1
|
Chen X, Li Q, Xie J, Nie S. Immunomodulatory Effects of Probiotic-Derived Extracellular Vesicles: Opportunities and Challenges. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19259-19273. [PMID: 39177683 DOI: 10.1021/acs.jafc.4c04223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Probiotics are known to modulate host immune responses in the course of many diseases. Recently, bacterial extracellular vesicles (EVs), which contain bioactive proteins, lipids, nucleic acids, and metabolites released by bacteria, have been identified as potentially important mediators of bacteria-bacterium and bacteria-host interactions. With the deepening of research, it has been found that probiotic-derived EVs play a significant role in regulating host immune function and, thus, exerting health-promoting effects. Nevertheless, current research is in its early stages, and there remains a long way to go to bridge the gap between basic research and clinical practice. In this review, we describe the fundamental aspects of probiotic-derived EVs, including their biogenesis, cargo sorting mechanism, and transport capabilities. We further discussed the potential mechanisms of probiotic-derived EVs in regulating the host's gut microbiota and immune responses. Finally, we speculate about the potential of probiotic-derived EVs as new postbiotics for applications in functional food, disease treatment substitutes, and immune regulatory adjuvants.
Collapse
Affiliation(s)
- Xinyang Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Qiqiong Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Junhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| |
Collapse
|
2
|
De la Cruz-López KG, Alvarado-Ortiz E, Valencia-González HA, Beltrán-Anaya FO, Zamora-Fuentes JM, Hidalgo-Miranda A, Ortiz-Sánchez E, Espinal-Enríquez J, García-Carrancá A. Metformin induces ZFP36 by mTORC1 inhibition in cervical cancer-derived cell lines. BMC Cancer 2024; 24:853. [PMID: 39026155 PMCID: PMC11256429 DOI: 10.1186/s12885-024-12555-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Metformin, a widely prescribed antidiabetic drug, has shown several promising effects for cancer treatment. These effects have been shown to be mediated by dual modulation of the AMPK-mTORC1 axis, where AMPK acts upstream of mTORC1 to decrease its activity. Nevertheless, alternative pathways have been recently discovered suggesting that metformin can act through of different targets regulation. METHODS We performed a transcriptome screening analysis using HeLa xenograft tumors generated in NOD-SCID mice treated with or without metformin to examine genes regulated by metformin. Western Blot analysis, Immunohistochemical staining, and RT-qPCR were used to confirm alterations in gene expression. The TNMplot and GEPIA2 platform were used for in silico analysis of genes found up-regulated by metformin, in cervical cancer patients. We performed an AMPK knock-down using AMPK-targeted siRNAs and mTOR inhibition with rapamycin to investigate the molecular mechanisms underlying the effect of metformin in cervical cancer cell lines. RESULTS We shown that metformin decreases tumor growth and increased the expression of a group of antitumoral genes involved in DNA-binding transcription activator activity, hormonal response, and Dcp1-Dcp2 mRNA-decapping complex. We demonstrated that ZFP36 could act as a new molecular target increased by metformin. mTORC1 inhibition using rapamycin induces ZFP36 expression, which could suggest that metformin increases ZFP36 expression and requires mTORC1 inhibition for such effect. Surprisingly, in HeLa cells AMPK inhibition did not affect ZFP36 expression, suggesting that additional signal transducers related to suppressing mTORC1 activity, could be involved. CONCLUSIONS These results highlight the importance of ZFP36 activation in response to metformin treatment involving mTORC1 inhibition.
Collapse
Affiliation(s)
- Karen Griselda De la Cruz-López
- Programa de Doctorado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio de Virus y Cáncer, Unidad de Investigación Biomédica en Cáncer. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México & Instituto Nacional de Cancerología., Av. San Fernando No. 22 Colonia Sección XVI, Tlalpan, Mexico City, 14080, Mexico
| | - Eduardo Alvarado-Ortiz
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Heriberto A Valencia-González
- Laboratorio de Células Troncales y Desarrollo Terapéutico Antineoplásico, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| | - Fredy Omar Beltrán-Anaya
- Laboratorio de Diagnóstico e Investigación en Salud, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo, Gro, Mexico
| | - José María Zamora-Fuentes
- Laboratorio de Oncología Teórica, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Centro de Ciencias de La Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica de Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Elizabeth Ortiz-Sánchez
- Laboratorio de Células Troncales y Desarrollo Terapéutico Antineoplásico, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| | - Jesús Espinal-Enríquez
- Laboratorio de Oncología Teórica, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Centro de Ciencias de La Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alejandro García-Carrancá
- Laboratorio de Virus y Cáncer, Unidad de Investigación Biomédica en Cáncer. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México & Instituto Nacional de Cancerología., Av. San Fernando No. 22 Colonia Sección XVI, Tlalpan, Mexico City, 14080, Mexico.
| |
Collapse
|
3
|
Galal MA, Al-Rimawi M, Hajeer A, Dahman H, Alouch S, Aljada A. Metformin: A Dual-Role Player in Cancer Treatment and Prevention. Int J Mol Sci 2024; 25:4083. [PMID: 38612893 PMCID: PMC11012626 DOI: 10.3390/ijms25074083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer continues to pose a significant global health challenge, as evidenced by the increasing incidence rates and high mortality rates, despite the advancements made in chemotherapy. The emergence of chemoresistance further complicates the effectiveness of treatment. However, there is growing interest in the potential of metformin, a commonly prescribed drug for type 2 diabetes mellitus (T2DM), as an adjuvant chemotherapy agent in cancer treatment. Although the precise mechanism of action of metformin in cancer therapy is not fully understood, it has been found to have pleiotropic effects, including the modulation of metabolic pathways, reduction in inflammation, and the regulation of cellular proliferation. This comprehensive review examines the anticancer properties of metformin, drawing insights from various studies conducted in vitro and in vivo, as well as from clinical trials and observational research. This review discusses the mechanisms of action involving both insulin-dependent and independent pathways, shedding light on the potential of metformin as a therapeutic agent for different types of cancer. Despite promising findings, there are challenges that need to be addressed, such as conflicting outcomes in clinical trials, considerations regarding dosing, and the development of resistance. These challenges highlight the importance of further research to fully harness the therapeutic potential of metformin in cancer treatment. The aims of this review are to provide a contemporary understanding of the role of metformin in cancer therapy and identify areas for future exploration in the pursuit of effective anticancer strategies.
Collapse
Affiliation(s)
- Mariam Ahmed Galal
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| | - Mohammed Al-Rimawi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | | | - Huda Dahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | - Samhar Alouch
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| |
Collapse
|
4
|
Krebs M, Kotlyar MJ, Fahl J, Janaki Raman S, Röhrig F, Marquardt A, Kübler H, Kneitz B, Schulze A, Kalogirou C. Metformin Regulates the miR-205/VEGFA Axis in Renal Cell Carcinoma Cells: Exploring a Clinical Synergism with Tyrosine Kinase Inhibitors. Urol Int 2023; 108:49-59. [PMID: 38035560 PMCID: PMC10836959 DOI: 10.1159/000535025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/14/2023] [Indexed: 12/02/2023]
Abstract
INTRODUCTION Metformin (MF) intake could be associated with a favorable outcome in sunitinib (SUT)- and axitinib (AX)-treated clear cell renal cell carcinoma (ccRCC) patients. Functionally, MF induces miR-205, a microRNA serving as a tumor suppressor in several cancers. METHODS Real-time quantitative PCR, viability assays, and Western blotting analyzed MF and SUT/AX effects in RCC4 and 786-O cells. A tetracycline-inducible overexpression model was used to study the role of miR-205 and its known target gene, VEGFA. We analyzed miR-205 and VEGFA within a public and an in-house ccRCC cohort. Human umbilical vein endothelial cell (HUVEC) sprouting assays examined miR-205 effects on angiogenesis initiation. To determine the influence of the von Hippel-Lindau tumor suppressor (VHL), we examined VHLwt reexpressing RCC4 and 786-O cells. RESULTS Viability assays confirmed a sensitizing effect of MF toward SUT/AX in RCC4 and 786-O cells. Overexpression of miR-205 diminished VEGFA expression - as did treatment with MF. Tumor tissue displayed a downregulation of miR-205 and an upregulation of VEGFA. Accordingly, miR-205 caused less and shorter vessel sprouts in HUVEC assays. Finally, VHLwt-expressing RCC4 and 786-O cells displayed higher miR-205 and lower VEGFA levels. CONCLUSION Our results support the protective role of MF in ccRCC and offer functional insights into the clinical synergism with tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Markus Krebs
- Department of Urology and Pediatric Urology, University Hospital Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany
| | - Mischa J Kotlyar
- Department of Urology and Pediatric Urology, University Hospital Würzburg, Würzburg, Germany,
- Department of Interdisciplinary Critical Care Medicine and Intermediate Care, Helios Clinic Erfurt, Erfurt, Germany,
| | - Julian Fahl
- Department of Urology and Pediatric Urology, University Hospital Würzburg, Würzburg, Germany
| | - Sudha Janaki Raman
- Chair of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Florian Röhrig
- Chair of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - André Marquardt
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany
- Institute of Pathology, Klinikum Stuttgart, Stuttgart, Germany
| | - Hubert Kübler
- Department of Urology and Pediatric Urology, University Hospital Würzburg, Würzburg, Germany
| | - Burkhard Kneitz
- Department of Urology and Pediatric Urology, University Hospital Würzburg, Würzburg, Germany
| | - Almut Schulze
- Chair of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center, Heidelberg, Germany
| | - Charis Kalogirou
- Department of Urology and Pediatric Urology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Velazquez C, Herrero Y, Bianchi MS, Cohen DJ, Cuasnicu P, Prost K, Marinoni R, Pascuali N, Parborell F, Abramovich D. Beneficial effects of metformin on mice female fertility after a high-fat diet intake. Mol Cell Endocrinol 2023; 575:111995. [PMID: 37364632 DOI: 10.1016/j.mce.2023.111995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
Female fertility is highly dependent on energy balance. High fat diet (HFD) intake entails a risk of infertility and ovulatory disorders. Considering the increase in the prevalence of overweight and obesity over the last decades, it is crucial to understand the mechanisms involved in overweight-associated infertility. In this study, we evaluated the reproductive performance of female mice fed with a HFD and the effects of metformin administration on ovarian function in these mice. We hypothesized that one of the mechanisms involved in subfertility due to a HFD intake is the alteration of ovarian blood vessel formation. We found that mice fed with HFD had altered estrous cycles and steroidogenesis, increased ovarian fibrosis, fewer pups per litter and require more time to achieve pregnancy. HFD-fed mice also presented dysregulated ovarian angiogenesis and an increase in nuclear DNA damage in ovarian cells. Ovulation rates were lower in these animals, as evidenced both in natural mating and after ovulation induction with gonadotropins. Metformin ameliorated ovarian angiogenesis, improved steroidogenesis, fibrosis, and ovulation, decreased the time to pregnancy and increased litter sizes in HFD-fed mice. We conclude that ovarian angiogenesis is one of the mechanisms detrimentally affected by HFD intake. Since metformin could improve ovarian microvasculature, it may be an interesting strategy to study in women to shed light on new targets for patients with metabolic disturbances.
