1
|
Ji ML, Wang JN, Wu MF, Xu CH, Zhang MM, Chang WB, Mao XF, Li C, Yu JT, Zhang DF, Suo XG, Diao SX, Ma NN, Chen Y, Hou R, Lu H, Xie SS, Dong YH, Zhu Q, Chen X, Xu T, Shao W, Jin J, Wen JG, Dong XW, Wang WB, Che JX, Meng XM. Targeting Stat3 with conditional knockout or PROTAC technology alleviates renal injury by Limiting pyroptosis. EBioMedicine 2025; 116:105739. [PMID: 40344718 DOI: 10.1016/j.ebiom.2025.105739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/17/2025] [Accepted: 04/20/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is a critical clinical syndrome with high morbidity, mortality, and no effective treatment in clinical practice. The role of the Signal Transducer and Activator of Transcription 3 (Stat3) in AKI remains controversial, and its complex regulatory mechanisms must be further explored. METHODS We generated renal tubular epithelial cells Stat3 conditional knockout (cKO) mice and used them in cecal ligation and puncture (CLP) and ischaemia-reperfusion (I/R) induced AKI models. Additionally, proteolysis-targeting chimaera (PROTAC) compound E034 was designed and synthesised. We also utilised human kidney tissues, mouse renal tubular epithelial cells (mTECs) and HK-2 cells for further studies, including immunohistochemistry, Western blot analysis, Real-time PCR, chromatin immunoprecipitation (ChIP) and RNA sequencing, scanning electron microscopy (SEM) and Co-Immunoprecipitation (Co-IP) assay. FINDINGS An upregulation of total Stat3 protein was observed in AKI mouse models, which correlated with patient biopsy results. This increase may be attributed to histone H3K27 acetylation. Stat3 knockout in renal tubular epithelial cells significantly reduced AKI injury and inflammation in mice. Mechanistically, Stat3 induces the transcription of tripartite motif-containing protein 21 (Trim21), triggering a cascade that activates gasdermin D (Gsdmd), resulting in pyroptosis. Administration of E034, which selectively targets Stat3 for ubiquitination and degradation, significantly alleviated renal injury in a low-dose, single-dose regimen. INTERPRETATION In the context of renal injury, PROTAC emerges as a promising modality by explicitly targeting the Stat3/Trim21/Gsdmd axis, which our study has identified as a potential therapeutic target, potentially endowing clinically significant therapeutic strategies. FUNDING This work was supported by the National Key R&D Program (2022YFC2502503), the National Natural Science Foundation of China (No. 82270738), the National Natural Science Foundation of China (No. 82400806) and the Graduate Research and Practice Innovation Project of Anhui Medical University (YJS20230059).
Collapse
Affiliation(s)
- Ming-Lu Ji
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Jia-Nan Wang
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Ming-Fei Wu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chuan-Hui Xu
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Meng-Meng Zhang
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Wen-Bao Chang
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Xin-Fei Mao
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chao Li
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Ju-Tao Yu
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Dan-Feng Zhang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230002, China
| | - Xiao-Guo Suo
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Shao-Xi Diao
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Nan-Nan Ma
- Anhui Provincial Corps Hospital of Chinese People's Armed Police Force, Hefei, 230032, China
| | - Ying Chen
- Anhui Provincial Chest Hospital, Hefei, 230022, China
| | - Rui Hou
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Hao Lu
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Shuai-Shuai Xie
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Yu-Hang Dong
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Qi Zhu
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Xin Chen
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Tao Xu
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Wei Shao
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Juan Jin
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Jia-Gen Wen
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Xiao-Wu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Bin Wang
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230002, China; Department of Vascular Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230002, China.
| | - Jin-Xin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Xiao-Ming Meng
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
2
|
Wang F, Keating CR, Xu Y, Hou W, Malnassy G, Boedeker K, Perera A, Ham E, Patel D, Ding X, Qiu W. Suppression of Hepatocellular Carcinoma by Deletion of SIRT2 in Hepatocytes via Elevated C/EBPβ/GADD45γ. Cell Mol Gastroenterol Hepatol 2025; 19:101494. [PMID: 40081570 DOI: 10.1016/j.jcmgh.2025.101494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND & AIMS There is a gap in our understanding of mechanisms promoting hepatocellular carcinoma (HCC), and this limits our ability to provide targeted therapy interventions for HCC. In HCC samples, NAD-dependent deacetylase sirtuin 2 (SIRT2) levels are increased and associated with a significantly worse prognosis, but the role of SIRT2 in hepatocarcinogenesis remains controversial. METHODS To assess the role of SIRT2 in hepatocarcinogenesis, we used a hepatocyte-specific knockout of SIRT2 and two plasmid overexpression HCC models: c-MET (MET)/β-catenin (CAT) and protein kinase B (AKT)/Nras. RNA sequencing of mouse liver tissue was performed, and mechanistic findings were confirmed using immunohistochemistry (IHC), quantitative polymerase chain reaction, Western blot, and Cell Counting Kit-8. RESULTS Using the MET/CAT and AKT/Nras models, we found that SIRT2 is a significant mediator of liver tumorigenesis, with the knockout of SIRT2 delaying tumor growth. RNA sequencing of MET/CAT-driven tumor tissue showed an increase in growth arrest and DNA-damage-inducible protein gamma (GADD45γ) in SIRT2 knockout mice compared with wild-type. GADD45γ is a known tumor suppressor, but the regulation of GADD45γ by SIRT2 has not been shown. CCAAT/enhancer-binding protein beta (C/EBPβ) proteins are known to regulate GADD45γ expression, and we found that C/EBPβ expression was increased in SIRT2 knockout livers and HCC cells. Also, C/EBPβ knockdown reversed GADD45γ expression and growth suppression following SIRT2 inhibition. Finally, C/EBPβ or GADD45γ overexpression significantly suppressed MET/CAT-induced HCC development. CONCLUSIONS SIRT2 is a potent tumor promotor in HCC that negatively regulates GADD45γ expression through C/EBPβ. The SIRT2-C/EBPβ-GADD45γ pathway elucidates a novel mechanism in HCC and establishes SIRT2 as a therapeutic target for patients with HCC.
Collapse
Affiliation(s)
- Fang Wang
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Claudia Rose Keating
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Yingchen Xu
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wei Hou
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Greg Malnassy
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Kyle Boedeker
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Aldeb Perera
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Eugene Ham
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Diya Patel
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Xianzhong Ding
- Department of Pathology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Wei Qiu
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois.
| |
Collapse
|
3
|
Chen J, Zhang S, Huang X, Wang Q, Xu W, Huang J, Su Y, Sun Q, Du X, Xing B, Qiu X. Sialylated IgG-activated integrin β4-Src-Erk axis stabilizes c-Myc in a p300 lysine acetyltransferase-dependent manner to promote colorectal cancer liver metastasis. Neoplasia 2025; 61:101140. [PMID: 40010102 PMCID: PMC11908626 DOI: 10.1016/j.neo.2025.101140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND Liver metastasis is a leading cause of colorectal cancer mortality. Therefore, the underlying mechanism and potential therapeutic target of colorectal cancer liver metastasis urge to be found. Mounting evidence indicates that cancer-derived sialylated IgG promotes tumor formation and progression. However, the role of sialylated IgG in colorectal cancer liver metastasis remains undefined. MATERIALS AND METHODS Analysis of sialylated IgG in paired tumor tissues and adjacent normal tissues from 65 colorectal cancer patients was performed using immunohistochemical staining. Functional assays of sialylated IgG were explored in vitro and in vivo. The downstream target of sialylated IgG was investigated by performing gene-set enrichment analysis, ubiquitination assay, cycloheximide chase assay, acetylation assay and co-immunoprecipitation. RESULTS Here, our investigation reveals that sialylated IgG is significantly upregulated in colorectal cancer and that the increase of IgG is positively associated with liver metastasis and poor overall survival in colorectal cancer patients. Sialylated IgG promotes colorectal cancer cell migration, invasion and liver metastasis. Notably, anti-sialylated IgG antibody effectively blocks colorectal cancer liver metastasis in mouse models. Mechanistically, sialylated IgG upregulates c-Myc protein level by decreasing c-Myc ubiquitination. Moreover, we find that p300/CBP can stabilize c-Myc by reducing c-Myc ubiquitination. Overexpression of p300/CBP protects c-Myc protein level from sialylated IgG-knockdown in a lysine acetyltransferase activity-dependent manner. Furthermore, sialylated IgG upregulates p300 protein level through integrin β4-FAK-Src-Erk signaling. CONCLUSION Collectively, these results indicate that a novel sialylated IgG-integrin β4-FAK-Src-Erk-p300-c-Myc signaling pathway promotes colorectal cancer liver metastasis, thus providing potential therapeutic targets for colorectal cancer liver metastasis.
Collapse
Affiliation(s)
- Jing Chen
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Shenghua Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China; Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, 100191, China
| | - Xinmei Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China; Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, 100191, China
| | - Qianqian Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China; Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, 100191, China
| | - Weiyan Xu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China; Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, 100191, China
| | - Jing Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China; Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, 100191, China
| | - Yuming Su
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Qinkun Sun
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaojuan Du
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, 100083, China
| | - Baocai Xing
- Hepatopancreatobiliary Surgery Department I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China; Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, 100191, China.
| |
Collapse
|
4
|
Zamperla MG, Illi B, Barbi V, Cencioni C, Santoni D, Gagliardi S, Garofalo M, Zingale GA, Pandino I, Sbardella D, Cipolla L, Sabbioneda S, Farsetti A, Ripamonti C, Fossati G, Steinkühler C, Gaetano C, Atlante S. HDAC6 inhibition disrupts HDAC6-P300 interaction reshaping the cancer chromatin landscape. Clin Epigenetics 2024; 16:109. [PMID: 39155390 PMCID: PMC11331611 DOI: 10.1186/s13148-024-01725-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Histone deacetylases (HDACs) are crucial regulators of gene expression, DNA synthesis, and cellular processes, making them essential targets in cancer research. HDAC6, specifically, influences protein stability and chromatin dynamics. Despite HDAC6's potential therapeutic value, its exact role in gene regulation and chromatin remodeling needs further clarification. This study examines how HDAC6 inactivation influences lysine acetyltransferase P300 stabilization and subsequent effects on chromatin structure and function in cancer cells. METHODS AND RESULTS We employed the HDAC6 inhibitor ITF3756, siRNA, or CRISPR/Cas9 gene editing to inactivate HDAC6 in different epigenomic backgrounds. Constantly, this inactivation led to significant changes in chromatin accessibility, particularly increased acetylation of histone H3 lysines 9, 14, and 27 (ATAC-seq and H3K27Ac ChIP-seq analysis). Transcriptomics, proteomics, and gene ontology analysis revealed gene changes in cell proliferation, adhesion, migration, and apoptosis. Significantly, HDAC6 inactivation altered P300 ubiquitination, stabilizing P300 and leading to downregulating genes critical for cancer cell survival. CONCLUSIONS Our study highlights the substantial impact of HDAC6 inactivation on the chromatin landscape of cancer cells and suggests a role for P300 in contributing to the anticancer effects. The stabilization of P300 with HDAC6 inhibition proposes a potential shift in therapeutic focus from HDAC6 itself to its interaction with P300. This finding opens new avenues for developing targeted cancer therapies, improving our understanding of epigenetic mechanisms in cancer cells.
