1
|
Lee J, Song J, Yoo W, Choi H, Jung D, Choi E, Jo SG, Gong EY, Jeoung YH, Park YS, Son WC, Lee H, Lee H, Kim JJ, Kim T, Lee S, Park JJ, Kim TD, Kim SH. Therapeutic potential of anti-ErbB3 chimeric antigen receptor natural killer cells against breast cancer. Cancer Immunol Immunother 2025; 74:73. [PMID: 39751931 PMCID: PMC11698710 DOI: 10.1007/s00262-024-03923-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025]
Abstract
ErbB3 is markedly overexpressed in breast cancer cells and is associated with resistance and metastasis. Additionally, ErbB3 expression levels are positively correlated with low densities of tumor-infiltrating lymphocytes, a marker of poor prognosis. Consequently, ErbB3 is a promising therapeutic target for cancer immunotherapy. Here, we report the generation of ErbB3-targeted chimeric antigen receptor (CAR)-modified natural killer (NK) cells by transducing cord blood-derived primary NK cells using vsv-g envelope-pseudotyped lentiviral vectors. Transduced cells displayed stable CAR-expressing activity and increased cytotoxicity against ErbB3-positive breast cancer cell lines. Furthermore, anti-ErbB3 (aErbB3) CAR-NK cells strongly reduced the tumor burden in the SK-BR-3 xenograft mouse model without observable side effects. These findings underscore the potential of aErbB3 CAR-NK cells as targeted immunotherapy for ErbB3-positive breast cancer, suggesting a promising alternative to conventional treatments.
Collapse
Affiliation(s)
- Juheon Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| | - Jinhoo Song
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| | - Wonbeak Yoo
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Hyunji Choi
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Dana Jung
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| | - Eunjeong Choi
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| | - Seo-Gyeong Jo
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| | - Eun-Yeung Gong
- Department of Medicinal Biotechnology, College of Health Science, Dong-A University, Busan, 49315, Republic of Korea
| | - Young-Hee Jeoung
- Department of Medicinal Biotechnology, College of Health Science, Dong-A University, Busan, 49315, Republic of Korea
| | - You-Soo Park
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences Busan, Busan, 46033, Republic of Korea
| | - Woo-Chang Son
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences Busan, Busan, 46033, Republic of Korea
| | - Hosuk Lee
- ISU Abxis, Drug Discovery Division, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Hayoung Lee
- ISU Abxis, Drug Discovery Division, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Jeom Ji Kim
- ISU Abxis, Drug Discovery Division, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - TaeEun Kim
- ISU Abxis, Drug Discovery Division, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Sooyun Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jang-June Park
- ISU Abxis, Drug Discovery Division, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
| | - Tae-Don Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| | - Seok-Ho Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea.
- Department of Medicinal Biotechnology, College of Health Science, Dong-A University, Busan, 49315, Republic of Korea.
| |
Collapse
|
2
|
Swar R, Dessai PG, MamleDesai S, Chandavarkar S, Phadte S, Biradar B. Design, Synthesis, Characterisation, and Evaluation of Substituted Quinolin-2-one Derivatives as Possible Anti-lung Cancer Agents. Curr Drug Discov Technol 2024; 21:e261223224851. [PMID: 38151847 DOI: 10.2174/0115701638258479231220051227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/10/2023] [Accepted: 10/27/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND According to 2022, the estimated number of cancer cases in India was found to be 1,461,427. Lung cancers are the leading cause of death among Indian males. Research on cancer has been conducted to develop better treatments that are safe and effective and could be used to diagnose cancer at an early stage. It was found that quinolin-2-one possesses anticancer activity, which led us to synthesize substituted quinolin-2-one derivatives that can provide a longer future to cancer patients and decrease the risk of dying from cancer. OBJECTIVE This study aimed to carry out the design, synthesis, characterisation, and evaluation of novel substituted quinolin-2-one analogues as possible anti-lung cancer agents. METHODS Compound III a/III b on reaction with acids, sodium acetate and ethylchloroacetate, substituted benzaldehyde, phthalic anhydride, and 2N sodium hydroxide yielded compounds IV a/ IV b, V a/ V b, VI a/ VI b, VI c/ VI d, VI e/ VI f, VII a/ VII b, and VIII a/ VIII b, respectively. RESULT Among all the synthesised derivatives, compound VII a was found to be most potent with a MolDock score of -132.78 as compared to standard drug imatinib (-114.37) and active ligand 4- anilinoquinazoline (-126.71). All the synthesized derivatives showed a good ADME profile, but compound VII a showed the best ADME data among all the synthesised derivatives. All the synthesised compounds were tested for their in vitro anticancer activity against the Hop-62 (human lung cancer) cell line, out of which compound VII a was found to be most potent, with a percent control growth of -51.7% at a concentration of 80 μg/ml, which was in comparable to the positive control, Adriamycin (-70.5%) and standard imatinib (-84.0%). CONCLUSION Compound VII a showed the highest MolDock score and was most potent against human lung cancer cell line Hop-62.
Collapse
Affiliation(s)
- Riya Swar
- Department of Pharmaceutical Chemistry, PES's Rajaram and Tarabai Bandekar College of Pharmacy, Ponda, Goa 403 401, India
| | - Prachita Gauns Dessai
- Department of Pharmaceutical Chemistry, PES's Rajaram and Tarabai Bandekar College of Pharmacy, Ponda, Goa 403 401, India
| | - Shivalingrao MamleDesai
- Department of Pharmaceutical Chemistry, PES's Rajaram and Tarabai Bandekar College of Pharmacy, Ponda, Goa 403 401, India
| | - Sachin Chandavarkar
- Department of Pharmacognosy, PES's Rajaram and Tarabai Bandekar College of Pharmacy, Ponda, Goa 403 401, India
| | - Soniya Phadte
- Department of Pharmaceutical Chemistry, PES's Rajaram and Tarabai Bandekar College of Pharmacy, Ponda, Goa 403 401, India
| | - Bheemanagouda Biradar
- Department of Pharmacology, PES's Rajaram and Tarabai Bandekar College of Pharmacy, Ponda, Goa 403 401, India
| |
Collapse
|
3
|
Hassanzadeh Makoui M, Mobini M, Fekri S, Geranpayeh L, Moradi Tabriz H, Madjd Z, Kalantari E, Hosseini M, Hosseini M, Golsaz-Shirazi F, Jeddi-Tehrani M, Zarnani AH, Amiri MM, Shokri F. Clinico-Pathological and Prognostic Significance of a Combination of Tumor Biomarkers in Iranian Patients With Breast Cancer. Clin Breast Cancer 2024; 24:e9-e19.e9. [PMID: 37863762 DOI: 10.1016/j.clbc.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/01/2023] [Accepted: 09/24/2023] [Indexed: 10/22/2023]
Abstract
PURPOSE Breast cancer is one of the most common cancers in the world. It is a multifaceted malignancy with different histopathological and biological features. Molecular biomarkers play an essential role in accurate diagnosis, classification, prognosis, prediction of treatment response, and cancer surveillance. This study investigated the clinico-pathological and prognostic significance of HER3 and ROR1 in breast cancer samples. METHODS Tissue microarrays (TMA) were constructed using tissue blocks of 444 Iranian breast cancer patients diagnosed with breast cancer. Overall survival (OS) and disease-free survival (DFS) were assessed after 5 years follow-up. TMA slides were stained with monoclonal antibodies against ROR1, HER3, ER, PR, Ki67, P53, HER2 and CK5/6 using IHC and correlation between the investigated tumor markers and the clinico-pathological parameters of patients were analyzed. RESULTS Our results showed a significant correlation between ROR1 and ER, PR, HER3, and CK5/6 expression. Additionally, there was a significant correlation between HER3 and ER, PR, HER2, and Ki67 expression. Ki67 was also correlated with HER2 and P53 expression. HER3 expression was significantly correlated with tumor stage, lymph node metastasis, perineural invasion, and multifocal tumors. Furthermore, ROR1 expression was significantly associated with tumor metastasis, lympho-vascular invasion, and perineural invasion. While HER2-HER3 coexpression was significantly associated with poor OS, HER3-ROR1 coexpression was associated with lymph node invasion, lymph node metastasis, and distant metastasis. CONCLUSION ROR1 and HER3 displayed significant association with different clinic-pathological features and in addition to the other tumor biomarkers could be considered as diagnostic and prognostic biomarkers in breast cancer patients.
Collapse
Affiliation(s)
- Masoud Hassanzadeh Makoui
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mobini
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shiva Fekri
- Department of Gynecology and Obstetrics, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Lobat Geranpayeh
- Department of Surgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Kalantari
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Hosseini
- Department of Pathology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Hosseini
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, The Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Majumder A. HER3: Toward the Prognostic Significance, Therapeutic Potential, Current Challenges, and Future Therapeutics in Different Types of Cancer. Cells 2023; 12:2517. [PMID: 37947595 PMCID: PMC10648638 DOI: 10.3390/cells12212517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
Human epidermal growth factor receptor 3 (HER3) is the only family member of the EGRF/HER family of receptor tyrosine kinases that lacks an active kinase domain (KD), which makes it an obligate binding partner with other receptors for its oncogenic role. When HER3 is activated in a ligand-dependent (NRG1/HRG) or independent manner, it can bind to other receptors (the most potent binding partner is HER2) to regulate many biological functions (growth, survival, nutrient sensing, metabolic regulation, etc.) through the PI3K-AKT-mTOR pathway. HER3 has been found to promote tumorigenesis, tumor growth, and drug resistance in different cancer types, especially breast and non-small cell lung cancer. Given its ubiquitous expression across different solid tumors and role in oncogenesis and drug resistance, there has been a long effort to target HER3. As HER3 cannot be targeted through its KD with small-molecule kinase inhibitors via the conventional method, pharmaceutical companies have used various other approaches, including blocking either the ligand-binding domain or extracellular domain for dimerization with other receptors. The development of treatment options with anti-HER3 monoclonal antibodies, bispecific antibodies, and different combination therapies showed limited clinical efficiency for various reasons. Recent reports showed that the extracellular domain of HER3 is not required for its binding with other receptors, which raises doubt about the efforts and applicability of the development of the HER3-antibodies for treatment. Whereas HER3-directed antibody-drug conjugates showed potentiality for treatment, these drugs are still under clinical trial. The currently understood model for dimerization-induced signaling remains incomplete due to the absence of the crystal structure of HER3 signaling complexes, and many lines of evidence suggest that HER family signaling involves more than the interaction of two members. This review article will significantly expand our knowledge of HER3 signaling and shed light on developing a new generation of drugs that have fewer side effects than the current treatment regimen for these patients.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Medicine, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
5
|
Dessai PG, Dessai SP, Dabholkar R, Pednekar P, Naik S, Mamledesai S, Gopal M, Pavadai P, Kumar BK, Murugesan S, Chandavarkar S, Theivendren P, Selvaraj K. Design, synthesis, graph theoretical analysis and molecular modelling studies of novel substituted quinoline analogues as promising anti-breast cancer agents. Mol Divers 2023; 27:1567-1586. [PMID: 35976550 DOI: 10.1007/s11030-022-10512-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/02/2022] [Indexed: 11/26/2022]
Abstract
The most promising class of heterocyclic compounds in medicinal chemistry are those with the quinolin-2-one nucleus. It is a versatile heterocyclic molecule that has been put together with numerous pharmaceutical substances and is crucial in the creation of anticancer medications. In this view, the present research work deals with design, synthesis, and characterization of various analogous of quinolin-2-one nucleus and evaluation of their anticancer activity against MCF-7 cells (adenoma breast cancer cell line). Fourteen new compounds have been synthesised using suitable synthetic route and are characterized by FTIR, 1H NMR, 13C NMR and Mass spectral data. Molecular docking studies of the title compounds were carried out using PyRx 0.8 tool in AutoDock Vina program. All the synthesised compounds were exhibited well conserved hydrogen bonding with one or more amino acid residues in the active pocket of EGFR tyrosine kinase (PDB ID: 1m17). The docking score of the derivatives ranged from - 6.7 to - 9.5 kcal mol-1, standard drug Imatinib with - 9.6 kcal mol-1 and standard active ligand 4-anilinoquinazoline with - 7.7 kcal mol-1. The designed compound IV-A1 showed least binding energy (- 9.5 kcal mol-1) against EGFR tyrosine kinase receptor. Further, top scored compound, IV-A1 found to be most significant against MCF-7 cells with IC50 value of 0.0870 µM mL-1, TGI of 0.0958 µM mL-1, GI50 of 0.00499 µM mL-1, LC50 of 1.670 µM mL-1.