Collapse
Affiliation(s)
- Candela Velazquez
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Vuelta de Obligado 2490, C1428ADL Ciudad Autónoma de Buenos Aires, Argentina
| | - Yamila Herrero
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Vuelta de Obligado 2490, C1428ADL Ciudad Autónoma de Buenos Aires, Argentina
| | - María Silvia Bianchi
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Vuelta de Obligado 2490, C1428ADL Ciudad Autónoma de Buenos Aires, Argentina
| | - Débora Juana Cohen
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Vuelta de Obligado 2490, C1428ADL Ciudad Autónoma de Buenos Aires, Argentina
| | - Patricia Cuasnicu
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Vuelta de Obligado 2490, C1428ADL Ciudad Autónoma de Buenos Aires, Argentina
| | - Katherine Prost
- Hospital Interzonal General de Agudos Pedro Fiorito, sector de Endocrinología, Av. Manuel Belgrano 827, B1870 Avellaneda, Provincia de Buenos Aires, Argentina
| | - Rocío Marinoni
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Vuelta de Obligado 2490, C1428ADL Ciudad Autónoma de Buenos Aires, Argentina
| | - Natalia Pascuali
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Vuelta de Obligado 2490, C1428ADL Ciudad Autónoma de Buenos Aires, Argentina; Department of Pathology, College of Medicine, University of Illinois at Chicago (UIC), Chicago, IL, United States
| | - Fernanda Parborell
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Vuelta de Obligado 2490, C1428ADL Ciudad Autónoma de Buenos Aires, Argentina
| | - Dalhia Abramovich
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Vuelta de Obligado 2490, C1428ADL Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
6
|
Phoenix KN, Yue Z, Yue L, Cronin CG, Liang BT, Hoeppner LH, Claffey KP. PLCβ2 Promotes VEGF-Induced Vascular Permeability. Arterioscler Thromb Vasc Biol 2022; 42:1229-1241. [PMID: 35861069 PMCID: PMC9492642 DOI: 10.1161/atvbaha.122.317645] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Regulation of vascular permeability is critical to maintaining tissue metabolic homeostasis. VEGF (vascular endothelial growth factor) is a key stimulus of vascular permeability in acute and chronic diseases including ischemia reperfusion injury, sepsis, and cancer. Identification of novel regulators of vascular permeability would allow for the development of effective targeted therapeutics for patients with unmet medical need. METHODS In vitro and in vivo models of VEGFA-induced vascular permeability, pathological permeability, quantitation of intracellular calcium release and cell entry, and phosphatidylinositol 4,5-bisphosphate levels were evaluated with and without modulation of PLC (phospholipase C) β2. RESULTS Global knock-out of PLCβ2 in mice resulted in blockade of VEGFA-induced vascular permeability in vivo and transendothelial permeability in primary lung endothelial cells. Further work in an immortalized human microvascular cell line modulated with stable knockdown of PLCβ2 recapitulated the observations in the mouse model and primary cell assays. Additionally, loss of PLCβ2 limited both intracellular release and extracellular entry of calcium following VEGF stimulation as well as reduced basal and VEGFA-stimulated levels of phosphatidylinositol 4,5-bisphosphate compared to control cells. Finally, loss of PLCβ2 in both a hyperoxia-induced lung permeability model and a cardiac ischemia:reperfusion model resulted in improved animal outcomes when compared with wild-type controls. CONCLUSIONS The results implicate PLCβ2 as a key positive regulator of VEGF-induced vascular permeability through regulation of both calcium flux and phosphatidylinositol 4,5-bisphosphate levels at the cellular level. Targeting of PLCβ2 in a therapeutic setting may provide a novel approach to regulating vascular permeability in patients.
Collapse
Affiliation(s)
- Kathryn N. Phoenix
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT
| | - Zhichao Yue
- Pat and Jim Calhoun Cardiology Center, University of Connecticut Health Center, Farmington, CT
| | - Lixia Yue
- Pat and Jim Calhoun Cardiology Center, University of Connecticut Health Center, Farmington, CT
| | - Chunxia G. Cronin
- Pat and Jim Calhoun Cardiology Center, University of Connecticut Health Center, Farmington, CT
| | - Bruce T. Liang
- Pat and Jim Calhoun Cardiology Center, University of Connecticut Health Center, Farmington, CT
| | - Luke H. Hoeppner
- The Hormel Institute, University of Minnesota, Austin, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Kevin P. Claffey
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT
| |
Collapse
|
7
|
Wu H, Huang D, Zhou H, Sima X, Wu Z, Sun Y, Wang L, Ruan Y, Wu Q, Wu F, She T, Chu Y, Huang Q, Ning Z, Zhang H. Metformin: A promising drug for human cancers. Oncol Lett 2022; 24:204. [PMID: 35720480 PMCID: PMC9178677 DOI: 10.3892/ol.2022.13325] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Small-molecule chemical drugs are of great significance for tumor-targeted and individualized therapies. However, the development of new small-molecule drugs, from basic experimental research and clinical trials to final application in clinical practice, is a long process that has a high cost. It takes at least 5 years for most drugs to be developed in the laboratory to prove their effectiveness and safety. Compared with the development of new drugs, repurposing traditional non-tumor drugs can be a shortcut. Metformin is a good model for a new use of an old drug. In recent years, the antitumor efficacy of metformin has attracted much attention. Epidemiological data and in vivo, and in vitro experiments have shown that metformin can reduce the incidence of cancer in patients with diabetes and has a strong antagonistic effect on metabolism-related tumors. Recent studies have shown that metformin can induce autophagy in esophageal cancer cells, mainly by inhibiting inflammatory signaling pathways. In recent years, studies have shown that the antitumor functions and mechanisms of metformin are multifaceted. The present study aims to review the application of metformin in tumor prevention and treatment.
Collapse
Affiliation(s)
- Hongnian Wu
- Department of Human Anatomy, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Dan Huang
- Department of Burn and Plastic Surgery, Enshi State Central Hospital, Enshi, Hubei 445099, P.R. China
| | - Hong Zhou
- Department of Human Anatomy, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Xueqin Sima
- Department of Histology and Embryology, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Zhe Wu
- Department of Histology and Embryology, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Yanling Sun
- Department of Histology and Embryology, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Long Wang
- Department of Microbiology, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Ying Ruan
- Department of Dermatology, Clinical Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Qian Wu
- Nursing School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Feng Wu
- Stomatology and Optometry School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Tonghui She
- Department of Pathology, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Ying Chu
- Department of Burn and Plastic Surgery, Enshi State Central Hospital, Enshi, Hubei 445099, P.R. China
| | - Qizhi Huang
- Department of Clinical Lab, Second Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Zhifeng Ning
- Department of Human Anatomy, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Hao Zhang
- Institute of Precision Cancer Medicine and Pathology, Department of Pathology, Jinan University Medical College, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
8
|
Gopalan L, Sebastian A, Praul CA, Albert I, Ramachandran R. Metformin Affects the Transcriptomic Profile of Chicken Ovarian Cancer Cells. Genes (Basel) 2021; 13:30. [PMID: 35052372 PMCID: PMC8774788 DOI: 10.3390/genes13010030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy in women. Metformin intake is associated with a reduced incidence of ovarian cancer and increased overall survival rate. We determined the effect of metformin on sphere formation, extracellular matrix invasion, and transcriptome profile of ovarian cancer cells (COVCAR) isolated from ascites of chickens that naturally developed ovarian cancer. We found that metformin treatment significantly decreased sphere formation and invasiveness of COVCAR cells. RNA-Seq data analysis revealed 0, 4, 365 differentially expressed genes in cells treated with 0.5, 1, 2 mM metformin, respectively compared to controls. Transcriptomic and ingenuity pathway analysis (IPA) revealed significant downregulation of MMP7, AICDA, GDPD2, APOC3, APOA1 and predicted inhibition of upstream regulators NFKB, STAT3, TP53 that are involved in epithelial-mesenchymal transition, DNA repair, and lipid metabolism. The analysis revealed significant upregulation of RASD2, IHH, CRABP-1 and predicted activation of upstream regulators VEGF and E2F1 that are associated with angiogenesis and cell cycle. Causal network analysis revealed novel pathways suggesting predicted inhibition of ovarian cancer through master regulator ASCL1 and dataset genes DCX, SEMA6B, HEY2, and KCNIP2. In summary, advanced pathway analysis in IPA revealed novel target genes, upstream regulators, and pathways affected by metformin treatment of COVCAR cells.
Collapse
Affiliation(s)
- Lalitha Gopalan
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Aswathy Sebastian
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (A.S.); (C.A.P.); (I.A.)
| | - Craig A. Praul
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (A.S.); (C.A.P.); (I.A.)
| | - Istvan Albert
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (A.S.); (C.A.P.); (I.A.)
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ramesh Ramachandran
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802, USA;
- Center for Reproductive Biology and Health, Department of Animal Science, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
9
|
Tapia E, Villa-Guillen DE, Chalasani P, Centuori S, Roe DJ, Guillen-Rodriguez J, Huang C, Galons JP, Thomson CA, Altbach M, Trujillo J, Pinto L, Martinez JA, Algotar AM, Chow HHS. A randomized controlled trial of metformin in women with components of metabolic syndrome: intervention feasibility and effects on adiposity and breast density. Breast Cancer Res Treat 2021; 190:69-78. [PMID: 34383179 PMCID: PMC8560579 DOI: 10.1007/s10549-021-06355-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE Obesity is a known risk factor for post-menopausal breast cancer and may increase risk for triple negative breast cancer in premenopausal women. Intervention strategies are clearly needed to reduce obesity-associated breast cancer risk. METHODS We conducted a Phase II double-blind, randomized, placebo-controlled trial of metformin in overweight/obese premenopausal women with components of metabolic syndrome to assess the potential of metformin for primary breast cancer prevention. Eligible participants were randomized to receive metformin (850 mg BID, n = 76) or placebo (n = 75) for 12 months. Outcomes included breast density, assessed by fat/water MRI with change in percent breast density as the primary endpoint, anthropometric measures, and intervention feasibility. RESULTS Seventy-six percent in the metformin arm and 83% in the placebo arm (p = 0.182) completed the 12-month intervention. Adherence to study agent was high with more than 80% of participants taking ≥ 80% assigned pills. The most common adverse events reported in the metformin arm were gastrointestinal in nature and subsided over time. Compared to placebo, metformin intervention led to a significant reduction in waist circumference (p < 0.001) and waist-to-hip ratio (p = 0.019). Compared to placebo, metformin did not change percent breast density and dense breast volume but led to a numerical but not significant decrease in non-dense breast volume (p = 0.070). CONCLUSION We conclude that metformin intervention resulted in favorable changes in anthropometric measures of adiposity and a borderline decrease in non-dense breast volume in women with metabolic dysregulation. More research is needed to understand the impact of metformin on breast cancer risk reduction. TRIAL REGISTRATION ClinicalTrials.gov NCT02028221. Registered January 7, 2014, https://clinicaltrials.gov/ct2/show/NCT02028221.
Collapse
Affiliation(s)
- Edgar Tapia
- University of Arizona Cancer Center, University of Arizona, 1515 N Campbell Ave, Tucson, AZ, 85724, USA
| | | | - Pavani Chalasani
- University of Arizona Cancer Center, University of Arizona, 1515 N Campbell Ave, Tucson, AZ, 85724, USA
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Sara Centuori
- University of Arizona Cancer Center, University of Arizona, 1515 N Campbell Ave, Tucson, AZ, 85724, USA
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Denise J Roe
- University of Arizona Cancer Center, University of Arizona, 1515 N Campbell Ave, Tucson, AZ, 85724, USA
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, USA
| | - Jose Guillen-Rodriguez
- University of Arizona Cancer Center, University of Arizona, 1515 N Campbell Ave, Tucson, AZ, 85724, USA
| | - Chuan Huang
- Department of Radiology, Stony Brook University, Stony Brook, NY, USA
| | - Jean-Phillippe Galons
- University of Arizona Cancer Center, University of Arizona, 1515 N Campbell Ave, Tucson, AZ, 85724, USA
- Department of Medical Imaging, University of Arizona, Tucson, AZ, USA
| | - Cynthia A Thomson
- University of Arizona Cancer Center, University of Arizona, 1515 N Campbell Ave, Tucson, AZ, 85724, USA
- Department of Health Promotion Sciences, University of Arizona, Tucson, AZ, USA
| | - Maria Altbach
- University of Arizona Cancer Center, University of Arizona, 1515 N Campbell Ave, Tucson, AZ, 85724, USA
- Department of Medical Imaging, University of Arizona, Tucson, AZ, USA
| | - Jesse Trujillo
- University of Arizona Cancer Center, University of Arizona, 1515 N Campbell Ave, Tucson, AZ, 85724, USA
| | - Liane Pinto
- University of Arizona Cancer Center, University of Arizona, 1515 N Campbell Ave, Tucson, AZ, 85724, USA
| | - Jessica A Martinez
- University of Arizona Cancer Center, University of Arizona, 1515 N Campbell Ave, Tucson, AZ, 85724, USA
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| | - Amit M Algotar
- University of Arizona Cancer Center, University of Arizona, 1515 N Campbell Ave, Tucson, AZ, 85724, USA
- Department of Family and Community Medicine, University of Arizona, Tucson, AZ, USA
| | - H-H Sherry Chow
- University of Arizona Cancer Center, University of Arizona, 1515 N Campbell Ave, Tucson, AZ, 85724, USA.
- Department of Medicine, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
10
|
Raspantini GL, Luiz MT, Abriata JP, Eloy JDO, Vaidergorn MM, Emery FDS, Marchetti JM. PCL-TPGS polymeric nanoparticles for docetaxel delivery to prostate cancer: Development, physicochemical and biological characterization. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Spelling Out CICs: A Multi-Organ Examination of the Contributions of Cancer Initiating Cells' Role in Tumor Progression. Stem Cell Rev Rep 2021; 18:228-240. [PMID: 34244971 DOI: 10.1007/s12015-021-10195-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 12/15/2022]
Abstract
Tumor invasion and metastasis remain the leading causes of mortality for patients with cancer despite current treatment strategies. In some cancer types, recurrence is considered inevitable due to the lack of effective anti-metastatic therapies. Recent studies across many cancer types demonstrate a close relationship between cancer-initiating cells (CICs) and metastasis, as well as general cancer progression. First, this review describes CICs' contribution to cancer progression. Then we discuss our recent understanding of mechanisms through which CICs promote tumor invasion and metastasis by examining the role of CICs in each stage. Finally, we examine the current understanding of CICs' contribution to therapeutic resistance and recent developments in CIC-targeting drugs. We believe this understanding is key to advancing anti-CIC clinical therapeutics.