Collapse
Affiliation(s)
| | - Barbara Illi
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Sapienza University of Rome, 00185, Rome, Italy
| | - Veronica Barbi
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - Chiara Cencioni
- Institute for Systems Analysis and Computer Science, National Research Council (CNR)-IASI, 00185, Rome, Italy
| | - Daniele Santoni
- Institute for Systems Analysis and Computer Science, National Research Council (CNR)-IASI, 00185, Rome, Italy
| | - Stella Gagliardi
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, 27100, Pavia, Italy
| | - Maria Garofalo
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, 27100, Pavia, Italy
| | | | | | | | - Lina Cipolla
- Institute of Molecular Genetics, National Research Council (CNR), 27100, Pavia, Italy
| | - Simone Sabbioneda
- Institute of Molecular Genetics, National Research Council (CNR), 27100, Pavia, Italy
| | - Antonella Farsetti
- Institute for Systems Analysis and Computer Science, National Research Council (CNR)-IASI, 00185, Rome, Italy
| | - Chiara Ripamonti
- New Drug Incubator Department, Italfarmaco Group, 20092, Cinisello Balsamo, Italy
| | - Gianluca Fossati
- New Drug Incubator Department, Italfarmaco Group, 20092, Cinisello Balsamo, Italy
| | | | - Carlo Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy.
| | - Sandra Atlante
- Institute for Systems Analysis and Computer Science, National Research Council (CNR)-IASI, 00185, Rome, Italy
| |
Collapse
|
5
|
Hong Y, Li X, Li J, He Q, Huang M, Tang Y, Chen X, Chen J, Tang KJ, Wei C. H3K27ac acts as a molecular switch for doxorubicin-induced activation of cardiotoxic genes. Clin Epigenetics 2024; 16:91. [PMID: 39014511 PMCID: PMC11251309 DOI: 10.1186/s13148-024-01709-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Doxorubicin (Dox) is an effective chemotherapeutic drug for various cancers, but its clinical application is limited by severe cardiotoxicity. Dox treatment can transcriptionally activate multiple cardiotoxicity-associated genes in cardiomyocytes, the mechanisms underlying this global gene activation remain poorly understood. METHODS AND RESULTS Herein, we integrated data from animal models, CUT&Tag and RNA-seq after Dox treatment, and discovered that the level of H3K27ac (a histone modification associated with gene activation) significantly increased in cardiomyocytes following Dox treatment. C646, an inhibitor of histone acetyltransferase, reversed Dox-induced H3K27ac accumulation in cardiomyocytes, which subsequently prevented the increase of Dox-induced DNA damage and apoptosis. Furthermore, C646 alleviated cardiac dysfunction in Dox-treated mice by restoring ejection fraction and reversing fractional shortening percentages. Additionally, Dox treatment increased H3K27ac deposition at the promoters of multiple cardiotoxic genes including Bax, Fas and Bnip3, resulting in their up-regulation. Moreover, the deposition of H3K27ac at cardiotoxicity-related genes exhibited a broad feature across the genome. Based on the deposition of H3K27ac and mRNA expression levels, several potential genes that might contribute to Dox-induced cardiotoxicity were predicted. Finally, the up-regulation of H3K27ac-regulated cardiotoxic genes upon Dox treatment is conservative across species. CONCLUSIONS Taken together, Dox-induced epigenetic modification, specifically H3K27ac, acts as a molecular switch for the activation of robust cardiotoxicity-related genes, leading to cardiomyocyte death and cardiac dysfunction. These findings provide new insights into the relationship between Dox-induced cardiotoxicity and epigenetic regulation, and identify H3K27ac as a potential target for the prevention and treatment of Dox-induced cardiotoxicity.
Collapse
Affiliation(s)
- Yu Hong
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xinlan Li
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jia Li
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qiuyi He
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Manbing Huang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yubo Tang
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiao Chen
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jie Chen
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ke-Jing Tang
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chao Wei
- Zhongshan School of Medicine, Sun Yat-Sen University, No.74 Zhongshan Rd.2, Guangzhou, 510080, China.
| |
Collapse
|
6
|
Wang N, Su X, Sams D, Prabhakar NR, Nanduri J. P300/CBP Regulates HIF-1-Dependent Sympathetic Activation and Hypertension by Intermittent Hypoxia. Am J Respir Cell Mol Biol 2024; 70:110-118. [PMID: 37874694 PMCID: PMC10848695 DOI: 10.1165/rcmb.2022-0481oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 10/23/2023] [Indexed: 10/26/2023] Open
Abstract
Obstructive sleep apnea (OSA), a widespread breathing disorder, leads to intermittent hypoxia (IH). Patients with OSA and IH-treated rodents exhibit heightened sympathetic nerve activity and hypertension. Previous studies reported transcriptional activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Nox) by HIF-1 (hypoxia-inducible factor-1) contribute to autonomic dysfunction in IH-treated rodents. Lysine acetylation, regulated by KATs (lysine acetyltransferases) and KDACs (lysine deacetylases), activates gene transcription and plays an important role in several physiological and pathological processes. This study tested the hypothesis that acetylation of HIF-1α by p300/CBP (CREB-binding protein) (KAT) activates Nox transcription, leading to sympathetic activation and hypertension. Experiments were performed on pheochromocytoma-12 cells and rats treated with IH. IH increased KAT activity, p300/CBP protein, HIF-1α lysine acetylation, HIF-1 transcription, and HIF-1 binding to the Nox4 gene promoter in pheochromocytoma-12 cells, and these responses were blocked by CTK7A, a selective p300/CBP inhibitor. Plasma norepinephrine (index of sympathetic activation) and blood pressures were elevated in IH-treated rats. These responses were associated with elevated p300/CBP protein, HIF-1α stabilization, transcriptional activation of Nox2 and Nox4 genes, and reactive oxygen species, and all these responses were absent in CTK7A-treated IH rats. These findings suggest lysine acetylation of HIF-1α by p300/CBP is an important contributor to sympathetic excitation and hypertension by IH.
Collapse
Affiliation(s)
- Ning Wang
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, The University of Chicago, Chicago, Illinois
| | - Xiaoyu Su
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, The University of Chicago, Chicago, Illinois
| | - David Sams
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, The University of Chicago, Chicago, Illinois
| | - Nanduri R Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, The University of Chicago, Chicago, Illinois
| | - Jayasri Nanduri
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, The University of Chicago, Chicago, Illinois
| |
Collapse
|
7
|
Pang Q, You L, Meng X, Li Y, Deng T, Li D, Zhu B. Regulation of the JAK/STAT signaling pathway: The promising targets for cardiovascular disease. Biochem Pharmacol 2023; 213:115587. [PMID: 37187275 DOI: 10.1016/j.bcp.2023.115587] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
Individuals have known that Janus kinase (JAK) signal transducer and activator of transcription (STAT) signaling pathway was involved in the growth of the cell, cell differentiation courses advancement, immune cellular survival, as well as hematopoietic system advancement. Researches in the animal models have already uncovered a JAK/STAT regulatory function in myocardial ischemia-reperfusion injury (MIRI), acute myocardial infarction (MI), hypertension, myocarditis, heart failure, angiogenesis and fibrosis. Evidences originating in these studies indicate a therapeutic JAK/STAT function in cardiovascular diseases (CVDs). In this retrospection, various JAK/STAT functions in the normal and ill hearts were described. Moreover, the latest figures about JAK/STAT were summarized under the background of CVDs. Finally, we discussed the clinical transformation prospects and technical limitations of JAK/STAT as the potential therapeutic targets for CVDs. This collection of evidences has essential meanings for the clinical application of JAK/STAT as medicinal agents for CVDs. In this retrospection, various JAK/STAT functions in the normal and ill hearts were described. Moreover, the latest figures about JAK/STAT were summarized under the background of CVDs. Finally, we discussed the clinical transformation prospects and toxicity of JAK/STAT inhibitors as potential therapeutic targets for CVDs. This collection of evidences has essential meanings for the clinical application of JAK/STAT as medicinal agents for CVDs.
Collapse
Affiliation(s)
- Qiuyu Pang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lu You
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangmin Meng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yumeng Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tian Deng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Deyong Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bingmei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Lee S, Jung S, Kim HJ, Kim S, Moon JH, Chung H, Kang SJ, Park CG. Mesenchymal stem cell-derived extracellular vesicles subvert Th17 cells by destabilizing RORγt through posttranslational modification. Exp Mol Med 2023; 55:665-679. [PMID: 36964252 PMCID: PMC10073130 DOI: 10.1038/s12276-023-00949-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 03/26/2023] Open
Abstract
Mesenchymal stem cell (MSC)-derived small extracellular vesicles (MSC-sEVs) are known to exert immunosuppressive functions. This study showed that MSC-sEVs specifically convert T helper 17 (Th17) cells into IL-17 low-producer (ex-Th17) cells by degrading RAR-related orphan receptor γt (RORγt) at the protein level. In experimental autoimmune encephalomyelitis (EAE)-induced mice, treatment with MSC-sEVs was found to not only ameliorate clinical symptoms but also to reduce the number of Th17 cells in draining lymph nodes and the central nervous system. MSC-sEVs were found to destabilize RORγt by K63 deubiquitination and deacetylation, which was attributed to the EP300-interacting inhibitor of differentiation 3 (Eid3) contained in the MSC-sEVs. Small extracellular vesicles isolated from the Eid3 knockdown MSCs by Eid3-shRNA failed to downregulate RORγt. Moreover, forced expression of Eid3 by gene transfection was found to significantly decrease the protein level of RORγt in Th17 cells. Altogether, this study reveals the novel immunosuppressive mechanisms of MSC-sEVs, which suggests the feasibility of MSC-sEVs as an attractive therapeutic tool for curing Th17-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Sunho Lee
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Sunyoung Jung
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Hyun Je Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, 03080, Korea
- Seoul National University Hospital, Seoul, Korea
- Transplantation Research Institute, Medical Research Center, Seoul National University Hospital, Seoul, Korea
| | - Sueon Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Ji Hwan Moon
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Hyunwoo Chung
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Seong-Jun Kang
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Chung-Gyu Park
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.
- BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Biomedical Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|
9
|
Thomas SP, Denu JM. Short-chain fatty acids activate acetyltransferase p300. eLife 2021; 10:72171. [PMID: 34677127 PMCID: PMC8585482 DOI: 10.7554/elife.72171] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Short-chain fatty acids (SCFAs) acetate, propionate, and butyrate are produced in large quantities by the gut microbiome and contribute to a wide array of physiological processes. While the underlying mechanisms are largely unknown, many effects of SCFAs have been traced to changes in the cell's epigenetic state. Here, we systematically investigate how SCFAs alter the epigenome. Using quantitative proteomics of histone modification states, we identified rapid and sustained increases in histone acetylation after the addition of butyrate or propionate, but not acetate. While decades of prior observations would suggest that hyperacetylation induced by SCFAs are due to inhibition of histone deacetylases (HDACs), we found that propionate and butyrate instead activate the acetyltransferase p300. Propionate and butyrate are rapidly converted to the corresponding acyl-CoAs which are then used by p300 to catalyze auto-acylation of the autoinhibitory loop, activating the enzyme for histone/protein acetylation. This data challenges the long-held belief that SCFAs mainly regulate chromatin by inhibiting HDACs, and instead reveals a previously unknown mechanism of HAT activation that can explain how an influx of low levels of SCFAs alters global chromatin states.
Collapse
Affiliation(s)
- Sydney P Thomas
- Wisconsin Institute for Discovery, Madison, United States.,Department of Biomolecular Chemistry, University of Wisconsin - Madison, Madison, United States
| | - John M Denu
- Wisconsin Institute for Discovery, Madison, United States.,Department of Biomolecular Chemistry, University of Wisconsin - Madison, Madison, United States.,Morgridge Institute for Research, Madison, United States
| |
Collapse
|
10
|
Comità S, Femmino S, Thairi C, Alloatti G, Boengler K, Pagliaro P, Penna C. Regulation of STAT3 and its role in cardioprotection by conditioning: focus on non-genomic roles targeting mitochondrial function. Basic Res Cardiol 2021; 116:56. [PMID: 34642818 PMCID: PMC8510947 DOI: 10.1007/s00395-021-00898-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022]
Abstract
Ischemia–reperfusion injury (IRI) is one of the biggest challenges for cardiovascular researchers given the huge death toll caused by myocardial ischemic disease. Cardioprotective conditioning strategies, namely pre- and post-conditioning maneuvers, represent the most important strategies for stimulating pro-survival pathways essential to preserve cardiac health. Conditioning maneuvers have proved to be fundamental for the knowledge of the molecular basis of both IRI and cardioprotection. Among this evidence, the importance of signal transducer and activator of transcription 3 (STAT3) emerged. STAT3 is not only a transcription factor but also exhibits non-genomic pro-survival functions preserving mitochondrial function from IRI. Indeed, STAT3 is emerging as an influencer of mitochondrial function to explain the cardioprotection phenomena. Studying cardioprotection, STAT3 proved to be crucial as an element of the survivor activating factor enhancement (SAFE) pathway, which converges on mitochondria and influences their function by cross-talking with other cardioprotective pathways. Clearly there are still some functional properties of STAT3 to be discovered. Therefore, in this review, we highlight the evidence that places STAT3 as a promoter of the metabolic network. In particular, we focus on the possible interactions of STAT3 with processes aimed at maintaining mitochondrial functions, including the regulation of the electron transport chain, the production of reactive oxygen species, the homeostasis of Ca2+ and the inhibition of opening of mitochondrial permeability transition pore. Then we consider the role of STAT3 and the parallels between STA3/STAT5 in cardioprotection by conditioning, giving emphasis to the human heart and confounders.
