1
|
Huang G, Wang D, Xue J. The role of DDIT3 in modulating proliferation and tamoxifen resistance in luminal A subtype breast cancer through the DDIT3-IRF1 axis. Biochem Biophys Res Commun 2025; 769:151922. [PMID: 40359764 DOI: 10.1016/j.bbrc.2025.151922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND This study investigates the role of DNA Damage Inducible Transcript 3 (DDIT3) in luminal A subtype breast cancer (LABC). DDIT3, a transcription factor linked to various stress responses, has been implicated in tumorigenesis, yet its specific contributions to LABC biology remain poorly understood. METHODS To elucidate these functions, we utilized bioinformatics analyses, including data from TCGA and Kaplan-Meier databases. Furthermore, we performed siRNA-mediated knockdown and overexpression experiments in MCF-7 and T47D cells to assess DDIT3's functional impact on cell proliferation, drug resistance, etc. RNA sequencing analysis identified differentially expressed genes (DEGs) associated with DDIT3 manipulation, and pinpointing the crucial downstream target with rescue experiment. RESULTS Compared to normal breast tissue, DDIT3 is lowly expressed in LABC, and LABC patients with low DDIT3 expression have a lower survival rate, indicating relatively poor prognosis. Furthermore, DDIT3 negatively regulates the proliferation of LABC cells, also negatively correlated with the sensitivity of TAM. RNA-seq result and rescue experiment identified the interferon regulatory factor 1 (IRF1) as a crucial downstream target of DDIT3 to regulating LABC cell proliferation and tamoxifen (TAM) resistance. CONCLUSIONS DDIT3 is negatively correlated with poor prognosis in LABC patients. And DDIT3 may negatively regulate the proliferation and TAM sensitivity in LABC cells through the DDIT3-IRF1 axis.
Collapse
Affiliation(s)
- Guoqing Huang
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, Heilongjiang, China.
| | - Dandan Wang
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, Heilongjiang, China
| | - Jiaying Xue
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, Heilongjiang, China
| |
Collapse
|
2
|
Ren T, Zhou L, Li Z, Pan M, Han X. Mechanistic role of miR-375 in regulating PDPK1 to promote progression of small bowel neuroendocrine tumors: a silico analysis. Discov Oncol 2025; 16:1187. [PMID: 40549235 PMCID: PMC12185849 DOI: 10.1007/s12672-025-02872-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 05/30/2025] [Indexed: 06/28/2025] Open
Abstract
BACKGROUND The incidence of small bowel neuroendocrine tumors (SBNETs) is steadily increasing, new therapies are urgently needed to prolong the overall survival of patients. OBJECTIVE This study aimed to identify diagnostic and therapeutic candidate markers for SBNETs. METHODS Expression profiles of miRNAs were collected from GSE70534, and GSE103317, that of mRNAs were collected from GSE65286. Differentially expressed genes (DEmiRs, DEmRs) were analyzed between SBNETs and controls. Enrichment and coexpression analyses were carried out for DEmRs. XGBoost algorithm was used to screening feature miRNAs. Module genes in SBNETs-related pathways were selected to construct regulated network for feature miRNAs. Drug targeting prediction and immune environment evaluation were identified. RESULTS A total of 57 common DEmiRs with the same direction of expression were identified. Hsa - miR - 375, hsa - miR - 107, hsa - miR - 1180, hsa - miR - 330 - 3p, and hsa - miR - 328 were identified as feature miRNAs. Among the target genes of feature miRNAs, PDPK1 was the correlation between PDPK1 and the target of Lutetium-177 (177Lu)-DOTATATE was the largest, which were regulated by miR - 375. Additionally, PDPK1 showed correlations with eosinophils, cytotoxic cells, and checkpoints in SBNETs. CONCLUSIONS Five feature miRNAs may have a good diagnostic role for the SBNETs. MiR - 375 regulated PDPK1 may serve as an effective therapeutic candidate marker for SBNETs.
Collapse
Affiliation(s)
- Tao Ren
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Lu Zhou
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Zhenlong Li
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Mingmei Pan
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Xueqiong Han
- Department of Oncology, The First Affiliated Hospital Of Guangxi University Of Chinese Medicine, Nanning, 530023, Guangxi, China.
| |
Collapse
|
3
|
Yin R, Gao J, Liu Y, Guo C. Functional analysis of the effects of propofol on tamoxifen‑resistant breast cancer cells: Insights into transcriptional regulation. Oncol Lett 2025; 29:194. [PMID: 40041408 PMCID: PMC11878209 DOI: 10.3892/ol.2025.14940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/06/2025] [Indexed: 03/06/2025] Open
Abstract
Although 70% of patients with estrogen receptor-positive breast cancer benefit from tamoxifen (TAM) therapy, the development of resistance to TAM leads to high rates of metastasis and a poor prognosis. Propofol, a commonly used anesthetic, can inhibit the occurrence and progression of breast cancer. In the present study, the effects of propofol on TAM-resistant (TR) breast cancer cells were evaluated. MCF7-TR cells were treated with or without propofol. Subsequently, cell cycle progression and the induction of apoptosis were detected by flow cytometry, whereas cell proliferation was assessed using Cell Counting Kit-8 and colony formation assays. Furthermore, the potential transcriptional regulatory effects of propofol on MCF7-TR cells were investigated using RNA sequencing. The results indicated that propofol significantly promoted cell cycle arrest, induced apoptosis, and inhibited proliferation and colony formation in MCF7-TR cells. Furthermore, transcriptome sequencing analysis revealed 1,065 differentially expressed genes between propofol-treated MCF7-TR and untreated MCF7-TR cells. Gene Ontology annotation enrichment analysis, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis and Gene Set Enrichment Analysis indicated that propofol affected the expression levels of genes located on the 'plasma membrane' and 'cell periphery', while mainly regulating signals involved in cancer biology, immune response and metabolic pathways. These results identified the potential effects of propofol on TR breast cancer cells and provided a theoretical basis for clinical treatment, particularly for individuals with TAM resistance.
Collapse
Affiliation(s)
- Runyang Yin
- Department of Anesthesiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| | - Jing Gao
- First Clinical Medical College, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| | - Yang Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| | - Chunyan Guo
- Department of Anesthesiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| |
Collapse
|
4
|
Ishizuka Y, Horimoto Y, Yuan M, Ueki Y, Onagi H, Saeki H, Hayashi T, Saito T, Kawate T, Ishikawa T, Eguchi H, Watanabe J, Kutomi G. Characterization of breast cancer tumors in older patients who show de novo resistance to endocrine therapy. Sci Rep 2024; 14:32116. [PMID: 39738567 PMCID: PMC11686229 DOI: 10.1038/s41598-024-83895-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025] Open
Abstract
The standard treatment for hormone receptor-positive breast cancer in good general condition is curative surgery followed by endocrine therapy. However, for older patients, endocrine therapy alone is sometimes chosen instead of curative surgery due to health conditions or personal preference, though this is not yet a standard approach. It is crucial to develop elderly-specific treatment strategies, potentially establishing endocrine therapy alone as a standard option. While endocrine therapy is generally effective, some patients show disease progression from the beginning due to de novo resistance. Hence, identifying such tumors is essential to determine who may benefit from endocrine therapy alone. Fifty-one patients aged over 70 years with estrogen receptor-positive and human epidermal growth factor receptor 2-negative invasive breast cancer who were treated with endocrine therapy instead of curative surgery were retrospectively investigated. Genes possibly related to de novo resistance to endocrine therapy were analyzed using a gene expression panel. Of the 51 patients, three patients showed progressive disease (PD) within 6 months of starting endocrine therapy. Gene expression analysis revealed that some genes, including those related to the cell cycle, such as CDKN3, were expressed at higher levels in the PD group compared with the non-PD group. Among these, CDKN3 retained significantly high expression in the PD group, even after analyzing more samples (log2 fold change, 1.99; P = 0.005). Public mRNA microarray data analysis revealed that patients with high CDKN3 tumors had worse outcomes. We identified several genes possibly involved in the de novo resistance to endocrine therapy. Our data indicate CDKN3 to be a predictive marker for de novo endocrine therapy resistance in older patients with breast cancer. We hope that our data will contribute to further research to establish tailored treatments for elderly breast cancer patients.
Collapse
Affiliation(s)
- Yumiko Ishizuka
- Department of Breast Oncology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yoshiya Horimoto
- Department of Breast Oncology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Department of Human Pathology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Department of Breast Surgery and Oncology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 1600023, Japan.
| | - Men Yuan
- Department of Human Pathology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuko Ueki
- Department of Breast Oncology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroko Onagi
- Department of Human Pathology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Harumi Saeki
- Department of Human Pathology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tsuyoshi Saito
- Department of Human Pathology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takahiko Kawate
- Department of Breast Surgery and Oncology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 1600023, Japan
| | - Takashi Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 1600023, Japan
| | - Hidetaka Eguchi
- Diagnostics and Therapeutics of Intractable Disease, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Junichiro Watanabe
- Department of Breast Oncology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Goro Kutomi
- Department of Breast Oncology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
5
|
Yan J, Fang L, Zhao Z, Su X, Xi M, Huang Y, Li J, Chang R, Zhang W, Qian Q, Wang Z, Wang H. Adolescent exposure to tris(1,3-dichloro-2-propyl) phosphate (TCPP) induces reproductive toxicity in zebrafish through hypothalamic-pituitary-gonadal axis disruption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176096. [PMID: 39260506 DOI: 10.1016/j.scitotenv.2024.176096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TCPP), a prevalent organophosphorus flame retardant in aquatic environments, has raised significant concerns regarding its ecological risks. This study aims to explore the impacts of TCPP on the reproductive functions of zebrafish and delineate its gender-related toxic mechanisms. By assessing the effects on zebrafish of 10 mg/L TCPP exposure from 30 to 120 days post-fertilization (dpf), we thoroughly evaluated the reproductive capability and endocrine system alterations. Our findings indicated that TCPP exposure disrupted gender differentiation in zebrafish and markedly impaired their reproductive capacity, resulting in decreased egg laying and offspring development quality. Histological analyses of gonadal tissues showed an abnormal increase in immature oocytes in females and a reduction in mature sperm count and spermatogonial structure integrity in males, collectively leading to compromised embryo quality. Additionally, molecular docking results indicated that TCPP showed a strong affinity for estrogen receptors, and TCPP-treated zebrafish exhibited imbalanced sex hormones and increased estrogen receptor expression. Alterations in genes associated with the hypothalamic-pituitary-gonadal (HPG) axis and activation of the steroidogenesis pathway suggested that TCPP targets the HPG axis to regulate sex hormone homeostasis. Tamoxifen (TAM), as a competitive inhibitor of estrogen, exhibited a biphasic effect, as evidenced by the counteraction of TCPP-induced effects in both male and female zebrafish after TAM addition. Overall, our study underscored the gender-dependent reproductive toxicity of TCPP exposure in zebrafish, characterized by diminished reproductive capacity and hormonal disturbances, likely due to interference in the HPG axis and steroidogenesis pathways. These findings emphasize the critical need to consider gender differences in chemical risk assessments for ecosystems and highlight the importance of understanding the mechanisms underlying the effects of chemical pollutants on the reproductive health of aquatic species.