Collapse
|
12
|
Anness AR, Baldo A, Webb DR, Khalil A, Robinson TG, Mousa HA. Effect of metformin on biomarkers of placental- mediated disease: A systematic review and meta-analysis. Placenta 2021; 107:51-58. [PMID: 33798839 DOI: 10.1016/j.placenta.2021.02.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/16/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Metformin reduces the incidence of placental-mediated disease (PMD) in pregnancies with and without diabetes, but the mechanism through which it exerts these effects is not yet fully understood. We performed a systematic review and meta-analysis to examine the effect of metformin on biomarkers implicated in the pathogenesis of PMD. We searched Medline, Embase and the Cochrane Library for studies of metformin and biomarkers of PMD in pregnancy. Meta-analysis was undertaken where comparable data were obtained from two or more studies. 12 studies were included in the final review. Meta-analysis of 2 studies including 323 pregnant women showed significantly reduced CRP levels following treatment with metformin compared to placebo [mean difference = -1.72, 95% CI (-2.97; -0.48); p = 0.007]. Metformin exposure was also associated with decreased levels of the inflammatory cytokines TNFα, IL-1a, IL-1b and IL-6 in serum, placenta and omental tissue taken from pregnant women. Metformin significantly decreased the release of anti-angiogenic factors sFlt-1 and sEng from ex-vivo placental and umbilical vein tissue, and increased maternal serum levels of non-phosphorylated IGFBP-1. Overall, our findings show that metformin mediates several molecular pathways implicated in the pathogenesis of pre-eclampsia and intrauterine growth retardation. Metformin therefore has exciting potential as a therapeutic, as well as preventative, agent in the treatment of PMD, which warrants further investigation.
Collapse
Affiliation(s)
| | | | - David R Webb
- Diabetes Research Centre, University of Leicester, UK
| | - Asma Khalil
- St. George's University Hospital (University of London), UK
| | | | - Hatem A Mousa
- University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|
13
|
Alomar SY, M Barakat B, Eldosoky M, Atef H, Mohamed AS, Elhawary R, El-Shafey M, Youssef AM, Elkazaz AY, Gabr AM, Elaskary AA, Salih MAK, Alolayan SO, Zaitone SA. Protective effect of metformin on rat diabetic retinopathy involves suppression of toll-like receptor 4/nuclear factor-k B expression and glutamate excitotoxicity. Int Immunopharmacol 2021; 90:107193. [PMID: 33246827 DOI: 10.1016/j.intimp.2020.107193] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/27/2020] [Accepted: 11/08/2020] [Indexed: 01/27/2023]
Abstract
Microvascular complications of diabetes mellitus are progressively significant reasons for mortality. Metformin (MET) is considered as the first-line therapy for type 2 diabetes patients, and may be especially beneficial in cases of diabetic retinopathy although the precise mechanisms of MET action are not fully elucidated. The current study was designed to inspect the antioxidant and modulatory actions of MET on DRET in streptozotocin-induced diabetic rats. The effect of MET on the toll-like receptor 4/nuclear factor kappa B (TLR4/NFkB), inflammatory burden and glutamate excitotoxicity was assessed. Twenty-four male rats were assigned to four experimental groups: (1) Vehicle group, (2) Diabetic control: developed diabetes by injection of streptozotocin (60 mg/kg, i.p.). (3&4) Diabetic + MET group: diabetic rats were left for 9 weeks without treatment and then received oral MET 100 and 200 mg/kg for 6 weeks. Retinal samples were utilized in biochemical, histological, immunohistochemical and electron microscopic studies. MET administration significantly decreased retinal level of insulin growth factor and significantly suppressed the diabetic induced increase of malondialdehyde, glutamate, tumor necrosis factor-α and vascular endothelial growth factor (VEGF). Further, MET decreased the retinal mRNA expression of NFkB, tumor necrosis factor-α and TLR4 in diabetic rats. The current findings shed the light on MET's efficacy as an adjuvant therapy to hinder the development of diabetic retinopathy, at least partly, via inhibition of oxidative stress-induced NFkB/TLR4 pathway and suppression of glutamate excitotoxicity.
Collapse
Affiliation(s)
- Suliman Y Alomar
- Doping Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia.
| | - Bassant M Barakat
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt; Department of Clinical Pharmacy, College of Clinical Pharmacy, Al-Baha University, Al-Baha, Saudi Arabia
| | - Mohamed Eldosoky
- Department of Neuroscience Technology, College of Applied Sciences, Jubail Imam Abdulrahman bin Faisal University, Saudi Arabia
| | - Hoda Atef
- Department of Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Abdelaty Shawky Mohamed
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Basic Medical Sciences Department, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Reda Elhawary
- Department of Pathology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Mohamed El-Shafey
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Physiological Sciences Department, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Amal M Youssef
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Amany Y Elkazaz
- Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt; Biochemistry and Molecular Biology Department, Faculty of Medicine, Portsaid University, Portsaid, Egypt
| | - Attia M Gabr
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt; Pharmacology and Therapeutics Department, College of Medicine, Qassim University, Qassim, Saudi Arabia
| | | | - Mohamed A K Salih
- Ophthalmology Department, Al-Azher Asyut Faculty of Medicine for Men, Asyut, Egypt
| | - Sultan Othman Alolayan
- Clinical and Hospital Pharmacy Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| |
Collapse
|
14
|
Wang G, Lin F, Wan Q, Wu J, Luo M. Mechanisms of action of metformin and its regulatory effect on microRNAs related to angiogenesis. Pharmacol Res 2020; 164:105390. [PMID: 33352227 DOI: 10.1016/j.phrs.2020.105390] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
Angiogenesis is rapidly initiated in response to pathological conditions and is a key target for pharmaceutical intervention in various malignancies. Anti-angiogenic therapy has emerged as a potential and effective therapeutic strategy for treating cancer and cardiovascular-related diseases. Metformin, a first-line oral antidiabetic agent for type 2 diabetes mellitus (T2DM), not only reduces blood glucose levels and improves insulin sensitivity and exerts cardioprotective effects but also shows benefits against cancers, cardiovascular diseases, and other diverse diseases and regulates angiogenesis. MicroRNAs (miRNAs) are endogenous noncoding RNA molecules with a length of approximately 19-25 bases that are widely involved in controlling various human biological processes. A large number of miRNAs are involved in the regulation of cardiovascular cell function and angiogenesis, of which miR-21 not only regulates vascular cell proliferation, migration and apoptosis but also plays an important role in angiogenesis. The relationship between metformin and abnormal miRNA expression has gradually been revealed in the context of numerous diseases and has received increasing attention. This paper reviews the drug-target interactions and drug repositioning events of metformin that influences vascular cells and has benefits on angiogenesis-mediated effects. Furthermore, we use miR-21 as an example to explain the specific molecular mechanism underlying metformin-mediated regulation of the miRNA signaling pathway controlling angiogenesis and vascular protective effects. These findings may provide a new therapeutic target and theoretical basis for the clinical prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Gang Wang
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Fang Lin
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Qin Wan
- Department of Endocrinology, Nephropathy Clinical Medical Research Center of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Jianbo Wu
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States.
| | - Mao Luo
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
15
|
Increased Expressions of Matrix Metalloproteinases (MMPs) in Prostate Cancer Tissues of Men with Type 2 Diabetes. Biomedicines 2020; 8:biomedicines8110507. [PMID: 33207809 PMCID: PMC7696165 DOI: 10.3390/biomedicines8110507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/07/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes (T2D) is associated with worse prognosis of prostate cancer (PCa). The molecular mechanisms behind this association are still not fully understood. The aim of this study was to identify key factors, which contribute to the more aggressive PCa phenotype in patients with concurrent T2D. Therefore, we investigated benign and PCa tissue of PCa patients with and without diabetes using real time qPCR. Compared to patients without diabetes, patients with T2D showed a decreased E-cadherin/N-cadherin (CDH1/CDH2) ratio in prostate tissue, indicating a switch of epithelial-mesenchymal transition (EMT), which is a pivotal process in carcinogenesis. In addition, the gene expression levels of matrix metalloproteinases (MMPs) and CC chemokine ligands (CCLs) were higher in prostate samples of T2D patients. Next, prostate adenocarcinoma PC3 cells were treated with increasing glucose concentrations to replicate hyperglycemia in vitro. In these cells, high glucose induced expressions of MMPs and CCLs, which showed significant positive associations with the proliferation marker proliferating cell nuclear antigen (PCNA). These results indicate that in prostate tissue of men with T2D, hyperglycemia may induce EMT, increase MMP and CCL gene expressions, which in turn activate invasion and inflammatory processes accelerating the progression of PCa.
Collapse
|
16
|
Chang WH, Lai AG. An integrative pan-cancer investigation reveals common genetic and transcriptional alterations of AMPK pathway genes as important predictors of clinical outcomes across major cancer types. BMC Cancer 2020; 20:773. [PMID: 32807122 PMCID: PMC7433212 DOI: 10.1186/s12885-020-07286-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The AMP-activated protein kinase (AMPK) is an evolutionarily conserved regulator of cellular energy homeostasis. As a nexus for transducing metabolic signals, AMPK cooperates with other energy-sensing pathways to modulate cellular responses to metabolic stressors. With metabolic reprogramming being a hallmark of cancer, the utility of agents targeting AMPK has received continued scrutiny and results have demonstrated conflicting effects of AMPK activation in tumorigenesis. Harnessing multi-omics datasets from human tumors, we seek to evaluate the seemingly pleiotropic, tissue-specific dependencies of AMPK signaling dysregulation. METHODS We interrogated copy number variation and differential transcript expression of 92 AMPK pathway genes across 21 diverse cancers involving over 18,000 patients. Cox proportional hazards regression and receiver operating characteristic analyses were used to evaluate the prognostic significance of AMPK dysregulation on patient outcomes. RESULTS A total of 24 and seven AMPK pathway genes were identified as having loss- or gain-of-function features. These genes exhibited tissue-type dependencies, where survival outcomes in glioma patients were most influenced by AMPK inactivation. Cox regression and log-rank tests revealed that the 24-AMPK-gene set could successfully stratify patients into high- and low-risk groups in glioma, sarcoma, breast and stomach cancers. The 24-AMPK-gene set could not only discriminate tumor from non-tumor samples, as confirmed by multidimensional scaling analyses, but is also independent of tumor, node and metastasis staging. AMPK inactivation is accompanied by the activation of multiple oncogenic pathways associated with cell adhesion, calcium signaling and extracellular matrix organization. Anomalous AMPK signaling converged on similar groups of transcriptional targets where a common set of transcription factors were identified to regulate these targets. We also demonstrated crosstalk between pro-catabolic AMPK signaling and two pro-anabolic pathways, mammalian target of rapamycin and peroxisome proliferator-activated receptors, where they act synergistically to influence tumor progression significantly. CONCLUSION Genetic and transcriptional aberrations in AMPK signaling have tissue-dependent pro- or anti-tumor impacts. Pan-cancer investigations on molecular changes of this pathway could uncover novel therapeutic targets and support risk stratification of patients in prospective trials.
Collapse
Affiliation(s)
- Wai Hoong Chang
- Institute of Health Informatics, University College London, 222 Euston Road, London, NW1 2DA, UK
| | - Alvina G Lai
- Institute of Health Informatics, University College London, 222 Euston Road, London, NW1 2DA, UK.
| |
Collapse
|
17
|
Zolali E, Shayesteh S, Rahbarghazi R, Vaez H, Heidari HR, Garjani A. Metformin Had Potential to Increase Endocan Levels in STZ-Induced Diabetic Mice. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background:
Type 2 diabetes mellitus is a chronic metabolic disorder with prominent vascular injuries. In this condition, the levels of multiple pro- and anti-angiogenic factors have been shown to change. This study aimed to investigate the possible effect of metformin on pro-angiogenic factor, endocan levels, via the modulation of p-AMPK/AMPK axis in diabetic mice. Methods: Mice were randomly assigned to one of 4 groups (n=6): Control (normal saline) and the diabetic group was injected streptozotocin and two groups were given 50 and 100 mg/kg metformin orally, once daily for two weeks after diabetes induction. Endocan protein levels were detected in the liver and kidneys by ELISA and immunofluorescence analysis. Phosphorylation of AMPK was assessed using western blotting. Histological examination was performed to follow the metformin effect on Von Willebrand factor expression and diabetes-related pathologies. Results: ELISA assay showed an elevated levels of endocan in the renal and hepatic tissues of diabetic mice following treatment with metformin (p<0.05). Immunofluorescence and immunohistochemistry examination of kidneys showed that the increase of endocan protein coincided with the promotion of vWF factors in mice treated with metformin (p<0.05). We did not find endocan factor in hepatic tissue of diabetic mice pre- and post-treatment with metformin. Western blotting confirmed the phosphorylation of AMPK by metformin in kidneys (p<0.05), but these changes did not reach statistically significant levels in hepatic tissues (p>0.05). Conclusion: Metformin could change the endocan levels during diabetic condition possibly by the modulation of p-AMPK/AMPK axis.