Collapse
Affiliation(s)
- Stefano Comità
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043, Torino, TO, Italy
| | - Saveria Femmino
- Department of Medical Sciences, University of Turin, Torino, Italy
| | - Cecilia Thairi
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043, Torino, TO, Italy
| | | | - Kerstin Boengler
- Institute of Physiology, University of Giessen, Giessen, Germany
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043, Torino, TO, Italy.
| | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043, Torino, TO, Italy.
| |
Collapse
|
11
|
Li D, Yang Y, Wang S, He X, Liu M, Bai B, Tian C, Sun R, Yu T, Chu X. Role of acetylation in doxorubicin-induced cardiotoxicity. Redox Biol 2021; 46:102089. [PMID: 34364220 PMCID: PMC8350499 DOI: 10.1016/j.redox.2021.102089] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
As a potent chemotherapeutic agent, doxorubicin (DOX) is widely used for the treatment of a variety of cancers However, its clinical utility is limited by dose-dependent cardiotoxicity, and pathogenesis has traditionally been attributed to the formation of reactive oxygen species (ROS). Accordingly, the prevention of DOX-induced cardiotoxicity is an indispensable goal to optimize therapeutic regimens and reduce morbidity. Acetylation is an emerging and important epigenetic modification regulated by histone deacetylases (HDACs) and histone acetyltransferases (HATs). Despite extensive studies of the molecular basis and biological functions of acetylation, the application of acetylation as a therapeutic target for cardiotoxicity is in the initial stage, and further studies are required to clarify the complex acetylation network and improve the clinical management of cardiotoxicity. In this review, we summarize the pivotal functions of HDACs and HATs in DOX-induced oxidative stress, the underlying mechanisms, the contributions of noncoding RNAs (ncRNAs) and exercise-mediated deacetylases to cardiotoxicity. Furthermore, we describe research progress related to several important SIRT activators and HDAC inhibitors with potential clinical value for chemotherapy and cardiotoxicity. Collectively, a comprehensive understanding of specific roles and recent developments of acetylation in doxorubicin-induced cardiotoxicity will provide a basis for improved treatment outcomes in cancer and cardiovascular diseases.
Collapse
Affiliation(s)
- Daisong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yanyan Yang
- Department of Immunology, Basic Medicine School, Qingdao University, Qingdao, 266071, China
| | - Shizhong Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xiangqin He
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Meixin Liu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Baochen Bai
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chao Tian
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Ruicong Sun
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Basic Medicine School, Qingdao University, 38 Deng Zhou Road, Qingdao, 266021, China.
| | - Xianming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China; Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266071, China.
| |
Collapse
|
12
|
Dempsey N, Rosenthal A, Dabas N, Kropotova Y, Lippman M, Bishopric NH. Trastuzumab-induced cardiotoxicity: a review of clinical risk factors, pharmacologic prevention, and cardiotoxicity of other HER2-directed therapies. Breast Cancer Res Treat 2021; 188:21-36. [PMID: 34115243 DOI: 10.1007/s10549-021-06280-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/28/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE Despite great success as a targeted breast cancer therapy, trastuzumab use may be complicated by heart failure and loss of left ventricular contractile function. This review summarizes the risk factors, imaging, and prevention of cardiotoxicity associated with trastuzumab and other HER2-targeted therapies. FINDINGS Cardiovascular disease risk factors, advanced age, and previous anthracycline treatment predispose to trastuzumab-induced cardiotoxicity (TIC), with anthracycline exposure being the most significant risk factor. Cardiac biomarkers such as troponins and pro-BNP and imaging assessments such as echocardiogram before and during trastuzumab therapy may help in early identification of TIC. Initiation of beta-adrenergic antagonists and angiotensin converting enzyme inhibitors may prevent TIC. Cardiotoxicity rates of other HER2-targeted treatments, such as pertuzumab, T-DM1, lapatinib, neratinib, tucatinib, trastuzumab deruxtecan, and margetuximab, appear to be significantly lower as reported in the pivotal trials which led to their approval. CONCLUSIONS Risk assessment for TIC should include cardiac imaging assessment and should incorporate prior anthracycline use, the strongest risk factor for TIC. Screening and prediction of cardiotoxicity, referral to a cardio-oncology specialist, and initiation of effective prophylactic therapy may all improve prognosis in patients receiving HER2-directed therapy. Beta blockers and ACE inhibitors appear to mitigate risk of TIC. Anthracycline-free regimens have been proven to be efficacious in early HER2-positive breast cancer and should now be considered the standard of care for early HER2-positive breast cancer. Newer HER2-directed therapies appear to have significantly lower cardiotoxicity compared to trastuzumab, but trials are needed in patients who have experienced TIC and patients with pre-existing cardiac dysfunction.
Collapse
Affiliation(s)
- Naomi Dempsey
- Divisions of Medical Oncology, Department of Medicine, University of Miami Miller School of Medicine, 1120 NW 14th Street, Miami, FL, 33136, USA.
| | - Amanda Rosenthal
- Divisions of Medical Oncology, Department of Medicine, University of Miami Miller School of Medicine, 1120 NW 14th Street, Miami, FL, 33136, USA.,Department of Medicine, Kaiser Permanente Los Angeles Medical Center, 4867 Sunset Blvd, Los Angeles, CA, 90027, USA
| | - Nitika Dabas
- Divisions of Cardiology, Department of Medicine, University of Miami Miller School of Medicine, 1120 NW 14th Street, Miami, FL, 33136, USA
| | - Yana Kropotova
- Divisions of Medical Oncology, Department of Medicine, University of Miami Miller School of Medicine, 1120 NW 14th Street, Miami, FL, 33136, USA
| | - Marc Lippman
- Divisions of Medical Oncology, Department of Medicine, University of Miami Miller School of Medicine, 1120 NW 14th Street, Miami, FL, 33136, USA.,Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Rd NW, Washington, DC, 20007, USA
| | - Nanette H Bishopric
- Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Rd NW, Washington, DC, 20007, USA.,MedStar Heart Research Institute, MedStar Washington Hospital Center, 110 Irving St NW, Washington, DC, 20010, USA
| |
Collapse
|
13
|
Alsamri H, Hasasna HE, Baby B, Alneyadi A, Dhaheri YA, Ayoub MA, Eid AH, Vijayan R, Iratni R. Carnosol Is a Novel Inhibitor of p300 Acetyltransferase in Breast Cancer. Front Oncol 2021; 11:664403. [PMID: 34055630 PMCID: PMC8155611 DOI: 10.3389/fonc.2021.664403] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/20/2021] [Indexed: 12/21/2022] Open
Abstract
Carnosol, a natural polyphenol abundant in edible plants such as sage, rosemary, and oregano, has shown promising anticancer activity against various types of cancers. Nonetheless, very little is known about its molecular mechanism of action or its downstream target(s). We have previously shown that carnosol inhibits cellular proliferation, migration, invasion, and metastasis as well as triggers autophagy and apoptosis in the highly invasive MDA-MB-231 breast cancer cells. Here, we report that carnosol induces histone hypoacetylation in MDA-MB-231 and Hs578T breast cancer cells. We show that, while carnosol does not affect HDACs, it promotes a ROS-dependent proteasome degradation of p300 and PCAF histone acetyl transferases (HATs) without affecting other HATs such as GCN5 and hMOF. Carnosol-induced histone hypoacetylation remains persistent even when p300 and PCAF protein levels were rescued from degradation by (i) the inhibition of the proteasome activity by the proteasome inhibitors MG-132 and bortezomib, and (ii) the inhibition of ROS accumulation by the ROS scavenger, N-acetylcysteine. In addition, we report that, in a cell-free system, carnosol efficiently inhibits histone acetyltransferase activity of recombinant p300 but not that of PCAF or GCN5. Molecular docking studies reveal that carnosol inhibits p300 HAT activity by blocking the entry of the acetyl-CoA binding pocket of the catalytic domain. The superimposition of the docked conformation of the p300 HAT domain in complex with carnosol shows a similar orientation as the p300 structure with acetyl-CoA. Carnosol occupies the region where the pantetheine arm of the acetyl-CoA is bound. This study further confirms carnosol as a promising anti-breast cancer therapeutic compound and identifies it as a novel natural p300 inhibitor that could be added to the existing panel of inhibitors.
Collapse
Affiliation(s)
- Halima Alsamri
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hussain El Hasasna
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bincy Baby
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Aysha Alneyadi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Yusra Al Dhaheri
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
14
|
Im JY, Kim BK, Yoon SH, Cho BC, Baek YM, Kang MJ, Kim N, Gong YD, Won M. DGG-100629 inhibits lung cancer growth by suppressing the NFATc1/DDIAS/STAT3 pathway. Exp Mol Med 2021; 53:643-653. [PMID: 33859351 PMCID: PMC8102629 DOI: 10.1038/s12276-021-00601-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/07/2021] [Accepted: 02/15/2021] [Indexed: 02/02/2023] Open
Abstract
DNA damage-induced apoptosis suppressor (DDIAS) promotes the progression of lung cancer and hepatocellular carcinoma through the regulation of multiple pathways. We screened a chemical library for anticancer agent(s) capable of inhibiting DDIAS transcription. DGG-100629 was found to suppress lung cancer cell growth through the inhibition of DDIAS expression. DGG-100629 induced c-Jun NH(2)-terminal kinase (JNK) activation and inhibited NFATc1 nuclear translocation. Treatment with SP600125 (a JNK inhibitor) or knockdown of JNK1 restored DDIAS expression and reversed DGG-100629-induced cell death. In addition, DGG-100629 suppressed the signal transducer and activator of transcription (STAT3) signaling pathway. DDIAS or STAT3 overexpression restored lung cancer cell growth in the presence of DGG-100629. In a xenograft assay, DGG-100629 inhibited tumor growth by reducing the level of phosphorylated STAT3 and the expression of STAT3 target genes. Moreover, DGG-100629 inhibited the growth of lung cancer patient-derived gefitinib-resistant cells expressing NFATc1 and DDIAS. Our findings emphasize the potential of DDIAS blockade as a therapeutic approach and suggest a novel strategy for the treatment of gefitinib-resistant lung cancer.
