Accepted: 07/23/2014] [Indexed: 12/03/2022] Open
Abstract
Glycogenosis type III (GSD III) is an autosomal recessive disorder due to amylo-1,6-glucosidase deficiency. This disease causes limit dextrin storage in affected tissues: liver, skeletal muscles, and heart in GSD IIIa and only liver in GSD IIIb. Cardiomyopathy is quite frequent in GSD IIIa with variable severity and progression of manifestations. It is not clear if diet manipulation may interfere with cardiomyopathy's progression. Recent case reports showed improvement of cardiomyopathy following a ketogenic diet.Two siblings (girl and boy), 7- and 5-year-old, both affected with GSD IIIa, developed severe and rapidly worsening left ventricular hypertrophy in the first years of life, while treated with frequent diurnal and nocturnal hyperproteic meals followed by orally administered uncooked cornstarch. Subsequently they were treated with high-fat (60%) and high-protein (25%), low-carbohydrate (15%) diet. After 12 months exertion dyspnea disappeared in the girl and biochemical blood tests, cardiac enzymes, and congestive heart failure markers improved in both (CK 3439→324, 1304→581 U/L; NT-proBNP 2084→206, 782→135 pg/mL, respectively); ultrasound assessment in both patients showed a relevant reduction of the thickness of interventricular septum (30→16, 16→11 mm, respectively) and left ventricle posterior wall (18→7, 13→8 mm, respectively) and an improvement of the outflow obstruction. A diet rich in fats as well as proteins and poor in carbohydrates could be a beneficial therapeutic choice for GSD III with cardiomyopathy. Future research is needed to confirm the beneficial effect of this treatment and to design treatment strategies with the aim to provide alternative source of energy and prevent glycogen accumulation.
Collapse
|
40
|
Humphrey M, Truby H, Boneh A. New ways of defining protein and energy relationships in inborn errors of metabolism. Mol Genet Metab 2014; 112:247-58. [PMID: 24916709 DOI: 10.1016/j.ymgme.2014.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 05/14/2014] [Indexed: 12/30/2022]
Abstract
Dietary restrictions required to manage individuals with inborn errors of metabolism (IEM) are essential for metabolic control, however may result in an increased risk to both short and long-term nutritional status. Dietary factors most likely to influence nutritional status include energy intake, protein quality and quantity, micronutrient intake and the frequency and extent to which the diet must be altered during periods of increased physical or metabolic stress. Patients on the most restrictive diets, including those with intakes consisting of low levels of natural protein or those with recurrent illness or frequent metabolic decompensation carry the most nutritional risk. Due to the difficulties in determining condition specific requirements, dietary intake recommendations and nutritional monitoring tools used in patients with IEM are the same as, or extrapolated from, those used in healthy populations. As a consequence, evidence is lacking for the safest dietary prescriptions required to manage these patients long term, as tolerance to dietary therapy is generally described in terms of metabolic stability rather than long term nutritional and health outcomes. As the most frequent therapeutic dietary manipulation in IEM is alteration in dietary protein, and as protein status is critically dependent on adequate energy provision, the use of a Protein to Energy ratio (P:E ratio) as an additional tool will better define the relationship between these critical components. This could accurately define dietary quality and ensure that not only an adequate, but also a safe and balanced intake is provided.
Collapse
Affiliation(s)
- Maureen Humphrey
- Metabolic Genetics, Victorian Clinical Genetic Services, Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, Victoria, Melbourne 3052, Australia; Department of Nutrition and Food Services, Royal Children's Hospital, Flemington Road, Parkville, Victoria, Melbourne 3052, Australia; Be Active Sleep Eat (BASE) Facility, Department of Nutrition and Dietetics, Monash University, Faculty of Medicine, Nursing and Health Sciences, Level 1, 264 Ferntree Gully Road, VIC 3168, Melbourne, Australia.
| | - Helen Truby
- Be Active Sleep Eat (BASE) Facility, Department of Nutrition and Dietetics, Monash University, Faculty of Medicine, Nursing and Health Sciences, Level 1, 264 Ferntree Gully Road, VIC 3168, Melbourne, Australia.