Collapse
Affiliation(s)
- Jin Yan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Lu Fang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zijia Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xincong Su
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Miaocui Xi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yue Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jiahang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Runfeng Chang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wenjun Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Qiuhui Qian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zejun Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Huili Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
6
|
To B, Broeker C, Jhan JR, Garcia-Lerena J, Vusich J, Rempel R, Rennhack JP, Hollern D, Jackson L, Judah D, Swiatnicki M, Bylett E, Kubiak R, Honeysett J, Nevins J, Andrechek E. Insight into mammary gland development and tumor progression in an E2F5 conditional knockout mouse model. Oncogene 2024; 43:3402-3415. [PMID: 39341991 PMCID: PMC11554565 DOI: 10.1038/s41388-024-03172-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
Development of breast cancer is linked to altered regulation of mammary gland developmental processes. A better understanding of normal mammary gland development can thus reveal possible mechanisms of how normal cells are re-programmed to become malignant. E2Fs 1-4 are part of the E2F transcription factor family with varied roles in mammary development, but little is known about the role of E2F5. A combination of scRNAseq and predictive signature tools demonstrated the presence of E2F5 in the mammary gland and showed changes in predicted activity during the various phases of mammary gland development. Testing the hypothesis that E2F5 regulates mammary function, we generated a mammary-specific E2F5 knockout mouse model, resulting in modest mammary gland development changes. However, after a prolonged latency the E2F5 conditional knockout mice developed highly metastatic mammary tumors. Whole genome sequencing revealed significant intertumor heterogeneity. RNAseq and protein analysis identified altered levels of Cyclin D1, with similarities to MMTV-Neu tumors, suggesting that E2F5 conditional knockout mammary glands and tumors may be dependent on Cyclin D1. Transplantation of the tumors revealed metastases to lymph nodes that were enriched through serial transplantation in immune competent recipients. Based on these findings, we propose that loss of E2F5 leads to altered regulation of Cyclin D1, which facilitates the development of metastatic mammary tumors after long latency. More importantly, this study demonstrates that conditional loss of E2F5 in the mammary gland leads to tumor formation, revealing its role as a transcription factor regulating a network of genes that normally result in a tumor suppressor function.
Collapse
Affiliation(s)
- Briana To
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Carson Broeker
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Jing-Ru Jhan
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | | | - John Vusich
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | | | | | | | - Lauren Jackson
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - David Judah
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Matt Swiatnicki
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Evan Bylett
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Rachel Kubiak
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Jordan Honeysett
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | | | - Eran Andrechek
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
7
|
Hjorth M, Egan CL, Telles GD, Pal M, Gallego-Ortega D, Fuller OK, McLennan ED, Gillis RD, Oh TG, Muscat GEO, Tegegne S, Mah MSM, Skhinas J, Estevez E, Adams TE, McKay MJ, Molloy M, Watt KI, Qian H, Gregorevic P, Cox TR, Hojman P, Midtgaard J, Christensen JF, Friedrichsen M, Iozzo RV, Sloan EK, Drew BG, Wojtaszewski JFP, Whitham M, Febbraio MA. Decorin, an exercise-induced secretory protein, is associated with improved prognosis in breast cancer patients but does not mediate anti-tumorigenic tissue crosstalk in mice. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 14:100991. [PMID: 39341495 PMCID: PMC11809198 DOI: 10.1016/j.jshs.2024.100991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/19/2024] [Accepted: 08/08/2024] [Indexed: 10/01/2024]
Abstract
PURPOSE Regular exercise can reduce incidence and progression of breast cancer, but the mechanisms for such effects are not fully understood. The purpose of this study was to examine the mechanisms behind the protective effects of exercise. METHODS We used a variety of rodent and human experimental model systems to determine whether exercise training can reduce tumor burden in breast cancer and to identify mechanism associated with any exercise training effects on tumor burden. RESULTS We show that voluntary wheel running slows tumor development in the mammary specific polyomavirus middle T antigen overexpression (MMTV-PyMT) mouse model of breast cancer but only when mice are not housed alone. We identify the proteoglycan decorin as a contraction-induced secretory factor that systemically increases in patients with breast cancer immediately following exercise. Moreover, high expression of decorin in tumors is associated with improved prognosis in patients, while treatment of breast cancer cells in vitro with decorin reduces cell proliferation. Notwithstanding, when we overexpressed decorin in murine muscle or injected recombinant decorin systemically into mouse models of breast cancer, elevated plasma decorin concentrations did not result in higher tumor decorin levels and tumor burden was not improved. CONCLUSION Exercise training is anti-tumorigenic in a mouse model of luminal breast cancer, but the effect is abrogated by social isolation. The proteoglycan decorin is an exercise-induced secretory protein, and tumor decorin levels are positively associated with improved prognosis in patients. The hypothesis that elevated plasma decorin is a mechanism by which exercise training improves breast cancer progression in humans is not, however, supported by our pre-clinical data since elevated circulating decorin did not increase tumor decorin levels in these models.
Collapse
Affiliation(s)
- Marit Hjorth
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo 0317, Norway; Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Casey L Egan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Guilherme D Telles
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia; Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo (USP), São Paulo 05508-030, Brazil; Center of Study in Exercise and Oncology (CEEO), Campinas 13083-888, Brazil
| | - Martin Pal
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; School of Dentistry & Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - David Gallego-Ortega
- School of Biomedical Engineering, University of Technology, Sydney, NSW 2678, Australia
| | - Oliver K Fuller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Emma D McLennan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Ryan D Gillis
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Tae Gyu Oh
- College of Medicine, University of Oklahoma, Oklahoma City, OK 73117, USA; Institute of Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - George E O Muscat
- Institute of Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Surafel Tegegne
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Michael S M Mah
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Joanna Skhinas
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Emma Estevez
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | | | - Matthew J McKay
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia; School of Medical Sciences, University of Sydney, Sydney, NSW 2050, Australia
| | - Mark Molloy
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia; School of Medical Sciences, University of Sydney, Sydney, NSW 2050, Australia
| | - Kevin I Watt
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3053, Australia; Department of Physiology, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Hongwei Qian
- Department of Physiology, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Paul Gregorevic
- Department of Physiology, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Thomas R Cox
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | | | | | | | - Martin Friedrichsen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Renato V Iozzo
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | - Erica K Sloan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Brian G Drew
- Baker Heart and Diabetes Institute, Prahran, VIC 3004, Australia
| | - Jørgen F P Wojtaszewski
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Martin Whitham
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston B15 2TT, UK.
| | - Mark A Febbraio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia.
| |
Collapse
|
8
|
Dravillas CE, Coleman SS, Hoyd R, Caryotakis G, Denko L, Chan CH, Churchman ML, Denko N, Dodd RD, Eljilany I, Hardikar S, Husain M, Ikeguchi AP, Jin N, Ma Q, McCarter MD, Osman AE, Robinson LA, Singer EA, Tinoco G, Ulrich CM, Zakharia Y, Spakowicz D, Tarhini AA, Tan AC, for the exORIEN Consortium. The Tumor Microbiome as a Predictor of Outcomes in Patients with Metastatic Melanoma Treated with Immune Checkpoint Inhibitors. CANCER RESEARCH COMMUNICATIONS 2024; 4:1978-1990. [PMID: 39015091 PMCID: PMC11307144 DOI: 10.1158/2767-9764.crc-23-0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/21/2023] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
Emerging evidence supports the important role of the tumor microbiome in oncogenesis, cancer immune phenotype, cancer progression, and treatment outcomes in many malignancies. In this study, we investigated the metastatic melanoma tumor microbiome and its potential roles in association with clinical outcomes, such as survival, in patients with metastatic disease treated with immune checkpoint inhibitors (ICI). Baseline tumor samples were collected from 71 patients with metastatic melanoma before treatment with ICIs. Bulk RNA sequencing (RNA-seq) was conducted on the formalin-fixed, paraffin-embedded and fresh frozen tumor samples. Durable clinical benefit (primary clinical endpoint) following ICIs was defined as overall survival >24 months and no change to the primary drug regimen (responders). We processed RNA-seq reads to carefully identify exogenous sequences using the {exotic} tool. The age of the 71 patients with metastatic melanoma ranged from 24 to 83 years, 59% were male, and 55% survived >24 months following the initiation of ICI treatment. Exogenous taxa were identified in the tumor RNA-seq, including bacteria, fungi, and viruses. We found differences in gene expression and microbe abundances in immunotherapy-responsive versus nonresponsive tumors. Responders showed significant enrichment of bacteriophages in the phylum Uroviricota, and nonresponders showed enrichment of several bacteria, including Campylobacter jejuni. These microbes correlated with immune-related gene expression signatures. Finally, we found that models for predicting prolonged survival with immunotherapy using both microbe abundances and gene expression outperformed models using either dataset alone. Our findings warrant further investigation and potentially support therapeutic strategies to modify the tumor microbiome in order to improve treatment outcomes with ICIs. SIGNIFICANCE We analyzed the tumor microbiome and interactions with genes and pathways in metastatic melanoma treated with immunotherapy and identified several microbes associated with immunotherapy response and immune-related gene expression signatures. Machine learning models that combined microbe abundances and gene expression outperformed models using either dataset alone in predicting immunotherapy responses.
Collapse
Affiliation(s)
- Caroline E. Dravillas
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Samuel S. Coleman
- Department of Oncological Science, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
- Department of Biomedical Informatics, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | - Rebecca Hoyd
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Griffin Caryotakis
- Department of Oncological Science, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
- Department of Biomedical Informatics, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | - Louis Denko
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Carlos H.F. Chan
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa.
| | | | - Nicholas Denko
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Rebecca D. Dodd
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa.
| | - Islam Eljilany
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | - Sheetal Hardikar
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | - Marium Husain
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Alexandra P. Ikeguchi
- Department of Hematology/Oncology, Stephenson Cancer Center of University of Oklahoma, Oklahoma City, Oklahoma.
| | - Ning Jin
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Qin Ma
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio.
| | - Martin D. McCarter
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado.
| | - Afaf E.G. Osman
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, Utah.
| | - Lary A. Robinson
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | - Eric A. Singer
- Division of Urologic Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Gabriel Tinoco
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Cornelia M. Ulrich
- Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | - Yousef Zakharia
- Division of Oncology, Hematology and Blood and Marrow Transplantation, University of Iowa, Holden Comprehensive Cancer Center, Iowa City, Iowa.
| | - Daniel Spakowicz
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Ahmad A. Tarhini
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | - Aik Choon Tan
- Department of Oncological Science, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
- Department of Biomedical Informatics, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | | |
Collapse
|
9
|
Lin M, Hu L, Shen S, Liu J, Liu Y, Xu Y, Chen H, Sugimoto K, Li J, Kamitsukasa I, Hiwasa T, Wang H, Xu A. Atherosclerosis-related biomarker PABPC1 predicts pan-cancer events. Stroke Vasc Neurol 2024; 9:108-125. [PMID: 37311641 PMCID: PMC11103157 DOI: 10.1136/svn-2022-002246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/25/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Atherosclerosis (AS) and tumours are the leading causes of death worldwide and share common risk factors, detection methods and molecular markers. Therefore, searching for serum markers shared by AS and tumours is beneficial to the early diagnosis of patients. METHODS The sera of 23 patients with AS-related transient ischaemic attack were screened by serological identification of antigens through recombinant cDNA expression cloning (SEREX), and cDNA clones were identified. Pathway function enrichment analysis was performed on cDNA clones to identify their biological pathways and determine whether they were related to AS or tumours. Subsequently, gene-gene and protein-protein interactions were performed and AS-associated markers would be discovered. The expression of AS biomarkers in human normal organs and pan-cancer tumour tissues were explored. Then, immune infiltration level and tumour mutation burden of various immune cells were evaluated. Survival curves analysis could show the expression of AS markers in pan-cancer. RESULTS AS-related sera were screened by SEREX, and 83 cDNA clones with high homology were obtained. Through functional enrichment analysis, it was found that their functions were closely related to AS and tumour functions. After multiple biological information interaction screening and the external cohort validating, poly(A) binding protein cytoplasmic 1 (PABPC1) was found to be a potential AS biomarker. To assess whether PABPC1 was related to pan-cancer, its expression in different tumour pathological stages and ages was screened. Since AS-associated proteins were closely related to cancer immune infiltration, we investigated and found that PABPC1 had the same role in pan-cancer. Finally, analysis of Kaplan-Meier survival curves revealed that high PABPC1 expression in pan-cancer was associated with high risk of death. CONCLUSIONS Through the findings of SEREX and bioinformatics pan-cancer analysis, we concluded that PABPC1 might serve as a potential biomarker for the prediction and diagnosis of AS and pan-cancer.