Collapse
Affiliation(s)
- Elmira Zolali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevda Shayesteh
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Haleh Vaez
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Heidari
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Garjani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Ali EMT, Abdallah HI, El-Sayed SM. Histomorphological, VEGF and TGF-β immunoexpression changes in the diabetic rats' ovary and the potential amelioration following treatment with metformin and insulin. J Mol Histol 2020; 51:287-305. [PMID: 32399705 DOI: 10.1007/s10735-020-09880-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/05/2020] [Indexed: 12/29/2022]
Abstract
Diabetes mellitus (DM) affects the ovary by reducing the number and diameters of ovarian follicles and increasing atretic follicles. Follicular growth and diameters depend on VEGF production. Hyperglycemia causes ovarian stromal and follicular degeneration then fibrosis by activating TGF-β. Insulin and metformin promote development of ovarian follicles and reduce atretic follicles. Therefore, the present study investigates the ovarian VEGF and TGF-β immune-expression and its variations in diabetic, insulin and metformin-treated rats. Forty adult female albino rats were divided equally into four groups: control, diabetic (STZ-induced diabetes), diabetic metformin-treated group (100 mg/kg/day orally/eight weeks) and diabetic insulin-treated group (5 U insulin /day). Ovarian sections were stained with hematoxylin and eosin, Masson's trichrome, immunohistochemistry for VEGF and TGF-β. The diabetic group showed noticeable atrophic and degenerative changes in cortex and medulla as well as increased density and distribution of the collagenous fibers. The number and diameter of primary, secondary and tertiary follicles were decreased. However, the number of atretic follicles and corpus luteum was increased. Significant decrease in the surface area percentage of VEGF immuno-expression and significant increase in TGF-β immuno-expression surface area percentage were detected. By treating animals with metformin and insulin, there was restoration of the ovarian histological structure more or less as in control. DM negatively affects the histological and morphometric parameters of ovaries. Furthermore, insulin showed more beneficial effects than metformin in hindering these complications by modifying the expression of VEGF and TGF-β.
Collapse
Affiliation(s)
- Eyad M T Ali
- Department of Anatomy, Faculty of medicine, Taibah University, Madinah, Kingdom of Saudi Arabia. .,Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Hesham I Abdallah
- Department of Anatomy, Faculty of medicine, Taibah University, Madinah, Kingdom of Saudi Arabia.,Department of Anatomy, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sayed M El-Sayed
- Department of Anatomy, Faculty of medicine, Taibah University, Madinah, Kingdom of Saudi Arabia.,Department of Anatomy, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
19
|
Moschetta MG, Leonel C, Maschio-Signorini LB, Borin TF, Gelaleti GB, Jardim-Perassi BV, Ferreira LC, Sonehara NM, Carvalho LGS, Hellmén E, de Campos Zuccari DAP. Evaluation of Angiogenesis Process after Metformin and LY294002 Treatment in Mammary Tumor. Anticancer Agents Med Chem 2020; 19:655-666. [PMID: 30569877 DOI: 10.2174/1871520619666181218164050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/24/2018] [Accepted: 12/11/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND The angiogenesis process is regulated by many factors, such as Hypoxia-Inducible Factor-1 (HIF-1) and Vascular Endothelial Growth Factor (VEGF). Metformin has demonstrated its ability to inhibit cell growth and the LY294002 is the major inhibitor of PI3K/AKT/mTOR pathway that has antiangiogenic properties. METHODS Canine mammary tumor cell lines CMT-U229 and CF41 were treated with metformin and LY294002. Cell viability, protein and gene expression of VEGF and HIF-1 were determined in vitro. For the in vivo study, CF41 cells were inoculated in female athymic nude mice treated with either metformin or LY294002. The microvessel density by immunohistochemistry for CD31 as well as the gene and protein expression of HIF-1 and VEGF were evaluated. RESULTS The treatment with metformin and LY294002 was able to reduce the cellular viability after 24 hours. The protein and gene expression of HIF-1 and VEGF decreased after treatment with metformin and LY294002. In the in vivo study, there was a decrease in tumor size, protein and gene expression of HIF-1 and VEGFA, in addition to the decreasing of CD31 expression after all treatments. CONCLUSION Our results demonstrate the effectiveness of metformin and LY294002 in controlling the angiogenesis process in mammary tumors by VEGF and HIF-1, the most important angiogenic markers.
Collapse
Affiliation(s)
- Marina G Moschetta
- Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), Departament of Molecular Biology, Laboratorio de Investigacao Molecular no Cancer (LIMC), Sao Jose do Rio Preto, SP, Brazil
| | - Camila Leonel
- Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), Departament of Molecular Biology, Laboratorio de Investigacao Molecular no Cancer (LIMC), Sao Jose do Rio Preto, SP, Brazil
| | - Larissa B Maschio-Signorini
- Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), Departament of Molecular Biology, Laboratorio de Investigacao Molecular no Cancer (LIMC), Sao Jose do Rio Preto, SP, Brazil
| | - Thaiz F Borin
- Augusta University, Department of Biochemistry and Molecular Biology, Tumor Imaging Angiogenesis Laboratory, Augusta, GA, United States
| | - Gabriela B Gelaleti
- Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), Departament of Molecular Biology, Laboratorio de Investigacao Molecular no Cancer (LIMC), Sao Jose do Rio Preto, SP, Brazil
| | | | - Lívia C Ferreira
- Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), Departament of Molecular Biology, Laboratorio de Investigacao Molecular no Cancer (LIMC), Sao Jose do Rio Preto, SP, Brazil
| | - Nathália M Sonehara
- Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), Departament of Molecular Biology, Laboratorio de Investigacao Molecular no Cancer (LIMC), Sao Jose do Rio Preto, SP, Brazil
| | - Livia G S Carvalho
- Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), Departament of Molecular Biology, Laboratorio de Investigacao Molecular no Cancer (LIMC), Sao Jose do Rio Preto, SP, Brazil
| | - Eva Hellmén
- Swedish University of Agricultural Sciences (SLU), Department of Anatomy, Physiology and Biochemistry, Uppsala, Sweden
| | - Debora A P de Campos Zuccari
- Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), Departament of Molecular Biology, Laboratorio de Investigacao Molecular no Cancer (LIMC), Sao Jose do Rio Preto, SP, Brazil
| |
Collapse
|
20
|
Harguindey S, Alfarouk K, Polo Orozco J, Hardonnière K, Stanciu D, Fais S, Devesa J. A New and Integral Approach to the Etiopathogenesis and Treatment of Breast Cancer Based upon Its Hydrogen Ion Dynamics. Int J Mol Sci 2020; 21:E1110. [PMID: 32046158 PMCID: PMC7036897 DOI: 10.3390/ijms21031110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
Despite all efforts, the treatment of breast cancer (BC) cannot be considered to be a success story. The advances in surgery, chemotherapy and radiotherapy have not been sufficient at all. Indeed, the accumulated experience clearly indicates that new perspectives and non-main stream approaches are needed to better characterize the etiopathogenesis and treatment of this disease. This contribution deals with how the new pH-centric anticancer paradigm plays a fundamental role in reaching a more integral understanding of the etiology, pathogenesis, and treatment of this multifactorial disease. For the first time, the armamentarium available for the treatment of the different types and phases of BC is approached here from a Unitarian perspective-based upon the hydrogen ion dynamics of cancer. The wide-ranged pH-related molecular, biochemical and metabolic model is able to embrace most of the fields and subfields of breast cancer etiopathogenesis and treatment. This single and integrated approach allows advancing towards a unidirectional, concerted and synergistic program of treatment. Further efforts in this line are likely to first improve the therapeutics of each subtype of this tumor and every individual patient in every phase of the disease.
Collapse
Affiliation(s)
- Salvador Harguindey
- Institute of Clinical Biology and Metabolism, Postas 13, 01004 Vitoria, Spain;
| | - Khalid Alfarouk
- Al-Ghad International Colleges for Applied Medical Sciences, Al-Madinah Al-Munawarah, Saudi Arabia and Alfarouk Biomedical Research LLC, Tampa, FL 33617, USA;
| | - Julián Polo Orozco
- Institute of Clinical Biology and Metabolism, Postas 13, 01004 Vitoria, Spain;
| | - Kévin Hardonnière
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290 Châtenay-Malabry, France;
| | - Daniel Stanciu
- Scientific Direction, MCS Foundation For Life, 5623KR Eindhoven, The Netherlands;
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità (National Institute of Health), Viale Regina Elena, 299, 00161 Rome, Italy;
| | - Jesús Devesa
- Scientific Direction, Foltra Medical Centre, Travesía de Montouto 24, 15886 Teo, Spain;
| |
Collapse
|
21
|
De Bruycker S, Vangestel C, Staelens S, Wyffels L, Detrez J, Verschuuren M, De Vos WH, Pauwels P, Van den Wyngaert T, Stroobants S. Effects of metformin on tumor hypoxia and radiotherapy efficacy: a [ 18F]HX4 PET imaging study in colorectal cancer xenografts. EJNMMI Res 2019; 9:74. [PMID: 31375940 PMCID: PMC6677842 DOI: 10.1186/s13550-019-0543-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/23/2019] [Indexed: 01/23/2023] Open
Abstract
Background In a colorectal cancer xenograft model, we investigated the therapeutic effect of metformin on tumor hypoxia with [18F]flortanidazole ([18F]HX4) small-animal positron emission tomography (μPET). We also assessed the additive effect of metformin on long-term radiotherapy outcome and we studied the potential of [18F]HX4 as a predictive and/or prognostic biomarker within this setup. Methods Colo205-bearing mice (n = 40) underwent a baseline [18F]HX4 hypoxia μPET/computed tomography (CT) scan. The next day, mice received 100 mg/kg metformin or saline intravenously (n = 20/group) and [18F]HX4 was administered intravenously 30 min later, whereupon a second μPET/CT scan was performed to assess changes in tumor hypoxia. Two days later, mice were further divided into four therapy groups (n = 10/group): control (1), metformin (2), radiotherapy (3), and metformin + radiotherapy, i.e., combination (4). Then, they received a second dose of metformin (groups 2 and 4) or saline (groups 1 and 3), followed by a single radiotherapy dose of 15 Gy (groups 3 and 4) or sham irradiation (groups 1 and 2) 30 min later. Tumor growth was followed three times a week by caliper measurements to assess the therapeutic outcome. Results [18F]HX4 uptake decreased in metformin-treated tumors with a mean intratumoral reduction in [18F]HX4 tumor-to-background ratio (TBR) from 2.53 ± 0.30 to 2.28 ± 0.26 (p = 0.04), as opposed to saline treatment (2.56 ± 0.39 to 3.08 ± 0.39; p = 0.2). The median tumor doubling time (TDT) was 6, 8, 41, and 43 days in the control, metformin, radiotherapy and combination group, respectively (log-rank p < 0.0001), but no metformin-specific therapy effects could be detected. Baseline [18F]HX4 TBR was a negative prognostic biomarker for TDT (hazard ratio, 2.39; p = 0.02). Conclusions Metformin decreased [18F]HX4 uptake of Colo205-tumors, but had no additive effect on radiotherapy efficacy. Nevertheless, [18F]HX4 holds promise as a prognostic imaging biomarker.
Collapse
Affiliation(s)
- Sven De Bruycker
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Christel Vangestel
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium.,Department of Nuclear Medicine, Antwerp University Hospital (UZA), Wilrijkstraat 10, Edegem, 2650, Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Leonie Wyffels
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Jan Detrez
- Laboratory of Cell Biology and Histology, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Marlies Verschuuren
- Laboratory of Cell Biology and Histology, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Patrick Pauwels
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium.,Department of Pathology, Antwerp University Hospital (UZA), Wilrijkstraat 10, Edegem, 2650, Belgium
| | - Tim Van den Wyngaert
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium.,Department of Nuclear Medicine, Antwerp University Hospital (UZA), Wilrijkstraat 10, Edegem, 2650, Belgium
| | - Sigrid Stroobants
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium. .,Department of Nuclear Medicine, Antwerp University Hospital (UZA), Wilrijkstraat 10, Edegem, 2650, Belgium.
| |
Collapse
|
22
|
Kurelac I, Umesh Ganesh N, Iorio M, Porcelli AM, Gasparre G. The multifaceted effects of metformin on tumor microenvironment. Semin Cell Dev Biol 2019; 98:90-97. [PMID: 31091466 DOI: 10.1016/j.semcdb.2019.05.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023]
Abstract
The efficacy of metformin in treating cancer has been extensively investigated since epidemiologic studies associated this anti-diabetic drug with a lower risk of cancer incidence. Since tumors are complex systems, in which cancer cells coexist and interact with several different types of non-malignant cells, it is not surprising that anti-cancer drugs affect not only cancer cells, but also the abundance and functions of cells of the tumor microenvironment. Recent years have seen a wide collection of reports showing how metformin, as well as other complex I inhibitors, may influence cancer progression by modulating the phenotype of non-transformed cells in a tumor. In this review, we particularly focus on the effect of metformin on angiogenesis, cancer-associated fibroblasts, tumor-associated macrophages and cancer immunosuppression.