Collapse
Affiliation(s)
- Prachita Gauns Dessai
- Department of Pharmaceutical Chemistry, PES's Rajaram & Tarabai Bandekar College of Pharmacy, Farmagudi, Ponda, 403401, India
| | - Shivani Prabhu Dessai
- Department of Pharmaceutical Chemistry, PES's Rajaram & Tarabai Bandekar College of Pharmacy, Farmagudi, Ponda, 403401, India
| | - Renuka Dabholkar
- Department of Pharmaceutical Chemistry, PES's Rajaram & Tarabai Bandekar College of Pharmacy, Farmagudi, Ponda, 403401, India
| | - Padmashree Pednekar
- Department of Pharmaceutical Chemistry, PES's Rajaram & Tarabai Bandekar College of Pharmacy, Farmagudi, Ponda, 403401, India
| | - Sahili Naik
- Department of Pharmaceutical Chemistry, PES's Rajaram & Tarabai Bandekar College of Pharmacy, Farmagudi, Ponda, 403401, India
| | - Shivlingrao Mamledesai
- Department of Pharmaceutical Chemistry, PES's Rajaram & Tarabai Bandekar College of Pharmacy, Farmagudi, Ponda, 403401, India
| | - Murugananthan Gopal
- Department of Pharmacognosy, Swamy Vivekananda College of Pharmacy, Elayampalayam, 637205, India
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M S R Nagar, Bengaluru, 560054, India
| | - Banoth Karan Kumar
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani, 333031, India
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani, 333031, India
| | - Sachin Chandavarkar
- Department of Pharmacognosy, ASPM College of Pharmacy, Sangulwadi, 416 810, India.
| | - Panneerselvam Theivendren
- Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy, Elayampalayam, 637205, India.
| | - Kunjiappan Selvaraj
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, 626126, India.
| |
Collapse
|
6
|
Campbell MR, Ruiz-Saenz A, Zhang Y, Peterson E, Steri V, Oeffinger J, Sampang M, Jura N, Moasser MM. Extensive conformational and physical plasticity protects HER2-HER3 tumorigenic signaling. Cell Rep 2022; 38:110285. [PMID: 35108526 PMCID: PMC8865943 DOI: 10.1016/j.celrep.2021.110285] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 08/30/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Surface-targeting biotherapeutic agents have been successful in treating HER2-amplified cancers through immunostimulation or chemodelivery but have failed to produce effective inhibitors of constitutive HER2-HER3 signaling. We report an extensive structure-function analysis of this tumor driver, revealing complete uncoupling of intracellular signaling and tumorigenic function from regulation or constraints from their extracellular domains (ECDs). The canonical HER3 ECD conformational changes and exposure of the dimerization interface are nonessential, and the entire ECDs of HER2 and HER3 are redundant for tumorigenic signaling. Restricting the proximation of partner ECDs with bulk and steric clash through extremely disruptive receptor engineering leaves tumorigenic signaling unperturbed. This is likely due to considerable conformational flexibilities across the span of these receptor molecules and substantial undulations in the plane of the plasma membrane, none of which had been foreseen as impediments to targeting strategies. The massive overexpression of HER2 functionally and physically uncouples intracellular signaling from extracellular constraints.
Collapse
Affiliation(s)
- Marcia R Campbell
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ana Ruiz-Saenz
- Departments of Cell Biology & Medical Oncology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Yuntian Zhang
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Elliott Peterson
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Veronica Steri
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Julie Oeffinger
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Maryjo Sampang
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mark M Moasser
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
7
|
Quantification of protein-protein interactions and activation dynamics: A new path to predictive biomarkers. Biophys Chem 2022; 283:106768. [DOI: 10.1016/j.bpc.2022.106768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/08/2022] [Accepted: 01/24/2022] [Indexed: 12/27/2022]
|
8
|
Iwabuchi E, Miki Y, Sasano H. The Visualization of Protein-Protein Interactions in Breast Cancer: Deployment Study in Pathological Examination. Acta Histochem Cytochem 2021; 54:177-183. [PMID: 35023880 PMCID: PMC8727844 DOI: 10.1267/ahc.21-00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/14/2021] [Indexed: 11/22/2022] Open
Abstract
The therapeutic strategy is determined by protein expression using immunohistochemistry of estrogen receptor (ER), progesterone receptor, and human epidermal growth factor receptor 2 (HER2) in formalin-fixed paraffin-embedded (FFPE) breast cancer tissues. However, few proteins function independently, and many of them functions due to protein-protein interactions (PPIs) with other proteins. Therefore, it is important to focus on PPIs. This review summarizes the PPIs of ER and HER2 in breast cancer, especially those using a proximity ligation assay that can visualize PPIs in FFPE tissues. In particular, assessing the interaction of CEACAM6 with HER2 may serve as a surrogate marker for the efficacy of trastuzumab in patients with breast cancer. Therefore, in this review, the technique used to detect the interaction of CEACAM6 and HER2 in routinely processed pathological specimens will be applied to the clinical practice of drug selection. We showed the possibility as a novel pathological examination method using PPIs.
Collapse
Affiliation(s)
- Erina Iwabuchi
- Department of Pathology, Tohoku University Graduate School of Medicine
| | - Yasuhiro Miki
- Department of Disaster Obstetrics and Gynecology, International Research Institute of Disaster Science (IRIDes), Tohoku University
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine
| |
Collapse
|
9
|
Sundaria N, Upadhyay A, Prasad A, Prajapati VK, Poluri KM, Mishra A. Neurodegeneration & imperfect ageing: Technological limitations and challenges? Mech Ageing Dev 2021; 200:111574. [PMID: 34562507 DOI: 10.1016/j.mad.2021.111574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/29/2021] [Accepted: 09/21/2021] [Indexed: 11/18/2022]
Abstract
Cellular homeostasis is regulated by the protein quality control (PQC) machinery, comprising multiple chaperones and enzymes. Studies suggest that the loss of the PQC mechanisms in neurons may lead to the formation of abnormal inclusions that may lead to neurological disorders and defective aging. The questions could be raised how protein aggregate formation precisely engenders multifactorial molecular pathomechanism in neuronal cells and affects different brain regions? Such questions await thorough investigation that may help us understand how aberrant proteinaceous bodies lead to neurodegeneration and imperfect aging. However, these studies face multiple technological challenges in utilizing available tools for detailed characterizations of the protein aggregates or amyloids and developing new techniques to understand the biology and pathology of proteopathies. The lack of detection and analysis methods has decelerated the pace of the research in amyloid biology. Here, we address the significance of aggregation and inclusion formation, followed by exploring the evolutionary contribution of these structures. We also provide a detailed overview of current state-of-the-art techniques and advances in studying amyloids in the diseased brain. A comprehensive understanding of the structural, pathological, and clinical characteristics of different types of aggregates (inclusions, fibrils, plaques, etc.) will aid in developing future therapies.
Collapse
Affiliation(s)
- Naveen Sundaria
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, Rajasthan, 342037, India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, Rajasthan, 342037, India
| | - Amit Prasad
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH‑8 Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, Rajasthan, 342037, India.
| |
Collapse
|
10
|
Liu R, Ota K, Iwama E, Yoneshima Y, Tanaka K, Inoue H, Tagawa T, Oda Y, Mori M, Nakanishi Y, Okamoto I. Quantification of HER family dimers by proximity ligation assay and its clinical evaluation in non-small cell lung cancer patients treated with osimertinib. Lung Cancer 2021; 158:156-161. [PMID: 34059353 DOI: 10.1016/j.lungcan.2021.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVES The epidermal growth factor receptor (EGFR, also known as Her1) is a member of the human epidermal growth factor receptor (HER) family of proteins and a target of tyrosine kinase inhibitors (TKIs) in the treatment of non-small cell lung cancer (NSCLC) positive for activating mutations ofEGFR. Signal transduction by HER family proteins is dependent on their homo- or heterodimerization, but little is known of the relation between the relative proportions of such dimers of Her1 and sensitivity to EGFR-TKIs. We here investigated the feasibility of assessing this relation with the in situ proximity ligation assay (PLA) technique, which is able to detect the interaction of two proteins of interest when they are in close proximity. MATERIALS AND METHODS In situ PLA was applied to detect Her1 homodimers and Her1 heterodimers in NSCLC cell lines and tissue specimens positive for EGFR activating mutations. RESULTS In situ PLA allowed visualization and quantitative assessment of Her1 homodimers as well as of Her1 heterodimers with Her2, Her3, or Her4 not only in NSCLC cell lines but also in NSCLC tissue specimens obtained from various anatomic sites and by different collection methods. Treatment of NSCLC cell lines with EGFR-TKIs resulted in a decrease in the number of Her1 dimers, with the effect on homodimers being greater than that on heterodimers. A high ratio of Her1 heterodimers to homodimers was associated with poor progression-free survival in NSCLC patients treated with osimertinib. CONCLUSION In situ PLA allows the detection of HER family dimers in NSCLC tissue, and quantitative assessment of Her1 homo- and heterodimers may prove informative for prediction of the response of NSCLC patients to EGFR-TKI treatment.
Collapse
Affiliation(s)
- Renpeng Liu
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Keiichi Ota
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan; Department of Comprehensive Clinical Oncology, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Eiji Iwama
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yasuto Yoneshima
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kentaro Tanaka
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroyuki Inoue
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan; Department of Respiratory Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Tetsuzo Tagawa
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masaki Mori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoichi Nakanishi
- Kitakyushu City Hospital Organization, 2-1-1 Bashaku, Kokurakita-ku, Kitakyushu, 802-8561, Japan
| | - Isamu Okamoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
11
|
Yang M, Lin X, Segers F, Suganthan R, Hildrestrand GA, Rinholm JE, Aas PA, Sousa MML, Holm S, Bolstad N, Warren D, Berge RK, Johansen RF, Yndestad A, Kristiansen E, Klungland A, Luna L, Eide L, Halvorsen B, Aukrust P, Bjørås M. OXR1A, a Coactivator of PRMT5 Regulating Histone Arginine Methylation. Cell Rep 2021; 30:4165-4178.e7. [PMID: 32209476 DOI: 10.1016/j.celrep.2020.02.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/04/2020] [Accepted: 02/13/2020] [Indexed: 01/01/2023] Open
Abstract
Oxidation resistance gene 1 (OXR1) protects cells against oxidative stress. We find that male mice with brain-specific isoform A knockout (Oxr1A-/-) develop fatty liver. RNA sequencing of male Oxr1A-/- liver indicates decreased growth hormone (GH) signaling, which is known to affect liver metabolism. Indeed, Gh expression is reduced in male mice Oxr1A-/- pituitary gland and in rat Oxr1A-/- pituitary adenoma cell-line GH3. Oxr1A-/- male mice show reduced fasting-blood GH levels. Pull-down and proximity ligation assays reveal that OXR1A is associated with arginine methyl transferase PRMT5. OXR1A-depleted GH3 cells show reduced symmetrical dimethylation of histone H3 arginine 2 (H3R2me2s), a product of PRMT5 catalyzed methylation, and chromatin immunoprecipitation (ChIP) of H3R2me2s shows reduced Gh promoter enrichment. Finally, we demonstrate with purified proteins that OXR1A stimulates PRMT5/MEP50-catalyzed H3R2me2s. Our data suggest that OXR1A is a coactivator of PRMT5, regulating histone arginine methylation and thereby GH production within the pituitary gland.
Collapse
Affiliation(s)
- Mingyi Yang
- Department of Microbiology, Oslo University Hospital, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Xiaolin Lin
- Department of Microbiology, Oslo University Hospital, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Filip Segers
- Research Institute of Internal Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway
| | | | | | | | - Per Arne Aas
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mirta M L Sousa
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Department of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway; Proteomics and Metabolomics Core Facility-PROMEC, Norwegian University of Science and Technology, the Central Norway Regional Health Authority, Trondheim, Norway
| | - Sverre Holm
- Research Institute of Internal Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Nils Bolstad
- Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - David Warren
- Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Rolf K Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Rune F Johansen
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Arne Yndestad
- Research Institute of Internal Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway
| | | | - Arne Klungland
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Luisa Luna
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Lars Eide
- Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway.
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Department of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway.
| |
Collapse
|
12
|
Li Y, Zhang X, Pan W, Li N, Tang B. A Nongenetic Proximity-Induced FRET Strategy Based on DNA Tetrahedron for Visualizing the Receptor Dimerization. Anal Chem 2020; 92:11921-11926. [DOI: 10.1021/acs.analchem.0c02330] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yanhua Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Xia Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
13
|
Huang B, Yip WK, Wei N, Luo KQ. Acetyltanshinone IIA is more potent than lapatinib in inhibiting cell growth and degrading HER2 protein in drug-resistant HER2-positive breast cancer cells. Cancer Lett 2020; 490:1-11. [PMID: 32585412 DOI: 10.1016/j.canlet.2020.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 10/24/2022]
Abstract
High expression of human epidermal factor receptor 2 (HER2) is directly related to tumor progression, malignancy and drug resistance in HER2-positive breast cancer (HER2-PBC). The major limitation of current anti-HER2 therapies is that they cannot reduce the levels of HER2 protein. Here, we investigated the effect of acetyltanshinone IIA (ATA) in lapatinib-resistant HER2-PBC cells. Our data showed that ATA exhibited more potent effects than lapatinib against drug-resistant HER2-PBC cells in terms of (1) inhibiting cell growth, (2) reducing phosphorylated and total HER2 levels, (3) inhibiting tumor xenograft growth in nude mice, and (4) reducing HER2 protein levels in tumor xenografts. A mechanistic study revealed that ATA promoted HER2 degradation via increasing c-Cbl and CHIP-mediated HER2 ubiquitination and subsequent HER2 degradation by the proteasome or lysosome. ATA also reduced the levels of other tyrosine kinase receptors (TKRs), such as HER3, IGF-1R and MET, in lapatinib-resistant cells. Our findings suggest that direct degradation of HER2 and other TKRs can be an effective strategy for combatting drug resistance. They also indicate the potential utilization of ATA in treating breast cancer that is resistant or nonresponsive to current HER2-targeted therapies.