Collapse
Affiliation(s)
- Miao Lin
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Anesthesiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Liubing Hu
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Anesthesiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
- The Biomedical Translational Research Institute,Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Si Shen
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Radiology, Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jiyue Liu
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Anesthesiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yanyan Liu
- The Biomedical Translational Research Institute,Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Yixian Xu
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Anesthesiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Honglin Chen
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Radiology, Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Kazuo Sugimoto
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jianshuang Li
- The Biomedical Translational Research Institute,Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Ikuo Kamitsukasa
- Department of Neurology, Chiba Rosai Hospital, Chiba, Japan
- Department of Neurology, Chibaken Saiseikai Narashino Hospital, Chiba, Japan
| | - Takaki Hiwasa
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hao Wang
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Anesthesiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Anding Xu
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Parga-Pazos M, Cusimano N, Rábano M, Akhmatskaya E, Vivanco MDM. A Novel Mathematical Approach for Analysis of Integrated Cell-Patient Data Uncovers a 6-Gene Signature Linked to Endocrine Therapy Resistance. J Transl Med 2024; 104:100286. [PMID: 37951307 DOI: 10.1016/j.labinv.2023.100286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/17/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023] Open
Abstract
A significant number of breast cancers develop resistance to hormone therapy. This progression, while posing a major clinical challenge, is difficult to predict. Despite important contributions made by cell models and clinical studies to tackle this problem, both present limitations when taken individually. Experiments with cell models are highly reproducible but do not reflect the indubitable heterogenous landscape of breast cancer. On the other hand, clinical studies account for this complexity but introduce uncontrolled noise due to external factors. Here, we propose a new approach for biomarker discovery that is based on a combined analysis of sequencing data from controlled MCF7 cell experiments and heterogenous clinical samples that include clinical and sequencing information from The Cancer Genome Atlas. Using data from differential gene expression analysis and a Bayesian logistic regression model coupled with an original simulated annealing-type algorithm, we discovered a novel 6-gene signature for stratifying patient response to hormone therapy. The experimental observations and computational analysis built on independent cohorts indicated the superior predictive performance of this gene set over previously known signatures of similar scope. Together, these findings revealed a new gene signature to identify patients with breast cancer with an increased risk of developing resistance to endocrine therapy.
Collapse
Affiliation(s)
- Martin Parga-Pazos
- Modelling and Simulation in Life and Materials Sciences, Basque Center for Applied Mathematics, Spain; Cancer Heterogeneity Lab, CIC bioGUNE, Basque Research and Technology Alliance, Derio, Spain
| | - Nicole Cusimano
- Modelling and Simulation in Life and Materials Sciences, Basque Center for Applied Mathematics, Spain
| | - Miriam Rábano
- Cancer Heterogeneity Lab, CIC bioGUNE, Basque Research and Technology Alliance, Derio, Spain
| | - Elena Akhmatskaya
- Modelling and Simulation in Life and Materials Sciences, Basque Center for Applied Mathematics, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| | - Maria dM Vivanco
- Cancer Heterogeneity Lab, CIC bioGUNE, Basque Research and Technology Alliance, Derio, Spain.
| |
Collapse
|
11
|
Wang Y, Ali MA, Vallon-Christersson J, Humphreys K, Hartman J, Rantalainen M. Transcriptional intra-tumour heterogeneity predicted by deep learning in routine breast histopathology slides provides independent prognostic information. Eur J Cancer 2023; 191:112953. [PMID: 37494846 DOI: 10.1016/j.ejca.2023.112953] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/05/2023] [Accepted: 06/17/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Intra-tumour heterogeneity (ITH) causes diagnostic challenges and increases the risk for disease recurrence. Quantification of ITH is challenging and has not been demonstrated in large studies. It has previously been shown that deep learning can enable spatially resolved prediction of molecular phenotypes from digital histopathology whole slide images (WSIs). Here we propose a novel method (Deep-ITH) to predict and measure ITH, and we evaluate its prognostic performance in breast cancer. METHODS Deep convolutional neural networks were used to spatially predict gene-expression (PAM50 set) from WSIs. For each predicted transcript, 12 measures of heterogeneity were extracted in the training data set (N = 931). A prognostic score to dichotomise patients into Deep-ITH low- and high-risk groups was established using an elastic-net regularised Cox proportional hazards model (recurrence-free survival). Prognostic performance was evaluated in two independent data sets: SöS-BC-1 (N = 1358) and SCAN-B-Lund (N = 1262). RESULTS We observed an increase in risk of recurrence in the high-risk group with hazard ratio (HR) 2.11 (95%CI:1.22-3.60; p = 0.007) using nested cross-validation. Subgroup analyses confirmed the prognostic performance in oestrogen receptor (ER)-positive, human epidermal growth factor receptor 2 (HER2)-negative, grade 3, and large tumour subgroups. The prognostic value was confirmed in the independent SöS-BC-1 cohort (HR=1.84; 95%CI:1.03-3.3; p = 3.99 ×10-2). In the other external cohort, significant HR was observed in the subgroup of histological grade 2 patients, as well as in the subgroup of patients with small tumours (<20 mm). CONCLUSION We developed a novel method for an automated, scalable, and cost-efficient measure of ITH from WSIs that provides independent prognostic value for breast cancer. SIGNIFICANCE Transcriptional ITH predicted by deep learning models enables prediction of patient survival from routine histopathology WSIs in breast cancer.
Collapse
Affiliation(s)
- Yinxi Wang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Maya Alsheh Ali
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | - Keith Humphreys
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden; MedTechLabs, BioClinicum, Karolinska University Hospital, Solna, Sweden
| | - Mattias Rantalainen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; MedTechLabs, BioClinicum, Karolinska University Hospital, Solna, Sweden.
| |
Collapse
|
12
|
Mondal DK, Xie C, Buraschi S, Iozzo RV. Decorin suppresses tumor lymphangiogenesis: A mechanism to curtail cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555187. [PMID: 37693608 PMCID: PMC10491239 DOI: 10.1101/2023.08.28.555187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The complex interplay between malignant cells and the cellular and molecular components of the tumor stroma is a key aspect of cancer growth and development. These tumor-host interactions are often affected by soluble bioactive molecules such as proteoglycans. Decorin, an archetypical small leucine-rich proteoglycan primarily expressed by stromal cells, affects cancer growth in its soluble form by interacting with several receptor tyrosine kinases (RTK). Overall, decorin leads to a context-dependent and protracted cessation of oncogenic RTK activity by attenuating their ability to drive a pro-survival program and to sustain a pro-angiogenic network. Through an unbiased transcriptomic analysis using deep RNAseq, we discovered that decorin downregulated a cluster of tumor-associated genes involved in lymphatic vessel development when systemically delivered to mice harboring breast carcinoma allografts. We found that Lyve1 and Podoplanin, two established markers of lymphatic vessels, were markedly suppressed at both the mRNA and protein levels and this suppression correlated with a significant reduction in tumor lymphatic vessels. We further discovered that soluble decorin, but not its homologous proteoglycan biglycan, inhibited lymphatic vessel sprouting in an ex vivo 3D model of lymphangiogenesis. Mechanistically, we found that decorin interacted with VEGFR3, the main lymphatic RTK, and its activity was required for the decorin-mediated block of lymphangiogenesis. Finally, we discovered that Lyve1 was in part degraded via decorin-evoked autophagy in a nutrient- and energy-independent manner. These findings implicate decorin as a new biological factor with anti-lymphangiogenic activity and provide a potential therapeutic agent for curtailing breast cancer growth and metastasis.
Collapse
|
13
|
Chuang YH, Lin CY, Lee JC, Lee CH, Liu CL, Huang SH, Lee JY, Lai WS, Yang JM. Identification of the HNSC88 Molecular Signature for Predicting Subtypes of Head and Neck Cancer. Int J Mol Sci 2023; 24:13068. [PMID: 37685875 PMCID: PMC10487792 DOI: 10.3390/ijms241713068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSC) exhibits genetic heterogeneity in etiologies, tumor sites, and biological processes, which significantly impact therapeutic strategies and prognosis. While the influence of human papillomavirus on clinical outcomes is established, the molecular subtypes determining additional treatment options for HNSC remain unclear and inconsistent. This study aims to identify distinct HNSC molecular subtypes to enhance diagnosis and prognosis accuracy. In this study, we collected three HNSC microarrays (n = 306) from the Gene Expression Omnibus (GEO), and HNSC RNA-Seq data (n = 566) from The Cancer Genome Atlas (TCGA) to identify differentially expressed genes (DEGs) and validate our results. Two scoring methods, representative score (RS) and perturbative score (PS), were developed for DEGs to summarize their possible activation functions and influence in tumorigenesis. Based on the RS and PS scoring, we selected candidate genes to cluster TCGA samples for the identification of molecular subtypes in HNSC. We have identified 289 up-regulated DEGs and selected 88 genes (called HNSC88) using the RS and PS scoring methods. Based on HNSC88 and TCGA samples, we determined three HNSC subtypes, including one HPV-associated subtype, and two HPV-negative subtypes. One of the HPV-negative subtypes showed a relationship to smoking behavior, while the other exhibited high expression in tumor immune response. The Kaplan-Meier method was used to compare overall survival among the three subtypes. The HPV-associated subtype showed a better prognosis compared to the other two HPV-negative subtypes (log rank, p = 0.0092 and 0.0001; hazard ratio, 1.36 and 1.39). Additionally, within the HPV-negative group, the smoking-related subgroup exhibited worse prognosis compared to the subgroup with high expression in immune response (log rank, p = 0.039; hazard ratio, 1.53). The HNSC88 not only enables the identification of HPV-associated subtypes, but also proposes two potential HPV-negative subtypes with distinct prognoses and molecular signatures. This study provides valuable strategies for summarizing the roles and influences of genes in tumorigenesis for identifying molecular signatures and subtypes of HNSC.
Collapse
Affiliation(s)
- Yi-Hsuan Chuang
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Chun-Yu Lin
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Jih-Chin Lee
- Department of Otolaryngology—Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chia-Hwa Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Ph.D. Program in Medicine Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Chia-Lin Liu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Sing-Han Huang
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Jung-Yu Lee
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Wen-Sen Lai
- Department of Otolaryngology—Head and Neck Surgery, Taichung Armed Forces General Hospital, Taichung 404, Taiwan
| | - Jinn-Moon Yang
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
14
|
Purazo ML, Ice RJ, Shimpi R, Hoenerhoff M, Pugacheva EN. NEDD9 Overexpression Causes Hyperproliferation of Luminal Cells and Cooperates with HER2 Oncogene in Tumor Initiation: A Novel Prognostic Marker in Breast Cancer. Cancers (Basel) 2023; 15:1119. [PMID: 36831460 PMCID: PMC9954084 DOI: 10.3390/cancers15041119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/23/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
HER2 overexpression occurs in 10-20% of breast cancer patients. HER2+ tumors are characterized by an increase in Ki67, early relapse, and increased metastasis. Little is known about the factors influencing early stages of HER2- tumorigenesis and diagnostic markers. Previously, it was shown that the deletion of NEDD9 in mouse models of HER2 cancer interferes with tumor growth, but the role of NEDD9 upregulation is currently unexplored. We report that NEDD9 is overexpressed in a significant subset of HER2+ breast cancers and correlates with a limited response to anti-HER2 therapy. To investigate the mechanisms through which NEDD9 influences HER2-dependent tumorigenesis, we generated MMTV-Cre-NEDD9 transgenic mice. The analysis of mammary glands shows extensive ductal epithelium hyperplasia, increased branching, and terminal end bud expansion. The addition of oncogene Erbb2 (neu) leads to the earlier development of early hyperplastic benign lesions (~16 weeks), with a significantly shorter latency than the control mice. Similarly, NEDD9 upregulation in MCF10A-derived acini leads to hyperplasia-like DCIS. This phenotype is associated with activation of ERK1/2 and AURKA kinases, leading to an increased proliferation of luminal cells. These findings indicate that NEDD9 is setting permissive conditions for HER2-induced tumorigenesis, thus identifying this protein as a potential diagnostic marker for early detection.