Collapse
Affiliation(s)
- Joo-Young Im
- grid.249967.70000 0004 0636 3099Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141 Korea
| | - Bo-Kyung Kim
- grid.249967.70000 0004 0636 3099Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141 Korea
| | - Sung-Hoon Yoon
- grid.418982.e0000 0004 5345 5340National Center for Efficacy Evaluation for Respiratory Disease Product, Korea Institute of Toxicology, Jeongeup, Jeollabuk-do 56212 Korea ,grid.412786.e0000 0004 1791 8264Department of Human and Environmental Toxicology, University of Science and Technology (UST), Daejeon, 34113 Korea
| | - Byoung Chul Cho
- grid.15444.300000 0004 0470 5454Division of Medical Oncology, Yonsei University College of Medicine, Seoul, 03722 Korea
| | - Yu Mi Baek
- Therna Therapeutics, Yangcheon-ro, Gangseo-gu, Seoul 05029 Korea
| | - Mi-Jung Kang
- grid.249967.70000 0004 0636 3099Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141 Korea
| | - Nayeon Kim
- grid.255168.d0000 0001 0671 5021Innovative Drug Library Research Center, Department of Chemistry, College of Science, Dongguk University, Seoul, 04620 Korea
| | - Young-Dae Gong
- grid.255168.d0000 0001 0671 5021Innovative Drug Library Research Center, Department of Chemistry, College of Science, Dongguk University, Seoul, 04620 Korea
| | - Misun Won
- grid.249967.70000 0004 0636 3099Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141 Korea ,grid.412786.e0000 0004 1791 8264Deparment of Functional Genomics, University of Science and Technology (UST), Daejeon, 34113 Korea
| |
Collapse
|
15
|
Funamoto M, Sunagawa Y, Katanasaka Y, Shimizu K, Miyazaki Y, Sari N, Shimizu S, Mori K, Wada H, Hasegawa K, Morimoto T. Histone Acetylation Domains Are Differentially Induced during Development of Heart Failure in Dahl Salt-Sensitive Rats. Int J Mol Sci 2021; 22:1771. [PMID: 33578969 PMCID: PMC7916721 DOI: 10.3390/ijms22041771] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 12/21/2022] Open
Abstract
Histone acetylation by epigenetic regulators has been shown to activate the transcription of hypertrophic response genes, which subsequently leads to the development and progression of heart failure. However, nothing is known about the acetylation of the histone tail and globular domains in left ventricular hypertrophy or in heart failure. The acetylation of H3K9 on the promoter of the hypertrophic response gene was significantly increased in the left ventricular hypertrophy stage, whereas the acetylation of H3K122 did not increase in the left ventricular hypertrophy stage but did significantly increase in the heart failure stage. Interestingly, the interaction between the chromatin remodeling factor BRG1 and p300 was significantly increased in the heart failure stage, but not in the left ventricular hypertrophy stage. This study demonstrates that stage-specific acetylation of the histone tail and globular domains occurs during the development and progression of heart failure, providing novel insights into the epigenetic regulatory mechanism governing transcriptional activity in these processes.
Collapse
Affiliation(s)
- Masafumi Funamoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.F.); (Y.S.); (Y.K.); (K.S.); (Y.M.); (N.S.); (S.S.); (K.H.)
- Kyoto Medical Center, Clinical Research Institute, National Hospital Organization, 1-1 Fukakusa Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan;
| | - Yoichi Sunagawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.F.); (Y.S.); (Y.K.); (K.S.); (Y.M.); (N.S.); (S.S.); (K.H.)
- Kyoto Medical Center, Clinical Research Institute, National Hospital Organization, 1-1 Fukakusa Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, 4-27-1 Kitaando, Aoi-ku, Shizuoka 420-8527, Japan;
| | - Yasufumi Katanasaka
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.F.); (Y.S.); (Y.K.); (K.S.); (Y.M.); (N.S.); (S.S.); (K.H.)
- Kyoto Medical Center, Clinical Research Institute, National Hospital Organization, 1-1 Fukakusa Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, 4-27-1 Kitaando, Aoi-ku, Shizuoka 420-8527, Japan;
| | - Kana Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.F.); (Y.S.); (Y.K.); (K.S.); (Y.M.); (N.S.); (S.S.); (K.H.)
- Kyoto Medical Center, Clinical Research Institute, National Hospital Organization, 1-1 Fukakusa Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan;
| | - Yusuke Miyazaki
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.F.); (Y.S.); (Y.K.); (K.S.); (Y.M.); (N.S.); (S.S.); (K.H.)
- Kyoto Medical Center, Clinical Research Institute, National Hospital Organization, 1-1 Fukakusa Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, 4-27-1 Kitaando, Aoi-ku, Shizuoka 420-8527, Japan;
| | - Nurmila Sari
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.F.); (Y.S.); (Y.K.); (K.S.); (Y.M.); (N.S.); (S.S.); (K.H.)
| | - Satoshi Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.F.); (Y.S.); (Y.K.); (K.S.); (Y.M.); (N.S.); (S.S.); (K.H.)
- Kyoto Medical Center, Clinical Research Institute, National Hospital Organization, 1-1 Fukakusa Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan;
| | - Kiyoshi Mori
- Shizuoka General Hospital, 4-27-1 Kitaando, Aoi-ku, Shizuoka 420-8527, Japan;
| | - Hiromichi Wada
- Kyoto Medical Center, Clinical Research Institute, National Hospital Organization, 1-1 Fukakusa Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan;
| | - Koji Hasegawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.F.); (Y.S.); (Y.K.); (K.S.); (Y.M.); (N.S.); (S.S.); (K.H.)
- Kyoto Medical Center, Clinical Research Institute, National Hospital Organization, 1-1 Fukakusa Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan;
| | - Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.F.); (Y.S.); (Y.K.); (K.S.); (Y.M.); (N.S.); (S.S.); (K.H.)
- Kyoto Medical Center, Clinical Research Institute, National Hospital Organization, 1-1 Fukakusa Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, 4-27-1 Kitaando, Aoi-ku, Shizuoka 420-8527, Japan;
| |
Collapse
|
16
|
Meng F, Liang Z, Zhao K, Luo C. Drug design targeting active posttranslational modification protein isoforms. Med Res Rev 2020; 41:1701-1750. [PMID: 33355944 DOI: 10.1002/med.21774] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022]
Abstract
Modern drug design aims to discover novel lead compounds with attractable chemical profiles to enable further exploration of the intersection of chemical space and biological space. Identification of small molecules with good ligand efficiency, high activity, and selectivity is crucial toward developing effective and safe drugs. However, the intersection is one of the most challenging tasks in the pharmaceutical industry, as chemical space is almost infinity and continuous, whereas the biological space is very limited and discrete. This bottleneck potentially limits the discovery of molecules with desirable properties for lead optimization. Herein, we present a new direction leveraging posttranslational modification (PTM) protein isoforms target space to inspire drug design termed as "Post-translational Modification Inspired Drug Design (PTMI-DD)." PTMI-DD aims to extend the intersections of chemical space and biological space. We further rationalized and highlighted the importance of PTM protein isoforms and their roles in various diseases and biological functions. We then laid out a few directions to elaborate the PTMI-DD in drug design including discovering covalent binding inhibitors mimicking PTMs, targeting PTM protein isoforms with distinctive binding sites from that of wild-type counterpart, targeting protein-protein interactions involving PTMs, and hijacking protein degeneration by ubiquitination for PTM protein isoforms. These directions will lead to a significant expansion of the biological space and/or increase the tractability of compounds, primarily due to precisely targeting PTM protein isoforms or complexes which are highly relevant to biological functions. Importantly, this new avenue will further enrich the personalized treatment opportunity through precision medicine targeting PTM isoforms.
Collapse
Affiliation(s)
- Fanwang Meng
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Zhongjie Liang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Kehao Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Cheng Luo
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
17
|
Perspectives Regarding the Intersections between STAT3 and Oxidative Metabolism in Cancer. Cells 2020; 9:cells9102202. [PMID: 33003453 PMCID: PMC7600636 DOI: 10.3390/cells9102202] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/19/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) functions as a major molecular switch that plays an important role in the communication between cytokines and kinases. In this role, it regulates the transcription of genes involved in various biochemical processes, such as proliferation, migration, and metabolism of cancer cells. STAT3 undergoes diverse post-translational modifications, such as the oxidation of cysteine by oxidative stress, the acetylation of lysine, or the phosphorylation of serine/threonine. In particular, the redox modulation of critical cysteine residues present in the DNA-binding domain of STAT3 inhibits its DNA-binding activity, resulting in the inactivation of STAT3-mediated gene expression. Accumulating evidence supports that STAT3 is a key protein that acts as a mediator of metabolism and mitochondrial activity. In this review, we focus on the post-translational modifications of STAT3 by oxidative stress and how the modification of STAT3 regulates cell metabolism, particularly in the metabolic pathways in cancer cells.
Collapse
|
18
|
Lakshmanan MD, Shaheer K. Endocrine disrupting chemicals may deregulate DNA repair through estrogen receptor mediated seizing of CBP/p300 acetylase. J Endocrinol Invest 2020; 43:1189-1196. [PMID: 32253726 DOI: 10.1007/s40618-020-01241-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 03/27/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Environmental pollutants are known to induce DNA breaks, leading to genomic instability. Here, we propose a novel mechanism for the genotoxic effects exerted by environmentally exposed endocrine-disrupting chemicals (EDCs). METHODS Bibliographic research and presentation of the analysis. DISCUSSION In mammals, nucleotide excision repair, base excision repair, homologous recombination and non-homologous end-joining pathways are some of the major DNA repair pathways. p300 along with CREB-binding protein (CBP) contributes to chromatin remodeling, DNA damage response and repair of both single- and double-stranded DNA breaks. In addition to its role in DNA repair, CBP/p300 also acts as a coactivator to interact with the estrogen receptor and androgen receptor during its estrogen- and androgen-dependent transactivation, respectively. Since activated estrogen receptors (ERs) seize p300 from the repressed genes and redistribute it to the enhancer genes to activate transcription, the cellular functioning may be based on a balance between these pathways and any disturbance in one may alter the other, leading to undesirable physiological effects. CONCLUSION In conclusion, CBP/p300 is important for DNA repair and nuclear hormone receptor transactivation. Activated hormone receptors can sequester p300 to regulate the hormonal effects. Hence, we believe that activation of ERs by EDCs results in sequestration of CBP/p300 for ER transactivation and transcription initiation of its target genes, leading to a competition for CBP/P300, resulting in the deregulation of all other pathways involving p300/CBP.
Collapse
Affiliation(s)
- M D Lakshmanan
- Molecular Biology Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka, 575018, India.
| | - K Shaheer
- Molecular Biology Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka, 575018, India
| |
Collapse
|
19
|
Giorgio M, Dellino GI, Gambino V, Roda N, Pelicci PG. On the epigenetic role of guanosine oxidation. Redox Biol 2020; 29:101398. [PMID: 31926624 PMCID: PMC6926346 DOI: 10.1016/j.redox.2019.101398] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/23/2019] [Accepted: 12/02/2019] [Indexed: 01/14/2023] Open
Abstract
Chemical modifications of DNA and RNA regulate genome functions or trigger mutagenesis resulting in aging or cancer. Oxidations of macromolecules, including DNA, are common reactions in biological systems and often part of regulatory circuits rather than accidental events. DNA alterations are particularly relevant since the unique role of nuclear and mitochondrial genome is coding enduring and inheritable information. Therefore, an alteration in DNA may represent a relevant problem given its transmission to daughter cells. At the same time, the regulation of gene expression allows cells to continuously adapt to the environmental changes that occur throughout the life of the organism to ultimately maintain cellular homeostasis. Here we review the multiple ways that lead to DNA oxidation and the regulation of mechanisms activated by cells to repair this damage. Moreover, we present the recent evidence suggesting that DNA damage caused by physiological metabolism acts as epigenetic signal for regulation of gene expression. In particular, the predisposition of guanine to oxidation might reflect an adaptation to improve the genome plasticity to redox changes.