Collapse
Affiliation(s)
- Bin Huang
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Wai Kien Yip
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Na Wei
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Kathy Qian Luo
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China.
| |
Collapse
|
14
|
Sonkar K, Ayyappan V, Tressler CM, Adelaja O, Cai R, Cheng M, Glunde K. Focus on the glycerophosphocholine pathway in choline phospholipid metabolism of cancer. NMR IN BIOMEDICINE 2019; 32:e4112. [PMID: 31184789 PMCID: PMC6803034 DOI: 10.1002/nbm.4112] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/16/2019] [Accepted: 04/20/2019] [Indexed: 05/02/2023]
Abstract
Activated choline metabolism is a hallmark of carcinogenesis and tumor progression, which leads to elevated levels of phosphocholine and glycerophosphocholine in all types of cancer tested so far. Magnetic resonance spectroscopy applications have played a key role in detecting these elevated choline phospholipid metabolites. To date, the majority of cancer-related studies have focused on phosphocholine and the Kennedy pathway, which constitutes the biosynthesis pathway for membrane phosphatidylcholine. Fewer and more recent studies have reported on the importance of glycerophosphocholine in cancer. In this review article, we summarize the recent literature on glycerophosphocholine metabolism with respect to its cancer biology and its detection by magnetic resonance spectroscopy applications.
Collapse
Affiliation(s)
- Kanchan Sonkar
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vinay Ayyappan
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Caitlin M. Tressler
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Oluwatobi Adelaja
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ruoqing Cai
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Menglin Cheng
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kristine Glunde
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Amplified fluorescence imaging of HER2 dimerization on cancer cells by using a co-localization triggered DNA nanoassembly. Mikrochim Acta 2019; 186:439. [PMID: 31197538 DOI: 10.1007/s00604-019-3549-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 05/24/2019] [Indexed: 12/18/2022]
Abstract
Convenient and sensitive detection of human epidermal growth factor receptor 2 (HER2) dimerization is highly desirable for molecule subtyping and guiding personalized HER2 targeted therapy of breast cancer. A colocalization-triggered DNA nanoassembly (CtDNA) strategy was developed for amplified imaging of HER2 dimerization. It exploits (a) the advantage of the specificity of aptamer proximity hybridization, and (b) the high sensitivity of hairpin-free nonlinear HCR. The mechanism of step-by-step hairpin-free nonlinear HCR for DNA dendritic nanoassembly was studied by native polyacrylamide gel electrophoresis, atomic force microscopy and fluorometry. The results revealed a high specificity, sensitivity, and excellent controllability of the DNA dendritic nanoassembly. The method was used to identify HER2 homodimers and HER2/HER3 heterodimers in various breast cancer cell lines using fluorescence microscopy. It was then extended to image and quantitatively evaluate HER2 homodimers in clinical formalin-fixed paraffin-embedded breast cancer tissue specimens. This revealed its remarkable accuracy and practicality for clinical diagnostics. Graphical abstract Schematic presentation of amplified imaging of human epidermal growth factor receptor 2 (HER2) dimerization on cancer cell surfaces by using a co-localization triggered DNA nanoassembly (CtDNA).
Collapse
|
16
|
Mieszkowska M, Piasecka D, Potemski P, Debska-Szmich S, Rychlowski M, Kordek R, Sadej R, Romanska HM. Tetraspanin CD151 impairs heterodimerization of ErbB2/ErbB3 in breast cancer cells. Transl Res 2019; 207:44-55. [PMID: 30639369 DOI: 10.1016/j.trsl.2018.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 01/07/2023]
Abstract
CD151/Tspan24 (SFS-1, PETA3) is one of the best characterized members of the tetraspanin family, whose involvement in breast cancer (BCa) progression was demonstrated both in vitro and in vivo. We have recently reported that in ErbB2-overexpressing BCa cells grown in 3D laminin-rich extracellular matrix, CD151 regulated basal phosphorylation and homodimerization of ErbB2 and sensitized the cells to Herceptin (trastuzumab). Following from these data, we have here analyzed an involvement of CD151 in regulation of ErbB2/ErbB3 heterodimerization and its impact on cell response to Herceptin. CD151 was found to: (1) impair ErbB2/ErbB3 heterodimerization, (2) inhibit heregulin-dependent cell growth in 3D and signaling, and (3) counteract the protective effect of heregulin on Herceptin-mediated growth inhibition. Analysis of tissue samples demonstrated for the first time clinical significance of CD151 in patients with ErbB2-overexpressing BCa undergone trastuzumab-based therapy. Consistent with in vitro results, CD151 impact on disease outcome was ErbB3-dependent. In patients with ErbB3-negative tumors, CD151 significantly improved both overall survival (OS) (hazard ratio [HR] = 0.19, P = 0.034) and progression-free survival (PFS) (HR = 0.36, P = 0.043), while in ErbB3-positive cases it had no significant effect on patient survival (OS: HR = 3.33, P = 0.283; PFS: HR = 2.40, P = 0.208). These results support previous findings and show that CD151 acts as an important component of ErbB2 signaling axis in BCa cells, affecting their sensitivity to ErbB2-targeting therapy.
Collapse
Affiliation(s)
- Magdalena Mieszkowska
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | | | - Piotr Potemski
- Department of Chemotherapy, Medical University of Lodz and Copernicus Memorial Hospital in Lodz, Lodz, Poland
| | - Sylwia Debska-Szmich
- Department of Chemotherapy, Medical University of Lodz and Copernicus Memorial Hospital in Lodz, Lodz, Poland
| | - Michal Rychlowski
- Department of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Radzislaw Kordek
- Department of Pathology, Medical University of Lodz, Lodz, Poland
| | - Rafal Sadej
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland.
| | - Hanna M Romanska
- Department of Pathology, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
17
|
Xu L, Liu S, Yang T, Shen Y, Zhang Y, Huang L, Zhang L, Ding S, Song F, Cheng W. DNAzyme Catalyzed Tyramide Depositing Reaction for In Situ Imaging of Protein Status on the Cell Surface. Theranostics 2019; 9:1993-2002. [PMID: 31037152 PMCID: PMC6485291 DOI: 10.7150/thno.31943] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/13/2019] [Indexed: 12/11/2022] Open
Abstract
Effective characterization of protein biomarkers status on the cell surface has important value in the diagnosis and treatment of diseases. Traditional immunohistochemistry can only assess the protein expression level rather than accurately reflect their interaction and oligomerization, resulting in inevitable problems for personalized therapy. Methods: Herein, we developed a novel DNAzyme-catalyzed tyramide depositing reaction (DCTDR) for in situ amplified imaging of membrane protein status. By using human epidermal growth factor receptor 2 (HER2) as model, the binding of HER2 proteins with specific aptamers induced the formation of activated hemin/G-quadruplex (G4) DNAzyme on the cell surface to catalyze the covalent deposition of fluorescent tyramide on the membrane proteins for fluorescence imaging. Results: The DCTDR-based imaging can conveniently characterize total HER2 expression and HER2 dimerization on the breast cancer cell surface with the application of aptamer-G4 probes and proximity aptamer-split G4 probes, respectively. The designed DCTDR strategy was successfully applied to quantitatively estimate total HER2 expression and HER2 homodimer on clinical breast cancer tissue sections with high specificity and accuracy. Conclusion: The DCTDR strategy provides a simple, pragmatic and enzyme-free toolbox to conveniently and sensitively analyze protein status in clinical samples for improving clinical research, cancer diagnostics and personalized treatment.
Collapse
|
18
|
Comparison of Antibodies for Immunohistochemistry-based Detection of HER3 in Breast Cancer. Appl Immunohistochem Mol Morphol 2019; 26:212-219. [PMID: 27389555 DOI: 10.1097/pai.0000000000000406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Growth factor receptor HER3 (ErbB3) lacks standardized immunohistochemistry (IHC)-based methods for formalin-fixed paraffin-embedded (FFPE) tissue samples. We compared 4 different anti-HER3 antibodies to explain the differences found in the staining results reported in the literature. MATERIALS AND METHODS Four commercial HER3 antibodies were tested on FFPE samples including mouse monoclonal antibody clones, DAK-H3-IC and RTJ1, rabbit monoclonal antibody clone SP71, and rabbit polyclonal antibody (SAB4500793). Membranous and cytoplasmic staining patterns were analyzed and scored as 0, 1+, or 2+ according to the intensity of the staining and completeness of membranous and cytoplasmic staining. A large collection of HER2-amplified breast cancers (n=177) was stained with the best performing HER3 antibody. The breast cancer cell line, MDA-453, and human prostate tissue were used as positive controls. IHC results were confirmed by analysis of flow cytometry performed on breast cancer cell lines. Staining results of FFPE samples were compared with samples fixed with an epitope-sensitive fixative (PAXgene). RESULTS Clear circumferential cell membrane staining was found only with the HER3 antibody clone DAK-H3-IC. Other antibodies (RTJ1, SP71, and polyclonal) yielded uncertain and nonreproducible staining results. In addition to cell membrane staining, DAK-H3-IC was also localized to the cytoplasm, but no nuclear staining was observed. In HER2-amplified breast cancers, 80% of samples were classified as 1+ or 2+ according to the HER3 staining on the cell membrane. The results from FFPE cell line samples were comparable to those obtained from unfixed cells in flow cytometry. IHC conducted on FFPE samples and on PAXgene-fixed samples showed equivalent results. CONCLUSIONS We conclude that IHC with the monoclonal antibody, DAK-H3-IC, on FFPE samples is a reliable staining method for use in translational research. Assessment of membranous HER3 expression may be clinically relevant in selecting patients who may most benefit from pertuzumab or other novel anti-HER3 therapies.
Collapse
|
19
|
Sfanos KS, Yegnasubramanian S, Nelson WG, Lotan TL, Kulac I, Hicks JL, Zheng Q, Bieberich CJ, Haffner MC, De Marzo AM. If this is true, what does it imply? How end-user antibody validation facilitates insights into biology and disease. Asian J Urol 2019; 6:10-25. [PMID: 30775245 PMCID: PMC6363603 DOI: 10.1016/j.ajur.2018.11.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/30/2022] Open
Abstract
Antibodies are employed ubiquitously in biomedical sciences, including for diagnostics and therapeutics. One of the most important uses is for immunohistochemical (IHC) staining, a process that has been improving and evolving over decades. IHC is useful when properly employed, yet misuse of the method is widespread and contributes to the "reproducibility crisis" in science. We report some of the common problems encountered with IHC assays, and direct readers to a wealth of literature documenting and providing some solutions to this problem. We also describe a series of vignettes that include our approach to analytical validation of antibodies and IHC assays that have facilitated a number of biological insights into prostate cancer and the refutation of a controversial association of a viral etiology in gliomas. We postulate that a great deal of the problem with lack of accuracy in IHC assays stems from the lack of awareness by researchers for the critical necessity for end-users to validate IHC antibodies and assays in their laboratories, regardless of manufacturer claims or past publications. We suggest that one reason for the pervasive lack of end-user validation for research antibodies is that researchers fail to realize that there are two general classes of antibodies employed in IHC. First, there are antibodies that are "clinical grade" reagents used by pathologists to help render diagnoses that influence patient treatment. Such diagnostic antibodies, which tend to be highly validated prior to clinical implementation, are in the vast minority (e.g. < 500). The other main class of antibodies are "research grade" antibodies (now numbering >3 800 000), which are often not extensively validated prior to commercialization. Given increased awareness of the problem, both the United States, National Institutes of Health and some journals are requiring investigators to provide evidence of specificity of their antibody-based assays.