Collapse
Affiliation(s)
- Marc L. Purazo
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV 26505, USA
| | - Ryan J. Ice
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV 26505, USA
| | - Rahul Shimpi
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV 26505, USA
| | - Mark Hoenerhoff
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elena N. Pugacheva
- WVU Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV 26505, USA
- Department of Biochemistry & Molecular Medicine, School of Medicine, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
15
|
Neill T, Xie C, Iozzo RV. Decorin evokes reversible mitochondrial depolarization in carcinoma and vascular endothelial cells. Am J Physiol Cell Physiol 2022; 323:C1355-C1373. [PMID: 36036446 PMCID: PMC9602711 DOI: 10.1152/ajpcell.00325.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022]
Abstract
Decorin, a small leucine-rich proteoglycan with multiple biological functions, is known to evoke autophagy and mitophagy in both endothelial and cancer cells. Here, we investigated the effects of soluble decorin on mitochondrial homeostasis using live cell imaging and ex vivo angiogenic assays. We discovered that decorin triggers mitochondrial depolarization in triple-negative breast carcinoma, HeLa, and endothelial cells. This bioactivity was mediated by the protein core in a time- and dose-dependent manner and was specific for decorin insofar as biglycan, the closest homolog, failed to trigger depolarization. Mechanistically, we found that the bioactivity of decorin to promote depolarization required the MET receptor and its tyrosine kinase. Moreover, two mitochondrial interacting proteins, mitostatin and mitofusin 2, were essential for downstream decorin effects. Finally, we found that decorin relied on the canonical mitochondrial permeability transition pore to trigger tumor cell mitochondrial depolarization. Collectively, our study implicates decorin as a soluble outside-in regulator of mitochondrial dynamics.
Collapse
Affiliation(s)
- Thomas Neill
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Christopher Xie
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Hisada T, Kondo N, Wanifuchi-Endo Y, Osaga S, Fujita T, Asano T, Uemoto Y, Nishikawa S, Katagiri Y, Terada M, Kato A, Sugiura H, Okuda K, Kato H, Komura M, Morita S, Takahashi S, Toyama T. Co-expression effect of LLGL2 and SLC7A5 to predict prognosis in ERα-positive breast cancer. Sci Rep 2022; 12:16515. [PMID: 36192404 PMCID: PMC9529905 DOI: 10.1038/s41598-022-20225-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 09/09/2022] [Indexed: 11/09/2022] Open
Abstract
Lethal giant larvae homolog 2 (LLGL2) and solute carrier family 7 member 5 (SLC7A5) have been reported to be involved in resistance to endocrine therapy. This study aimed to assess the effects of LLGL2/SLC7A5 co-expression in predicting prognosis and response to tamoxifen therapy in ERα-positive breast cancer patients according to LLGL2/SLC7A5 mRNA and protein expression in long-term follow-up invasive breast cancer tissues. We identified that low LLGL2/SLC7A5 mRNA co-expression (LLGL2low/SLC7A5low) was associated with disease-free survival (DFS) compared with other combination groups in all breast cancer patients. In ERα-positive breast cancer patients, LLGL2low/SLC7A5low showed longer DFS and overall survival (OS) compared with LLGL2high/SLC7A5high and a positive trend of longer survival compared with the other combination groups. We also observed that LLGL2low/SLC7A5low showed longer survival compared with LLGL2high/SLC7A5high in ERα-positive breast cancer patients receiving adjuvant tamoxifen therapy. Multivariate analysis demonstrated that LLGL2low/SLC7A5low was an independent favorable prognostic factor of both DFS and OS, not only in all breast cancer patients, but also in ERα-positive breast cancer patients. High co-expression of LLGL2 and SLC7A5 protein showed a positive trend of shorter survival. Our study showed that co-expression of LLGL2 and SLC7A5 mRNA is a promising candidate biomarker in early breast cancer patients.
Collapse
Affiliation(s)
- Tomoka Hisada
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| | - Naoto Kondo
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| | - Yumi Wanifuchi-Endo
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| | - Satoshi Osaga
- Clinical Research Management Center, Nagoya City University Hospital, Nagoya, Aichi, Japan
| | - Takashi Fujita
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| | - Tomoko Asano
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| | - Yasuaki Uemoto
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| | - Sayaka Nishikawa
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| | - Yusuke Katagiri
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| | - Mitsuo Terada
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| | - Akiko Kato
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| | - Hiroshi Sugiura
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan.,Department of Breast and Endocrine Surgery, Nagoya City University West Medical Center, Nagoya, Aichi, Japan
| | - Katsuhiro Okuda
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Hiroyuki Kato
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Masayuki Komura
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Satoshi Morita
- Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Tatsuya Toyama
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan.
| |
Collapse
|
17
|
Tamoxifen-resistant breast cancer cells exhibit reactivity with Wisteria floribunda agglutinin. PLoS One 2022; 17:e0273513. [PMID: 36006984 PMCID: PMC9409572 DOI: 10.1371/journal.pone.0273513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/09/2022] [Indexed: 12/03/2022] Open
Abstract
Glycosylation is one of the most important post-translational modifications of cell surface proteins involved in the proliferation, metastasis and treatment resistance of cancer cells. However, little is known about the role of glycosylation as the mechanism of breast cancer cell resistance to endocrine therapy. Herein, we aimed to identify the glycan profiles of tamoxifen-resistant human breast cancer cells, and their potential as predictive biomarkers for endocrine therapy. We established tamoxifen-resistant cells from estrogen receptor-positive human breast cancer cell lines, and their membrane-associated proteins were subjected to lectin microarray analysis. To confirm differential lectin binding to cellular glycoproteins, we performed lectin blotting analyses after electrophoretic separation of the glycoproteins. Mass spectrometry of the tryptic peptides of the lectin-bound glycoproteins was further conducted to identify glycoproteins binding to the above lectins. Finally, expression of the glycans that were recognized by a lectin was investigated using clinical samples from patients who received tamoxifen treatment after curative surgery. Lectin microarray analysis revealed that the membrane fractions of tamoxifen-resistant breast cancer cells showed increased binding to Wisteria floribunda agglutinin (WFA) compared to tamoxifen-sensitive cells. Glycoproteins seemed to be responsible for the differential WFA binding and the results of mass spectrometry revealed several membrane glycoproteins, such as CD166 and integrin beta-1, as candidates contributing to increased WFA binding. In clinical samples, strong WFA staining was more frequently observed in patients who had developed distant metastasis during tamoxifen treatment compared with non-relapsed patients. Therefore, glycans recognized by WFA are potentially useful as predictive markers to identify the tamoxifen-resistant and relapse-prone subset of estrogen receptor-positive breast cancer patients.
Collapse
|
18
|
Mohd Idris RA, Mussa A, Ahmad S, Al-Hatamleh MAI, Hassan R, Tengku Din TADAA, Wan Abdul Rahman WF, Lazim NM, Boer JC, Plebanski M, Mohamud R. The Effects of Tamoxifen on Tolerogenic Cells in Cancer. BIOLOGY 2022; 11:1225. [PMID: 36009853 PMCID: PMC9405160 DOI: 10.3390/biology11081225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022]
Abstract
Tamoxifen (TAM) is the most prescribed selective estrogen receptor modulator (SERM) to treat hormone-receptor-positive breast cancer patients and has been used for more than 20 years. Its role as a hormone therapy is well established; however, the potential role in modulating tolerogenic cells needs to be better clarified. Infiltrating tumor-microenvironment-regulatory T cells (TME-Tregs) are important as they serve a suppressive function through the transcription factor Forkhead box P3 (Foxp3). Abundant studies have suggested that Foxp3 regulates the expression of several genes (CTLA-4, PD-1, LAG-3, TIM-3, TIGIT, TNFR2) involved in carcinogenesis to utilize its tumor suppressor function through knockout models. TAM is indirectly concomitant via the Cre/loxP system by allowing nuclear translocation of the fusion protein, excision of the floxed STOP cassette and heritable expression of encoding fluorescent protein in a cohort of cells that express Foxp3. Moreover, TAM administration in breast cancer treatment has shown its effects directly through MDSCs by the enrichment of its leukocyte populations, such as NK and NKT cells, while it impairs the differentiation and activation of DCs. However, the fundamental mechanisms of the reduction of this pool by TAM are unknown. Here, we review the vital effects of TAM on Tregs for a precise mechanistic understanding of cancer immunotherapies.
Collapse
Affiliation(s)
- Ros Akmal Mohd Idris
- Immunology Department, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ali Mussa
- Haematology Department, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, Omdurman P.O. Box 382, Sudan
| | - Suhana Ahmad
- Immunology Department, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Mohammad A. I. Al-Hatamleh
- Immunology Department, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Rosline Hassan
- Haematology Department, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | | | - Wan Faiziah Wan Abdul Rahman
- Pathology Department, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Norhafiza Mat Lazim
- Otorhinolaryngology Department-Head & Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Jennifer C. Boer
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Rohimah Mohamud
- Immunology Department, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
19
|
Tibor Fekete J, Győrffy B. A unified platform enabling biomarker ranking and validation for 1,562 drugs using transcriptomic data of 1,250 cancer cell lines. Comput Struct Biotechnol J 2022; 20:2885-2894. [PMID: 35765648 PMCID: PMC9198269 DOI: 10.1016/j.csbj.2022.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 12/21/2022] Open
Abstract
Intro In vitro cell line models provide a valuable resource to investigate compounds useful in the systemic chemotherapy of cancer. However, the due to the dispersal of the data into several different databases, the utilization of these resources is limited. Here, our aim was to establish a platform enabling the validation of chemoresistance-associated genes and the ranking of available cell line models. Methods We processed four independent databases, DepMap, GDSC1, GDSC2, and CTRP. The gene expression data was quantile normalized and HUGO gene names were assigned to have unambiguous identification of the genes. Resistance values were exported for all agents. The correlation between gene expression and therapy resistance is computed using ROC test. Results We combined four datasets with chemosensitivity data of 1562 agents and transcriptome-level gene expression of 1250 cancer cell lines. We have set up an online tool utilizing this database to correlate available cell line sensitivity data and treatment response in a uniform analysis pipeline (www.rocplot.com/cells). We employed the established pipeline to by rank genes related to resistance against afatinib and lapatinib, two inhibitors of the tyrosine-kinase domain of ERBB2. Discussion The computational tool is useful 1) to correlate gene expression with resistance, 2) to identify and rank resistant and sensitive cell lines, and 3) to rank resistance associated genes, cancer hallmarks, and gene ontology pathways. The platform will be an invaluable support to speed up cancer research by validating gene-resistance correlations and by selecting the best cell line models for new experiments.