Collapse
Affiliation(s)
- Ivana Kurelac
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Via Massarenti 9, 40138, Bologna, Italy.
| | - Nikkitha Umesh Ganesh
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Via Massarenti 9, 40138, Bologna, Italy.
| | - Maria Iorio
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Via Massarenti 9, 40138, Bologna, Italy.
| | - Anna Maria Porcelli
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Selmi 3, 40126, Bologna, Italy; Centro Interdipartimentale di Ricerca Industriale Scienze della Vita e Tecnologie per la Salute, Università di Bologna, Via Tolara di Sopra 41/E, 40064, Ozzano dell'Emilia, Italy.
| | - Giuseppe Gasparre
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Via Massarenti 9, 40138, Bologna, Italy; Centro di Ricerca Biomedica Applicata (CRBA), Università di Bologna, Via Massarenti 9, 40138, Bologna, Italy.
| |
Collapse
|
23
|
Abstract
The family of chemical structures that interact with a cannabinoid receptor are broadly termed cannabinoids. Traditionally known for their psychotropic effects and their use as palliative medicine in cancer, cannabinoids are very versatile and are known to interact with several orphan receptors besides cannabinoid receptors (CBR) in the body. Recent studies have shown that several key pathways involved in cell growth, differentiation and, even metabolism and apoptosis crosstalk with cannabinoid signaling. Several of these pathways including AKT, EGFR, and mTOR are known to contribute to tumor development and metastasis, and cannabinoids may reverse their effects, thereby by inducing apoptosis, autophagy and modulating the immune system. In this book chapter, we explore how cannabinoids regulate diverse signaling mechanisms in cancer and immune cells within the tumor microenvironment and whether they impart a therapeutic effect. We also provide some important insight into the role of cannabinoids in cellular and whole body metabolism in the context of tumor inhibition. Finally, we highlight recent and ongoing clinical trials that include cannabinoids as a therapeutic strategy and several combinational approaches towards novel therapeutic opportunities in several invasive cancer conditions.
Collapse
|
24
|
Min Z, Gao Q, Zhen X, Fan Y, Tan T, Li R, Zhao Y, Yu Y. New insights into the genic and metabolic characteristics of induced pluripotent stem cells from polycystic ovary syndrome women. Stem Cell Res Ther 2018; 9:210. [PMID: 30092830 PMCID: PMC6085636 DOI: 10.1186/s13287-018-0950-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 12/19/2022] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder that affects female fertility. However, with the lack of a corresponding research model, the pathology mechanism of PCOS is poorly understood. Induced pluripotent stem cell (iPSC) technology has been recognized as means to generate patient-specific stem cells for disease modeling. Methods The mRNA abundance of iPSCs was analyzed by RNA microarray and real-time polymerase chain reaction (RT-PCR). Karyotyping of iPSCs was performed with cytogenetic analysis. The mitochondrial respiration ability and glycolytic function were measured by the Seahorse Bioscience XF extracellular flux analyzer. The expression of iPSC-associated markers was identified by immunofluorescence and RT-PCR. The teratoma formation of iPSCs was studied using immunochemistry. Results A PCOS patient-derived iPSC model was established from somatic cells of PCOS patients. Through comprehensive transcriptional profiling analysis of the RNA microarray, PCOS patient-derived iPSCs showed metabolic abnormalities and mitochondrial dysfunction compared with non-PCOS patient-derived iPSCs in vitro. Specifically, a total of 2904 genes were differentially expressed between the two iPSC populations, of which 1416 genes were upregulated and 1488 genes were downregulated (fold change > 2, p < 0.01). Gene Ontology (GO) term enrichment results showed that upregulated genes were enriched in metabolic processes and mitochondrial activities which participated in the tricarboxylic acid (TCA) cycle, the respiratory electron transport chain (ETC), and glycogenolysis. On the other hand, the downregulated genes were related to cell communication, glucose transport, and uptake. The differentially expressed genes were verified by RT-PCR in PCOS patient-derived iPSCs and granulosa cells from PCOS patients. The PCOS patient-derived iPSCs demonstrated decreased mitochondrial respiration ability and glycolytic function (p < 0.05) but increased mitochondrial copy numbers and biogenesis (p < 0.05). Subsequently, some genes related to glucose metabolism were rescued by treating with metformin in PCOS patient-derived iPSCs. Meanwhile, the ATP production ability of mitochondria and the glycolysis ability of PCOS patient-derived iPSCs also partially returned to normal levels. However, metformin had little effect on mitochondrial maximal respiration ability and maximal glycolytic capacity. Conclusions We measured differences in iPSCs from women with and without PCOS in gene transcription and mitochondrial respiratory function. PCOS patient-derived iPSCs showed abnormal expression of metabolic genes and mitochondrial dysfunction in vitro. The study provides a novel cell model in vitro for studying the clinical causes and molecular mechanisms of PCOS. Electronic supplementary material The online version of this article (10.1186/s13287-018-0950-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zheying Min
- Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, 100191, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Qian Gao
- Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Xiumei Zhen
- Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Tao Tan
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Rong Li
- Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Yue Zhao
- Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, 100191, China.
| | - Yang Yu
- Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
25
|
Wang JC, Li XX, Sun X, Li GY, Sun JL, Ye YP, Cong LL, Li WM, Lu SY, Feng J, Liu PJ. Activation of AMPK by simvastatin inhibited breast tumor angiogenesis via impeding HIF-1α-induced pro-angiogenic factor. Cancer Sci 2018. [PMID: 29532562 PMCID: PMC5980150 DOI: 10.1111/cas.13570] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Substantial data from preclinical studies have revealed the biphasic effects of statins on cardiovascular angiogenesis. Although some have reported the anti‐angiogenic potential of statins in malignant tumors, the underlying mechanism remains poorly understood. The aim of this study is to elucidate the mechanism by which simvastatin, a member of the statin family, inhibits tumor angiogenesis. Simvastatin significantly suppressed tumor cell‐conditioned medium‐induced angiogenic promotion in vitro, and resulted in dose‐dependent anti‐angiogenesis in vivo. Further genetic silencing of hypoxia‐inducible factor‐1α (HIF‐1α) reduced vascular endothelial growth factor and fibroblast growth factor‐2 expressions in 4T1 cells and correspondingly ameliorated HUVEC proliferation facilitated by tumor cell‐conditioned medium. Additionally, simvastatin induced angiogenic inhibition through a mechanism of post‐transcriptional downregulation of HIF‐1α by increasing the phosphorylation level of AMP kinase. These results were further validated by the fact that 5‐aminoimidazole‐4‐carboxamide ribonucleotide reduced HIF‐1α protein levels and ameliorated the angiogenic ability of endothelial cells in vitro and in vivo. Critically, inhibition of AMPK phosphorylation by compound C almost completely abrogated simvastatin‐induced anti‐angiogenesis, which was accompanied by the reduction of protein levels of HIF‐1α and its downstream pro‐angiogenic factors. These findings reveal the mechanism by which simvastatin induces tumor anti‐angiogenesis, and therefore identifies the target that explains the beneficial effects of statins on malignant tumors.
Collapse
Affiliation(s)
- Ji-Chang Wang
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Translational Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiong-Xiong Li
- Department of Breast Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Sun
- Department of Thoracic Surgery and Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guang-Yue Li
- Department of Science and Technology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jing-Lan Sun
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuan-Peng Ye
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Long-Long Cong
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei-Ming Li
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shao-Ying Lu
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jun Feng
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pei-Jun Liu
- Center for Translational Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
26
|
Han J, Li Y, Liu X, Zhou T, Sun H, Edwards P, Gao H, Yu FS, Qiao X. Metformin suppresses retinal angiogenesis and inflammation in vitro and in vivo. PLoS One 2018. [PMID: 29513760 PMCID: PMC5841739 DOI: 10.1371/journal.pone.0193031] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The oral anti-diabetic drug metformin has been found to reduce cardiovascular complications independent of glycemic control in diabetic patients. However, its role in diabetic retinal microvascular complications is not clear. This study is to investigate the effects of metformin on retinal vascular endothelium and its possible mechanisms, regarding two major pathogenic features of diabetic retinopathy: angiogenesis and inflammation. In human retinal vascular endothelial cell culture, metformin inhibited various steps of angiogenesis including endothelial cell proliferation, migration, and tube formation in a dose-dependent manner. Its anti-angiogenic activity was confirmed in vivo that metformin significantly reduced spontaneous intraretinal neovascularization in a very-low-density lipoprotein receptor knockout mutant mouse (p<0.05). Several inflammatory molecules upregulated by tumor necrosis factor-α in human retinal vascular endothelial cells were markedly reduced by metformin, including nuclear factor kappa B p65 (NFκB p65), intercellular adhesion molecule-1 (ICAM-1), monocyte chemotactic protein-1 (MCP-1), and interleukin-8 (IL-8). Further, metformin significantly decreased retinal leukocyte adhesion (p<0.05) in streptozotocin-induced diabetic mice. Activation of AMP-activated protein kinase was found to play a partial role in the suppression of ICAM-1 and MCP-1 by metformin, but not in those of NFκB p65 and IL-8. Our findings support the notion that metformin has considerable anti-angiogenic and anti-inflammatory effects on retinal vasculature. Metformin could be potentially used for the purpose of treating diabetic retinopathy in addition to blood glucose control in diabetic patients.
Collapse
Affiliation(s)
- Jing Han
- Department of Ophthalmology, Henry Ford Health System, Detroit, Michigan, United States of America
- Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Yue Li
- Department of Ophthalmology, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Xiuli Liu
- Department of Ophthalmology, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Tongrong Zhou
- Department of Ophthalmology, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Haijing Sun
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
| | - Paul Edwards
- Department of Ophthalmology, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Hua Gao
- Department of Ophthalmology, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Fu-Shin Yu
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
| | - Xiaoxi Qiao
- Department of Ophthalmology, Henry Ford Health System, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
27
|
Gong J, Kelekar G, Shen J, Shen J, Kaur S, Mita M. The expanding role of metformin in cancer: an update on antitumor mechanisms and clinical development. Target Oncol 2017; 11:447-67. [PMID: 26864078 DOI: 10.1007/s11523-016-0423-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metformin has been used for nearly a century to treat type 2 diabetes mellitus. Epidemiologic studies first identified the association between metformin and reduced risk of several cancers. The anticancer mechanisms of metformin involve both indirect or insulin-dependent pathways and direct or insulin-independent pathways. Preclinical studies have demonstrated metformin's broad anticancer activity across a spectrum of malignancies. Prospective clinical trials involving metformin in the chemoprevention and treatment of cancer now number in the hundreds. We provide an update on the anticancer mechanisms of metformin and review the results thus far available from prospective clinical trials investigating metformin's efficacy in cancer.
Collapse
Affiliation(s)
- Jun Gong
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Gauri Kelekar
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - James Shen
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - John Shen
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sukhpreet Kaur
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Monica Mita
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA. .,Experimental Therapeutics Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, SCCT Mezzanine MS 35, Los Angeles, CA, 90048, USA.
| |
Collapse
|
28
|
Ikhlas S, Ahmad M. Metformin: Insights into its anticancer potential with special reference to AMPK dependent and independent pathways. Life Sci 2017; 185:53-62. [PMID: 28755883 DOI: 10.1016/j.lfs.2017.07.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/15/2017] [Accepted: 07/26/2017] [Indexed: 12/19/2022]
|
29
|
Talaei A, Moradi A, Rafiei F. The evaluation of the effect of metformin on breast fibrocystic disease. Breast Dis 2017; 37:49-53. [PMID: 28598826 DOI: 10.3233/bd-160256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Fibrocystic changes (FCC) is the most common benign breast disease. The main pathophysiologic mechanism of FCC, excessive cell proliferation in response to monthly estrogen and progesterone changes. Regarding to antiproliferative of metformin, the aim of this study is the evaluation of the effect of metformin on FCC in women who were referred to gynecology clinics of ArakMETHODS:This study is a double blind placebo control randomized clinical trial. At the first among women who were referred to gynecology of Arak, 186 women with FCC between 18-40 years were selected. The women were randomly classified into three groups. The first group took metformin and the second group as placebo group took vitamin E and the third group did not take any drug during six months. All groups were compared in clinical symptoms based on visual analogue scale (VAS) and the sonographic data also were recorded and compared. Data analysis was performed by unilateral variance, student t and Chi-square. RESULTS The three groups were not different in aspect of mean of the cysts number, cyst size, tenderness and discharge from breast before the intervention, but after the intervention, there was a significant decrease in metformin group (p value < 0.001) based on variance analysis test. There was not a meaningful difference of pain and the location of cysts between the groups after the intervention. CONCLUSIONS The present study showed that metformin is effective in treatment of FCC and decreasing of clinical symptoms and imaging items.