| | - Avihu Boneh
- Metabolic Genetics, Victorian Clinical Genetic Services, Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, Victoria, Melbourne 3052, Australia; Be Active Sleep Eat (BASE) Facility, Department of Nutrition and Dietetics, Monash University, Faculty of Medicine, Nursing and Health Sciences, Level 1, 264 Ferntree Gully Road, VIC 3168, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, Victoria, Melbourne 3052, Australia.
| |
Collapse
|
41
|
Liu KM, Wu JY, Chen YT. Mouse model of glycogen storage disease type III. Mol Genet Metab 2014; 111:467-76. [PMID: 24613482 DOI: 10.1016/j.ymgme.2014.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 02/03/2014] [Accepted: 02/03/2014] [Indexed: 11/18/2022]
Abstract
Glycogen storage disease type IIIa (GSD IIIa) is caused by a deficiency of the glycogen debranching enzyme (GDE), which is encoded by the Agl gene. GDE deficiency leads to the pathogenic accumulation of phosphorylase limit dextrin (PLD), an abnormal glycogen, in the liver, heart, and skeletal muscle. To further investigate the pathological mechanisms behind this disease and develop novel therapies to treat this disease, we generated a GDE-deficient mouse model by removing exons after exon 5 in the Agl gene. GDE reduction was confirmed by western blot and enzymatic activity assay. Histology revealed massive glycogen accumulation in the liver, muscle, and heart of the homozygous affected mice. Interestingly, we did not find any differences in the general appearance, growth rate, and life span between the wild-type, heterozygous, and homozygous affected mice with ad libitum feeding, except reduced motor activity after 50 weeks of age, and muscle weakness in both the forelimb and hind legs of homozygous affected mice by using the grip strength test at 62 weeks of age. However, repeated fasting resulted in decreased survival of the knockout mice. Hepatomegaly and progressive liver fibrosis were also found in the homozygous affected mice. Blood chemistry revealed that alanine transaminase (ALT), aspartate transaminase (AST) and alkaline phosphatase (ALP) activities were significantly higher in the homozygous affected mice than in both wild-type and heterozygous mice and the activity of these enzymes further increased with fasting. Creatine phosphokinase (CPK) activity was normal in young and adult homozygous affected mice. However, the activity was significantly elevated after fasting. Hypoglycemia appeared only at a young age (3 weeks) and hyperlipidemia was not observed in our model. In conclusion, with the exception of normal lipidemia, these mice recapitulate human GSD IIIa; moreover, we found that repeated fasting was detrimental to these mice. This mouse model will be useful for future investigation regarding the pathophysiology and treatment strategy of human GSD III.
Collapse
Affiliation(s)
- Kai-Ming Liu
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, 155, Sec.2, Linong Street, Taipei 112, Taiwan
| | - Jer-Yuarn Wu
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Yuan-Tsong Chen
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan; Department of Pediatrics, Duke University Medical Center, Box 3528, Durham, NC 27710, USA.
| |
Collapse
|
42
|
Kondo Y, Usui H, Ishige-Wada M, Murase T, Owada M, Okubo M. Liver cirrhosis treated by living donor liver transplantation in a patient with AGL mutation c.2607-2610delATTC and c.1672dupA. Clin Chim Acta 2013; 424:19-21. [DOI: 10.1016/j.cca.2013.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 05/06/2013] [Indexed: 11/28/2022]
|
43
|
Sun B, Fredrickson K, Austin S, Tolun AA, Thurberg BL, Kraus WE, Bali D, Chen YT, Kishnani PS. Alglucosidase alfa enzyme replacement therapy as a therapeutic approach for glycogen storage disease type III. Mol Genet Metab 2013; 108:145-7. [PMID: 23318145 DOI: 10.1016/j.ymgme.2012.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 12/18/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
Abstract
We investigated the feasibility of using recombinant human acid-α glucosidase (rhGAA, Alglucosidase alfa), an FDA approved therapy for Pompe disease, as a treatment approach for glycogen storage disease type III (GSD III). An in vitro disease model was established by isolating primary myoblasts from skeletal muscle biopsies of patients with GSD IIIa. We demonstrated that rhGAA significantly reduced glycogen levels in the two GSD IIIa patients' muscle cells (by 17% and 48%, respectively) suggesting that rhGAA could be a novel therapy for GSD III. This conclusion needs to be confirmed in other in vivo models.