Collapse
Affiliation(s)
- János Tibor Fekete
- Semmelweis University, Department of Bioinformatics and 2 Department of Pediatrics, Budapest H-1094, Hungary
- Research Center for Natural Sciences, Institute of Enzymology, Momentum Cancer Biomarker Research Group, Magyar tudósok körútja 2., Budapest H-1117, Hungary
| | - Balázs Győrffy
- Semmelweis University, Department of Bioinformatics and 2 Department of Pediatrics, Budapest H-1094, Hungary
- Research Center for Natural Sciences, Institute of Enzymology, Momentum Cancer Biomarker Research Group, Magyar tudósok körútja 2., Budapest H-1117, Hungary
| |
Collapse
|
20
|
Polarity protein SCRIB interacts with SLC3A2 to regulate proliferation and tamoxifen resistance in ER+ breast cancer. Commun Biol 2022; 5:403. [PMID: 35501367 PMCID: PMC9061724 DOI: 10.1038/s42003-022-03363-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 04/13/2022] [Indexed: 11/08/2022] Open
Abstract
Estrogen receptor (ER) positive breast cancer represents 75% of all breast cancers in women. Although patients with ER+ cancers receive endocrine therapies, more than 30% develop resistance and succumb to the disease, highlighting the need to understand endocrine resistance. Here we show an unexpected role for the cell polarity protein SCRIB as a tumor-promoter and a regulator of endocrine resistance in ER-positive breast cancer cells. SCRIB expression is induced by estrogen signaling in a MYC-dependent manner. SCRIB interacts with SLC3A2, a heteromeric component of leucine amino acid transporter SLC7A5. SLC3A2 binds to the N-terminus of SCRIB to facilitate the formation of SCRIB/SLC3A2/LLGL2/SLC7A5 quaternary complex required for membrane localization of the amino acid transporter complex. Both SCRIB and SLC3A2 are required for cell proliferation and tamoxifen resistance in ER+ cells identifying a new role for the SCRIB/SLC3A2 complex in ER+ breast cancer.
Collapse
|
21
|
Araújo R, Fabris V, Lamb CA, Lanari C, Helguero LA, Gil AM. Metabolic Adaptations in an Endocrine-Related Breast Cancer Mouse Model Unveil Potential Markers of Tumor Response to Hormonal Therapy. Front Oncol 2022; 12:786931. [PMID: 35299741 PMCID: PMC8921989 DOI: 10.3389/fonc.2022.786931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/02/2022] [Indexed: 11/26/2022] Open
Abstract
Breast cancer (BC) is the most common type of cancer in women and, in most cases, it is hormone-dependent (HD), thus relying on ovarian hormone activation of intracellular receptors to stimulate tumor growth. Endocrine therapy (ET) aimed at preventing hormone receptor activation is the primary treatment strategy, however, about half of the patients, develop resistance in time. This involves the development of hormone independent tumors that initially are ET-responsive (HI), which may subsequently become resistant (HIR). The mechanisms that promote the conversion of HI to HIR tumors are varied and not completely understood. The aim of this work was to characterize the metabolic adaptations accompanying this conversion through the analysis of the polar metabolomes of tumor tissue and non-compromised mammary gland from mice implanted subcutaneously with HD, HI and HIR tumors from a medroxyprogesterone acetate (MPA)-induced BC mouse model. This was carried out by nuclear magnetic resonance (NMR) spectroscopy of tissue polar extracts and data mining through multivariate and univariate statistical analysis. Initial results unveiled marked changes between global tumor profiles and non-compromised mammary gland tissues, as expected. More importantly, specific metabolic signatures were found to accompany progression from HD, through HI and to HIR tumors, impacting on amino acids, nucleotides, membrane percursors and metabolites related to oxidative stress protection mechanisms. For each transition, sets of polar metabolites are advanced as potential markers of progression, including acquisition of resistance to ET. Putative biochemical interpretation of such signatures are proposed and discussed.
Collapse
Affiliation(s)
- Rita Araújo
- Department of Chemistry and CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Victoria Fabris
- Instituto de Biología y Medicina Experimental (IByME), Buenos Aires, Argentina
| | - Caroline A Lamb
- Instituto de Biología y Medicina Experimental (IByME), Buenos Aires, Argentina
| | - Claudia Lanari
- Instituto de Biología y Medicina Experimental (IByME), Buenos Aires, Argentina
| | - Luisa A Helguero
- Institute of Biomedicine (iBIMED), Department of Medical Sciences, Universidade de Aveiro, Aveiro, Portugal
| | - Ana M Gil
- Department of Chemistry and CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| |
Collapse
|
22
|
Xie C, Mondal DK, Ulas M, Neill T, Iozzo RV. Oncosuppressive roles of decorin through regulation of multiple receptors and diverse signaling pathways. Am J Physiol Cell Physiol 2022; 322:C554-C566. [PMID: 35171698 PMCID: PMC8917911 DOI: 10.1152/ajpcell.00016.2022] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Decorin is a stromal-derived prototype member of the small leucine-rich proteoglycan gene family. In addition to its functions as a regulator of collagen fibrillogenesis and TGF-β activity soluble decorin acts as a pan-receptor tyrosine kinase (RTK) inhibitor. Decorin binds to various RTKs including EGFR HER2 HGFR/Met VEGFR2 TLR and IGFR. Although the molecular mechanism for the action of decorin on these receptors is not entirely elucidated overall decorin evokes transient activation of these receptors with suppression of downstream signaling cascades culminating in growth inhibition followed by their physical downregulation via caveosomal internalization and degradation. In the case of Met decorin leads to decreased β-catenin signaling pathway and growth suppression. As most of these RTKs are responsible for providing a growth advantage to cancer cells the result of decorin treatment is oncosuppression. Another decorin-driven mechanism to restrict cancer growth and dissemination is by impeding angiogenesis via vascular endothelial growth factor receptor 2 (VEGFR2) and the concurrent activation of protracted endothelial cell autophagy. In this review we will dissect the multiple roles of decorin in cancer biology and its potential use as a next-generation protein-based adjuvant therapy to combat cancer.
Collapse
Affiliation(s)
- Christopher Xie
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Dipon K. Mondal
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Mikdat Ulas
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
23
|
Omokehinde T, Jotte A, Johnson RW. gp130 Cytokines Activate Novel Signaling Pathways and Alter Bone Dissemination in ER+ Breast Cancer Cells. J Bone Miner Res 2022; 37:185-201. [PMID: 34477239 PMCID: PMC8828687 DOI: 10.1002/jbmr.4430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 08/09/2021] [Accepted: 08/29/2021] [Indexed: 02/03/2023]
Abstract
Breast cancer cells frequently home to the bone marrow, where they encounter signals that promote survival and quiescence or stimulate their proliferation. The interleukin-6 (IL-6) cytokines signal through the co-receptor glycoprotein130 (gp130) and are abundantly secreted within the bone microenvironment. Breast cancer cell expression of leukemia inhibitory factor (LIF) receptor (LIFR)/STAT3 signaling promotes tumor dormancy in the bone, but it is unclear which, if any of the cytokines that signal through LIFR, including LIF, oncostatin M (OSM), and ciliary neurotrophic factor (CNTF), promote tumor dormancy and which signaling pathways are induced. We first confirmed that LIF, OSM, and CNTF and their receptor components were expressed across a panel of breast cancer cell lines, although expression was lower in estrogen receptor-negative (ER- ) bone metastatic clones compared with parental cell lines. In estrogen receptor-positive (ER+ ) cells, OSM robustly stimulated phosphorylation of known gp130 signaling targets STAT3, ERK, and AKT, while CNTF activated STAT3 signaling. In ER- breast cancer cells, OSM alone stimulated AKT and ERK signaling. Overexpression of OSM, but not CNTF, reduced dormancy gene expression and increased ER+ breast cancer bone dissemination. Reverse-phase protein array revealed distinct and overlapping pathways stimulated by OSM, LIF, and CNTF with known roles in breast cancer progression and metastasis. In breast cancer patients, downregulation of the cytokines or receptors was associated with reduced relapse-free survival, but OSM was significantly elevated in patients with invasive disease and distant metastasis. Together these data indicate that the gp130 cytokines induce multiple signaling cascades in breast cancer cells, with a potential pro-tumorigenic role for OSM and pro-dormancy role for CNTF. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Tolu Omokehinde
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alec Jotte
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Rachelle W Johnson
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
24
|
Törnroos R, Tina E, Göthlin Eremo A. SLC7A5 is linked to increased expression of genes related to proliferation and hypoxia in estrogen‑receptor‑positive breast cancer. Oncol Rep 2021; 47:17. [PMID: 34792178 PMCID: PMC8611404 DOI: 10.3892/or.2021.8228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022] Open
Abstract
The amino acid transporter named solute carrier family 7 member 5 (SLC7A5) is suggested to play a part in altered cell metabolism and proliferative signaling and has been reported to be overexpressed in various types of cancer, including breast cancer. Estrogen‑receptor‑positive (ER+) breast cancers constitute the most common type of breast malignancies and are often treated with anti‑estrogenic therapies. In this group of patients, endocrine resistance is a challenging problem that could lead to recurrent disease. To overcome this, additional prognostic biomarkers are needed. The present study aimed therefore to determine whether SLC7A5 may be considered as a possible prognostic marker in ER+ breast cancer and to investigate its relation with certain cancer‑related genes. We used a local breast cancer cohort (n=154) and immunohistochemistry to analyze the expression of SLC7A5 in association with clinicopathological characteristics and patient outcome. In addition, gene expression analysis was performed on 80 of these tumors. Furthermore, the METABRIC dataset was used for correlation analyses between expression of SLC7A5 and several genes related to breast cancer biology. The results demonstrated that overexpression of SLC7A5 was significantly associated with histopathological grade in patients with breast cancer, and that SLC7A5 mRNA expression was positively correlated with the expression of marker of proliferation Ki‑67 and hypoxia inducible factor 1 subunit alpha. Overexpression of SLC7A5 may therefore play a role in the biology of endocrinologically‑driven disease. However, when further assessing SLC7A5 using the METABRIC dataset, SLC7A5 mRNA expression level was more significantly increased in ER‑ subgroups compared with ER+ disease. All breast cancer subtypes included, SLC7A5 mRNA expression was correlated with a higher number of cancer‑related genes than in estrogen receptor positive tumors alone. The present study suggested that SLC7A5 expression may be of importance for breast cancer cell proliferation and survival. In order to further establish the biological and clinical role of SLC7A5 in breast cancer, further investigation using different breast cancer subgroups is required.
Collapse
Affiliation(s)
- Rasmus Törnroos
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-70185 Örebro, Sweden
| | - Elisabet Tina
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-70185 Örebro, Sweden
| | - Anna Göthlin Eremo
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-70185 Örebro, Sweden
| |
Collapse
|
25
|
Voltage-Gated Sodium Channels as Potential Biomarkers and Therapeutic Targets for Epithelial Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13215437. [PMID: 34771603 PMCID: PMC8582439 DOI: 10.3390/cancers13215437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Voltage-gated sodium channels are membrane proteins that change conformation in response to depolarization of the membrane potential, allowing sodium ions to flow into cells. While voltage-gated sodium channels are normally studied in terms of neuron impulses and skeletal or cardiac muscle contraction, abnormal ion channel expression is a feature of many cancer cells. The aim of our study was to assess the expression of voltage-gated sodium channels in ovarian cancer cells. We found that ovarian cancer cells generally express lower levels of voltage-gated sodium channels than normal cells and that two voltage-gated sodium channels, SCN8A and SCN1B, were prognostic biomarkers for ovarian cancer overall survival. In vitro studies suggested that drugs that block voltage-gated sodium channels, such as certain anti-epileptic drugs and local anesthetics, might sensitize ovarian cancer cells to chemotherapy. These findings suggest that voltage-gated sodium channels may be interesting targets for ovarian cancer therapy. Abstract Abnormal ion channel expression distinguishes several types of carcinoma. Here, we explore the relationship between voltage-gated sodium channels (VGSC) and epithelial ovarian cancer (EOC). We find that EOC cell lines express most VGSC, but at lower levels than fallopian tube secretory epithelial cells (the cells of origin for most EOC) or control fibroblasts. Among patient tumor samples, lower SCN8A expression was associated with improved overall survival (OS) (median 111 vs. 52 months; HR 2.04 95% CI: 1.21–3.44; p = 0.007), while lower SCN1B expression was associated with poorer OS (median 45 vs. 56 months; HR 0.69 95% CI 0.54–0.87; p = 0.002). VGSC blockade using either anti-epileptic drugs or local anesthetics (LA) decreased the proliferation of cancer cells. LA increased cell line sensitivity to platinum and taxane chemotherapies. While lidocaine had similar additive effects with chemotherapy among EOC cells and fibroblasts, bupivacaine showed a more pronounced impact on EOC than fibroblasts when combined with either carboplatin (ΔAUC −37% vs. −16%, p = 0.003) or paclitaxel (ΔAUC −37% vs. −22%, p = 0.02). Together, these data suggest VGSC are prognostic biomarkers in EOC and may inform new targets for therapy.