Collapse
Affiliation(s)
- Marco Giorgio
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Via Adamello 16, 20139, Milano, Italy; Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy.
| | - Gaetano Ivan Dellino
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Via Adamello 16, 20139, Milano, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Valentina Gambino
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Via Adamello 16, 20139, Milano, Italy
| | - Niccolo' Roda
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Via Adamello 16, 20139, Milano, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Via Adamello 16, 20139, Milano, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
20
|
Harhous Z, Booz GW, Ovize M, Bidaux G, Kurdi M. An Update on the Multifaceted Roles of STAT3 in the Heart. Front Cardiovasc Med 2019; 6:150. [PMID: 31709266 PMCID: PMC6823716 DOI: 10.3389/fcvm.2019.00150] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 10/07/2019] [Indexed: 12/18/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a signaling molecule and transcription factor that plays important protective roles in the heart. The protection mediated by STAT3 is attributed to its genomic actions as a transcription factor and other non-genomic roles targeting mitochondrial function and autophagy. As a transcription factor, STAT3 upregulates genes that are anti-oxidative, anti-apoptotic, and pro-angiogenic, but suppresses anti-inflammatory and anti-fibrotic genes. Its suppressive effects on gene expression are achieved through competing with other transcription factors or cofactors. STAT3 is also linked to the modification of mRNA expression profiles in cardiac cells by inhibiting or inducing miRNA. In addition to these genomic roles, STAT3 is suggested to function protectively in mitochondria, where it regulates ROS production, in part by regulating the activities of the electron transport chain complexes, although our recent evidence calls this role into question. Nonetheless, STAT3 is a key player known to be activated in the cardioprotective ischemic conditioning protocols. Through these varied roles, STAT3 participates in various mechanisms that contribute to cardioprotection against different heart pathologies, including myocardial infarction, hypertrophy, diabetic cardiomyopathy, and peripartum cardiomyopathy. Understanding how STAT3 is involved in the protective mechanisms against these different cardiac pathologies could lead to novel therapeutic strategies to treat them.
Collapse
Affiliation(s)
- Zeina Harhous
- Laboratory of Experimental and Clinical Pharmacology, Faculty of Sciences, Doctoral School of Sciences and Technology, Lebanese University, Beirut, Lebanon
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, University Claude Bernard Lyon1, INSA Lyon, Oullins, France
- IHU OPeRa, Groupement Hospitalier EST, Bron, France
| | - George W. Booz
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center, Jackson, MS, United States
| | - Michel Ovize
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, University Claude Bernard Lyon1, INSA Lyon, Oullins, France
- IHU OPeRa, Groupement Hospitalier EST, Bron, France
| | - Gabriel Bidaux
- Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, University Claude Bernard Lyon1, INSA Lyon, Oullins, France
- IHU OPeRa, Groupement Hospitalier EST, Bron, France
| | - Mazen Kurdi
- Laboratory of Experimental and Clinical Pharmacology, Faculty of Sciences, Doctoral School of Sciences and Technology, Lebanese University, Beirut, Lebanon
| |
Collapse
|
21
|
Negrette-Guzmán M. Combinations of the antioxidants sulforaphane or curcumin and the conventional antineoplastics cisplatin or doxorubicin as prospects for anticancer chemotherapy. Eur J Pharmacol 2019; 859:172513. [PMID: 31260654 DOI: 10.1016/j.ejphar.2019.172513] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022]
Abstract
Drugs used in clinical oncology have narrow therapeutic indices with adverse toxicity often involving oxidative damage. Chemoresistance to these conventional antineoplastics is usually mediated by oxidative stress-upregulated pathways such as those of nuclear factor-kappa B (NF-κB) and hypoxia-inducible factor-1 alpha (HIF-1α). Accordingly, the use of antioxidants in combinational approaches has begun to be considered for fighting cancer because of both the protective role against adverse effects and the ability to sensitize chemoresistant cancer cells. Nuclear factor erythroid 2-related factor 2 (Nrf2) has been identified as a mediator of the cytoprotection but it is not regularly associated with tumor chemosensitization. However, some Nrf2 inducers could be exerting cytoprotective and chemosensitizing roles through a simple integrated mechanism in which the cellular level of reactive oxygen species is controlled, thus inhibiting the oxidative damage in non-target tissues and the tumor chemoresistance mediated by NF-κB or HIF-1α. As examples to show the general idea of this antioxidant combination chemotherapy, this review explores the preclinical information available for four combinations, each composed by a paradigmatic oncological drug (cisplatin or doxorubicin) and a recognized antioxidant (sulforaphane or curcumin). The issues for translating these outcomes to clinical trials are briefly discussed.
Collapse
Affiliation(s)
- Mario Negrette-Guzmán
- Centro de Investigaciones en Enfermedades Tropicales (CINTROP), Departamento de Ciencias Básicas, Escuela de Medicina, Facultad de Salud, Universidad Industrial de Santander, Bucaramanga, 68002, Colombia.
| |
Collapse
|
22
|
Wan GX, Cheng L, Qin HL, Zhang YZ, Wang LY, Zhang YG. MiR-15b-5p is Involved in Doxorubicin-Induced Cardiotoxicity via Inhibiting Bmpr1a Signal in H9c2 Cardiomyocyte. Cardiovasc Toxicol 2019; 19:264-275. [PMID: 30535663 DOI: 10.1007/s12012-018-9495-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The wide use of anthracyclines represented by doxorubicin (DOX) has benefited cancer patients, yet the clinical application is limited due to its cardiotoxicity. Although numerous evidences have supported a role of microRNAs (miRNAs) in DOX-induced myocardial damage, the exact etiology and pathogenesis remain largely obscure. In this study, we focused on the role of miR-15b-5p in DOX-induced cardiotoxicity. We employed a public miRNA and gene microarray to screen differentially expressed miRNAs (DEMs) and differentially expressed genes (DEGs) in rat cardiomyocytes, and 33 DEMs including miR-15b-5p and 237 DEGs including Bmpr1a and Gata4 were identified. The Gene ontology (GO) and pathway enrichment analysis of 237 DEGs indicated that the DEGs were mainly enriched in heart development and ALK pathway in cardiomyocyte which included the main receptor Bmpr1a and transcription factor Gata4. The up-regulated miR-15b-5p and down-regulated Bmpr1a and Gata4 mRNA expressions were further validated in H9c2 cardiomyocytes exposed to DOX. Moreover, the results showed overexpression of miR-15b-5p or inhibition of Bmpr1a may enhance the DOX-induced apoptosis, oxidative stress and mitochondria damage in H9c2 cardiomyocytes. The Bmpr1a was suggested as a potential target of miR-15b-5p by bioinformatics prediction. We further verified the negatively regulatory effect of miR-15b-5p on Bmpr1a signaling. Moreover, we also confirmed that overexpression of miR-15b-5p may exacerbate the DOX-induced apoptosis of H9c2 cardiomyocytes by affecting the protein expression ratio of Bcl-2/Bax and Akt activation, while this pro-apoptotic effect was able to be suppressed by Bmpr1a agonist. Collectively, the results suggest that miR-15b-5p is likely involved in doxorubicin-induced cardiotoxicity via inhibiting Bmpr1a signaling in H9c2 cardiomyocytes. Our study provides a novel insight for investigating DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Guo-Xing Wan
- Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, Dongxia North Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Lan Cheng
- Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, Dongxia North Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Hai-Lun Qin
- Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, Dongxia North Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Yun-Zhang Zhang
- Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, Dongxia North Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Ling-Yu Wang
- Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, Dongxia North Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Yong-Gang Zhang
- Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, Dongxia North Road, Shantou, 515041, Guangdong, People's Republic of China.
| |
Collapse
|
23
|
Saha P, Sen N. Tauopathy: A common mechanism for neurodegeneration and brain aging. Mech Ageing Dev 2019; 178:72-79. [PMID: 30668956 DOI: 10.1016/j.mad.2019.01.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/09/2019] [Accepted: 01/18/2019] [Indexed: 01/07/2023]
Abstract
Tau, a microtubule-associated protein promotes assembly and stability of microtubules which is related to axoplasmic flow and critical neuronal activities upon physiological conditions. Under neurodegenerative condition such as in Alzheimer's Disease (AD), tau-microtubule binding dynamics and equilibrium are severely affected due to its aberrant post-translational modifications including acetylation and hyperphosphorylation. This event results in its conformational changes to form neurofibrillary tangles (NFT) after aggregation in the cytosol. The formation of NFT is more strongly correlated with cognitive decline than the distribution of senile plaque, which is formed by polymorphous beta-amyloid (Aβ) protein deposits, another pathological hallmark of AD. In neurodegenerative conditions, other than AD, the disease manifestation is correlated with mutations of the MAPT gene. In Primary age-related tauopathy (PART), which is commonly observed in the brains of aged individuals, tau deposition is directly correlated with cognitive deficits even in the absence of Aβ deposition. Thus, tauopathy has been considered as an essential hallmark in neurodegeneration and normal brain aging. In this review, we highlighted the recent progress about the tauopathies in the light of its posttranslational modifications and its implication in AD and the aged brain.
Collapse
Affiliation(s)
- Pampa Saha
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Scaife Hall, Pittsburgh, 15213, United States
| | - Nilkantha Sen
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Scaife Hall, Pittsburgh, 15213, United States.
| |
Collapse
|
24
|
Chen YH, He JG. Effects of environmental stress on shrimp innate immunity and white spot syndrome virus infection. FISH & SHELLFISH IMMUNOLOGY 2019; 84:744-755. [PMID: 30393174 DOI: 10.1016/j.fsi.2018.10.069] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/12/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
The shrimp aquaculture industry is plagued by disease. Due to the lack of deep understanding of the relationship between innate immune mechanism and environmental adaptation mechanism, it is difficult to prevent and control the diseases of shrimp. The shrimp innate immune system has received much recent attention, and the functions of the humoral immune response and the cellular immune response have been preliminarily characterized. The role of environmental stress in shrimp disease has also been investigated recently, attempting to clarify the interactions among the innate immune response, the environmental stress response, and disease. Both the innate immune response and the environmental stress response have a complex relationship with shrimp diseases. Although these systems are important safeguards, allowing shrimp to adapt to adverse environments and resist infection, some pathogens, such as white spot syndrome virus, hijack these host systems. As shrimp lack an adaptive immune system, immunization therapy cannot be used to prevent and control shrimp disease. However, shrimp diseases can be controlled using ecological techniques. These techniques, which are based on the innate immune response and the environmental stress response, significantly reduce the impact of shrimp diseases. The object of this review is to summarize the recent research on shrimp environmental adaptation mechanisms, innate immune response mechanisms, and the relationship between these systems. We also suggest some directions for future research.
Collapse
Affiliation(s)
- Yi-Hong Chen
- Key Laboratory of Marine Resources and Coastal Engineering in Guangdong Province/School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Jian-Guo He
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China; Key Laboratory of Marine Resources and Coastal Engineering in Guangdong Province/School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China.
| |
Collapse
|
25
|
Wei J, Joshi S, Speransky S, Crowley C, Jayathilaka N, Lei X, Wu Y, Gai D, Jain S, Hoosien M, Gao Y, Chen L, Bishopric NH. Reversal of pathological cardiac hypertrophy via the MEF2-coregulator interface. JCI Insight 2017; 2:91068. [PMID: 28878124 DOI: 10.1172/jci.insight.91068] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 07/19/2017] [Indexed: 11/17/2022] Open
Abstract
Cardiac hypertrophy, as a response to hemodynamic stress, is associated with cardiac dysfunction and death, but whether hypertrophy itself represents a pathological process remains unclear. Hypertrophy is driven by changes in myocardial gene expression that require the MEF2 family of DNA-binding transcription factors, as well as the nuclear lysine acetyltransferase p300. Here we used genetic and small-molecule probes to determine the effects of preventing MEF2 acetylation on cardiac adaptation to stress. Both nonacetylatable MEF2 mutants and 8MI, a molecule designed to interfere with MEF2-coregulator binding, prevented hypertrophy in cultured cardiac myocytes. 8MI prevented cardiac hypertrophy in 3 distinct stress models, and reversed established hypertrophy in vivo, associated with normalization of myocardial structure and function. The effects of 8MI were reversible, and did not prevent training effects of swimming. Mechanistically, 8MI blocked stress-induced MEF2 acetylation, nuclear export of class II histone deacetylases HDAC4 and -5, and p300 induction, without impeding HDAC4 phosphorylation. Correspondingly, 8MI transformed the transcriptional response to pressure overload, normalizing almost all 232 genes dysregulated by hemodynamic stress. We conclude that MEF2 acetylation is required for development and maintenance of pathological cardiac hypertrophy, and that blocking MEF2 acetylation can permit recovery from hypertrophy without impairing physiologic adaptation.