Collapse
|
30
|
Eloy JO, Petrilli R, Chesca DL, Saggioro FP, Lee RJ, Marchetti JM. Anti-HER2 immunoliposomes for co-delivery of paclitaxel and rapamycin for breast cancer therapy. Eur J Pharm Biopharm 2017; 115:159-167. [DOI: 10.1016/j.ejpb.2017.02.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 12/19/2022]
|
31
|
Xia C, Chen R, Chen J, Qi Q, Pan Y, Du L, Xiao G, Jiang S. Combining metformin and nelfinavir exhibits synergistic effects against the growth of human cervical cancer cells and xenograft in nude mice. Sci Rep 2017; 7:43373. [PMID: 28252027 PMCID: PMC5333097 DOI: 10.1038/srep43373] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/23/2017] [Indexed: 12/28/2022] Open
Abstract
Human cervical cancer is the fourth most common carcinoma in women worldwide. However, the emergence of drug resistance calls for continuously developing new anticancer drugs and combination chemotherapy regimens. The present study aimed to investigate the anti-cervical cancer effects of metformin, a first-line therapeutic drug for type 2 diabetes mellitus, and nelfinavir, an HIV protease inhibitor, when used alone or in combination. We found that both metformin and nelfinavir, when used alone, were moderately effective in inhibiting proliferation, inducing apoptosis and suppressing migration and invasion of human cervical cell lines HeLa, SiHa and CaSki. When used in combination, these two drugs acted synergistically to inhibit the growth of human cervical cancer cells in vitro and cervical cancer cell xenograft in vivo in nude mice, and suppress cervical cancer cell migration and invasion. The protein expression of phosphoinositide 3-kinase catalytic subunit PI3K(p110α), which can promote tumor growth, was remarkably downregulated, while the tumor suppressor proteins p53 and p21 were substantially upregulated following the combinational treatment in vitro and in vivo. These results suggest that clinical use of metformin and nelfinavir in combination is expected to have synergistic antitumor efficacy and significant potential for the treatment of human cervical cancer.
Collapse
Affiliation(s)
- Chenglai Xia
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.,Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Ruihong Chen
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Jinman Chen
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Qianqian Qi
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Yanbin Pan
- Aris Pharmaceuticals Inc., Bristol, PA19007, USA
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Guohong Xiao
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, 510150, China
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.,Laboratory of Medical Molecular Virology of Ministries of Education and Health, College of Basic Medical Science, Fudan University, Shanghai, 200032, China
| |
Collapse
|
32
|
Falah RR, Talib WH, Shbailat SJ. Combination of metformin and curcumin targets breast cancer in mice by angiogenesis inhibition, immune system modulation and induction of p53 independent apoptosis. Ther Adv Med Oncol 2017; 9:235-252. [PMID: 28491145 PMCID: PMC5405996 DOI: 10.1177/1758834016687482] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 12/12/2016] [Indexed: 12/19/2022] Open
Abstract
Background: The effects of metformin (MET) and curcumin (CUR) single treatments have been tested against breast cancer; however, their combination has not been explored. Here, we evaluated the antitumor activity of MET and CUR combination against breast cancer in mice. Materials and methods: The antiproliferative activity of single and combined treatments against breast cancer cell lines was determined. Vascular endothelial growth factor (VEGF) and Trp53 expression was examined in EMT6/P cells. In vivo studies were carried out by inoculating BALB/c mice with EMT6/P cells and examining tumor growth and apoptosis induction in tumor sections. Furthermore, serum levels of different cytokines and transaminases and creatinine were measured to detect the immune response and toxicity, respectively. Results: The combination treatment exhibited the highest effects against tumor proliferation and growth. It significantly reduced VEGF expression, induced Trp53 independent apoptosis, triggered Th2 immune response and showed no toxicity. Conclusion: The combination can be a potential therapeutic option to treat breast cancer. However, further testing is needed to measure the exact serum levels of MET and CUR and to further explain the obtained results.
Collapse
Affiliation(s)
- Rabah Rashad Falah
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
| | - Wamidh H Talib
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, 11931-166, Jordan
| | - Seba Jamal Shbailat
- Department of Biology and Biotechnology, The Hashemite University, Zarqa, Jordan
| |
Collapse
|
33
|
Mori A, Ishikawa E, Amano T, Sakamoto K, Nakahara T. Anti-diabetic drug metformin dilates retinal blood vessels through activation of AMP-activated protein kinase in rats. Eur J Pharmacol 2017; 798:66-71. [PMID: 28087254 DOI: 10.1016/j.ejphar.2017.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/20/2016] [Accepted: 01/09/2017] [Indexed: 12/29/2022]
Abstract
The aim of this study was to examine whether metformin, a biguanide anti-hyperglycemic drug, dilates retinal blood vessels in rats. Ocular fundus images were captured with an original high-resolution digital fundus camera in vivo and diameters of retinal blood vessels were measured. Both systemic blood pressure and heart rate were continuously recorded. Metformin (0.01-0.3mg/kg/min) increased diameters of retinal blood vessels in a dose-dependent manner. This retinal vasodilator effect of metformin was abolished by compound C, an inhibitor of AMP-activated protein kinase (AMPK), and NG-nitro-L-arginine methyl ester, an inhibitor of nitric oxide (NO) synthase. Similar results were obtained with the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-D-ribonucleoside (AICAR, 0.01-1mg/kg/min). Neither metformin nor AICAR exerted significant effect on mean blood pressure and heart rate. However, a significant pressor response to AICAR was observed upon inhibition of NO synthase. These results suggest that metformin dilates retinal blood vessels through activation of AMPK, and NO plays an important role in the retinal vasodilator response following AMPK activation.
Collapse
Affiliation(s)
- Asami Mori
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Eriko Ishikawa
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tomoyo Amano
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kenji Sakamoto
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
34
|
Chemoprevention. Breast Cancer 2017. [DOI: 10.1007/978-3-319-48848-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Chang SC, Yang WCV. Hyperglycemia, tumorigenesis, and chronic inflammation. Crit Rev Oncol Hematol 2016; 108:146-153. [PMID: 27931833 DOI: 10.1016/j.critrevonc.2016.11.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/08/2016] [Indexed: 12/21/2022] Open
Abstract
Hyperglycemia is the most prominent sign that characterizes diabetes. Hyperglycemia favors malignant cell growth by providing energy to cancer cells. Clinical studies also showed an increased risk of diabetes being associated with different types of cancers. In addition, poorly regulated glucose metabolism in diabetic patients is often found with increased levels of chronic inflammatory markers, e.g., interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α, and emerging evidence has highlighted activation of the immune response in the progression and development of cancer cells. Therefore, uncontrolled proinflammatory responses could conceivably create a chronic inflammatory state, promoting a tumor-favorable microenvironment and potentially triggering immune overactivation and cancer growth. To further understand how hyperglycemia contributes to immune overactivation, the tumor microenvironment and the development of chronic inflammation-associated tumors may provide insights into tumor biology and immunology. This paper provides a brief introduction to hyperglycemia-associated diseases, followed by a comprehensive overview of the current findings of regulatory molecular mechanisms of glycosylation on proteoglycans in the extracellular matrix under hyperglycemic conditions. Then, the authors discuss the role of hyperglycemia in tumorigenesis (particularly in prostate, liver, colorectal, and pancreatic cancers), as well as the contribution of hyperglycemia to chronic inflammation. The authors end with a brief discussion on the future perspectives of hyperglycemia/tumorigenesis and potential applications of alternative/effective therapeutic strategies for hyperglycemia-associated cancers.
Collapse
Affiliation(s)
- Shu-Chun Chang
- The Ph.D. Program for Translational Medicine, College for Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| | - Wei-Chung Vivian Yang
- The Ph.D. Program for Translational Medicine, College for Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
36
|
Daugan M, Dufaÿ Wojcicki A, d’Hayer B, Boudy V. Metformin: An anti-diabetic drug to fight cancer. Pharmacol Res 2016; 113:675-685. [DOI: 10.1016/j.phrs.2016.10.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 09/22/2016] [Accepted: 10/04/2016] [Indexed: 12/22/2022]
|
37
|
Targeting metabolic flexibility by simultaneously inhibiting respiratory complex I and lactate generation retards melanoma progression. Oncotarget 2016; 6:37281-99. [PMID: 26484566 PMCID: PMC4741930 DOI: 10.18632/oncotarget.6134] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/23/2015] [Indexed: 12/20/2022] Open
Abstract
Melanoma is a largely incurable skin malignancy owing to the underlying molecular and metabolic heterogeneity confounded by the development of resistance. Cancer cells have metabolic flexibility in choosing either oxidative phosphorylation (OXPHOS) or glycolysis for ATP generation depending upon the nutrient availability in tumor microenvironment. In this study, we investigated the involvement of respiratory complex I and lactate dehydrogenase (LDH) in melanoma progression. We show that inhibition of complex I by metformin promotes melanoma growth in mice via elevating lactate and VEGF levels. In contrast, it leads to the growth arrest in vitro because of enhanced extracellular acidification as a result of increased glycolysis. Inhibition of LDH or lactate generation causes decrease in glycolysis with concomitant growth arrest both in vitro and in vivo. Blocking lactate generation in metformin-treated melanoma cells results in diminished cell proliferation and tumor progression in mice. Interestingly, inhibition of either LDH or complex I alone does not induce apoptosis, whereas inhibiting both together causes depletion in cellular ATP pool resulting in metabolic catastrophe induced apoptosis. Overall, our study suggests that LDH and complex I play distinct roles in regulating glycolysis and cell proliferation. Inhibition of these two augments synthetic lethality in melanoma.
Collapse
|
38
|
Martinez JA, Chalasani P, Thomson CA, Roe D, Altbach M, Galons JP, Stopeck A, Thompson PA, Villa-Guillen DE, Chow HHS. Phase II study of metformin for reduction of obesity-associated breast cancer risk: a randomized controlled trial protocol. BMC Cancer 2016; 16:500. [PMID: 27430256 PMCID: PMC4950218 DOI: 10.1186/s12885-016-2551-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 07/12/2016] [Indexed: 11/16/2022] Open
Abstract
Background Two-thirds of U.S. adult women are overweight or obese. High body mass index (BMI) and adult weight gain are risk factors for a number of chronic diseases, including postmenopausal breast cancer. The higher postmenopausal breast cancer risk in women with elevated BMI is likely to be attributable to related metabolic disturbances including altered circulating sex steroid hormones and adipokines, elevated pro-inflammatory cytokines, and insulin resistance. Metformin is a widely used antidiabetic drug that has demonstrated favorable effects on metabolic disturbances and as such may lead to lower breast cancer risk in obese women. Further, the anti-proliferative effects of metformin suggest it may decrease breast density, an accepted biomarker of breast cancer risk. Methods/design This is a Phase II randomized, double-blind, placebo-controlled trial of metformin in overweight/obese premenopausal women who have elements of metabolic syndrome. Eligible participants will be randomized to receive metformin 850 mg BID (n = 75) or placebo (n = 75) for 12 months. The primary endpoint is change in breast density, based on magnetic resonance imaging (MRI) acquired fat-water features. Secondary outcomes include changes in serum insulin levels, serum insulin-like growth factor (IGF)-1 to insulin-like growth factor binding protein (IGFBP)-3 ratio, serum IGF-2 levels, serum testosterone levels, serum leptin to adiponectin ratio, body weight, and waist circumference. Exploratory outcomes include changes in metabolomic profiles in plasma and nipple aspirate fluid. Changes in tissue architecture as well as cellular and molecular targets in breast tissue collected in a subgroup of participants will also be explored. Discussion The study will evaluate whether metformin can result in favorable changes in breast density, select proteins and hormones, products of body metabolism, and body weight and composition. The study should help determine the potential breast cancer preventive activity of metformin in a growing population at risk for multiple diseases. Trial registration ClinicalTrials.gov Identifier: NCT02028221. Registered on January 2, 2014. Grant #: 1R01CA172444-01A1 awarded on Sept 11, 2013.