Collapse
|
26
|
Peng WX, Koirala P, Zhou H, Jiang J, Zhang Z, Yang L, Mo YY. Lnc-DC promotes estrogen independent growth and tamoxifen resistance in breast cancer. Cell Death Dis 2021; 12:1000. [PMID: 34697301 PMCID: PMC8546148 DOI: 10.1038/s41419-021-04288-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/15/2021] [Accepted: 10/07/2021] [Indexed: 12/24/2022]
Abstract
Selective estrogen receptor modulators (SERMs) such as tamoxifen have proven to be effective in the treatment of estrogen receptor (ER) positive breast cancer. However, a major obstacle for such endocrine therapy is estrogen independent growth, leading to resistance, and the underlying mechanism is not fully understood. The purpose of this study was to determine whether long non-coding RNAs (lncRNAs) are involved in regulation of estrogen independent growth and tamoxifen resistance in ER positive breast cancer. Using a CRISPR/Cas9-based SAM (synergistic activation mediator) library against a focus group of lncRNAs, we identify Lnc-DC as a candidate lncRNA. Further analysis suggests that Lnc-DC is able to reduce tamoxifen-induced apoptosis by upregulation of anti-apoptotic genes such as Bcl2 and Bcl-xL. Furthermore, Lnc-DC activates STAT3 by phosphorylation (pSTAT3Y705), and the activated STAT3 subsequently induces expression of cytokines which in turn activate STAT3, forming an autocrine loop. Clinically, upregulation of Lnc-DC is associated with poor prognosis. In particular, analysis of a tamoxifen-treated patient cohort indicates that Lnc-DC expression can predict the response to tamoxifen. Together, this study demonstrates a previously uncharacterized function of Lnc-DC/STAT3/cytokine axis in estrogen independent growth and tamoxifen resistance, and Lnc-DC may serve as a potential predictor for tamoxifen response.
Collapse
Affiliation(s)
- Wan-Xin Peng
- Center of Oncology, Department of Medical Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, PR China
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Pratirodh Koirala
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS, USA
| | - Huaixiang Zhou
- Center of Oncology, Department of Medical Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, PR China
| | - Jiahong Jiang
- Center of Oncology, Department of Medical Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, PR China
| | - Ziqiang Zhang
- Department of Pulmonary Medicine, Tongji Hospital, Tongji University, Shanghai, China
| | - Liu Yang
- Center of Oncology, Department of Medical Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, PR China.
| | - Yin-Yuan Mo
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA.
- Department of Pharmacology/Toxicology, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
27
|
Dal Berto M, Dos Santos GT, Dos Santos AV, Silva AO, Vargas JE, Alves RJV, Barbisan F, da Cruz IBM, Bica CG. Molecular markers associated with the outcome of tamoxifen treatment in estrogen receptor-positive breast cancer patients: scoping review and in silico analysis. Discov Oncol 2021; 12:37. [PMID: 35201456 PMCID: PMC8777552 DOI: 10.1007/s12672-021-00432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022] Open
Abstract
Tamoxifen (TMX) is used as adjuvant therapy for estrogen receptor-positive (ER+) breast cancer cases due to its affinity and inhibitory effects. However, about 30% of cases show drug resistance, resulting in recurrence and metastasis, the leading causes of death. A literature review can help to elucidate the main cellular processes involved in TMX resistance. A scoping review was performed to find clinical studies investigating the association of expression of molecular markers profiles with long-term outcomes in ER+ patients treated with TMX. In silico analysis was performed to assess the interrelationship among the selected markers, evaluating the joint involvement with the biological processes. Forty-five studies were selected according to the inclusion and exclusion criteria. After clustering and gene ontology analysis, 23 molecular markers were significantly associated, forming three clusters of strong correlation with cell cycle regulation, signal transduction of proliferative stimuli, and hormone response involved in morphogenesis and differentiation of mammary gland. Also, it was found that overexpression of markers in selected clusters is a significant indicator of poor overall survival. The proposed review offered a better understanding of independent data from the literature, revealing an integrative network of markers involved in cellular processes that could modulate the response of TMX. Analysis of these mechanisms and their molecular components could improve the effectiveness of TMX.
Collapse
Affiliation(s)
- Maiquidieli Dal Berto
- Laboratory of Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 245,Sarmento Leite street, Porto Alegre, RS, 90050-170, Brazil
| | - Giovana Tavares Dos Santos
- Laboratory of Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 245,Sarmento Leite street, Porto Alegre, RS, 90050-170, Brazil
| | - Aniúsca Vieira Dos Santos
- Laboratory of Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 245,Sarmento Leite street, Porto Alegre, RS, 90050-170, Brazil
| | - Andrew Oliveira Silva
- Laboratory of Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 245,Sarmento Leite street, Porto Alegre, RS, 90050-170, Brazil
| | - José Eduardo Vargas
- Institute of Biological Sciences, University of Passo Fundo (UPF), 285, Brazil Avenue, Passo Fundo, RS, 99052-900, Brazil
| | - Rafael José Vargas Alves
- Department of Clinical Medicine, Federal University of Health Sciences of Porto Alegre (UFCSPA), 245, Sarmento Leite street, Porto Alegre, RS, 90050-170, Brazil
| | - Fernanda Barbisan
- Graduate Program in Gerontology, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | | | - Claudia Giuliano Bica
- Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 245, Sarmento Leite street., Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
28
|
Duan L, Wang Z, Zheng X, Li J, Yin H, Tang W, Deng D, Liu H, Wei J, Jin Y, Liu F, Shen J. Excavating the pathogenic gene of breast cancer based on high throughput data of tumor and somatic reprogramming. Cell Cycle 2021; 20:1708-1722. [PMID: 34384323 DOI: 10.1080/15384101.2021.1961410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Breast cancer (BC) is one of the most common malignancies in female, and has a high mortality rate. The mechanisms of tumorigenesis and reprogramming of somatic cells have a certain degree of similarity. Here, we focus on the relationship between gene expression, signaling pathways and functions in BC compared to induced pluripotent stem cells (iPSCs). We first identified differentially expressed genes (DEGs) common to BC and iPSCs in datasets from GEO and TCGA. We found 22 DEGs that were significantly associated with clinicopathological features and prognosis by performing Kaplan-Meier survival analysis and one-way ANOVA. The results of protein mass spectrometry of tumor stem cells (Mcfips) demonstrated that the proteins encoded by 8 of these DEGs were also differentially expressed. The functional enrichment analysis showed that most of the 30 DEGs were related to collagen and chromatin functions. Our results might offer targets for future studies into the mechanisms underlying tumor occurrence and progression, and our studies could provide valuable data for both basic research and clinical applications of BC.
Collapse
Affiliation(s)
- Lian Duan
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhendong Wang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xin Zheng
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,College of Life and Environmental Sciences, Wenzhou University, Chashan University Town, Wenzhou, China.,Institute of Life Sciences, Wenzhou University, Chashan University Town, Wenzhou, China
| | - Junjian Li
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,College of Life and Environmental Sciences, Wenzhou University, Chashan University Town, Wenzhou, China.,Institute of Life Sciences, Wenzhou University, Chashan University Town, Wenzhou, China
| | - Huamin Yin
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,College of Life and Environmental Sciences, Wenzhou University, Chashan University Town, Wenzhou, China.,Institute of Life Sciences, Wenzhou University, Chashan University Town, Wenzhou, China
| | - Weibo Tang
- College of Life and Environmental Sciences, Wenzhou University, Chashan University Town, Wenzhou, China.,Institute of Life Sciences, Wenzhou University, Chashan University Town, Wenzhou, China.,Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Dejian Deng
- College of Life and Environmental Sciences, Wenzhou University, Chashan University Town, Wenzhou, China.,Institute of Life Sciences, Wenzhou University, Chashan University Town, Wenzhou, China.,Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Hui Liu
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Jiayu Wei
- Clinical Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Jin
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Key Laboratory of Medical Genetics, Harbin Medical University, Heilongjiang Higher Education Institutions, Harbin, China
| | - Feng Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jingling Shen
- College of Life and Environmental Sciences, Wenzhou University, Chashan University Town, Wenzhou, China.,Institute of Life Sciences, Wenzhou University, Chashan University Town, Wenzhou, China
| |
Collapse
|
29
|
Győrffy B. Survival analysis across the entire transcriptome identifies biomarkers with the highest prognostic power in breast cancer. Comput Struct Biotechnol J 2021; 19:4101-4109. [PMID: 34527184 PMCID: PMC8339292 DOI: 10.1016/j.csbj.2021.07.014] [Citation(s) in RCA: 594] [Impact Index Per Article: 148.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/30/2022] Open
Abstract
Introduction Extensive research is directed to uncover new biomarkers capable to stratify breast cancer patients into clinically relevant cohorts. However, the overall performance ranking of such marker candidates compared to other genes is virtually absent. Here, we present the ranking of all survival related genes in chemotherapy treated basal and estrogen positive/HER2 negative breast cancer. Methods We searched the GEO repository to uncover transcriptomic datasets with available follow-up and clinical data. After quality control and normalization, samples entered an integrated database. Molecular subtypes were designated using gene expression data. Relapse-free survival analysis was performed using Cox proportional hazards regression. False discovery rate was computed to combat multiple hypothesis testing. Kaplan-Meier plots were drawn to visualize the best performing genes. Results The entire database includes 7,830 unique samples from 55 independent datasets. Of those with available relapse-free survival time, 3,382 samples were estrogen receptor-positive and 696 were basal. In chemotherapy treated ER positive/ERBB2 negative patients the significant prognostic biomarker genes achieved hazard rates between 1.76 and 3.33 with a p value below 5.8E−04. The significant prognostic genes in adjuvant chemotherapy treated basal breast cancer samples reached hazard rates between 1.88 and 3.61 with a p value below 7.2E−04. Our integrated platform was extended enabling the validation of future biomarker candidates. Conclusions A reference ranking for all genes in two chemotherapy treated breast cancer cohorts is presented. The results help to neglect those with unlikely clinical significance and to focus future research on the most promising candidates.
Collapse
Affiliation(s)
- Balázs Győrffy
- Semmelweis University Dept. of Bioinformatics, Tűzoltó utca 7-9., 1094 Budapest, Hungary.,TTK Momentum Cancer Biomarker Research Group, Institute of Enzymology, Magyar Tudósok körútja 2., 1117 Budapest, Hungary.,Semmelweis University 2nd Dept. of Pediatrics, Tűzoltó utca 7-9., 1094 Budapest, Hungary
| |
Collapse
|
30
|
Saito Y, Soga T. Amino acid transporters as emerging therapeutic targets in cancer. Cancer Sci 2021; 112:2958-2965. [PMID: 34091991 PMCID: PMC8353895 DOI: 10.1111/cas.15006] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/13/2021] [Accepted: 05/31/2021] [Indexed: 01/17/2023] Open
Abstract
Amino acids are indispensable nutrients for both normal and cancer cells. Cancer cells are unable to synthesize essential amino acids as well as some non‐essential amino acids adequately to support rapid proliferation, and must take up amino acids from the surroundings. To meet the increased demand for the amino acid needed for proliferation, high levels of amino acid transporters are expressed on the surface of cancer cells. Cancer cells utilize amino acids to synthesize proteins and nucleotides, as well as to obtain energy. In addition, amino acids are known to play pathological roles in cancer cells. Interestingly, breast cancer cells limit the use of amino acids for cell proliferation based on amino acid availability, which depends on estrogen receptor status. Here, we present a summarized literature review of novel amino acid functions in cancer cells. This review organizes the available knowledge on 2 amino acid transporters, SLC7A5 and SLC7A11, which are considered essential for breast cancer cell growth in a cell‐dependent manner. In particular, we propose the glutamine recycling model to clarify the mechanism underlying aberrant SLC7A5 activation. Finally, we overview the pathological significances of SLC7A5 and SLC7A11 in cancer tissues.