Collapse
Affiliation(s)
| | - Shaurya Joshi
- Department of Molecular and Cellular Pharmacology, and
| | | | | | - Nimanthi Jayathilaka
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, USA
| | - Xiao Lei
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, USA
| | - Yongqing Wu
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, USA
| | - David Gai
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, USA
| | - Sumit Jain
- Department of Molecular and Cellular Pharmacology, and
| | | | | | - Lin Chen
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, USA
| | - Nanette H Bishopric
- Department of Medicine.,Department of Molecular and Cellular Pharmacology, and.,Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
26
|
Nan J, Hu H, Sun Y, Zhu L, Wang Y, Zhong Z, Zhao J, Zhang N, Wang Y, Wang Y, Ye J, Zhang L, Hu X, Zhu W, Wang J. TNFR2 Stimulation Promotes Mitochondrial Fusion via Stat3- and NF-kB-Dependent Activation of OPA1 Expression. Circ Res 2017. [PMID: 28637784 PMCID: PMC5542782 DOI: 10.1161/circresaha.117.311143] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Supplemental Digital Content is available in the text. Rationale: Mitochondria are important cellular organelles and play essential roles in maintaining cell structure and function. Emerging evidence indicates that in addition to having proinflammatory and proapoptotic effects, TNFα (tumor necrosis factor α) can, under certain circumstances, promote improvements in mitochondrial integrity and function, phenomena that can be ascribed to the existence of TNFR2 (TNFα receptor 2). Objective: The present study aimed to investigate whether and how TNFR2 activation mediates the effects of TNFα on mitochondria. Methods and Results: Freshly isolated neonatal mouse cardiac myocytes treated with shRNA targeting TNFR1 were used to study the effects of TNFR2 activation on mitochondrial function. Neonatal mouse cardiac myocytes exhibited increases in mitochondrial fusion, a change that was associated with increases in mitochondrial membrane potential, intracellular ATP levels, and oxygen consumption capacity. Importantly, TNFR2 activation–induced increases in OPA1 (optic atrophy 1) protein expression were responsible for the above enhancements, and these changes could be attenuated using siRNA targeting OPA1. Moreover, both Stat3 and RelA bound to the promoter region of OPA1 and their interactions synergistically upregulated OPA1 expression at the transcriptional level. Stat3 acetylation at lysine 370 or lysine 383 played a key role in the ability of Stat3 to form a supercomplex with RelA. Meanwhile, p300 modulated Stat3 acetylation in HEK293T (human embryonic kidney 293T) cells, and p300-mediated Stat3/RelA interactions played an indispensable role in OPA1 upregulation. Finally, TNFR2 activation exerted beneficial effects on OPA1 expression in an in vivo transverse aortic constriction model, whereby TNFR1-knockout mice exhibited better outcomes than in mice with both TNFR1 and TNFR2 knocked out. Conclusions: TNFR2 activation protects cardiac myocytes against stress by upregulating OPA1 expression. This process was facilitated by p300-mediated Stat3 acetylation and Stat3/RelA interactions, leading to improvements in mitochondrial morphology and function.
Collapse
Affiliation(s)
- Jinliang Nan
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hengxun Hu
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Sun
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lianlian Zhu
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingchao Wang
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiwei Zhong
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Zhao
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Na Zhang
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ya Wang
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaping Wang
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Ye
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling Zhang
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyang Hu
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Zhu
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian'an Wang
- From the Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology (J.N., H.H., Y.S., L.Z., Y.W., Z.Z., J.Z., N.Z., Y.W., Y.W., J.Y., L.Z., X.H., W.Z., J.W.) and Clinical Research Center (L.Z., Y.W., Z.Z., J.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
27
|
Wang Y, Zhou C, Gao H, Li C, Li D, Liu P, Huang M, Shen X, Liu L. Therapeutic effect of Cryptotanshinone on experimental rheumatoid arthritis through downregulating p300 mediated-STAT3 acetylation. Biochem Pharmacol 2017; 138:119-129. [PMID: 28522406 DOI: 10.1016/j.bcp.2017.05.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 05/11/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND PURPOSE The balance between T helper 17 (Th17) cells and regulatory T (Treg) cells, plays a critical role in rheumatoid arthritis (RA). The differentiation of Th17 cells requires the activation of STAT3, which determines the balance of Th17/Treg. Here, we investigated the therapeutic effect of Cryptotanshinone (CTS) on collagen induced mouse arthritis and explored the underlying mechanisms. EXPERIMENTAL APPROACH Arthritis was induced in DBA/1 mice with bovine collagen type II and complete Freund's adjuvant. CTS was given at 20mgkg-1d-1 or 60mgkg-1d-1 by gavage for 6weeks. The immuno-inflammation and joint destruction were evaluated and the balance of Th17/Treg was determined. STAT3 acetylation and phosphorylation were detected by western blotting, and the involvement of p300 was investigated by siRNA and plasmid overexpression. KEY RESULTS CTS at a dose of 60mgkg-1d-1 ameliorated the inflammation and joint destruction in CIA mice. It improved Th17/Treg imbalance, and inhibited both acetylation and phosphorylation of STAT3. CTS reduced p300 expression and its binding to STAT3, but increased phosphorylated AMPK. Knockdown of p300 mimicked the inhibitory effect of CTS on STAT3 acetylation and phosphorylation, which could be partially rescued by overexpression of p300-WT, but not p300-dominant negative (DN) construct. CONCLUSION AND IMPLICATIONS Our study suggested that the anti-arthritis effects of CTS were attained through suppression of p300-mediated STAT3 acetylation. Our data suggest that CTS might be a potential immune modulator for RA treatment.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China; Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China; Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Chun Zhou
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hui Gao
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Cuixian Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China; Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peiqing Liu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Min Huang
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China; Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
28
|
Haery L, Mussakhan S, Waxman DJ, Gilmore TD. Evidence for an oncogenic modifier role for mutant histone acetyltransferases in diffuse large B-cell lymphoma. Leuk Lymphoma 2016; 57:2661-71. [PMID: 27003102 DOI: 10.3109/10428194.2016.1160083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mutations in histone acetyltransferases (HATs) are among the most common mutations in diffuse large B-cell lymphoma (DLBCL). We previously showed that two human DLBCL cell lines, RC-K8 and SUDHL2, express C-terminally truncated, HAT domain-deficient p300 proteins (p300ΔC) that are required for optimal cell proliferation. Microarray analysis of mRNA expression in RC-K8 cells following p300ΔC knockdown shows upregulation of NF-κB and p53 gene expression programs and downregulation of a MYC gene expression program. Experiments indicate that these gene expression changes are due to inhibitory effects of p300ΔC on NF-κB activity and on p53 protein levels and stimulatory effects on MYC protein levels, suggesting that p300ΔC mutants enhance the proliferation of DLBCL cells by adjusting the transcriptional output of cell-specific oncoproteins. We propose that p300/CBP gene truncation represents a new class of oncogenic mutation that optimizes the activity of context-specific oncogenic transcription factors. We propose 'oncogenic modifier' to describe such mutations.
Collapse
Affiliation(s)
- Leila Haery
- a Department of Biology , Boston University , Boston , MA , USA
| | | | - David J Waxman
- a Department of Biology , Boston University , Boston , MA , USA
| | | |
Collapse
|
29
|
The potential of GMP-compliant platelet lysate to induce a permissive state for cardiovascular transdifferentiation in human mediastinal adipose tissue-derived mesenchymal stem cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:162439. [PMID: 26495284 PMCID: PMC4606096 DOI: 10.1155/2015/162439] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/04/2015] [Accepted: 06/10/2015] [Indexed: 01/13/2023]
Abstract
Human adipose tissue-derived mesenchymal stem cells (ADMSCs) are considered eligible candidates for cardiovascular stem cell therapy applications due to their cardiac transdifferentiation potential and immunotolerance. Over the years, the in vitro culture of ADMSCs by platelet lysate (PL), a hemoderivate containing numerous growth factors and cytokines derived from platelet pools, has allowed achieving a safe and reproducible methodology to obtain high cell yield prior to clinical administration. Nevertheless, the biological properties of PL are still to be fully elucidated. In this brief report we show the potential ability of PL to induce a permissive state of cardiac-like transdifferentiation and to cause epigenetic modifications. RTPCR results indicate an upregulation of Cx43, SMA, c-kit, and Thy-1 confirmed by immunofluorescence staining, compared to standard cultures with foetal bovine serum. Moreover, PL-cultured ADMSCs exhibit a remarkable increase of both acetylated histones 3 and 4, with a patient-dependent time trend, and methylation at lysine 9 on histone 3 preceding the acetylation. Expression levels of p300 and SIRT-1, two major regulators of histone 3, are also upregulated after treatment with PL. In conclusion, PL could unravel novel biological properties beyond its routine employment in noncardiac applications, providing new insights into the plasticity of human ADMSCs.
Collapse
|
30
|
Wu Z, Cheng Z, Sun M, Wan X, Liu P, He T, Tan M, Zhao Y. A chemical proteomics approach for global analysis of lysine monomethylome profiling. Mol Cell Proteomics 2014; 14:329-39. [PMID: 25505155 DOI: 10.1074/mcp.m114.044255] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methylation of lysine residues on histone proteins is known to play an important role in chromatin structure and function. However, non-histone protein substrates of this modification remain largely unknown. An effective approach for system-wide analysis of protein lysine methylation, particularly lysine monomethylation, is lacking. Here we describe a chemical proteomics approach for global screening for monomethyllysine substrates, involving chemical propionylation of monomethylated lysine, affinity enrichment of the modified monomethylated peptides, and HPLC/MS/MS analysis. Using this approach, we identified with high confidence 446 lysine monomethylation sites in 398 proteins, including three previously unknown histone monomethylation marks, representing the largest data set of protein lysine monomethylation described to date. Our data not only confirms previously discovered lysine methylation substrates in the nucleus and spliceosome, but also reveals new substrates associated with diverse biological processes. This method hence offers a powerful approach for dynamic study of protein lysine monomethylation under diverse cellular conditions and in human diseases.
Collapse
Affiliation(s)
- Zhixiang Wu
- From the ‡The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Zhongyi Cheng
- §Jingjie PTM BioLab (Hangzhou) Co. Ltd, Hangzhou, P.R. China
| | - Mingwei Sun
- From the ‡The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Xuelian Wan
- From the ‡The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Ping Liu
- From the ‡The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Tieming He
- §Jingjie PTM BioLab (Hangzhou) Co. Ltd, Hangzhou, P.R. China
| | - Minjia Tan
- From the ‡The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China;
| | - Yingming Zhao
- From the ‡The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China; ¶Ben May Department of Cancer Research, The University of Chicago, Chicago, Illinois
| |
Collapse
|
31
|
Ni J, Shen Y, Wang Z, Shao DC, Liu J, Kong YL, Fu LJ, Zhou L, Xue H, Huang Y, Zhang W, Yu C, Lu LM. P300-dependent STAT3 acetylation is necessary for angiotensin II-induced pro-fibrotic responses in renal tubular epithelial cells. Acta Pharmacol Sin 2014; 35:1157-66. [PMID: 25088002 DOI: 10.1038/aps.2014.54] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/20/2014] [Indexed: 02/07/2023]
Abstract
AIM To explore the signal transducer and activator of transcription 3 (STAT3) signaling pathway, especially STAT3 acetylation, in angiotensin II (Ang II)-induced pro-fibrotic responses in renal tubular epithelial cells. METHODS Rat renal tubular epithelial cell line (NRK-52E) was used. STAT3 acetylation and phosphorylation, as well as the expression of fibronectin, collagen IV and transforming growth factor-β1 (TGF-β1) were examined using Western blotting. The level and localization of STAT3 phosphorylation on Tyr705 were detected with fluorescence immunocytochemistry. The cells were transfected with a plasmid vector carrying p300 gene or siRNA targeting p300 to regulate p300 expression. RESULTS Overexpression of p300 significantly increased STAT3 acetylation on Lys685, STAT3 phosphorylation on Tyr705, and the expression of TGF-β1, collagen IV and fibronectin in the cells. Treatment of the cells with Ang II (1 μmol/L) significantly increased STAT3 phosphorylation on Tyr705 through JAK2 activation, and dose-dependently increased the expression of fibronectin, collagen IV and TGF-β1. Pretreatment with curcumin, an inhibitor of JAK2 and p300, blocked Ang II-induced effects. Knockdown of p300 significantly decreased STAT3 acetylation on Lys685, and abolished Ang II-stimulated STAT3 phosphorylation on Tyr705, whereas pretreatment of the cells with C646, a selective inhibitor of p300, inhibited Ang II-induced STAT3 nuclear translocation and the expression of TGF-β1, collagen IV and fibronectin. Pretreatment of the cells with AG490, a JAK2 inhibitor, markedly inhibited Ang II-induced STAT3 phosphorylation on Tyr705 and fibronectin expression. CONCLUSION p300-dependent STAT3 acetylation is necessary for Ang II-induced STAT3 phosphorylation and the consequent pro-fibrotic responses in renal tubular epithelial cells in vitro.