Collapse
Affiliation(s)
- Jessica A Martinez
- The University of Arizona Cancer Center, 1515 N Campbell Ave; Rm 2964B, Tucson, AZ, 85724, USA. .,Department of Nutritional Sciences, The University of Arizona, Tucson, AZ, USA.
| | - Pavani Chalasani
- The University of Arizona Cancer Center, 1515 N Campbell Ave; Rm 2964B, Tucson, AZ, 85724, USA
| | - Cynthia A Thomson
- The University of Arizona Cancer Center, 1515 N Campbell Ave; Rm 2964B, Tucson, AZ, 85724, USA.,Department of Epidemiology and Biostatistics, The University of Arizona, Tucson, AZ, USA
| | - Denise Roe
- The University of Arizona Cancer Center, 1515 N Campbell Ave; Rm 2964B, Tucson, AZ, 85724, USA.,Department of Epidemiology and Biostatistics, The University of Arizona, Tucson, AZ, USA
| | - Maria Altbach
- The University of Arizona Cancer Center, 1515 N Campbell Ave; Rm 2964B, Tucson, AZ, 85724, USA.,Department of Medical Imaging, University of Arizona, Tucson, AZ, USA
| | - Jean-Philippe Galons
- The University of Arizona Cancer Center, 1515 N Campbell Ave; Rm 2964B, Tucson, AZ, 85724, USA.,Department of Medical Imaging, University of Arizona, Tucson, AZ, USA
| | - Alison Stopeck
- Department of Medical Hematology/ Oncology, Stony Brook University, Stony Brook, NY, USA
| | | | | | - H-H Sherry Chow
- The University of Arizona Cancer Center, 1515 N Campbell Ave; Rm 2964B, Tucson, AZ, 85724, USA
| |
Collapse
|
39
|
Abstract
AMP-activated protein kinase (AMPK) is an important mediator in maintaining cellular energy homeostasis. AMPK is activated in response to a shortage of energy. Once activated, AMPK can promote ATP production and regulate metabolic energy. AMPK is a known target for treating metabolic syndrome and type-2 diabetes; however, recently AMPK is emerging as a possible metabolic tumor suppressor and target for cancer prevention and treatment. Recent epidemiological studies indicate that treatment with metformin, an AMPK activator reduces the incidence of cancer. In this article we review the role of AMPK in regulating inflammation, metabolism, and other regulatory processes with an emphasis on cancer, as well as, discuss the potential for targeting AMPK to treat various types of cancer. Activation of AMPK has been found to oppose tumor progression in several cancer types and offers a promising cancer therapy. This review evaluates the evidence linking AMPK with tumor suppressor function and analyzes the molecular mechanisms involved. AMPK activity opposes tumor development and progression in part by regulating inflammation and metabolism.
Collapse
|
40
|
Scherbakov AM, Sorokin DV, Tatarskiy VV, Prokhorov NS, Semina SE, Berstein LM, Krasil'nikov MA. The phenomenon of acquired resistance to metformin in breast cancer cells: The interaction of growth pathways and estrogen receptor signaling. IUBMB Life 2016; 68:281-92. [PMID: 26892736 DOI: 10.1002/iub.1481] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 01/10/2016] [Indexed: 01/02/2023]
Abstract
Metformin, a biguanide antidiabetic drug, is used to decrease hyperglycemia in patients with type 2 diabetes. Recently, the epidemiological studies revealed the potential of metformin as an anti-tumor drug for several types of cancer, including breast cancer. Anti-tumor metformin action was found to be mediated, at least in part, via activation of adenosine monophosphate-activated protein kinase (AMPK)-intracellular energy sensor, which inhibits the mammalian target of rapamycin (mTOR) and some other signaling pathways. Nevertheless, some patients can be non-sensitive or resistant to metformin action. Here we analyzed the mechanism of the formation of metformin-resistant phenotype in breast cancer cells and its role in estrogen receptor (ER) regulation. The experiments were performed on the ER-positive MCF-7 breast cancer cells and metformin-resistant MCF-7 subline (MCF-7/M) developed due to long-term metformin treatment. The transcriptional activity of NF-κB and ER was measured by the luciferase reporter gene analysis. The protein expression was determined by immunoblotting (Snail1, (phospho)AMPK, (phospho)IκBα, (phospho)mTOR, cyclin D1, (phospho)Akt and ERα) and immunohistochemical analysis (E-cadherin). We have found that: 1) metformin treatment of MCF-7 cells is accompanied with the stimulation of AMPK and inhibition of growth-related proteins including IκBα, NF-κB, cyclin D1 and ERα; 2) long-term metformin treatment lead to the appearance and progression of cross-resistance to metformin and tamoxifen; the resistant cells are characterized with the unaffected AMPK activity, but the irreversible ER suppression and constitutive activation of Akt/Snail1 signaling; 3) Akt/Snail1 signaling is involved into progression of metformin resistance. The results presented may be considered as the first evidence of the progression of cross-resistance to metformin and tamoxifen in breast cancer cells. Importantly, the acquired resistance to both drugs is based on the constitutive activation of Akt/Snail1/E-cadherin signaling that opens new perspectives to overcome the metformin/tamoxifen resistance of breast cancer.
Collapse
Affiliation(s)
- Alexander M Scherbakov
- Laboratory of Clinical Biochemistry, Institute of Clinical Oncology, N.N. Blokhin Cancer Research Centre, Moscow, Russia
| | - Danila V Sorokin
- Laboratory of Molecular Endocrinology, Institute of Carcinogenesis, N.N. Blokhin Cancer Research Centre, Moscow, Russia
| | - Victor V Tatarskiy
- Laboratory of Cell Death Mechanisms, Institute of Carcinogenesis, N.N. Blokhin Cancer Research Centre, Moscow, Russia
| | - Nikolay S Prokhorov
- Laboratory of Microbial Viruses, S.N. Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| | - Svetlana E Semina
- Laboratory of Molecular Endocrinology, Institute of Carcinogenesis, N.N. Blokhin Cancer Research Centre, Moscow, Russia
| | - Lev M Berstein
- Laboratory of Oncoendocrinology, N.N. Petrov Research Institute of Oncology, St, Petersburg, Russia
| | - Mikhail A Krasil'nikov
- Laboratory of Molecular Endocrinology, Institute of Carcinogenesis, N.N. Blokhin Cancer Research Centre, Moscow, Russia
| |
Collapse
|
41
|
Simone V, D'Avenia M, Argentiero A, Felici C, Rizzo FM, De Pergola G, Silvestris F. Obesity and Breast Cancer: Molecular Interconnections and Potential Clinical Applications. Oncologist 2016; 21:404-17. [PMID: 26865587 DOI: 10.1634/theoncologist.2015-0351] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/23/2015] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Obesity is an important risk factor for breast cancer (BC) in postmenopausal women; interlinked molecular mechanisms might be involved in the pathogenesis. Increased levels of estrogens due to aromatization of the adipose tissue, inflammatory cytokines such as tumor necrosis factor-α, interleukin-6, and prostaglandin E2, insulin resistance and hyperactivation of insulin-like growth factors pathways, adipokines, and oxidative stress are all abnormally regulated in obese women and contribute to cancerogenesis. These molecular factors interfere with intracellular signaling in the mitogen-activated protein kinase and phosphatydilinositol-3-phosphate/mammalian target of rapamycin (mTOR) pathways, which regulate the progression of the cell cycle, apoptosis, and protein synthesis. In this context, structural defects of typical genes related to both BC and obesity, such as leptin, leptin receptor, serum paraoxonase/arylesterase 1, the fat mass and obesity-associated gene and melanocortin receptor 4, have been associated with a high or low risk of BC development. The early detection of these gene alterations might be useful as risk predictors in obese women, and targeting these pathways involved in the BC pathogenesis in obese women is a potential therapeutic tool. In particular, mTOR pathway deregulation concurs in both obesity and BC, and inhibition of this might disrupt the molecular interlinks in a similar manner to that of metformin, which exerts definite anticancer activity and is currently used as an antidiabetic drug with a weight-reducing property. The identification of both genetic and pharmacological implications on the prevention and management of BC is the ultimate aim of these studies. IMPLICATIONS FOR PRACTICE Obese women are at risk of breast cancer, but clinicians lack concrete tools for the prevention or early diagnosis of this risk. The present study, starting from the biology and the molecular defects characterizing both obesity and breast cancer, analyzed the potential molecules and genetic defects whose early identification could delineate a risk profile. Three steps are proposed that are potentially achievable in the clinical assessment of obese women, namely the evaluation of altered levels of serum molecules, the identification of genetic polymorphisms, and the study of the transcriptomic profile of premalignant lesions. Finally, the therapeutic implications of this molecular assessment were evaluated.
Collapse
Affiliation(s)
- Valeria Simone
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro," Bari, Italy
| | - Morena D'Avenia
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro," Bari, Italy
| | - Antonella Argentiero
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro," Bari, Italy
| | - Claudia Felici
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro," Bari, Italy
| | - Francesca Maria Rizzo
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro," Bari, Italy
| | - Giovanni De Pergola
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro," Bari, Italy
| | - Franco Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro," Bari, Italy
| |
Collapse
|
42
|
Divergent targets of glycolysis and oxidative phosphorylation result in additive effects of metformin and starvation in colon and breast cancer. Sci Rep 2016; 6:19569. [PMID: 26794854 PMCID: PMC4726140 DOI: 10.1038/srep19569] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/11/2015] [Indexed: 12/22/2022] Open
Abstract
Emerging evidence demonstrates that targeting energy metabolism is a promising strategy to fight cancer. Here we show that combining metformin and short-term starvation markedly impairs metabolism and growth of colon and breast cancer. The impairment in glycolytic flux caused by starvation is enhanced by metformin through its interference with hexokinase II activity, as documented by measurement of 18F-fluorodeoxyglycose uptake. Oxidative phosphorylation is additively compromised by combined treatment: metformin virtually abolishes Complex I function; starvation determines an uncoupled status of OXPHOS and amplifies the activity of respiratory Complexes II and IV thus combining a massive ATP depletion with a significant increase in reactive oxygen species. More importantly, the combined treatment profoundly impairs cancer glucose metabolism and virtually abolishes lesion growth in experimental models of breast and colon carcinoma. Our results strongly suggest that energy metabolism is a promising target to reduce cancer progression.
Collapse
|
43
|
Ramesh M, Vepuri SB, Oosthuizen F, Soliman ME. Adenosine Monophosphate-Activated Protein Kinase (AMPK) as a Diverse Therapeutic Target: A Computational Perspective. Appl Biochem Biotechnol 2015; 178:810-30. [PMID: 26541160 DOI: 10.1007/s12010-015-1911-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 10/26/2015] [Indexed: 12/12/2022]
|
44
|
Grossmann ME, Yang DQ, Guo Z, Potter DA, Cleary MP. Metformin Treatment for the Prevention and/or Treatment of Breast/Mammary Tumorigenesis. ACTA ACUST UNITED AC 2015; 1:312-323. [PMID: 26405648 DOI: 10.1007/s40495-015-0032-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is increasing interest in metformin's effects on the development, treatment and/or progression of breast cancer. This emerges from observational studies that diabetic women treated with metformin in comparison to other antidiabetic compounds had lower breast cancer incidence and/or mortality rates. The mechanism of action is considered to be activation of hepatic AMPK resulting in reduced gluconeogenesis. Calorie restriction, which consistently reduces mammary tumorigenesis in rodents, is also thought to act through this pathway leading to the hypothesis that metformin's anticancer effects are mediated in a similar fashion. Here we review the literature evaluating metformin's anticancer effects in relation to breast/mammary tumorigenesis. We include clinical observations, as well as studies utilizing rodent models and mammary cell lines. In addition to the anticancer effect of metformin mediated through the AMPK pathway, additional mechanisms of action that directly target tissues have been identified including effects on stem cells, apoptosis, STAT3 and HER2.