Collapse
Affiliation(s)
- Yasuhiro Saito
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| |
Collapse
|
31
|
Delaine-Smith RM, Maniati E, Malacrida B, Nichols S, Roozitalab R, Jones RR, Lecker LS, Pearce OM, Knight MM, Balkwill FR. Modelling TGFβR and Hh pathway regulation of prognostic matrisome molecules in ovarian cancer. iScience 2021; 24:102674. [PMID: 34189438 PMCID: PMC8215304 DOI: 10.1016/j.isci.2021.102674] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/01/2021] [Accepted: 05/27/2021] [Indexed: 12/20/2022] Open
Abstract
In a multi-level "deconstruction" of omental metastases, we previously identified a prognostic matrisome gene expression signature in high-grade serous ovarian cancer (HGSOC) and twelve other malignancies. Here, our aim was to understand how six of these extracellular matrix (ECM) molecules, COL11A1, cartilage oligomeric matrix protein, FN1, versican, cathepsin B, and COL1A1, are upregulated in cancer. Using biopsies, we identified significant associations between TGFβR activity, Hedgehog (Hh) signaling, and these ECM molecules and studied the associations in mono-, co-, and tri-culture. Activated omental fibroblasts (OFs) produced more matrix than malignant cells, directed by TGFβR and Hh signaling cross talk. We "reconstructed" omental metastases in tri-cultures of HGSOC cells, OFs, and adipocytes. This combination was sufficient to generate all six ECM proteins and the matrisome expression signature. TGFβR and Hh inhibitor combinations attenuated fibroblast activation and gel and ECM remodeling in these models. The tri-culture model reproduces key features of omental metastases and allows study of diseased-associated ECM.
Collapse
Affiliation(s)
- Robin M. Delaine-Smith
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square EC1M 6BQ, London, UK
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, Mile End Road E1, London, UK
| | - Eleni Maniati
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square EC1M 6BQ, London, UK
| | - Beatrice Malacrida
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square EC1M 6BQ, London, UK
| | - Sam Nichols
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square EC1M 6BQ, London, UK
| | - Reza Roozitalab
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square EC1M 6BQ, London, UK
| | - Roanne R. Jones
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square EC1M 6BQ, London, UK
| | - Laura S.M. Lecker
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square EC1M 6BQ, London, UK
| | - Oliver M.T. Pearce
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square EC1M 6BQ, London, UK
| | - Martin M. Knight
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, Mile End Road E1, London, UK
| | - Frances R. Balkwill
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square EC1M 6BQ, London, UK
| |
Collapse
|
32
|
Thompson C, Rahman MM, Singh S, Arthur S, Sierra-Bakhshi C, Russell R, Denning K, Sundaram U, Salisbury T. The Adipose Tissue-Derived Secretome (ADS) in Obesity Uniquely Induces L-Type Amino Acid Transporter 1 (LAT1) and mTOR Signaling in Estrogen-Receptor-Positive Breast Cancer Cells. Int J Mol Sci 2021; 22:6706. [PMID: 34201429 PMCID: PMC8268498 DOI: 10.3390/ijms22136706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 01/01/2023] Open
Abstract
Obesity increases the risk of postmenopausal breast cancer (BC). This risk is mediated by obesity-induced changes in the adipose-derived secretome (ADS). The pathogenesis of BC in obesity is stimulated by mTOR hyperactivity. In obesity, leucine might support mTOR hyperactivity. Leucine uptake by BC cells is through L-Type Amino Acid Transporter 1 (LAT1). Our objective was to link obesity-ADS induction of LAT1 to the induction of mTOR signaling. Lean- and obese-ADS were obtained from lean and obese mice, respectively. Breast ADS was obtained from BC patients. Estrogen-receptor-positive BC cells were stimulated with ADS. LAT1 activity was determined by uptake of 3H-leucine. The LAT1/CD98 complex, and mTOR signaling were assayed by Western blot. The LAT1 antagonists, BCH and JPH203, were used to inhibit LAT1. Cell migration and invasion were measured by Transwell assays. The results showed obese-ADS-induced LAT1 activity by increasing transporter affinity for leucine. Consistent with this mechanism, LAT1 and CD98 expression were unchanged. Induction of mTOR by obese-ADS was inhibited by LAT1 antagonists. Breast ADS from patients with BMIs > 30 stimulated BC cell migration and invasiveness. Collectively, our findings show that obese-ADS induction of LAT1 supports mTOR hyperactivity in luminal BC cells.
Collapse
Affiliation(s)
- Chelsea Thompson
- Department of Biomedical Sciences and Appalachian Center for Cellular Transport in Obesity Related Disorders, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA; (C.T.); (C.S.-B.)
| | - M Motiur Rahman
- Department of Clinical and Translational Sciences and Appalachian Clinical and Translational Science Institute and Appalachian Center for Cellular Transport in Obesity Related Disorders, Joan C. Edwards School of Medicine, Marshall University, 1600 Medical Center Drive, Huntington, WV 25701, USA; (M.M.R.); (S.S.); (S.A.); (U.S.)
| | - Soudamani Singh
- Department of Clinical and Translational Sciences and Appalachian Clinical and Translational Science Institute and Appalachian Center for Cellular Transport in Obesity Related Disorders, Joan C. Edwards School of Medicine, Marshall University, 1600 Medical Center Drive, Huntington, WV 25701, USA; (M.M.R.); (S.S.); (S.A.); (U.S.)
| | - Subha Arthur
- Department of Clinical and Translational Sciences and Appalachian Clinical and Translational Science Institute and Appalachian Center for Cellular Transport in Obesity Related Disorders, Joan C. Edwards School of Medicine, Marshall University, 1600 Medical Center Drive, Huntington, WV 25701, USA; (M.M.R.); (S.S.); (S.A.); (U.S.)
| | - Cecilia Sierra-Bakhshi
- Department of Biomedical Sciences and Appalachian Center for Cellular Transport in Obesity Related Disorders, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA; (C.T.); (C.S.-B.)
| | - Rebecca Russell
- Cabell Huntington Hospital Laboratory, Department of Pathology and Appalachian Center for Cellular Transport in Obesity Related Disorders, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (R.R.); (K.D.)
| | - Krista Denning
- Cabell Huntington Hospital Laboratory, Department of Pathology and Appalachian Center for Cellular Transport in Obesity Related Disorders, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (R.R.); (K.D.)
| | - Uma Sundaram
- Department of Clinical and Translational Sciences and Appalachian Clinical and Translational Science Institute and Appalachian Center for Cellular Transport in Obesity Related Disorders, Joan C. Edwards School of Medicine, Marshall University, 1600 Medical Center Drive, Huntington, WV 25701, USA; (M.M.R.); (S.S.); (S.A.); (U.S.)
| | - Travis Salisbury
- Department of Biomedical Sciences and Appalachian Center for Cellular Transport in Obesity Related Disorders, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA; (C.T.); (C.S.-B.)
- Department of Clinical and Translational Sciences and Appalachian Clinical and Translational Science Institute and Appalachian Center for Cellular Transport in Obesity Related Disorders, Joan C. Edwards School of Medicine, Marshall University, 1600 Medical Center Drive, Huntington, WV 25701, USA; (M.M.R.); (S.S.); (S.A.); (U.S.)
| |
Collapse
|
33
|
Sun Z, Xia W, Lyu Y, Song Y, Wang M, Zhang R, Sui G, Li Z, Song L, Wu C, Liew CC, Yu L, Cheng G, Cheng C. Immune-related gene expression signatures in colorectal cancer. Oncol Lett 2021; 22:543. [PMID: 34079596 PMCID: PMC8157333 DOI: 10.3892/ol.2021.12804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/11/2021] [Indexed: 12/24/2022] Open
Abstract
The immune system is crucial in regulating colorectal cancer (CRC) tumorigenesis. Identification of immune-related transcriptomic signatures derived from the peripheral blood of patients with CRC would provide insights into CRC pathogenesis, and suggest novel clues to potential immunotherapy strategies for the disease. The present study collected blood samples from 59 patients with CRC and 62 healthy control patients and performed whole blood gene expression profiling using microarray hybridization. Immune-related gene expression signatures for CRC were identified from immune gene datasets, and an algorithmic predictive model was constructed for distinguishing CRC from controls. Model performance was characterized using an area under the receiver operating characteristic curve (ROC AUC). Functional categories for CRC-specific gene expression signatures were determined using gene set enrichment analyses. A Kaplan-Meier plotter survival analysis was also performed for CRC-specific immune genes in order to characterize the association between gene expression and CRC prognosis. The present study identified five CRC-specific immune genes [protein phosphatase 3 regulatory subunit Bα (PPP3R1), amyloid β precursor protein, cathepsin H, proteasome activator subunit 4 and DEAD-Box Helicase 3 X-Linked]. A predictive model based on this five-gene panel showed good discriminatory power (independent test set sensitivity, 83.3%; specificity, 94.7%, accuracy, 89.2%; ROC AUC, 0.96). The candidate genes were involved in pathways associated with ‘adaptive immune responses’, ‘innate immune responses’ and ‘cytokine signaling’. The survival analysis found that a high level of PPP3R1 expression was associated with a poor CRC prognosis. The present study identified five CRC-specific immune genes that were potential diagnostic biomarkers for CRC. The biological function analysis indicated a close association between CRC pathogenesis and the immune system, and may reveal more information about the immunogenic and pathogenic mechanisms driving CRC in the future. Overall, the association between PPP3R1 expression and survival of patients with CRC revealed potential new targets for CRC immunotherapy.
Collapse
Affiliation(s)
- Zhenqing Sun
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Wei Xia
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Yali Lyu
- R&D Department, Huaxia Bangfu Technology Incorporated, Beijing 100000, P.R. China
| | - Yanan Song
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Min Wang
- R&D Department, Huaxia Bangfu Technology Incorporated, Beijing 100000, P.R. China
| | - Ruirui Zhang
- R&D Department, Huaxia Bangfu Technology Incorporated, Beijing 100000, P.R. China
| | - Guode Sui
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Zhenlu Li
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Li Song
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Changliang Wu
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Choong-Chin Liew
- Golden Health Diagnostics Inc., Yan Cheng, Jiangsu 224000, P.R. China.,Department of Clinical Pathology and Laboratory Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lei Yu
- R&D Department, Huaxia Bangfu Technology Incorporated, Beijing 100000, P.R. China
| | - Guang Cheng
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Changming Cheng
- R&D Department, Huaxia Bangfu Technology Incorporated, Beijing 100000, P.R. China
| |
Collapse
|
34
|
RIFS2D: A two-dimensional version of a randomly restarted incremental feature selection algorithm with an application for detecting low-ranked biomarkers. Comput Biol Med 2021; 133:104405. [PMID: 33930763 DOI: 10.1016/j.compbiomed.2021.104405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 12/20/2022]
Abstract
The era of big data introduces both opportunities and challenges for biomedical researchers. One of the inherent difficulties in the biomedical research field is to recruit large cohorts of samples, while high-throughput biotechnologies may produce thousands or even millions of features for each sample. Researchers tend to evaluate the individual correlation of each feature with the class label and use the incremental feature selection (IFS) strategy to select the top-ranked features with the best prediction performance. Recent experimental data showed that a subset of continuously ranked features randomly restarted from a low-ranked feature (an RIFS block) may outperform the subset of top-ranked features. This study proposed a feature selection Algorithm RIFS2D by integrating multiple RIFS blocks. A comprehensive comparative experiment was conducted with the IFS, RIFS and existing feature selection algorithms and demonstrated that a subset of low-ranked features may also achieve promising prediction performance. This study suggested that a prediction model with promising performance may be trained by low-ranked features, even when top-ranked features did not achieve satisfying prediction performance. Further comparative experiments were conducted between RIFS2D and t-tests for the detection of early-stage breast cancer. The data showed that the RIFS2D-recommended features achieved better prediction accuracy and were targeted by more drugs than the t-test top-ranked features.