Collapse
Affiliation(s)
- Karen S. Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - William G. Nelson
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tamara L. Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ibrahim Kulac
- Department of Pathology, Koc Universitesi Tip Fakultesi, Istanbul, Turkey
| | - Jessica L. Hicks
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qizhi Zheng
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles J. Bieberich
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Michael C. Haffner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Angelo M. De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
Luhtala S, Staff S, Kallioniemi A, Tanner M, Isola J. Clinicopathological and prognostic correlations of HER3 expression and its degradation regulators, NEDD4-1 and NRDP1, in primary breast cancer. BMC Cancer 2018; 18:1045. [PMID: 30367623 PMCID: PMC6204010 DOI: 10.1186/s12885-018-4917-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/08/2018] [Indexed: 12/17/2022] Open
Abstract
Background Human epidermal growth factor receptor HER3 (ErbB3), especially in association with its relative HER2 (ErbB2), is known as a key oncogene in breast tumour biology. Nonetheless, the prognostic relevance of HER3 remains controversial. NEDD4–1 and NRDP1 are signalling molecules closely related to the degradation of HER3 via ubiquitination. NEDD4–1 and NRDP1 have been reported to contribute to HER3-mediated signalling by regulating its localization and cell membrane retention. We studied correlations between HER3, NEDD4–1, and NRDP1 protein expression and their association with tumour histopathological characteristics and clinical outcomes. Methods The prevalence of immunohistochemically detectable expression profiles of HER3 (n = 177), NEDD4–1 (n = 145), and NRDP1 (n = 145) proteins was studied in primary breast carcinomas on archival formalin-fixed paraffin-embedded (FFPE) samples. Clinicopathological correlations were determined statistically using Pearson’s Chi-Square test. The Kaplan-Meier method, log-rank test (Mantel-Cox), and Cox regression analysis were utilized for survival analysis. Results HER3 protein was expressed in breast carcinomas without association with HER2 gene amplification status. Absence or low HER3 expression correlated with clinically aggressive features, such as triple-negative breast cancer (TNBC) phenotype, basal cell origin (cytokeratin 5/14 expression combined with ER negativity), large tumour size, and positive lymph node status. Low total HER3 expression was prognostic for shorter recurrence-free survival time in HER2-amplified breast cancer (p = 0.004, p = 0.020 in univariate and multivariate analyses, respectively). The majority (82.8%) of breast cancers demonstrated NEDD4–1 protein expression - while only a minor proportion (8.3%) of carcinomas expressed NRDP1. NEDD4–1 and NRDP1 expression were not associated with clinical outcomes in HER2-amplified breast cancer, irrespective of adjuvant trastuzumab therapy. Conclusions Low HER3 expression is suggested to be a valuable prognostic biomarker to predict recurrence in HER2-amplified breast cancer. Neither NEDD4–1 nor NRDP1 demonstrated relevance in prognostics or in the subclassification of HER2-amplified breast carcinomas. Electronic supplementary material The online version of this article (10.1186/s12885-018-4917-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Satu Luhtala
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Arvo Ylpön katu 34, 33520, Tampere, Finland.
| | - Synnöve Staff
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Arvo Ylpön katu 34, 33520, Tampere, Finland.,Department of Obstetrics and Gynecology, Tampere University Hospital, Tampere, Finland
| | - Anne Kallioniemi
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Arvo Ylpön katu 34, 33520, Tampere, Finland
| | - Minna Tanner
- Department of Oncology, Tampere University Hospital, Tampere, Finland
| | - Jorma Isola
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Arvo Ylpön katu 34, 33520, Tampere, Finland
| |
Collapse
|
21
|
Lamarca A, Galdy S, Barriuso J, Moghadam S, Beckett E, Rogan J, Backen A, Billington C, McNamara MG, Hubner RA, Cramer A, Valle JW. The HER3 pathway as a potential target for inhibition in patients with biliary tract cancers. PLoS One 2018; 13:e0206007. [PMID: 30335866 PMCID: PMC6193702 DOI: 10.1371/journal.pone.0206007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Expression of human epidermal growth factor receptor (HER)2 and HER3 have been investigated in small BTC studies using variable scoring systems. METHODS HER2 and HER3 overexpression/amplification were explored following internationally agreed guidelines using immunohistochemistry (IHC) and fluorescent in-situ hybridisation (FISH), respectively. Logistic regression and survival analysis (Kaplan Meier, Log rank test and Cox Regression) were used for statistical analysis. RESULTS Sixty-seven eligible patients with Stage I/II (31.3%) or III/IV (68.7%) disease at diagnosis were included. Membrane HER2 overexpression/amplification was identified in 1 patient (1%). HER3 overexpression was predominantly cytoplasmic; the rate of overexpression/amplification of HER3 in membrane and cytoplasm was 16% [ampullary cancer (AMP) (1/13; 8%), gallbladder cancer (GBC) (1/10; 10%), intra-hepatic cholangiocarcinoma (ICC) (6/26; 23%), extra-hepatic cholangiocarcinoma (ECC) (3/18; 17%)] and 24% [AMP (1/13; 8%), GBC (1/10; 10%), ICC (10/26; 38%), ECC (4/18; 22%)], respectively. CONCLUSIONS A significant subset of patients with BTC expressed HER3. Inhibition of HER3 warrants further investigation. A better understanding of the downstream effects of HER3 in BTC requires further mechanistic investigations to identify new biomarkers and improve patient selection for future clinical trials.
Collapse
Affiliation(s)
- Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Salvatore Galdy
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
- Unit of Gastrointestinal Medical Oncology and Neuroendocrine Tumours, European Institute of Oncology, Milan, Italy
| | - Jorge Barriuso
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Sharzad Moghadam
- Manchester Cancer Research Centre Biobank, University of Manchester, Manchester, United Kingdom
| | - Elizabeth Beckett
- The Christie Pathology Partnership, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Jane Rogan
- Manchester Cancer Research Centre Biobank, University of Manchester, Manchester, United Kingdom
| | - Alison Backen
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Catherine Billington
- The Christie Pathology Partnership, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Mairéad G. McNamara
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Richard A. Hubner
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Angela Cramer
- The Christie Pathology Partnership, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Juan W. Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
22
|
Exploring Protein⁻Protein Interaction in the Study of Hormone-Dependent Cancers. Int J Mol Sci 2018; 19:ijms19103173. [PMID: 30326622 PMCID: PMC6213999 DOI: 10.3390/ijms19103173] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/20/2022] Open
Abstract
Estrogen receptors promote target gene transcription when they form a dimer, in which two identical (homodimer) or different (heterodimer) proteins are bound to each other. In hormone-dependent cancers, hormone receptor dimerization plays pivotal roles, not only in the pathogenesis or development of the tumors, but also in the development of therapeutic resistance. Protein–protein interactions (PPIs), including dimerization and complex formation, have been also well-known to be required for proteins to exert their functions. The methods which could detect PPIs are genetic engineering (i.e., resonance energy transfer) and/or antibody technology (i.e., co-immunoprecipitation) using cultured cells. In addition, visualization of the target proteins in tissues can be performed using antigen–antibody reactions, as in immunohistochemistry. Furthermore, development of microscopic techniques (i.e., electron microscopy and confocal laser microscopy) has made it possible to visualize intracellular and/or intranuclear organelles. We have recently reported the visualization of estrogen receptor dimers in breast cancer tissues by using the in situ proximity ligation assay (PLA). PLA was developed along the lines of antibody technology development, and this assay has made it possible to visualize PPIs in archival tissue specimens. Localization of PPI in organelles has also become possible using super-resolution microscopes exceeding the resolution limit of conventional microscopes. Therefore, in this review, we summarize the methodologies used for studying PPIs in both cells and tissues, and review the recently reported studies on PPIs of hormones.
Collapse
|
23
|
Adamczyk A, Kruczak A, Harazin-Lechowska A, Ambicka A, Grela-Wojewoda A, Domagała-Haduch M, Janecka-Widła A, Majchrzyk K, Cichocka A, Ryś J, Niemiec J. Relationship between HER2 gene status and selected potential biological features related to trastuzumab resistance and its influence on survival of breast cancer patients undergoing trastuzumab adjuvant treatment. Onco Targets Ther 2018; 11:4525-4535. [PMID: 30122944 DOI: 10.2147/ott.s166983] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background The aim of the study was to investigate if parameters associated with human epidermal growth factor receptor type 2 (HER2) status (HER2 gene copy number, HER2/CEP17 ratio or polysomy of chromosome 17) are related to various biological features potentially responsible for trastuzumab resistance (PTEN, IGF-1R, MUC4, EGFR, HER3, HER4, and mutation status of PIK3CA) as well as their influence on survival of HER2-positive breast cancer patients treated with adjuvant chemotherapy and trastuzumab. Patients and methods The investigated group consisted of 117 patients with invasive ductal breast cancer (T≥1, N≥0, M0) with overexpression of HER2, who underwent radical surgery between 2007 and 2014. Status of ER, PR, and HER2 expression was retrieved from patients' files. HER2 gene copy number was investigated by fluorescence in situ hybridization using PathVysion HER-2 DNA Probe Kit II. Expression of PTEN, IGF-1R, MUC4, EGFR, HER3, and HER4 was assessed immunohistochemically on formalin-fixed paraffin-embedded tissue sections. PIK3C mutation status was determined by qPCR analysis. Results Overexpression of HER2 protein (IHC 3+) and ER negativity corresponded to higher HER22 copy number and HER2/CEP17 ratio (.<0.001). Tumors with polysomy were characterized by higher HER22 gene copy number but lower HER2/CEP17p ratio (p<0.026, p<0.001). Patients with tumors featuring HER3 immunonegativity or low HER2/CEP17 ratio (#4) were characterized by 100% metastasis-free survival (.=0.018, p=0.062). Conclusion Presence of both unfavorable factors, ie, HER3 expression and high HER2/CEP17 ratio, allowed to distinguish a group of patients with worse prognosis (.=0.001).
Collapse
Affiliation(s)
| | | | | | | | - Aleksandra Grela-Wojewoda
- Department of Systemic and Generalized Malignancies, Maria Sklodowska-Curie Memorial Cancer Centre and Institute of Oncology, Cracow Branch, Cracow, Poland
| | - Małgorzata Domagała-Haduch
- Department of Systemic and Generalized Malignancies, Maria Sklodowska-Curie Memorial Cancer Centre and Institute of Oncology, Cracow Branch, Cracow, Poland
| | | | | | | | | | | |
Collapse
|
24
|
Pankratova S, Klingelhofer J, Dmytriyeva O, Owczarek S, Renziehausen A, Syed N, Porter AE, Dexter DT, Kiryushko D. The S100A4 Protein Signals through the ErbB4 Receptor to Promote Neuronal Survival. Theranostics 2018; 8:3977-3990. [PMID: 30083275 PMCID: PMC6071530 DOI: 10.7150/thno.22274] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 04/10/2018] [Indexed: 12/21/2022] Open
Abstract
Understanding the mechanisms of neurodegeneration is crucial for development of therapies to treat neurological disorders. S100 proteins are extensively expressed in the injured brain but S100's role and signalling in neural cells remain elusive. We recently demonstrated that the S100A4 protein protects neurons in brain injury and designed S100A4-derived peptides mimicking its beneficial effects. Here we show that neuroprotection by S100A4 involves the growth factor family receptor ErbB4 and its ligand Neuregulin 1 (NRG), key regulators of neuronal plasticity and implicated in multiple brain pathologies. The neuroprotective effect of S100A4 depends on ErbB4 expression and the ErbB4 signalling partners ErbB2/Akt, and is reduced by functional blockade of NRG/ErbB4 in cell models of neurodegeneration. We also detect binding of S100A4 with ErbB1 (EGFR) and ErbB3. S100A4-derived peptides interact with, and signal through ErbB, are neuroprotective in primary and immortalized dopaminergic neurons, and do not affect cell proliferation/motility - features which make them promising as potential neuroprotectants. Our data suggest that the S100-ErbB axis may be an important mechanism regulating neuronal survival and plasticity.
Collapse
|
25
|
Ang YS, Li JJ, Chua PJ, Ng CT, Bay BH, Yung LYL. Localized Visualization and Autonomous Detection of Cell Surface Receptor Clusters Using DNA Proximity Circuit. Anal Chem 2018; 90:6193-6198. [PMID: 29608843 DOI: 10.1021/acs.analchem.8b00722] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cell surface receptors play an important role in mediating cell communication and are used as disease biomarkers and therapeutic targets. We present a one-pot molecular toolbox, which we term the split proximity circuit (SPC), for the autonomous detection and visualization of cell surface receptor clusters. Detection was powered by antibody recognition and a series of autonomous DNA hybridization to achieve localized, enzyme-free signal amplification. The system under study was the human epidermal growth factor receptor (HER) family, that is, HER2:HER2 homodimer and HER2:HER3 heterodimer, both in cell lysate and in situ on fixed whole cells. The detection and imaging of receptors were carried out using standard microplate scans and confocal microscopy, respectively. The circuit operated specifically with minimal leakages and successfully captured the receptor expression profiles on three cell types without any intermediate washing steps.