Collapse
Affiliation(s)
- Michael E Grossmann
- The Hormel Institute, University of Minnesota, 801 16 Avenue NE, Austin, MN 55912 ; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Da-Qing Yang
- The Hormel Institute, University of Minnesota, 801 16 Avenue NE, Austin, MN 55912 ; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Zhijun Guo
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455 ; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - David A Potter
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455 ; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Margot P Cleary
- The Hormel Institute, University of Minnesota, 801 16 Avenue NE, Austin, MN 55912 ; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
45
|
Anti-angiogenic effect of metformin in mouse oxygen-induced retinopathy is mediated by reducing levels of the vascular endothelial growth factor receptor Flk-1. PLoS One 2015; 10:e0119708. [PMID: 25785990 PMCID: PMC4364739 DOI: 10.1371/journal.pone.0119708] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/16/2015] [Indexed: 12/11/2022] Open
Abstract
Purpose To evaluate the effect of metformin on vascular changes in oxygen-induced retinopathy (OIR) in mouse, and to elucidate the possible underlying mechanism. Methods OIR mice were treated with metformin by intraperitoneal injection from postnatal day 12 (P12) to P17 or P21. At P17 and P21, vessel formation and avascular areas were assessed using retinal flat mounts. Levels of vascular endothelial growth factor (VEGF) were measured by enzyme-linked immunosorbent assays, and the effects of metformin on VEGF-induced proliferation of human umbilical vein endothelial cells (HUVECs) were assessed. The effects of metformin on the levels of Flk1 (VEGF receptor-2) and phosphorylated Flk1 (pFlk1) were measured by Western blotting (HUVECs) and immunohistochemistry (retinal tissue). Results Retinal morphologic changes were analyzed between two groups (saline-treated OIR; metformin-treated OIR). Metformin treatment did not change the extent of avascular areas at P17. However, at P21, when OIR pathology was markedly improved in the saline-treated group, OIR pathology still remained in the metformin-treated OIR group. VEGF expression levels did not differ between metformin- and saline-treated OIR groups at P17 and P21, but Flk1 levels were significantly reduced in the metformin group compared with saline-treated OIR group. Moreover, metformin inhibited VEGF-induced cell proliferation and decreased levels of Flk1 and pFlk1, consistent with the interpretation that metformin inhibits vascular growth by reducing Flk1 levels. Conclusion Metformin exerts anti-angiogenesis effects and delays the normal vessel formation in the recovery phase of OIR in mice, likely by suppressing the levels of Flk1.
Collapse
|
46
|
Rice S, Pellat L, Ahmetaga A, Bano G, Mason HD, Whitehead SA. Dual effect of metformin on growth inhibition and oestradiol production in breast cancer cells. Int J Mol Med 2015; 35:1088-94. [PMID: 25716282 DOI: 10.3892/ijmm.2015.2108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/03/2015] [Indexed: 11/06/2022] Open
Abstract
Evidence has been accumulating for a role for metformin in reducing breast cancer risk in post-menopausal women. It inhibits growth of breast cancer cells via several mechanisms, primarily the AMPK/mTOR signalling pathway. Another possible protective mechanism may be the ability of metformin to inhibit aromatase activity. In the present study, we investigated the effects of metformin on the basal growth of MCF-7 cells, after oestradiol (E2) stimulation and after the inhibition of mTOR by rapamycin. Secondly, we investigated the effects of metformin on the activity of a number of steroidogenic enzymes and the mRNA expression of aromatase and steroid sulphatase (STS). High doses of metformin significantly inhibited both basal and oestrogen-stimulated cell division. Low-dose rapamycin (10-10 M) did not inhibit growth, but the addition of metformin induced a significant reduction in growth. High-dose rapamycin (10-8 M) inhibited growth, and this was further attenuated by the addition of metformin. Exposure to low (10-7 M) and high (10-4 M) doses of metformin for 7-10 days significantly reduced the conversion of androstenedione (ANDRO) and testosterone (TESTO) (both requiring aromatase), but not the conversion of oestrone or oestrone sulphate (ES) via 17β-hydroxysteroid dehydrogenase/sulphatase to E2. This attenuation was via a downregulation in the expression of total aromatase mRNA and promoter II, whilst the expression of sulphatase was unaffected by metformin. In conclusion, plasma levels of metformin have a dual therapeutic action, first by directly inhibiting cell proliferation which can be augmented by rapamycin analogues, and secondly, by inhibiting aromatase activity and reducing the local conversion of androgens to E2.
Collapse
Affiliation(s)
- S Rice
- Division of Biomedical Sciences, St. George's University of London, London SW17 0RE, UK
| | - L Pellat
- Bromley College of F&HE, Bromley Campus, Rookery Lane, Bromley BR2 8HE, UK
| | - A Ahmetaga
- MBBS5 Programme, St. George's University of London, London SW17 0RE, UK
| | - G Bano
- Thomas Addison Unit, St. George's Hospital, Cranmer Terrace, London SW17 0RE, UK
| | - H D Mason
- Division of Biomedical Sciences, St. George's University of London, London SW17 0RE, UK
| | - S A Whitehead
- Division of Biomedical Sciences, St. George's University of London, London SW17 0RE, UK
| |
Collapse
|
47
|
BRODOWSKA KATARZYNA, THEODOROPOULOU SOFIA, HÖRSTE MELISSAMEYERZU, PASCHALIS ELEFTHERIOSI, TAKEUCHI KIMIO, SCOTT GORDON, RAMSEY DAVIDJ, KIERNAN ELIZABETH, HOANG MIEN, CICHY JOANNA, MILLER JOANW, GRAGOUDAS EVANGELOSS, VAVVAS DEMETRIOSG. Effects of metformin on retinoblastoma growth in vitro and in vivo. Int J Oncol 2014; 45:2311-2324. [PMID: 25215935 PMCID: PMC4215581 DOI: 10.3892/ijo.2014.2650] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 04/25/2014] [Indexed: 01/16/2023] Open
Abstract
Recent studies suggest that the anti-diabetic drug metformin may reduce the risk of cancer and have anti-proliferative effects for some but not all cancers. In this study, we examined the effects of metformin on human retinoblastoma cell proliferation in vitro and in vivo. Two different human retinoblastoma cell lines (Y79, WERI) were treated with metformin in vitro and xenografts of Y79 cells were established in nu/nu immune-deficient mice and used to assess the effects of pharmacological levels of metformin in vivo. Metformin inhibited proliferation of the retinoblastoma cells in vitro. Similar to other studies, high concentrations of metformin (mM) blocked the cell cycle in G0‑G1, indicated by a strong decrease of G1 cyclins, especially cyclin D, cyclin-dependent kinases (4 and 6), and flow cytometry assessment of the cell cycle. This was associated with activation of AMPK, inhibition of the mTOR pathways and autophagy marker LC3B. However, metformin failed to suppress growth of xenografted tumors of Y79 human retinoblastoma cells in nu/nu mice, even when treated with a maximally tolerated dose level achieved in human patients. In conclusion, suprapharmacological levels (mM) of metformin, well above those tolerated in vivo, inhibited the proliferation of retinoblastoma cells in vitro. However, physiological levels of metformin, such as seen in the clinical setting, did not affect the growth of retinoblastoma cells in vitro or in vivo. This suggests that the potential beneficial effects of metformin seen in epidemiological studies may be limited to specific tumor types or be related to indirect effects/mechanisms not observed under acute laboratory conditions.
Collapse
Affiliation(s)
- KATARZYNA BRODOWSKA
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - SOFIA THEODOROPOULOU
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - MELISSA MEYER ZU HÖRSTE
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - ELEFTHERIOS I. PASCHALIS
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - KIMIO TAKEUCHI
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - GORDON SCOTT
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - DAVID J. RAMSEY
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - ELIZABETH KIERNAN
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - MIEN HOANG
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - JOANNA CICHY
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - JOAN W. MILLER
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - EVANGELOS S. GRAGOUDAS
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - DEMETRIOS G. VAVVAS
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
48
|
Marini C, Salani B, Massollo M, Amaro A, Esposito AI, Orengo AM, Capitanio S, Emionite L, Riondato M, Bottoni G, Massara C, Boccardo S, Fabbi M, Campi C, Ravera S, Angelini G, Morbelli S, Cilli M, Cordera R, Truini M, Maggi D, Pfeffer U, Sambuceti G. Direct inhibition of hexokinase activity by metformin at least partially impairs glucose metabolism and tumor growth in experimental breast cancer. Cell Cycle 2014; 12:3490-9. [PMID: 24240433 PMCID: PMC3906335 DOI: 10.4161/cc.26461] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Emerging evidence suggests that metformin, a widely used anti-diabetic drug, may be useful in the prevention and treatment of different cancers. In the present study, we demonstrate that metformin directly inhibits the enzymatic function of hexokinase (HK) I and II in a cell line of triple-negative breast cancer (MDA-MB-231). The inhibition is selective for these isoforms, as documented by experiments with purified HK I and II as well as with cell lysates. Measurements of 18F-fluoro-deoxyglycose uptake document that it is dose- and time-dependent and powerful enough to virtually abolish glucose consumption despite unchanged availability of membrane glucose transporters. The profound energetic imbalance activates phosphorylation and is subsequently followed by cell death. More importantly, the “in vivo” relevance of this effect is confirmed by studies of orthotopic xenografts of MDA-MB-231 cells in athymic (nu/nu) mice. Administration of high drug doses after tumor development caused an evident tumor necrosis in a time as short as 48 h. On the other hand, 1 mo metformin treatment markedly reduced cancer glucose consumption and growth. Taken together, our results strongly suggest that HK inhibition contributes to metformin therapeutic and preventive potential in breast cancer.
Collapse
Affiliation(s)
- Cecilia Marini
- CNR Institute of Bioimages and Molecular Physiology; Milan, Section of Genoa, Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hsieh SC, Tsai JP, Yang SF, Tang MJ, Hsieh YH. Metformin inhibits the invasion of human hepatocellular carcinoma cells and enhances the chemosensitivity to sorafenib through a downregulation of the ERK/JNK-mediated NF-κB-dependent pathway that reduces uPA and MMP-9 expression. Amino Acids 2014; 46:2809-22. [PMID: 25245054 DOI: 10.1007/s00726-014-1838-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/10/2014] [Indexed: 12/28/2022]
Abstract
Metformin has been shown to exert anti-cancer activities in several cancer cells and animal models. However, the molecular mechanisms of its anti-metastatic activities remain poorly understood and warrant further investigation. The aims of this study were to evaluate the ability of metformin to inhibit the migration and invasion of hepatocellular carcinoma (HCC) cells and identify its effects on signaling pathways. Our data indicate that metformin inhibits the migration and invasion of human HCC cells. Metformin was also found to significantly inhibit the expression and secretion of MMP-9 and uPA in HCC cells, and suppress the phosphorylation of ERK1/2 and JNK1/2. Treatment with an ERK1/2 inhibitor (PD98059) or JNK1/2 inhibitor (SP600125) enhanced the inhibitory effects of metformin on the migration and invasion of HCC cells. Moreover, metformin-induced inhibition of MMP-9 and uPA promoter activity also blocked the nuclear translocation of NF-κB and its binding to the MMP-9 and uPA promoters, and these suppressive effects were further enhanced by PD98059 or SP600125. Moreover, metformin markedly enhanced the anti-metastatic effects of sorafenib. In conclusion, metformin inhibits the migration and invasion of HCC cells by suppressing the ERK/JNK-mediated NF-κB-dependent pathway, and thereby reducing uPA and MMP-9 expression. Additionally, combination treatment with metformin and sorafenib yielded synergistic inhibitory effects in suppressing cell migration and invasion of HCC cells. These findings provide insight into the molecular mechanisms involved in the anti-metastatic effects of metformin, as well as its ability to enhance the chemosensitivity of HCC cells to sorafenib.
Collapse
Affiliation(s)
- Shu-Ching Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
50
|
Regulation of metformin response by breast cancer associated gene 2. Neoplasia 2014; 15:1379-90. [PMID: 24403860 DOI: 10.1593/neo.131434] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/30/2013] [Accepted: 11/06/2013] [Indexed: 12/19/2022] Open
Abstract
Adenosine monophosphate-activated protein kinase (AMPK), a master regulator of cellular energy homeostasis, has emerged as a promising molecular target in the prevention of breast cancer. Clinical trials using the United States Food and Drug Administration (FDA)-approved, AMPK-activating, antidiabetic drug metformin are promising in this regard, but the question of why metformin is protective for some women but not others still remains. Breast cancer associated gene 2 (BCA2/Rabring7/RNF115), a novel Really Interesting New Gene (RING) finger ubiquitin E3 ligase, is overexpressed in >50% of breast tumors. Herein, we report that BCA2 is an endogenous inhibitor of AMPK activation in breast cancer cells and that BCA2 inhibition increases the efficacy of metformin. BCA2 overexpression inhibited both basal and inducible Thr172 phosphorylation/activation of AMPKα1, while BCA2-specific small interfering RNA (siRNA) enhanced phosphorylated AMPKα1 (pAMPKα1). The AMPK-suppressive function of BCA2 requires its E3 ligase-specific RING domain, suggesting that BCA2 targets some protein controlling (de)phosphorylation of AMPKα1 for degradation. Activation of AMPK by metformin triggered a growth inhibitory signal but also increased BCA2 protein levels, which correlated with AKT activation and could be curbed by an AMPK inhibitor, suggesting a potential feedback mechanism from pAMPKα1 to pAkt to BCA2. Finally, BCA2 siRNA, or inhibition of its upstream stabilizing kinase AKT, increased the growth inhibitory effect of metformin in multiple breast cancer cell lines, supporting the conclusion that BCA2 weakens metformin's efficacy. Our data suggest that metformin in combination with a BCA2 inhibitor may be a more effective breast cancer treatment strategy than metformin alone.
Collapse
|