Collapse
|
32
|
Ni J, Shen Y, Wang Z, Shao DC, Liu J, Fu LJ, Kong YL, Zhou L, Xue H, Huang Y, Zhang W, Yu C, Lu LM. Inhibition of STAT3 acetylation is associated with angiotesin renal fibrosis in the obstructed kidney. Acta Pharmacol Sin 2014; 35:1045-54. [PMID: 24976155 DOI: 10.1038/aps.2014.42] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 04/25/2014] [Indexed: 02/07/2023]
Abstract
AIM To explore the relationship between the signal transducer and activator of transcription 3 (STAT3) signaling and renal fibrosis. METHODS Rat renal tubular epithelial NRK-52E cells were treated with angiotesin II (Ang II), nicotinamide (an inhibitor of NAD+-dependent class III protein deacetylases, SIRT1-7), or resveratrol (an activator of SIRT1). Mice underwent unilateral ureteral obstruction (UUO) were used for in vivo studies. Renal interstitial fibrosis was observed with HE and Masson's trichrome staining. STAT3 acetylation and phosphorylation, fibronectin, collagen I, collagen IV, and α-smooth muscle actin (α-SMA) levels were examined using Western blotting. RESULTS Nicotinamide (0.625-10 mmol/L) dose-dependently increased STAT3 acetylation on Lys685 and phosphorylation on Tyr705 in NRK-52E cells, accompanied by accumulation of fibronectin and collagen IV. Ang II increased STAT3 phosphorylation on Tyr705 and the expression of fibronectin, collagen IV and α-SMA in the cells. Pretreatment with resveratrol (12.5 μmol/L) blocked Ang II-induced effects in the cells. UUO induced marked STAT3 phosphorylation, fibronectin, collagen IV and α-SMA accumulation, and renal interstitial fibrosis in the obstructed kidneys, which were significantly attenuated by daily administration of resveratrol (100 mg/kg). CONCLUSION STAT3 acetylation plays an important role in activation of STAT3 signaling pathway and consequent renal fibrosis.
Collapse
|
33
|
Rafehi H, Balcerczyk A, Lunke S, Kaspi A, Ziemann M, Kn H, Okabe J, Khurana I, Ooi J, Khan AW, Du XJ, Chang L, Haviv I, Keating ST, Karagiannis TC, El-Osta A. Vascular histone deacetylation by pharmacological HDAC inhibition. Genome Res 2014; 24:1271-84. [PMID: 24732587 PMCID: PMC4120081 DOI: 10.1101/gr.168781.113] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
HDAC inhibitors can regulate gene expression by post-translational modification of histone as well as nonhistone proteins. Often studied at single loci, increased histone acetylation is the paradigmatic mechanism of action. However, little is known of the extent of genome-wide changes in cells stimulated by the hydroxamic acids, TSA and SAHA. In this article, we map vascular chromatin modifications including histone H3 acetylation of lysine 9 and 14 (H3K9/14ac) using chromatin immunoprecipitation (ChIP) coupled with massive parallel sequencing (ChIP-seq). Since acetylation-mediated gene expression is often associated with modification of other lysine residues, we also examined H3K4me3 and H3K9me3 as well as changes in CpG methylation (CpG-seq). RNA sequencing indicates the differential expression of ∼30% of genes, with almost equal numbers being up- and down-regulated. We observed broad deacetylation and gene expression changes conferred by TSA and SAHA mediated by the loss of EP300/CREBBP binding at multiple gene promoters. This study provides an important framework for HDAC inhibitor function in vascular biology and a comprehensive description of genome-wide deacetylation by pharmacological HDAC inhibition.
Collapse
Affiliation(s)
- Haloom Rafehi
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia; Department of Pathology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Aneta Balcerczyk
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Sebastian Lunke
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Antony Kaspi
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Mark Ziemann
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Harikrishnan Kn
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Jun Okabe
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia; Faculty of Medicine, Monash University, Victoria 3800, Australia
| | - Ishant Khurana
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Jenny Ooi
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Abdul Waheed Khan
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Xiao-Jun Du
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia; Faculty of Medicine, Monash University, Victoria 3800, Australia
| | - Lisa Chang
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Izhak Haviv
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Samuel T Keating
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Tom C Karagiannis
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Assam El-Osta
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia; Department of Pathology, The University of Melbourne, Parkville, Victoria 3010, Australia; Faculty of Medicine, Monash University, Victoria 3800, Australia
| |
Collapse
|
34
|
Wei JH, Cao JZ, Zhang D, Liao B, Zhong WM, Lu J, Zhao HW, Zhang JX, Tong ZT, Fan S, Liang CZ, Liao YB, Pang J, Wu RH, Fang Y, Chen ZH, Li B, Xie D, Chen W, Luo JH. EIF5A2 predicts outcome in localised invasive bladder cancer and promotes bladder cancer cell aggressiveness in vitro and in vivo. Br J Cancer 2014; 110:1767-77. [PMID: 24504366 PMCID: PMC3974079 DOI: 10.1038/bjc.2014.52] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/19/2013] [Accepted: 01/10/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND EIF5A2, eukaryotic translation initiation factor 5A2, is associated with several human cancers. In this study, we investigated the role of EIF5A2 in the metastatic potential of localised invasive bladder cancer (BC) and its underlying molecular mechanisms were explored. METHODS The expression pattern of EIF5A2 in localised invasive BC was determined by immunohistochemistry. In addition, the function of EIF5A2 in BC and its underlying mechanisms were elucidated with a series of in vitro and in vivo assays. RESULTS Overexpression of EIF5A2 was an independent predictor for poor metastasis-free survival of localised invasive BC patients treated with radical cystectomy. Knockdown of EIF5A2 inhibited BC cell migratory and invasive capacities in vitro and metastatic potential in vivo and reversed epithelial-mesenchymal transition (EMT), whereas overexpression of EIF5A2 promoted BC cells motility and invasiveness in vitro and metastatic potential in vivo and induced EMT. In addition, we found that EIF5A2 might activate TGF-β1 expression to induce EMT and drive aggressiveness in BC cells. EIF5A2 stabilized STAT3 and stimulated nuclear localisation of STAT3, which resulted in increasing enrichment of STAT3 onto TGF-β1 promoter to enhance the transcription of TGF-β1. CONCLUSIONS EIF5A2 overexpression predicts tumour metastatic potential in patients with localised invasive BC treated with radical cystectomy. Furthermore, EIF5A2 elevated TGF-β1 expression through STAT3 to induce EMT and promotes aggressiveness in BC.
Collapse
Affiliation(s)
- J-H Wei
- Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - J-Z Cao
- Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Urology, Jiangmen Hospital, Sun Yat-Sen University, Jiangmen, China
| | - D Zhang
- Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - B Liao
- Department of Pathology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - W-M Zhong
- Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - J Lu
- Department of Urology, Jiangmen Hospital, Sun Yat-Sen University, Jiangmen, China
| | - H-W Zhao
- Department of Urology, Yuhuangding Hospital, Qingdao University Medical College, Yantai, China
| | - J-X Zhang
- Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Z-T Tong
- Department of Urology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - S Fan
- Department of Urology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - C-Z Liang
- Department of Urology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Y-B Liao
- Department of Urology, Jiangmen Hospital, Sun Yat-Sen University, Jiangmen, China
| | - J Pang
- Department of Urology, Jiangmen Hospital, Sun Yat-Sen University, Jiangmen, China
| | - R-H Wu
- Department of Urology, Jiangmen Hospital, Sun Yat-Sen University, Jiangmen, China
| | - Y Fang
- Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Z-H Chen
- Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - B Li
- Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - D Xie
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - W Chen
- Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - J-H Luo
- Department of Urology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
35
|
Wang Y, Miao X, Liu Y, Li F, Liu Q, Sun J, Cai L. Dysregulation of histone acetyltransferases and deacetylases in cardiovascular diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:641979. [PMID: 24693336 PMCID: PMC3945289 DOI: 10.1155/2014/641979] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 01/06/2014] [Indexed: 12/31/2022]
Abstract
Cardiovascular disease (CVD) remains a leading cause of mortality worldwide despite advances in its prevention and management. A comprehensive understanding of factors which contribute to CVD is required in order to develop more effective treatment options. Dysregulation of epigenetic posttranscriptional modifications of histones in chromatin is thought to be associated with the pathology of many disease models, including CVD. Histone acetyltransferases (HATs) and deacetylases (HDACs) are regulators of histone lysine acetylation. Recent studies have implicated a fundamental role of reversible protein acetylation in the regulation of CVDs such as hypertension, pulmonary hypertension, diabetic cardiomyopathy, coronary artery disease, arrhythmia, and heart failure. This reversible acetylation is governed by enzymes that HATs add or HDACs remove acetyl groups respectively. New evidence has revealed that histone acetylation regulators blunt cardiovascular and related disease states in certain cellular processes including myocyte hypertrophy, apoptosis, fibrosis, oxidative stress, and inflammation. The accumulating evidence of the detrimental role of histone acetylation in cardiac disease combined with the cardioprotective role of histone acetylation regulators suggests that the use of histone acetylation regulators may serve as a novel approach to treating the millions of patients afflicted by cardiac diseases worldwide.