Collapse
Affiliation(s)
- Yan Shan Ang
- Department of Chemical and Biomolecular Engineering , National University of Singapore , Singapore 117585 , Singapore
| | - Jia'En Jasmine Li
- Department of Chemical and Biomolecular Engineering , National University of Singapore , Singapore 117585 , Singapore
| | - Pei-Jou Chua
- Department of Anatomy, Yong Loo Lin School of Medicine , National University of Singapore , Singapore 117594 , Singapore
| | - Cheng-Teng Ng
- Department of Anatomy, Yong Loo Lin School of Medicine , National University of Singapore , Singapore 117594 , Singapore
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine , National University of Singapore , Singapore 117594 , Singapore
| | - Lin-Yue Lanry Yung
- Department of Chemical and Biomolecular Engineering , National University of Singapore , Singapore 117585 , Singapore
| |
Collapse
|
26
|
Fichter CD, Przypadlo CM, Buck A, Herbener N, Riedel B, Schäfer L, Nakagawa H, Walch A, Reinheckel T, Werner M, Lassmann S. A new model system identifies epidermal growth factor receptor-human epidermal growth factor receptor 2 (HER2) and HER2-human epidermal growth factor receptor 3 heterodimers as potent inducers of oesophageal epithelial cell invasion. J Pathol 2017; 243:481-495. [PMID: 28940194 DOI: 10.1002/path.4987] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 08/08/2017] [Accepted: 09/11/2017] [Indexed: 12/31/2022]
Abstract
Oesophageal squamous cell carcinomas and oesophageal adenocarcinomas show distinct patterns of ErbB expression and dimers. The functional effects of specific ErbB homodimers or heterodimers on oesophageal (cancer) cell behaviour, particularly invasion during early carcinogenesis, remain unknown. Here, a new cellular model system for controlled activation of epidermal growth factor receptor (EGFR) or human epidermal growth factor receptor 2 (HER2) and EGFR-HER2 or HER2-human epidermal growth factor receptor 3 (HER3) homodimers and heterodimers was studied in non-neoplastic squamous oesophageal epithelial Het-1A cells. EGFR, HER2 and HER3 intracellular domains (ICDs) were fused to dimerization domains (DmrA/DmrA and DmrC), and transduced into Het-1A cells lacking ErbB expression. Dimerization of EGFR, HER2 or EGFR-HER2 and HER2-HER3 ICDs was induced by synthetic ligands (A/A or A/C dimerizers). This was accompanied by phosphorylation of the respective EGFR, HER2 and HER3 ICDs and activation of distinct downstream signalling pathways, such as phospholipase Cγ1, Akt, STAT and Src family kinases. Phenotypically, ErbB dimers caused cell rounding and non-apoptotic blebbing, specifically in EGFR-HER2 and HER2-HER3 heterodimer cells. In a Transwell assay, cell migration velocity was elevated in HER2 dimer cells as compared with empty vector cells. In addition, HER2 dimer cells showed in increased cell invasion, reaching significance for induced HER2-HER3 heterodimers (P = 0.015). Importantly, in three-dimensional organotypic cultures, empty vector cells grew as a superficial cell layer, resembling oesophageal squamous epithelium. In contrast, induced HER2 homodimer cells were highly invasive into the matrix and formed cell clusters. This was associated with partial loss of cytokeratin 7 (when HER2 homodimers were modelled) and p63 (when EGFR-HER2 heterodimers were modelled), which suggests a change or loss of squamous cell differentiation. Controlled activation of specific EGFR, HER2 and HER3 homodimers and heterodimers caused oesophageal squamous epithelial cell migration and/or invasion, especially in a three-dimensional microenvironment, thereby functionally identifying ErbB homodimers and heterodimers as important drivers of oesophageal carcinogenesis. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Christiane Daniela Fichter
- Institute for Surgical Pathology, Medical Centre, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Camilla Maria Przypadlo
- Institute for Surgical Pathology, Medical Centre, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Achim Buck
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Nicola Herbener
- Institute for Surgical Pathology, Medical Centre, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bianca Riedel
- Institute for Surgical Pathology, Medical Centre, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Luisa Schäfer
- Institute for Surgical Pathology, Medical Centre, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hiroshi Nakagawa
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Thomas Reinheckel
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany.,Comprehensive Cancer Centre Freiburg, Medical Centre, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Martin Werner
- Institute for Surgical Pathology, Medical Centre, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Comprehensive Cancer Centre Freiburg, Medical Centre, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Silke Lassmann
- Institute for Surgical Pathology, Medical Centre, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,Comprehensive Cancer Centre Freiburg, Medical Centre, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Centre (DKFZ), Heidelberg, Germany
| |
Collapse
|
27
|
Fatty acid synthase affects expression of ErbB receptors in epithelial to mesenchymal transition of breast cancer cells and invasive ductal carcinoma. Oncol Lett 2017; 14:5934-5946. [PMID: 29113229 PMCID: PMC5661422 DOI: 10.3892/ol.2017.6954] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 06/09/2017] [Indexed: 02/05/2023] Open
Abstract
The aim of the present study was to investigate changes in the expression of ErbBs during epithelial-mesenchymal transition (EMT) of breast cancer cells and its association with the expression of fatty acid synthase (FASN). MCF-7-MEK5 cells were used as the experimental model, while MCF-7 cells were used as a control. Tumor cells were implanted into nude mice for in vivo analysis. Cerulenin was used as a FASN inhibitor. Reverse transcription-polymerase chain reaction and western blot analysis were used to detect expression levels of FASN and ErbB1-4. Immunohistochemistry was used to detect the expression of FASN and ErbB1-4 in 58 invasive ductal carcinomas (IDC), as well as their association with clinicopathological characteristics. The expression of FASN and ErbB1-4 in MCF-7-MEK5 cells and tumor tissues increased significantly compared with controls (P<0.001). Inhibition of FASN by cerulenin resulted in a significant decrease in expression of ErbB1, 2 and 4 (P<0.001), whereas there was no evident change in ErbB3. In IDC samples, the expression of FASN and ErbB1-4 increased considerably in lymph node metastases compared with non-lymph node metastases (P<0.05). ErbB2 expression increased in advanced clinical stages (II, III and IV) of IDC and in tumors with larger diameters (P<0.05). The expression of ErbB3 increased in ER-positive tumors (P<0.05). Additionally, a positive association between the expression of FASN and ErbB1, 2 and 4 was observed (P<0.05). FASN activates ErbB1, 2 and 4, and their dimers, which are polymerized via the microstructural domain of the cell membrane. This may initiate EMT and consequentlyincrease the invasion and migration of cancer cells. However, ErbB3 may also affect tumor progression via a FASN-independent pathway.
Collapse
|
28
|
Sharma R, Waller AP, Agrawal S, Wolfgang KJ, Luu H, Shahzad K, Isermann B, Smoyer WE, Nieman MT, Kerlin BA. Thrombin-Induced Podocyte Injury Is Protease-Activated Receptor Dependent. J Am Soc Nephrol 2017; 28:2618-2630. [PMID: 28424276 PMCID: PMC5576925 DOI: 10.1681/asn.2016070789] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 03/16/2017] [Indexed: 12/29/2022] Open
Abstract
Nephrotic syndrome is characterized by massive proteinuria and injury of specialized glomerular epithelial cells called podocytes. Studies have shown that, whereas low-concentration thrombin may be cytoprotective, higher thrombin concentrations may contribute to podocyte injury. We and others have demonstrated that ex vivo plasma thrombin generation is enhanced during nephrosis, suggesting that thrombin may contribute to nephrotic progression. Moreover, nonspecific thrombin inhibition has been shown to decrease proteinuria in nephrotic animal models. We thus hypothesized that thrombin contributes to podocyte injury in a protease-activated receptor-specific manner during nephrosis. Here, we show that specific inhibition of thrombin with hirudin reduced proteinuria in two rat nephrosis models, and thrombin colocalized with a podocyte-specific marker in rat glomeruli. Furthermore, flow cytometry immunophenotyping revealed that rat podocytes express the protease-activated receptor family of coagulation receptors in vivo High-concentration thrombin directly injured conditionally immortalized human and rat podocytes. Using receptor-blocking antibodies and activation peptides, we determined that thrombin-mediated injury depended upon interactions between protease-activated receptor 3 and protease-activated receptor 4 in human podocytes, and between protease-activated receptor 1 and protease-activated receptor 4 in rat podocytes. Proximity ligation and coimmunoprecipitation assays confirmed thrombin-dependent interactions between human protease-activated receptor 3 and protease-activated receptor 4, and between rat protease-activated receptor 1 and protease-activated receptor 4 in cultured podocytes. Collectively, these data implicate thrombinuria as a contributor to podocyte injury during nephrosis, and suggest that thrombin and/or podocyte-expressed thrombin receptors may be novel therapeutic targets for nephrotic syndrome.
Collapse
Affiliation(s)
- Ruchika Sharma
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital
- Division of Hematology, Oncology, and BMT, and
| | - Amanda P Waller
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital
| | - Shipra Agrawal
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital
| | - Katelyn J Wolfgang
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital
| | - Hiep Luu
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital
- Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Khurrum Shahzad
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University, Magdeburg, Germany
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan; and
| | - Berend Isermann
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University, Magdeburg, Germany
| | - William E Smoyer
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital
- Division of Nephrology, Nationwide Children's Hospital, Columbus, Ohio
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Marvin T Nieman
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Bryce A Kerlin
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital,
- Division of Hematology, Oncology, and BMT, and
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
29
|
Close Encounters - Probing Proximal Proteins in Live or Fixed Cells. Trends Biochem Sci 2017; 42:504-515. [PMID: 28566215 DOI: 10.1016/j.tibs.2017.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/25/2017] [Accepted: 05/03/2017] [Indexed: 12/30/2022]
Abstract
The well-oiled machinery of the cellular proteome operates via variable expression, modifications, and interactions of proteins, relaying genomic and transcriptomic information to coordinate cellular functions. In recent years, a number of techniques have emerged that serve to identify sets of proteins acting in close proximity in the course of orchestrating cellular activities. These proximity-dependent assays, including BiFC, BioID, APEX, FRET, and isPLA, have opened up new avenues to examine protein interactions in live or fixed cells. We review herein the current status of proximity-dependent in situ techniques. We compare the advantages and limitations of the methods, underlining recent progress and the growing importance of these techniques in basic research, and we discuss their potential as tools for drug development and diagnostics.
Collapse
|
30
|
Weitsman G, Barber PR, Nguyen LK, Lawler K, Patel G, Woodman N, Kelleher MT, Pinder SE, Rowley M, Ellis PA, Purushotham AD, Coolen AC, Kholodenko BN, Vojnovic B, Gillett C, Ng T. HER2-HER3 dimer quantification by FLIM-FRET predicts breast cancer metastatic relapse independently of HER2 IHC status. Oncotarget 2016; 7:51012-51026. [PMID: 27618787 PMCID: PMC5239455 DOI: 10.18632/oncotarget.9963] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/23/2016] [Indexed: 01/08/2023] Open
Abstract
Overexpression of HER2 is an important prognostic marker, and the only predictive biomarker of response to HER2-targeted therapies in invasive breast cancer. HER2-HER3 dimer has been shown to drive proliferation and tumor progression, and targeting of this dimer with pertuzumab alongside chemotherapy and trastuzumab, has shown significant clinical utility. The purpose of this study was to accurately quantify HER2-HER3 dimerisation in formalin fixed paraffin embedded (FFPE) breast cancer tissue as a novel prognostic biomarker.FFPE tissues were obtained from patients included in the METABRIC (Molecular Taxonomy of Breast Cancer International Consortium) study. HER2-HER3 dimerisation was quantified using an improved fluorescence lifetime imaging microscopy (FLIM) histology-based analysis. Analysis of 131 tissue microarray cores demonstrated that the extent of HER2-HER3 dimer formation as measured by Förster Resonance Energy Transfer (FRET) determined through FLIM predicts the likelihood of metastatic relapse up to 10 years after surgery (hazard ratio 3.91 (1.61-9.5), p = 0.003) independently of HER2 expression, in a multivariate model. Interestingly there was no correlation between the level of HER2 protein expressed and HER2-HER3 heterodimer formation. We used a mathematical model that takes into account the complex interactions in a network of all four HER proteins to explain this counterintuitive finding.Future utility of this technique may highlight a group of patients who do not overexpress HER2 protein but are nevertheless dependent on the HER2-HER3 heterodimer as driver of proliferation. This assay could, if validated in a group of patients treated with, for instance pertuzumab, be used as a predictive biomarker to predict for response to such targeted therapies.