Collapse
Affiliation(s)
- Baodong Sun
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yi H, Thurberg BL, Curtis S, Austin S, Fyfe J, Koeberl DD, Kishnani PS, Sun B. Characterization of a canine model of glycogen storage disease type IIIa. Dis Model Mech 2012; 5:804-11. [PMID: 22736456 PMCID: PMC3484863 DOI: 10.1242/dmm.009712] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Glycogen storage disease type IIIa (GSD IIIa) is an autosomal recessive disease caused by deficiency of glycogen debranching enzyme (GDE) in liver and muscle. The disorder is clinically heterogeneous and progressive, and there is no effective treatment. Previously, a naturally occurring dog model for this condition was identified in curly-coated retrievers (CCR). The affected dogs carry a frame-shift mutation in the GDE gene and have no detectable GDE activity in liver and muscle. We characterized in detail the disease expression and progression in eight dogs from age 2 to 16 months. Monthly blood biochemistry revealed elevated and gradually increasing serum alanine transaminase (ALT), aspartate transaminase (AST) and alkaline phosphatase (ALP) activities; serum creatine phosphokinase (CPK) activity exceeded normal range after 12 months. Analysis of tissue biopsy specimens at 4, 12 and 16 months revealed abnormally high glycogen contents in liver and muscle of all dogs. Fasting liver glycogen content increased from 4 months to 12 months, but dropped at 16 months possibly caused by extended fibrosis; muscle glycogen content continually increased with age. Light microscopy revealed significant glycogen accumulation in hepatocytes at all ages. Liver histology showed progressive, age-related fibrosis. In muscle, scattered cytoplasmic glycogen deposits were present in most cells at 4 months, but large, lake-like accumulation developed by 12 and 16 months. Disruption of the contractile apparatus and fraying of myofibrils was observed in muscle at 12 and 16 months by electron microscopy. In conclusion, the CCR dogs are an accurate model of GSD IIIa that will improve our understanding of the disease progression and allow opportunities to investigate treatment interventions.
Collapse
Affiliation(s)
- Haiqing Yi
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Ramachandran R, Wedatilake Y, Coats C, Walker F, Elliott P, Lee PJ, Lachmann RH, Murphy E. Pregnancy and its management in women with GSD type III - a single centre experience. J Inherit Metab Dis 2012; 35:245-51. [PMID: 21947574 DOI: 10.1007/s10545-011-9384-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 07/31/2011] [Accepted: 08/08/2011] [Indexed: 12/20/2022]
Abstract
We present a review of our experience and pregnancy outcome in patients with GSD III managed by our centre. Between 1997 and 2010 there were 15 pregnancies in seven women with GSD III. Four women had GSD IIIb (nine pregnancies) and three GSD IIIa (six pregnancies). There was a successful outcome in all 15 pregnancies with delivery of 15 liveborn infants. Four infants were of low birthweight (<2nd centile) but all have developed normally apart from one with behavioural/psychiatric problems. Three women had pre-existing cardiomyopathy prior to pregnancy. One of these women had deterioration of her cardiomyopathy during pregnancy and again in the post-partum period. Women with GSD III do not seem to have any issues with fertility. Overall the outcome of pregnancy for both mother and child is good. Care needs to be taken to avoid maternal hypoglycemia which may be associated with intrauterine growth restriction and low birth weight. Cardiac function should be monitored carefully particularly in those with pre-existing cardiomyopathy.