Collapse
Affiliation(s)
- Yonggang Wang
- Cardiovascular Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, China
- Department of Pediatrics, Kosair Children Hospital Research Institute, University of Louisville, 570 South Preston Street, Baxter I, Suite 304F, Louisville, KY 40202, USA
| | - Xiao Miao
- Department of Pediatrics, Kosair Children Hospital Research Institute, University of Louisville, 570 South Preston Street, Baxter I, Suite 304F, Louisville, KY 40202, USA
- The Second Hospital of Jilin University, Changchun 130041, China
| | - Yucheng Liu
- Department of Pediatrics, Kosair Children Hospital Research Institute, University of Louisville, 570 South Preston Street, Baxter I, Suite 304F, Louisville, KY 40202, USA
| | - Fengsheng Li
- Department of Pediatrics, Kosair Children Hospital Research Institute, University of Louisville, 570 South Preston Street, Baxter I, Suite 304F, Louisville, KY 40202, USA
- The Second Artillery General Hospital, Beijing 100088, China
| | - Quan Liu
- Cardiovascular Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, China
| | - Jian Sun
- Cardiovascular Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, China
| | - Lu Cai
- Department of Pediatrics, Kosair Children Hospital Research Institute, University of Louisville, 570 South Preston Street, Baxter I, Suite 304F, Louisville, KY 40202, USA
| |
Collapse
|
36
|
Wang SA, Hung CY, Chuang JY, Chang WC, Hsu TI, Hung JJ. Phosphorylation of p300 increases its protein degradation to enhance the lung cancer progression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1135-49. [PMID: 24530506 DOI: 10.1016/j.bbamcr.2014.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/21/2014] [Accepted: 02/02/2014] [Indexed: 01/05/2023]
Abstract
p300 is a transcription cofactor for a number of nuclear proteins. Most studies of p300 have focused on the regulation of its function, which primarily includes its role as a transcription co-factor for a number of nuclear proteins. In this study, we found that p300 was highly phosphorylated and its level was decreased during mitosis and tumorigenesis. In vitro and in vivo experiments aimed showed that cyclin-dependent kinase 1 (CDK1) and ERK1/2 phosphorylated p300 on Ser1038 and Ser2039. Mutations of Ser1038 and Ser2039 increased p300 protein stability and levels. Inhibition of p300 degradation by blocking its phosphorylation decreased the proliferation and metastasis activity of lung cancer cells, indicating that p300 acts as a tumor suppressor in lung cancer tumorigenesis. Investigation of the molecular mechanism showed that blocking p300 phosphorylation disrupted chromatin condensation and the increased the acetylation of histone H3. Analysis of cell cycle progression in HA-p300-S2A-expressing cells by flow cytometry showed that the p300 mutants arrested the cells at S-phase or delayed the mitotic entry and exit. The expression of several important oncogenes, MMP-9, vimentin, β-catenin, N-cadherin and c-myc, was negatively regulated by p300. In conclusion, during lung tumorigenesis, a phosphorylation-mediated decrease in p300 level enhanced oncogene expression during interphase and decreased histone H3 acetylation during mitosis, which promoted lung cancer progression.
Collapse
Affiliation(s)
- Shao-An Wang
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng-Kung University, Tainan 701, Taiwan
| | - Chia-Yang Hung
- Institute of Basic Medical Sciences, College of Medicine, National Cheng-Kung University, Tainan 701, Taiwan
| | - Jian-Ying Chuang
- Neural Regenerative Medicine, College of Medical Sciences and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Wen-Chang Chang
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng-Kung University, Tainan 701, Taiwan; Department of Pharmacology, National Cheng-Kung University, Tainan 701, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng-Kung University, Tainan 701, Taiwan; Center for Infectious Disease and Signal Transduction, National Cheng-Kung University, Tainan 701, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Tsung-I Hsu
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng-Kung University, Tainan 701, Taiwan; Center for Infectious Disease and Signal Transduction, National Cheng-Kung University, Tainan 701, Taiwan
| | - Jan-Jong Hung
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng-Kung University, Tainan 701, Taiwan; Department of Pharmacology, National Cheng-Kung University, Tainan 701, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng-Kung University, Tainan 701, Taiwan; Center for Infectious Disease and Signal Transduction, National Cheng-Kung University, Tainan 701, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
37
|
Du T, Nagai Y, Xiao Y, Greene MI, Zhang H. Lysosome-dependent p300/FOXP3 degradation and limits Treg cell functions and enhances targeted therapy against cancers. Exp Mol Pathol 2013; 95:38-45. [PMID: 23644046 PMCID: PMC3963828 DOI: 10.1016/j.yexmp.2013.04.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 04/23/2013] [Indexed: 11/21/2022]
Abstract
p300 is one of several acetyltransferases that regulate FOXP3 acetylation and functions. Our recent studies have defined a complex set of histone acetyltransferase interactions which can lead to enhanced or repressed changes in FOXP3 function. We have explored the use of a natural p300 inhibitor, Garcinol, as a tool to understand mechanisms by which p300 regulates FOXP3 acetylation. In the presence of Garcinol, p300 appears to become disassociated from the FOXP3 complex and undergoes lysosome-dependent degradation. As a consequence of p300's physical absence, FOXP3 becomes less acetylated and eventually degraded, a process that cannot be rescued by the proteasome inhibitor MG132. p300 plays a complex role in FOXP3 acetylation, as it could also acetylate a subset of four Lys residues that repressively regulate total FOXP3 acetylation. Garcinol acts as a degradation device to reduce the suppressive activity of regulatory T cells (Treg) and to enhance the in vivo anti-tumor activity of a targeted therapeutic anti-p185(her2/neu) (ERBB2) antibody in MMTV-neu transgenics implanted with neu transformed breast tumor cells. Our studies provide the rationale for molecules that disrupt p300 stability to limit Treg functions in targeted therapies for cancers.
Collapse
Affiliation(s)
- Taofeng Du
- Department of Pathology and Lab Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, 3620 Hamilton Walk, PA 19104, USA
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Yasuhiro Nagai
- Department of Pathology and Lab Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, 3620 Hamilton Walk, PA 19104, USA
| | - Yan Xiao
- Department of Pathology and Lab Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, 3620 Hamilton Walk, PA 19104, USA
| | - Mark I. Greene
- Department of Pathology and Lab Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, 3620 Hamilton Walk, PA 19104, USA
| | - Hongtao Zhang
- Department of Pathology and Lab Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, 3620 Hamilton Walk, PA 19104, USA
| |
Collapse
|
38
|
Zouein FA, Kurdi M, Booz GW. Dancing rhinos in stilettos: The amazing saga of the genomic and nongenomic actions of STAT3 in the heart. JAKSTAT 2013; 2:e24352. [PMID: 24069556 PMCID: PMC3772108 DOI: 10.4161/jkst.24352] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 03/18/2013] [Accepted: 03/18/2013] [Indexed: 01/15/2023] Open
Abstract
A substantial body of evidence has shown that signal transducer and activator of transcription 3 (STAT3) has an important role in the heart in protecting the myocardium from ischemia and oxidative stress. These actions are attributed to STAT3 functioning as a transcription factor in upregulating cardioprotective genes. Loss of STAT3 has been implicated as well in the pathogenesis of heart failure and, in that context and in addition to the loss of a cardioprotective gene program, nuclear STAT3 has been identified as a transcriptional repressor important for the normal functioning of the ubiquitin-proteasome system for protein degradation. The later finding establishes a genomic role for STAT3 in controlling cellular homeostasis in cardiac myocytes independent of stress. Surprisingly, although a well-studied area, very few downstream gene targets of STAT3 in the heart have been definitively identified. In addition, STAT3 is now known to induce gene expression by noncanonical means that are not well characterized in the heart. On the other hand, recent evidence has shown that STAT3 has important nongenomic actions in cardiac myocytes that affect microtubule stability, mitochondrial respiration, and autophagy. These extranuclear actions of STAT3 involve protein–protein interactions that are incompletely understood, as is their regulation in both the healthy and injured heart. Moreover, how the diverse genomic and nongenomic actions of STAT3 crosstalk with each other is unchartered territory. Here we present an overview of what is and is not known about both the genomic and nongenomic actions of STAT3 in the heart from a structure-function perspective that focuses on the impact of posttranslational modifications and oxidative stress in regulating the actions and interactions of STAT3. Even though we have learnt a great deal about the role played by STAT3 in the heart, much more awaits to be discovered.
Collapse
Affiliation(s)
- Fouad A Zouein
- Department of Pharmacology and Toxicology; School of Medicine; and The Jackson Center for Heart Research at UMMC; The Cardiovascular-Renal Research Center; The University of Mississippi Medical Center; Jackson, MS USA
| | | | | |
Collapse
|
39
|
Feng B, Ruiz MA, Chakrabarti S. Oxidative-stress-induced epigenetic changes in chronic diabetic complications. Can J Physiol Pharmacol 2013; 91:213-20. [DOI: 10.1139/cjpp-2012-0251] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Oxidative stress plays an important role in the development and progression of chronic diabetic complications. Diabetes causes mitochondrial superoxide overproduction in the endothelial cells of both large and small vessels. This increased superoxide production causes the activation of several signal pathways involved in the pathogenesis of chronic complications. In particular, endothelial cells are major targets of glucose-induced oxidative damage in the target organs. Oxidative stress activates cellular signaling pathways and transcription factors in endothelial cells including protein kinase C (PKC), c-Jun-N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), forkhead box O (FOXO), and nuclear factor kappa-B (NF-κB). Oxidative stress also causes DNA damage and activates DNA nucleotide excision repair enzymes including the excision repair cross complimenting 1(ERCC1), ERCC4, and poly(ADP-ribose) polymerase (PARP). Augmented production of histone acetyltransferase p300, and alterations of histone deacetylases, including class III deacetylases sirtuins, are also involved in this process. Recent research has found that small noncoding RNAs, like microRNA, are a new kind of regulator associated with chronic diabetic complications. There are extensive and complicated interactions and among these molecules. The purpose of this review is to demonstrate the role of oxidative stress in the development of diabetic complications in relation to epigenetic changes such as acetylation and microRNA alterations.
Collapse
Affiliation(s)
- Biao Feng
- Department of Pathology, Western University, London, ON N6A 5C1, Canada
| | | | | |
Collapse
|
40
|
Zou C, Chen Y, Smith RM, Snavely C, Li J, Coon TA, Chen BB, Zhao Y, Mallampalli RK. SCF(Fbxw15) mediates histone acetyltransferase binding to origin recognition complex (HBO1) ubiquitin-proteasomal degradation to regulate cell proliferation. J Biol Chem 2013; 288:6306-16. [PMID: 23319590 DOI: 10.1074/jbc.m112.426882] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone acetyltransferase binding to origin recognition complex (HBO1) plays a crucial role in DNA replication licensing and cell proliferation, yet its molecular regulation in cells is relatively unknown. Here an uncharacterized protein, Fbxw15, directly interacts with HBO1, a labile protein (t½ = ∼3 h), to mediate its ubiquitination (Lys(338)) and degradation in the cytoplasm. Fbxw15-mediated HBO1 depletion required mitogen-activated protein kinase 1 (Mek1), which was sufficient to trigger HBO1 phosphorylation and degradation in cells. Mek1 ability to produce HBO1 degradation was blocked by Fbxw15 silencing. Lipopolysaccharide induced HBO1 degradation, an effect abrogated by Fbxw15 or Mek1 cellular depletion. Modulation of Fbxw15 levels was able to differentially regulate histone H3K14 acetylation and cellular proliferation by altering HBO1 levels. These studies authenticate Fbxw15 as a ubiquitin E3 ligase subunit that mediates endotoxin-induced HBO1 depletion in cells, thereby controlling cell replicative capacity.
Collapse
Affiliation(s)
- Chunbin Zou
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Icardi L, De Bosscher K, Tavernier J. The HAT/HDAC interplay: multilevel control of STAT signaling. Cytokine Growth Factor Rev 2012; 23:283-91. [PMID: 22989617 DOI: 10.1016/j.cytogfr.2012.08.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 08/20/2012] [Indexed: 12/13/2022]
Abstract
Besides the transcription-promoting role of histone acetyltransferases (HATs) and the transcription-delimiting function of histone deacetylases (HDACs) through histone acetylation and deacetylation respectively, HATs and HDACs also regulate the activity of several non-histone proteins. This includes signal transducers and activators of transcription (STATs), key proteins in cytokine signaling. Unlike Tyr phosphorylation/dephosphorylation, which mainly acts as an on/off switch of STAT activity, the control exerted by HATs and HDACs appears multifaceted and far more complex than initially imagined. Our review focuses on the latest trends and novel hypotheses to explain differential context-dependent STAT regulation by complex posttranslational modification patterns. We chart the knowledge on how STATs interact with HATs and HDACs, and additionally bring a transcriptional regulatory and gene-set specific role for HDACs in the picture. Indeed, a growing amount of evidence demonstrates, paradoxically, that not only HAT but also HDAC activity can be required for STAT-dependent transcription, in a STAT subtype- and cell type-dependent manner. Referring to recent reports, we review and discuss the various molecular mechanisms that have recently been proposed to account for this peculiar regulation, in an attempt to shed more light on the difficult yet important question on how STAT specificity is being generated.
Collapse
Affiliation(s)
- Laura Icardi
- Department of Medical Protein Research, VIB, Ghent, Belgium
| | | | | |
Collapse
|