Collapse
Affiliation(s)
- Gregory Weitsman
- Richard Dimbleby Department of Cancer Research, Randall Division and Division of Cancer Studies, King's College London, Guy's Medical School Campus, London, UK
| | - Paul R. Barber
- Department of Oncology, Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
- Institute for Mathematical and Molecular Biomedicine, King's College London, Guy's Medical School Campus, London, UK
| | - Lan K. Nguyen
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences and Biomedical Discovery Institute, Monash University, Melbourne, Australia
| | - Katherine Lawler
- Institute for Mathematical and Molecular Biomedicine, King's College London, Guy's Medical School Campus, London, UK
| | - Gargi Patel
- Richard Dimbleby Department of Cancer Research, Randall Division and Division of Cancer Studies, King's College London, Guy's Medical School Campus, London, UK
- Sussex Cancer Centre, Brighton and Sussex University Hospitals, Royal Sussex County Hospital, Brighton, UK
| | - Natalie Woodman
- Research Oncology, Division of Cancer Studies, King's College London, Guy's Hospital, Great Maze Pond, London, UK
- Breakthrough Breast Cancer Research Unit, Department of Research Oncology, Guy's Hospital King's College London School of Medicine, London, UK
| | - Muireann T. Kelleher
- Department of Medical Oncology, St George's Hospital NHS Foundation Trust, London, UK
| | - Sarah E. Pinder
- Research Oncology, Division of Cancer Studies, King's College London, Guy's Hospital, Great Maze Pond, London, UK
- Breakthrough Breast Cancer Research Unit, Department of Research Oncology, Guy's Hospital King's College London School of Medicine, London, UK
| | - Mark Rowley
- Institute for Mathematical and Molecular Biomedicine, King's College London, Guy's Medical School Campus, London, UK
| | - Paul A. Ellis
- Research Oncology, Division of Cancer Studies, King's College London, Guy's Hospital, Great Maze Pond, London, UK
| | - Anand D. Purushotham
- Research Oncology, Division of Cancer Studies, King's College London, Guy's Hospital, Great Maze Pond, London, UK
| | - Anthonius C. Coolen
- Institute for Mathematical and Molecular Biomedicine, King's College London, Guy's Medical School Campus, London, UK
| | - Boris N. Kholodenko
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Borivoj Vojnovic
- Richard Dimbleby Department of Cancer Research, Randall Division and Division of Cancer Studies, King's College London, Guy's Medical School Campus, London, UK
- Department of Oncology, Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Cheryl Gillett
- Research Oncology, Division of Cancer Studies, King's College London, Guy's Hospital, Great Maze Pond, London, UK
| | - Tony Ng
- Richard Dimbleby Department of Cancer Research, Randall Division and Division of Cancer Studies, King's College London, Guy's Medical School Campus, London, UK
- Breakthrough Breast Cancer Research Unit, Department of Research Oncology, Guy's Hospital King's College London School of Medicine, London, UK
- UCL Cancer Institute, Paul O'Gorman Building, University College London, London, UK
| |
Collapse
|
31
|
Jeon M, You D, Bae SY, Kim SW, Nam SJ, Kim HH, Kim S, Lee JE. Dimerization of EGFR and HER2 induces breast cancer cell motility through STAT1-dependent ACTA2 induction. Oncotarget 2016; 8:50570-50581. [PMID: 28881584 PMCID: PMC5584169 DOI: 10.18632/oncotarget.10843] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/10/2016] [Indexed: 11/25/2022] Open
Abstract
The dimerization of EGFR and HER2 is associated with poor prognosis such as induction of tumor growth and cell invasion compared to when EGFR remains as a homodimer. However, the mechanism for events after dimerization in breast cancer models is not clear. We found that expressions of alpha-smooth muscle actin (ACTA2) and signal transducer and activator of transcription 1 (STAT1) significantly increased with transient or stable overexpression of HER2 in EGFR-positive breast cancer cells. ACTA2 and STAT1 expression was also increased in HER2-positive breast cancer patients. In contrast, ACTA2 expression was decreased by HER2 siRNA. Next, we investigated the co-relation between STAT1 and ACTA2 expression. Basal ACTA2 expression was significantly decreased by treatment with the STAT1 inhibitor fludarabine or the JAK2 inhibitor AG490. In contrast, ACTA2 expression was increased by STAT1 overexpression. Levels of ACTA2, STAT1, and HER2 were increased and relapse free survival was decreased in high-risk breast cancer patients. We also investigated the effect of ACTA2 on cell motility, which was suppressed by ACTA2 shRNA overexpression in MDA-MB231 HER2 and 4T1 mammary carcinoma cells. The number of lung metastatic nodules was significantly decreased in ACTA2 knockdown mice. Taken together, these results demonstrated that induction of ACTA2 by EGFR and HER2 dimerization was regulated through a JAK2/STAT1 signaling pathway, and aberrant ACTA2 expression accelerated the invasiveness and metastasis of breast cancer cells.
Collapse
Affiliation(s)
- Myeongjin Jeon
- Department of Surgery, Samsung Medical Center, Gangnam-gu, Seoul 06351, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Gangnam-gu, Seoul 06351, Korea
| | - Daeun You
- Department of Surgery, Samsung Medical Center, Gangnam-gu, Seoul 06351, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Gangnam-gu, Seoul 06351, Korea
| | - Soo Youn Bae
- Department of Surgery, Samsung Medical Center, Gangnam-gu, Seoul 06351, Korea
| | - Seok Won Kim
- Department of Surgery, Samsung Medical Center, Gangnam-gu, Seoul 06351, Korea
| | - Seok Jin Nam
- Department of Surgery, Samsung Medical Center, Gangnam-gu, Seoul 06351, Korea
| | - Hyeon Ho Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Gangnam-gu, Seoul 06351, Korea
| | - Sangmin Kim
- Department of Surgery, Samsung Medical Center, Gangnam-gu, Seoul 06351, Korea
| | - Jeong Eon Lee
- Department of Surgery, Samsung Medical Center, Gangnam-gu, Seoul 06351, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Gangnam-gu, Seoul 06351, Korea
| |
Collapse
|
32
|
Karamouzis MV, Dalagiorgou G, Georgopoulou U, Nonni A, Kontos M, Papavassiliou AG. HER-3 targeting alters the dimerization pattern of ErbB protein family members in breast carcinomas. Oncotarget 2016; 7:5576-5597. [PMID: 26716646 PMCID: PMC4868707 DOI: 10.18632/oncotarget.6762] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 12/22/2015] [Indexed: 01/06/2023] Open
Abstract
Breast carcinogenesis is a multi-step process in which membrane receptor tyrosine kinases are crucial participants. Lots of research has been done on epidermal growth factor receptor (EGFR) and HER-2 with important clinical results. However, breast cancer patients present intrinsic or acquired resistance to available HER-2-directed therapies, mainly due to HER-3. Using new techniques, such as proximity ligation assay, herein we evaluate the dimerization pattern of HER-3 and the importance of context-dependent dimer formation between HER-3 and other HER protein family members. Additionally, we show that the efficacy of novel HER-3 targeting agents can be better predicted in certain breast cancer patient sub-groups based on the dimerization pattern of HER protein family members. Moreover, this model was also evaluated and reproduced in human paraffin-embedded breast cancer tissues.
Collapse
Affiliation(s)
- Michalis V Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgia Dalagiorgou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Urania Georgopoulou
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Afroditi Nonni
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Michalis Kontos
- Department of Propaedeutic Surgery, Medical School, National and Kapodistrian University of Athens, 'Laikon' General Hospital, 11527 Athens, Greece
| | - Athanasios G Papavassiliou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
33
|
Kim HJ, Kim A, Ahn H, Ahn IM, Choi J, Chang H. Meta-analysis reveals no significant correlation between breast cancer survival and ErbB3 expression. APMIS 2015; 123:383-93. [PMID: 25912128 DOI: 10.1111/apm.12371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/06/2015] [Indexed: 11/30/2022]
Abstract
Prognostic value of ErbB3 in human breast cancer is still controversial. However, the roles of ErbB3 receptors in drug resistance are recently emerging. The objective of this study was to evaluate the relationship between ErbB3 expression and survival of breast cancer via meta-analysis. A systematic literature search was conducted and 32 potentially relevant studies were included in the meta-analysis. Outcomes presented in searched literatures can be classified as disease free survival (DFS), overall survival (OS), and progress free survival (PFS) values. Meta-analysis was performed for each group. Results showed no statistically significant difference in survival. The overall hazard ratio of PFS, DFS, and OS of ErbB3 expression was 1.40 [95% confidence interval/CI (0.51, 3.83)], 1.07 [95% CI (0.82, 1.40)], and 1.15 [95% CI (0.91, 1.44)], respectively. Subgroup analysis according to ErbB2 receptor status, ErbB3 assessment methods (immunohistochemistry/IHC vs non-IHC), and analysis type (multivariate and univariate analysis) were performed. No significant association was found. Using various assessment methods and patient populations, our results revealed that there was no significant correlation between ErbB3 expression and breast cancer survival. Further studies on heterodimers of ErbB3 and other molecular markers involved in ErbB3 related pathway are merited.
Collapse
Affiliation(s)
- Hyun Jung Kim
- Department of Preventive Medicine, College of Medicine, Korea University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
34
|
Dupouy S, Doan VK, Wu Z, Mourra N, Liu J, De Wever O, Llorca FP, Cayre A, Kouchkar A, Gompel A, Forgez P. Activation of EGFR, HER2 and HER3 by neurotensin/neurotensin receptor 1 renders breast tumors aggressive yet highly responsive to lapatinib and metformin in mice. Oncotarget 2015; 5:8235-51. [PMID: 25249538 PMCID: PMC4226680 DOI: 10.18632/oncotarget.1632] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A present challenge in breast oncology research is to identify therapeutical targets which could impact tumor progression. Neurotensin (NTS) and its high affinity receptor (NTSR1) are up regulated in 20% of breast cancers, and NTSR1 overexpression was shown to predict a poor prognosis for 5 year overall survival in invasive breast carcinomas. Interactions between NTS and NTSR1 induce pro-oncogenic biological effects associated with neoplastic processes and tumor progression. Here, we depict the cellular mechanisms activated by NTS, and contributing to breast cancer cell aggressiveness. We show that neurotensin (NTS) and its high affinity receptor (NTSR1) contribute to the enhancement of experimental tumor growth and metastasis emergence in an experimental mice model. This effect ensued following EGFR, HER2, and HER3 over-expression and autocrine activation and was associated with an increase of metalloproteinase MMP9, HB-EGF and Neuregulin 2 in the culture media. EGFR over expression ensued in a more intense response to EGF on cellular migration and invasion. Accordingly, lapatinib, an EGFR/HER2 tyrosine kinase inhibitor, as well as metformin, reduced the tumor growth of cells overexpressing NTS and NTSR1. All cellular effects, such as adherence, migration, invasion, altered by NTS/NTSR1 were abolished by a specific NTSR1 antagonist. A strong statistical correlation between NTS-NTSR1-and HER3 (p< 0.0001) as well as NTS-NTSR1-and HER3- HER2 (p< 0.001) expression was found in human breast tumors. Expression of NTS/NTSR1 on breast tumoral cells creates a cellular context associated with cancer aggressiveness by enhancing epidermal growth factor receptor activity. We propose the use of labeled NTS/NTSR1 complexes to enlarge the population eligible for therapy targeting HERs tyrosine kinase inhibitor or HER2 overexpression.
Collapse
Affiliation(s)
| | | | - Zherui Wu
- UMRS U938, Hôpital Saint-Antoine, Paris, France. UMRS 1007, Université Paris Descartes 45, Paris, France
| | - Najat Mourra
- UMRS U938, Hôpital Saint-Antoine, Paris, France. Pathology Department Hôpital Saint-Antoine, Paris, France
| | - Jin Liu
- UMRS 1007, Université Paris Descartes 45, Paris, France
| | - Olivier De Wever
- The Laboratory of Experimental Cancerology, Ghent University Hospital, Ghent, Belgium
| | | | - Anne Cayre
- Pathology Department, Jean Perrin center, Clermont Ferrand, France
| | - Amal Kouchkar
- Pathology Department, Alger Pierre and Marie Curie center, Algeria
| | - Anne Gompel
- UMRS 1007, Université Paris Descartes 45, Paris, France. Gynecology Unit, Université Paris Descartes, APHP, Hôpitaux Universitaires Cochin Hôtel-Dieu Broca, Paris, France
| | | |
Collapse
|
35
|
Larijani B, Perani M, Alburai'si K, Parker PJ. Functional proteomic biomarkers in cancer. Ann N Y Acad Sci 2015; 1346:1-6. [PMID: 25801208 DOI: 10.1111/nyas.12749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Beyond penetrant germline and somatic mutations, there are substantial challenges in extrapolating phenotypes from linear DNA sequences and transcriptomics. This brings a molecular pathology emphasis to the properties of the main players responsible for executing actions, proteins. The proteomic attribute most frequently determined in pathology is (relative) content, but for many candidate biomarkers this is not the most important feature to understand. In keeping pace with the depth of knowledge of the mechanisms underlying pathologies, we need to ask more sophisticated questions about the state of proteins, for example, their oligomerization status, modification status, and location. This demands hitherto nonroutine approaches to proteomics, which we will discuss in this brief perspective.