Collapse
Affiliation(s)
- Radha Ramachandran
- Charles Dent Metabolic Unit, National Hospital for Neurology and Neurosurgery, Internal Mailbox 92 Queen Square, London, WC1N 3BG, UK
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Cardiac Pathology in Glycogen Storage Disease Type III. JIMD Rep 2012; 6:65-72. [PMID: 23430941 DOI: 10.1007/8904_2011_118] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 10/20/2011] [Accepted: 11/11/2011] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To investigate the distribution and clinical impact of glycogen accumulation on heart structure and function in individuals with GSD III. METHODS We examined cardiac tissue and the clinical records of three individuals with GSD IIIa who died or underwent cardiac transplantation. Of the two patients that died, one was from infection and the other was from sudden cardiac death. The third patient required cardiac transplantation for end-stage heart failure with severe hypertrophic cardiomyopathy. RESULTS Macro- and microscopic examination revealed cardiac fibrosis (n = 1), moderate to severe vacuolation of cardiac myocytes (n = 3), mild to severe glycogen accumulation in the atrioventricular (AV) node (n = 3), and glycogen accumulation in smooth muscle cells of intramyocardial arteries associated with smooth muscle hyperplasia and profoundly thickened vascular walls (n = 1). CONCLUSION Our findings document diffuse though variable involvement of cardiac structures in GSD III patients. Furthermore, our results also show a potential for serious arrhythmia and symptomatic heart failure in some GSD III patients, and this should be considered when managing this patient population.
Collapse
|
47
|
Sentner CP, Caliskan K, Vletter WB, Smit GPA. Heart Failure Due to Severe Hypertrophic Cardiomyopathy Reversed by Low Calorie, High Protein Dietary Adjustments in a Glycogen Storage Disease Type IIIa Patient. JIMD Rep 2011; 5:13-6. [PMID: 23430911 DOI: 10.1007/8904_2011_111] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 09/30/2011] [Accepted: 10/25/2011] [Indexed: 01/12/2023] Open
Abstract
In glycogen storage disease type III (GSD III), deficiency of the debranching enzyme causes storage of an intermediate glycogen molecule (limit dextrin) in the affected tissues. In subtype IIIa hepatic tissue, skeletal- and cardiac muscle tissue is affected, while in subtype IIIb only hepatic tissue is affected. Cardiac storage of limit dextrin causes a form of cardiomyopathy, which resembles primary hypertrophic cardiomyopathy on cardiac ultrasound. We present a 32-year-old GSD IIIa patient with severe left ventricular hypertrophy (LVH) first diagnosed at the age of 8 years. LVH remained stable and symptomless until the patient presented at age 25 years with increasing dyspnea, fatigue, obesity, and NYHA (New York Heart Association) functional classification two out of four. Dyspnea, fatigue, and obesity progressed, and at age 28 years she was severely symptomatic with NYHA classification 3+ out of 4. On echocardiogram and electrocardiogram, the LVH had progressed as well. Initially, she was rejected for cardiac transplantation because of severe obesity. Therefore, a 900 cal, high protein diet providing 37% of total energy was prescribed during 4 months on which 10 kg weight loss was achieved. However, her symptoms as well as the electrocardiographic and echocardiographic LVH indices had improved dramatically - ultimately deferring cardiac transplantation. Thereafter, the caloric intake was increased to 1,370 cal per day, and the high protein intake was continued providing 43% of total energy. After 3 years of follow-up, the patient remains satisfied with reasonable exercise tolerance and minor symptoms in daily life.
Collapse
Affiliation(s)
- Christiaan P Sentner
- Department of Metabolic Diseases, Beatrix Children's Hospital, University Medical Centre Groningen, Hanzeplein 1, 30.001, 9700 RB, Groningen, The Netherlands,
| | | | | | | |
Collapse
|
48
|
|
49
|
Inborn errors of energy metabolism associated with myopathies. J Biomed Biotechnol 2010; 2010:340849. [PMID: 20589068 PMCID: PMC2877206 DOI: 10.1155/2010/340849] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 01/19/2010] [Accepted: 02/22/2010] [Indexed: 12/31/2022] Open
Abstract
Inherited neuromuscular disorders affect approximately one in 3,500 children. Structural muscular defects are most common; however functional impairment of skeletal and cardiac muscle in both children and adults may be caused by inborn errors of energy metabolism as well. Patients suffering from metabolic myopathies due to compromised energy metabolism may present with exercise intolerance, muscle pain, reversible or progressive muscle weakness, and myoglobinuria. In this review, the physiology of energy metabolism in muscle is described, followed by the presentation of distinct disorders affecting skeletal and cardiac muscle: glycogen storage diseases types III, V, VII, fatty acid oxidation defects, and respiratory chain defects (i.e., mitochondriopathies). The diagnostic work-up and therapeutic options in these disorders are discussed.
Collapse
|