Collapse
Affiliation(s)
- Banafshe Larijani
- Cell Biophysics Laboratory, Ikerbasque, Basque Foundation for Science and Unidad de Biofísica (CSIC-UPV/EHU), Leioa, Spain
| | - Michela Perani
- King's College London, Guy's Campus, London, United Kingdom
| | | | - Peter J Parker
- King's College London, Guy's Campus, London, United Kingdom
- London Research Institute Cancer Research UK, Lincoln's Inn Fields, London, United Kingdom
| |
Collapse
|
36
|
Koos B, Kamali-Moghaddam M, David L, Sobrinho-Simões M, Dimberg A, Nilsson M, Wählby C, Söderberg O. Next-Generation Pathology—Surveillance of Tumor Microecology. J Mol Biol 2015; 427:2013-22. [DOI: 10.1016/j.jmb.2015.02.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 02/18/2015] [Accepted: 02/18/2015] [Indexed: 11/30/2022]
|
37
|
Greenwood C, Ruff D, Kirvell S, Johnson G, Dhillon HS, Bustin SA. Proximity assays for sensitive quantification of proteins. BIOMOLECULAR DETECTION AND QUANTIFICATION 2015; 4:10-6. [PMID: 27077033 PMCID: PMC4822221 DOI: 10.1016/j.bdq.2015.04.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 12/22/2022]
Abstract
Proximity assays are immunohistochemical tools that utilise two or more DNA-tagged aptamers or antibodies binding in close proximity to the same protein or protein complex. Amplification by PCR or isothermal methods and hybridisation of a labelled probe to its DNA target generates a signal that enables sensitive and robust detection of proteins, protein modifications or protein-protein interactions. Assays can be carried out in homogeneous or solid phase formats and in situ assays can visualise single protein molecules or complexes with high spatial accuracy. These properties highlight the potential of proximity assays in research, diagnostic, pharmacological and many other applications that require sensitive, specific and accurate assessments of protein expression.
Collapse
Affiliation(s)
- Christina Greenwood
- Postgraduate Medical Institute, Faculty of Medical Science, Anglia Ruskin University, Chelmsford, Essex CM1 1SQ, UK
| | - David Ruff
- Fluidigm Corporation, South San Francisco, CA 94080, USA
| | - Sara Kirvell
- Postgraduate Medical Institute, Faculty of Medical Science, Anglia Ruskin University, Chelmsford, Essex CM1 1SQ, UK
| | - Gemma Johnson
- Postgraduate Medical Institute, Faculty of Medical Science, Anglia Ruskin University, Chelmsford, Essex CM1 1SQ, UK
| | - Harvinder S Dhillon
- Postgraduate Medical Institute, Faculty of Medical Science, Anglia Ruskin University, Chelmsford, Essex CM1 1SQ, UK
| | - Stephen A Bustin
- Postgraduate Medical Institute, Faculty of Medical Science, Anglia Ruskin University, Chelmsford, Essex CM1 1SQ, UK
| |
Collapse
|
38
|
Ren XR, Wang J, Osada T, Mook RA, Morse MA, Barak LS, Lyerly HK, Chen W. Perhexiline promotes HER3 ablation through receptor internalization and inhibits tumor growth. Breast Cancer Res 2015; 17:20. [PMID: 25849870 PMCID: PMC4358700 DOI: 10.1186/s13058-015-0528-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 01/30/2015] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Human epidermal growth factor receptor HER3 has been implicated in promoting the aggressiveness and metastatic potential of breast cancer. Upregulation of HER3 has been found to be a major mechanism underlying drug resistance to EGFR and HER2 tyrosine kinase inhibitors and to endocrine therapy in the treatment of breast cancer. Thus, agents that reduce HER3 expression at the plasma membrane may synergize with current therapies and offer a novel therapeutic strategy to improve treatment. METHODS We devised an image-based screening platform using membrane localized HER3-YFP to identify small molecules that promote HER3 internalization and degradation. In vitro and in vivo tumor models were used to characterize the signaling effects of perhexiline, an anti-anginal drug, identified by the screening platform. RESULTS We found perhexiline, an anti-anginal drug, selectively internalized HER3, decreased HER3 expression, and subsequently inhibited signaling downstream of HER3. Consistent with these results, perhexiline inhibited breast cancer cell proliferation in vitro and tumor growth in vivo. CONCLUSIONS This is the first demonstration that HER3 can be targeted with small molecules by eliminating it from the cell membrane. The novel approach used here led to the discovery that perhexiline ablates HER3 expression, and offers an opportunity to identify HER3 ablation modulators as innovative therapeutics to improve survival in breast cancer patients.
Collapse
|
39
|
Evaluation of the dimerization profiles of HER tyrosine kinases by time-resolved Förster resonance energy transfer (TR-FRET). Methods Mol Biol 2015; 1233:45-55. [PMID: 25319888 DOI: 10.1007/978-1-4939-1789-1_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Activation of receptor tyrosine kinases (RTK), such as those belonging to the human epidermal growth factor receptor (HER) family, occurs only after receptor dimerization, which is a crucial step for cellular signal transduction and diversification. The HER family includes four members (EGFR/HER1, HER2, HER3, and HER4) that can homodimerize or heterodimerize. Here, we describe immunoassays based on time-resolved Förster resonance energy transfer (TR-FRET) to profile EGFR-EGFR, HER2-HER2, and EGFR-HER2 dimers directly in tumor samples.
Collapse
|
40
|
Templeton AJ, Diez-Gonzalez L, Ace O, Vera-Badillo F, Šeruga B, Jordán J, Amir E, Pandiella A, Ocaña A. Prognostic relevance of receptor tyrosine kinase expression in breast cancer: A meta-analysis. Cancer Treat Rev 2014; 40:1048-55. [DOI: 10.1016/j.ctrv.2014.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/21/2014] [Accepted: 08/26/2014] [Indexed: 12/25/2022]
|
41
|
Additive impact of HER2-/PTK6-RNAi on interactions with HER3 or IGF-1R leads to reduced breast cancer progression in vivo. Mol Oncol 2014; 9:282-94. [PMID: 25241146 DOI: 10.1016/j.molonc.2014.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/06/2014] [Accepted: 08/27/2014] [Indexed: 12/13/2022] Open
Abstract
The human epidermal growth factor receptor 2 (HER2) and the protein tyrosine kinase 6 (PTK6) are often co- and over-expressed in invasive breast cancers. At early diagnosis, only distinct groups, such as HER2-or hormone receptor-positive benefit from a targeted therapy. However, a part of these tumours develops resistance within a year of administration of the drug but the majority of the patients depends on general therapies with severe side effects. A PTK6-directed approach does not yet exist. In our present study, we successfully demonstrate, in vitro and in vivo, a significantly additive reduction of tumourigenesis of breast cancer cells simultaneously depleted of both HER2 and PTK6. In comparison with single RNAi approaches, the combined RNAi (co-RNAi) led to a stronger reduced phosphorylation of tumour-promoting proteins. Moreover, the co-RNAi additively decreased cell migration as well as two and three dimensional cell proliferation in vitro. The in vivo experiments showed an additive reduction (p < 0.00001) in the growth of xenografts due to the co-RNAi compared with HER2 or PTK6 RNAi alone. Interestingly, the complexes of HER2 or PTK6 with tumour-relevant interaction partners, such as HER3 or the insulin-like growth factor receptor 1 (IGF-1R), respectively, were also reduced in xenografts although their protein expression levels were not affected following the co-RNAi of HER2 and PTK6. Our present study reveals the potential of using combined HER2- and PTK6- knockdown as a powerful strategy for the treatment of breast cancers. Therefore, the combined inhibition of these proteins may represent an attractive tool for efficient therapy of breast cancers.
Collapse
|
42
|
Nilsson GMA, Akhtar N, Kannius-Janson M, Baeckström D. Loss of E-cadherin expression is not a prerequisite for c-erbB2-induced epithelial-mesenchymal transition. Int J Oncol 2014; 45:82-94. [PMID: 24807161 PMCID: PMC4079157 DOI: 10.3892/ijo.2014.2424] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/11/2014] [Indexed: 12/02/2022] Open
Abstract
Recent research into the mechanisms of tumour cell invasiveness has highlighted the parallels between carcinogenesis and epithelial-mesenchymal transition (EMT), originally described as a developmental transdifferentiation program but also implicated in fibrosis and cancer. In a model system for mammary carcinogenesis, we previously observed that induced signalling from a homodimer of the c-erbB2 (HER2) receptor tyrosine kinase in an initially non-malignant mammary cell line caused EMT where i) cell scattering occurred before downregulation of the cell-cell adhesion molecule E-cadherin and ii) the progress of EMT was dramatically delayed when cells were grown at high density. Here, we have further analysed these phenomena. Ectopic expression of E-cadherin concomitant with c-erbB2 signalling was unable to impede the progression of EMT, suggesting that E-cadherin downregulation is not required for EMT. Furthermore, fibroblast-like cells isolated after EMT induced in the presence or absence of ectopic E-cadherin expression showed highly similar morphology and vimentin expression. E-cadherin expressed in these fibroblastic cells had a subcellular localisation similar to that found in epithelial cells, but it exhibited a much weaker attachment to the cytoskeleton, suggesting cytoskeletal rearrangements as an important mechanism in EMT-associated cell scattering. We also investigated whether density-dependent inhibition of EMT is mediated by E-cadherin as a sensor for cell-cell contact, by expressing dominant-negative E-cadherin. While expression of this mutant weakened cell-cell adhesion, it failed to facilitate EMT at high cell densities. These results indicate that loss of E-cadherin expression is a consequence rather than a cause of c-erbB2-induced EMT and that density-dependent inhibition of EMT is not mediated by E-cadherin signalling.
Collapse
Affiliation(s)
- Gisela M A Nilsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Noreen Akhtar
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Marie Kannius-Janson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Dan Baeckström
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
43
|
Green AR, Barros FFT, Abdel-Fatah TMA, Moseley P, Nolan CC, Durham AC, Rakha EA, Chan S, Ellis IO. HER2/HER3 heterodimers and p21 expression are capable of predicting adjuvant trastuzumab response in HER2+ breast cancer. Breast Cancer Res Treat 2014; 145:33-44. [PMID: 24706169 PMCID: PMC3984415 DOI: 10.1007/s10549-014-2925-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 01/02/2023]
Abstract
Human epidermal growth factor receptor 2 (HER2) plays an important role in breast cancer progression and provides predictive information for response to targeted therapy including trastuzumab although this is limited. Downstream pathways, such as PI3K/Akt, are associated with HER2/HER3 heterodimerization promoting survival and proliferation amongst cancer cells. Thus, patient outcome and trastuzumab therapy effectiveness might be further characterised by HER2/HER3 dimerisation and its signalling pathways. HER2/HER3 dimerisation status was assessed, using chromogenic in situ Proximity Ligation Assay, in two breast cancer series: early stage primary breast cancer, including 224 HER2+ patients that were not submitted to trastuzumab, and HER2+ breast cancer where patients were treated with adjuvant trastuzumab (n = 143). Levels of biomarkers including PI3K, pAKT, ER, PgR, HER3, BCL2, p53, PTEN and p21 were measured using immunohistochemistry. Levels of HER2/HER3 heterodimers were compared with biomarker expression and patient outcome. An association between high levels of HER2/HER3 dimerisation and absence of hormone receptors, ER and PgR, was observed. We further show for the first time the presence of HER2/HER3 heterodimers and the loss of p21 expression in HER2+ breast cancer predicts a significantly poorer outcome when submitted to adjuvant trastuzumab. Breast cancer patients that reveal high levels of HER2/HER3 dimerisation and loss of p21 are associated with poor survival prognosis in patients with HER2+ breast cancer treated with adjuvant trastuzumab. Further quantification analysis of HER dimer/ligand complexes and downstream signalling pathways will begin to unravel the complex associations with patient outcome and its relationship with sensitivity to targeted treatment.
Collapse
Affiliation(s)
- Andrew R Green
- Molecular Pathology Research Unit, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham City Hospital, Nottingham, NG5 1PB, UK,
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Fichter CD, Timme S, Braun JA, Gudernatsch V, Schöpflin A, Bogatyreva L, Geddert H, Faller G, Klimstra D, Tang L, Hauschke D, Werner M, Lassmann S. EGFR, HER2 and HER3 dimerization patterns guide targeted inhibition in two histotypes of esophageal cancer. Int J Cancer 2014; 135:1517-30. [PMID: 24510732 DOI: 10.1002/ijc.28771] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 01/08/2014] [Indexed: 01/01/2023]
Abstract
Receptor tyrosine kinases (RTKs) are in the focus of targeted therapy for epithelial tumors. Our study addressed the role of EGFR, HER2 and HER3 expression and dimerization in esophageal cancers in situ and in vitro in the context of therapeutic EGFR and HER2 inhibitors. In archival pretreatment biopsies of esophageal carcinomas (n = 110), EGFR was preferentially expressed in esophageal squamous cell carcinomas (ESCCs) (22.4%; p = 0.088) and HER2 (34.4%; p < 0.001) with HER3 (91.5%; p < 0.001) in esophageal (Barrett's) adenocarcinomas (EACs). In situ proximity ligation assays revealed mainly EGFR and HER2 homodimers in ESCC and EAC cases, respectively. However, EAC cases also exhibited HER2/HER3 heterodimers. In vitro ESCC (OE21) cells displayed a significant response to erlotinib, gefitinib and lapatinib, with loss of AKT phosphorylation, G0/G1 cell cycle arrest and induction of apoptosis. In EAC cells (OE19, OE33 and SK-GT-4), lapatinib was similarly effective in strongly HER2-positive (mainly HER2 homodimers and some HER2/EGFR heterodimers) OE19 and OE33 cells. The HER2-targeting antibodies (trastuzumab and pertuzumab) given alone were largely ineffective in ESCC and EAC cells. However, both antibodies significantly induced antibody-dependent cellular cytotoxicity in EAC (OE19 and OE33) cells upon co-culture with peripheral blood mononuclear cells. The study reveals that overexpression of EGFR and HER2 predominantly results in homodimers in ESCCs and EACs, respectively. Still, some EACs also show HER2 dimerization plasticity, e.g., with HER3. Such RTK dimerization patterns affect responses to EGFR and HER2 targeting inhibitors in ESCC and EAC cells in vitro and hence may influence future prediction for particularly HER2-targeting inhibitors in EACs.
Collapse
Affiliation(s)
- Christiane Daniela Fichter
- Department of Pathology, University Medical Center, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Quintayo MA, Starczynski J, Yan FJ, Wedad H, Nofech-Mozes S, Rakovitch E, Bartlett JMS. Virtual tissue microarrays: a novel and viable approach to optimizing tissue microarrays for biomarker research applied to ductal carcinoma in situ. Histopathology 2014; 65:2-8. [PMID: 24267587 DOI: 10.1111/his.12336] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/21/2013] [Indexed: 12/15/2022]
Abstract
AIMS Tissue microarrays (TMAs) are effective tools for performing high-throughput standardization analyses of biomarkers, but evidence indicating the core number required to be representative of the whole tumour is lacking. Ductal carcinoma in situ (DCIS) is a non-obligate precursor of invasive breast cancer. The number and size of cores that can best represent a DCIS lesion are unknown. Rather than performing extensive experiments using several variants of physical TMAs, the aim of this study was to develop a 'virtual TMA' approach that is effective at optimizing biomarker discovery and validation. METHODS AND RESULTS Whole DCIS sections from 95 patients were evaluated by immunohistochemistry for oestrogen receptor (ER), progesterone receptor (PgR), HER2, and Ki67. Histoscores were generated manually for ER, PgR, and HER2, as well as percentage positivity for Ki67. Slides were scanned using the FDA-approved Ariol SL50 Image Analysis system, and the virtual array (V-Array) module was used. Virtual cores created virtual TMAs, and our validated scoring classifiers were applied. Automated histoscores and percentage positivity were determined, and compared against increasing numbers of cores. The optimal number of cores was based on concordant results between virtual TMAs and corresponding whole sections. CONCLUSIONS We have shown that virtual arrays constitute an important tool in digital pathology in both research and clinical settings.
Collapse
|
46
|
Barros FFT, Abdel-Fatah TMA, Moseley P, Nolan CC, Durham AC, Rakha EA, Chan S, Ellis IO, Green AR. Characterisation of HER heterodimers in breast cancer using in situ proximity ligation assay. Breast Cancer Res Treat 2014; 144:273-85. [PMID: 24557338 DOI: 10.1007/s10549-014-2871-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/06/2014] [Indexed: 12/21/2022]
Abstract
HER2 plays an important role in breast cancer progression and provides predictive and prognostic information. HER2 receptor family members function through dimerisation, which can lead to impact on cell function, growth and differentiation; however, their value in breast cancer development remains to be defined. This study aims to examine the relationships of HER2 heterodimers to breast cancer characteristics in trastuzumab naïve and treated cases. HER2 protein (IHC), HER2 gene (chromogenic ISH) and HER2 heterodimerisation status [chromogenic in situ proximity ligation assay (PLA)] were assessed in two breast cancer series prepared in tissue microarray (TMA) format. A range of signals/cell for each HER2 heterodimer was detected (0-34.6 signals/cell). The vast majority of cases with HER2 heterodimers showed HER2 gene amplification and/or protein expression. There was an association between HER2 dimerisation with HER3 and HER4 and their protein expression level but no such association was found in with HER1 (EGFR). Of the HER2+ cases, 74, 66, and 58 % showed heterodimers with EGFR, HER3 and HER4, respectively. 51 % of HER2+ tumours expressed all three heterodimers whereas 23 % of the cases did not show expression of any of the three heterodimers. There was an inverse association between the presence and levels of HER2 heterodimers and hormone receptor expression in HER2+ tumours. Tumours exhibiting high levels of HER2 heterodimers demonstrated aggressive clinicopathological features and poor outcome. In the HER2+ cases, dimerisation with EGFR and HER3 but not with HER4 showed an association with aggressive features. There was no association between HER2 heterodimers with patient breast cancer-specific survival or recurrence in HER2+ breast cancer in those patients receiving trastuzumab or not. Our results demonstrate that HER2 dimerisation is a complex process that may underlie the biological heterogeneity of HER2 positive tumours and may identify patients suitable for a specific targeted therapy but does not predict patient outcome for those receiving trastuzumab. PLA proved to be a useful tool for detecting, visualising and quantifying the frequency of protein-protein interactions in archival formalin-fixed paraffin-embedded tissue samples.
Collapse
Affiliation(s)
- Fabrício F T Barros
- Molecular Pathology Research Unit, Division of Oncology, School of Medicine, Nottingham City Hospital, University of Nottingham, Nottingham, NG5 1PB, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Fuchs EM, Köstler WJ, Horvat R, Hudelist G, Kubista E, Attems J, Zielinski CC, Singer CF. High-level ERBB2 gene amplification is associated with a particularly short time-to-metastasis, but results in a high rate of complete response once trastuzumab-based therapy is offered in the metastatic setting. Int J Cancer 2014; 135:224-31. [PMID: 24311197 DOI: 10.1002/ijc.28660] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/16/2013] [Accepted: 10/23/2013] [Indexed: 11/06/2022]
Abstract
Despite patient selection based on ERBB2 overexpression, not all patients benefit from trastuzumab therapy. We have investigated whether a ERBB2 gene dosage effect might provoke increased biological aggressiveness and altered trastuzumab sensitivity. Absolute ERBB2 copy numbers ("CN") and ERBB2/centromer 17 ratios ("R") were measured by FISH analysis in tumors of 127 patients receiving trastuzumab-based treatment for Her-2/neu overexpressing metastatic breast cancer. CN and R were both significantly associated with shorter time to first metastasis (TTM) (CN: OR: 1.099, 95% CI: 1.042-1.159; R: OR: 1.211, 95% CI: 1.080-1.357) and longer PFS (CN: OR: 0.917, 95% CI: 0.867-0.969; R: OR: 0.840, 95% CI: 0.743-0.949) in a continuous variable Cox's regression model. Tumors with ERBB2/centromer 17 ratios of <2.2 had a significantly shorter TTM (p = 0.002) and significantly longer PFS (p = 0.003) than tumors with low-level (R: 2.2-6) and high-level amplification (R: >6). Interestingly, when ERBB2 copy numbers were analyzed, a significantly shorter TTM (p = 0.001) and longer PFS (p = 0.026) were observed in the group with high-level amplified CN (CN: >13), while no difference was observed between non- and low-level amplified CN. R, but not CN, was an independent predictor of complete (CR; OR: 1.685; 95% CI: 1.122-2.532) and partial (PR; OR: 1.704; 95% CI: 1.136-2.556) response in logistic regression analysis. CR (p = 0.016) rates were significantly higher in the high-level amplification group (R > 6), but no difference existed in response rates between non- and low-level amplified tumors in Chi-square tests. High-level ERBB2 amplification is associated with shorter TTM, but improved response to trastuzumab in metastatic breast cancer.
Collapse
Affiliation(s)
- Eva-Maria Fuchs
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria; Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Riccardo F, Bolli E, Macagno M, Arigoni M, Cavallo F, Quaglino E. Chimeric DNA Vaccines: An Effective Way to Overcome Immune Tolerance. Curr Top Microbiol Immunol 2014; 405:99-122. [PMID: 25294003 DOI: 10.1007/82_2014_426] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The fact that cancer immunotherapy is considered to be a safe and successful weapon for use in combination with surgery, radiation, and chemotherapy treatments means that it has recently been chosen as Breakthrough of the Year 2013 by Science editors. Anticancer vaccines have been extensively tested, in this field, both in preclinical cancer models and in the clinic. However, tumor-associated antigens (TAAs) are often self-tolerated molecules and cancer patients suffer from strong immunosuppressive effects, meaning that the triggering of an effective anti-tumor immune response is difficult. One possible means to overcome immunological tolerance to self-TAAs is of course the use of vaccines that code for xenogeneic proteins. However, a low-affinity antibody response against the self-homologous protein expressed by cancer cells is generally induced by xenovaccination. This issue becomes extremely limiting when working with tumors in which the contribution of the humoral rather than the cellular immune response is required if tumor growth is to be hampered. A possible way to avoid this problem is to use hybrid vaccines which code for chimeric proteins that include both homologous and xenogeneic moieties. In fact, a superior protective anti-tumor immune response against ErbB2+ transplantable and autochthonous mammary tumors was observed over plasmids that coded for the fully rat or fully human proteins when hybrid plasmids that coded for chimeric rat/human ErbB2 protein were tested in ErbB2 transgenic mice. In principle, these findings may become the basis for a new rational means of designing effective vaccines against TAAs.
Collapse
Affiliation(s)
- Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, via Nizza 52, 10126, Torino, Italy
| | - Elisabetta Bolli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, via Nizza 52, 10126, Torino, Italy
| | - Marco Macagno
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, via Nizza 52, 10126, Torino, Italy
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, via Nizza 52, 10126, Torino, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, via Nizza 52, 10126, Torino, Italy
| | - Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, via Nizza 52, 10126, Torino, Italy.
| |
Collapse
|
49
|
Gremel G, Grannas K, Sutton LA, Pontén F, Zieba A. In situ Protein Detection for Companion Diagnostics. Front Oncol 2013; 3:271. [PMID: 24199171 PMCID: PMC3814083 DOI: 10.3389/fonc.2013.00271] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 10/17/2013] [Indexed: 01/29/2023] Open
Abstract
The emergence of targeted therapies for cancer has created a need for the development of companion diagnostic tests. Assays developed in recent years are aimed at determining both the effectiveness and safety of specific drugs for a defined group of patients, thus, enabling the more efficient design of clinical trials and also supporting physicians when making treatment-related decisions. Immunohistochemistry (IHC) is a widely accepted method for protein expression analyses in human tissues. Immunohistochemical assays, used to localize and quantitate relative protein expression levels within a morphological context, are frequently used as companion diagnostics during clinical trials and also following drug approval. Herein, we describe established immunochemistry-based methods and their application in routine diagnostics. We also explore the possibility of using IHC to detect specific protein mutations in addition to DNA-based tests. Finally, we review alternative protein binders and proximity ligation assays and discuss their potential to facilitate the development of novel, targeted therapies against cancer.
Collapse
Affiliation(s)
- Gabriela Gremel
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University , Uppsala , Sweden
| | | | | | | | | |
Collapse
|
50
|
Leuchowius KJ, Clausson CM, Grannas K, Erbilgin Y, Botling J, Zieba A, Landegren U, Söderberg O. Parallel visualization of multiple protein complexes in individual cells in tumor tissue. Mol Cell Proteomics 2013; 12:1563-71. [PMID: 23436906 DOI: 10.1074/mcp.o112.023374] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cellular functions are regulated and executed by complex protein interaction networks. Accordingly, it is essential to understand the interplay between proteins in determining the activity status of signaling cascades. New methods are therefore required to provide information on different protein interaction events at the single cell level in heterogeneous cell populations such as in tissue sections. Here, we describe a multiplex proximity ligation assay for simultaneous visualization of multiple protein complexes in situ. The assay is an enhancement of the original proximity ligation assay, and it is based on using proximity probes labeled with unique tag sequences that can be used to read out which probes, from a pool of probes, have bound a certain protein complex. Using this approach, it is possible to gain information on the constituents of different protein complexes, the subcellular location of the complexes, and how the balance between different complex constituents can change between normal and malignant cells, for example. As a proof of concept, we used the assay to simultaneously visualize multiple protein complexes involving EGFR, HER2, and HER3 homo- and heterodimers on a single-cell level in breast cancer tissue sections. The ability to study several protein complex formations concurrently at single cell resolution could be of great potential for a systems understanding, paving the way for improved disease diagnostics and possibilities for drug development.
Collapse
Affiliation(s)
- Karl-Johan Leuchowius
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, University of Uppsala, Uppsala, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|