Collapse
|
35
|
Grillo PK, Győrffy B, Götte M. Prognostic impact of the glypican family of heparan sulfate proteoglycans on the survival of breast cancer patients. J Cancer Res Clin Oncol 2021; 147:1937-1955. [PMID: 33742285 PMCID: PMC8164625 DOI: 10.1007/s00432-021-03597-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
Abstract
Purpose Dysregulated expression of proteoglycans influences the outcome and progression of numerous cancers. Several studies have investigated the role of individual glypicans in cancer, however, the impact of the whole glypican family of heparan sulfate proteoglycans on prognosis of a large patient cohort of breast cancer patients has not yet been investigated. In the present study, our aim was to investigate the prognostic power of the glypicans in breast cancer patients. Methods We used a public database including both gene expression data and survival information for 3951 breast cancer patients to determine the prognostic value of glypicans on relapse-free survival using Cox regression analysis. Moreover, we performed quantitative Real-Time PCR to determine glypican gene expression levels in seven representative breast cancer cell lines. Results We found that high GPC3 levels were associated with a better prognosis in overall breast cancer patients. When stratified by hormone receptor status, we found that in worse prognosis subtypes low GPC1 levels correlate with a longer relapse-free survival, and in more favorable subtypes low GPC6 was associated with longer survival. Conclusion Our study concludes that glypicans could act as subtype-specific biomarkers for the prognosis of breast cancer patients and sparks hope for future research on glypicans possibly eventually providing targets for the treatment of the disease. Supplementary Information The online version contains supplementary material available at 10.1007/s00432-021-03597-4.
Collapse
Affiliation(s)
- Paulina Karin Grillo
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, 11, 48149, Münster, Germany
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
- TTK Momentum Cancer Biomarker Research Group, Budapest, Hungary
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, 11, 48149, Münster, Germany.
| |
Collapse
|
36
|
Iness AN, Rubinsak L, Meas SJ, Chaoul J, Sayeed S, Pillappa R, Temkin SM, Dozmorov MG, Litovchick L. Oncogenic B-Myb Is Associated With Deregulation of the DREAM-Mediated Cell Cycle Gene Expression Program in High Grade Serous Ovarian Carcinoma Clinical Tumor Samples. Front Oncol 2021; 11:637193. [PMID: 33747961 PMCID: PMC7969987 DOI: 10.3389/fonc.2021.637193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/08/2021] [Indexed: 12/21/2022] Open
Abstract
Cell cycle control drives cancer progression and treatment response in high grade serous ovarian carcinoma (HGSOC). MYBL2 (encoding B-Myb), an oncogene with prognostic significance in several cancers, is highly expressed in most HGSOC cases; however, the clinical significance of B-Myb in this disease has not been well-characterized. B-Myb is associated with cell proliferation through formation of the MMB (Myb and MuvB core) protein complex required for transcription of mitotic genes. High B-Myb expression disrupts the formation of another transcriptional cell cycle regulatory complex involving the MuvB core, DREAM (DP, RB-like, E2F, and MuvB), in human cell lines. DREAM coordinates cell cycle dependent gene expression by repressing over 800 cell cycle genes in G0/G1. Here, we take a bioinformatics approach to further evaluate the effect of B-Myb expression on DREAM target genes in HGSOC and validate our cellular model with clinical specimens. We show that MYBL2 is highly expressed in HGSOC and correlates with expression of DREAM and MMB target genes in both The Cancer Genome Atlas (TCGA) as well as independent analyses of HGSOC primary tumors (N = 52). High B-Myb expression was also associated with poor overall survival in the TCGA cohort and analysis by a DREAM target gene expression signature yielded a negative impact on survival. Together, our data support the conclusion that high expression of MYBL2 is associated with deregulation of DREAM/MMB-mediated cell cycle gene expression programs in HGSOC and may serve as a prognostic factor independent of its cell cycle role. This provides rationale for further, larger scale studies aimed to determine the clinical predictive value of the B-Myb gene expression signature for treatment response as well as patient outcomes.
Collapse
Affiliation(s)
- Audra N Iness
- Division of Hematology, Oncology and Palliative Care, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Lisa Rubinsak
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, United States
| | - Steven J Meas
- School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Jessica Chaoul
- School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Sadia Sayeed
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, United States.,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Raghavendra Pillappa
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, United States
| | - Sarah M Temkin
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, United States
| | - Mikhail G Dozmorov
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States.,Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, United States.,Department of Pathology, Virginia Commonwealth University, Richmond, VA, United States
| | - Larisa Litovchick
- Division of Hematology, Oncology and Palliative Care, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States.,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
37
|
Gu G, Tian L, Herzog SK, Rechoum Y, Gelsomino L, Gao M, Du L, Kim JA, Dustin D, Lo HC, Beyer AR, Edwards DG, Gonzalez T, Tsimelzon A, Huang HJ, Fernandez NM, Grimm SL, Hilsenbeck SG, Liu D, Xu J, Alaniz A, Li S, Mills GB, Janku F, Kittler R, Zhang XHF, Coarfa C, Foulds CE, Symmans WF, Andò S, Fuqua SAW. Hormonal modulation of ESR1 mutant metastasis. Oncogene 2021; 40:997-1011. [PMID: 33323970 PMCID: PMC8020875 DOI: 10.1038/s41388-020-01563-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/31/2020] [Accepted: 11/11/2020] [Indexed: 12/18/2022]
Abstract
Estrogen receptor alpha gene (ESR1) mutations occur frequently in ER-positive metastatic breast cancer, and confer clinical resistance to aromatase inhibitors. Expression of the ESR1 Y537S mutation induced an epithelial-mesenchymal transition (EMT) with cells exhibiting enhanced migration and invasion potential in vitro. When small subpopulations of Y537S ESR1 mutant cells were injected along with WT parental cells, tumor growth was enhanced with mutant cells becoming the predominant population in distant metastases. Y537S mutant primary xenograft tumors were resistant to the antiestrogen tamoxifen (Tam) as well as to estradiol (E2) withdrawal. Y537S ESR1 mutant primary tumors metastasized efficiently in the absence of E2; however, Tam treatment significantly inhibited metastasis to distant sites. We identified a nine-gene expression signature, which predicted clinical outcomes of ER-positive breast cancer patients, as well as breast cancer metastasis to the lung. Androgen receptor (AR) protein levels were increased in mutant models, and the AR agonist dihydrotestosterone significantly inhibited estrogen-regulated gene expression, EMT, and distant metastasis in vivo, suggesting that AR may play a role in distant metastatic progression of ESR1 mutant tumors.
Collapse
Affiliation(s)
- Guowei Gu
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Lin Tian
- Cancer Biology & Genetics Program Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarah K Herzog
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, Houston, TX, USA
| | - Yassine Rechoum
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Meng Gao
- Department of Systems Biology, MD Anderson Cancer Center, Houston, TX, USA
| | - Lili Du
- Department of Pathology and Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jin-Ah Kim
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Derek Dustin
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Hin Ching Lo
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Amanda R Beyer
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - David G Edwards
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Thomas Gonzalez
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Anna Tsimelzon
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Helen J Huang
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalie M Fernandez
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Sandra L Grimm
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Susan G Hilsenbeck
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Dan Liu
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jun Xu
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Alyssa Alaniz
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Shunqiang Li
- Department of Internal Medicine, Division of Oncology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Gordon B Mills
- Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Filip Janku
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ralf Kittler
- Eugene McDermott Center for Human Growth and Development and Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Xiang H-F Zhang
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Cristian Coarfa
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Charles E Foulds
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - W Fraser Symmans
- Department of Pathology and Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Suzanne A W Fuqua
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
38
|
Metcalf S, Petri BJ, Kruer T, Green B, Dougherty S, Wittliff JL, Klinge CM, Clem BF. Serine synthesis influences tamoxifen response in ER+ human breast carcinoma. Endocr Relat Cancer 2021; 28:27-37. [PMID: 33112838 PMCID: PMC7780089 DOI: 10.1530/erc-19-0510] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 12/24/2022]
Abstract
Estrogen receptor-positive breast cancer (ER+ BC) is the most common form of breast carcinoma accounting for approximately 70% of all diagnoses. Although ER-targeted therapies have improved survival outcomes for this BC subtype, a significant proportion of patients will ultimately develop resistance to these clinical interventions, resulting in disease recurrence. Phosphoserine aminotransferase 1 (PSAT1), an enzyme within the serine synthetic pathway (SSP), has been previously implicated in endocrine resistance. Therefore, we determined whether expression of SSP enzymes, PSAT1 or phosphoglycerate dehydrogenase (PHGDH), affects the response of ER+ BC to 4-hydroxytamoxifen (4-OHT) treatment. To investigate a clinical correlation between PSAT1, PHGDH, and endocrine resistance, we examined microarray data from ER+ patients who received tamoxifen as the sole endocrine therapy. We confirmed that higher PSAT1 and PHGDH expression correlates negatively with poorer outcomes in tamoxifen-treated ER+ BC patients. Next, we found that SSP enzyme expression and serine synthesis were elevated in tamoxifen-resistant compared to tamoxifen-sensitive ER+ BC cells in vitro. To determine relevance to endocrine sensitivity, we modified the expression of either PSAT1 or PHGDH in each cell type. Overexpression of PSAT1 in tamoxifen-sensitive MCF-7 cells diminished 4-OHT inhibition on cell proliferation. Conversely, silencing of either PSAT1 or PHGDH resulted in greater sensitivity to 4-OHT treatment in LCC9 tamoxifen-resistant cells. Likewise, the combination of a PHGDH inhibitor with 4-OHT decreased LCC9 cell proliferation. Collectively, these results suggest that overexpression of serine synthetic pathway enzymes contribute to tamoxifen resistance in ER+ BC, which can be targeted as a novel combinatorial treatment option.
Collapse
Affiliation(s)
- Stephanie Metcalf
- Department of Biochemistry and Molecular Genetics,
University of Louisville, Louisville, KY, USA
| | - Belinda J. Petri
- Department of Biochemistry and Molecular Genetics,
University of Louisville, Louisville, KY, USA
| | - Traci Kruer
- Department of Biochemistry and Molecular Genetics,
University of Louisville, Louisville, KY, USA
| | - Benjamin Green
- Department of Biochemistry and Molecular Genetics,
University of Louisville, Louisville, KY, USA
| | - Susan Dougherty
- Department of Biochemistry and Molecular Genetics,
University of Louisville, Louisville, KY, USA
| | - James L. Wittliff
- Department of Biochemistry and Molecular Genetics,
University of Louisville, Louisville, KY, USA
| | - Carolyn M. Klinge
- Department of Biochemistry and Molecular Genetics,
University of Louisville, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville,
Louisville, KY, USA
| | - Brian F. Clem
- Department of Biochemistry and Molecular Genetics,
University of Louisville, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville,
Louisville, KY, USA
| |
Collapse
|
39
|
Liang ZZ, Zhu RM, Li YL, Jiang HM, Li RB, Tang LY, Wang Q, Ren ZF. Differential epigenetic and transcriptional profile in MCF-7 breast cancer cells exposed to cadmium. CHEMOSPHERE 2020; 261:128148. [PMID: 33113665 DOI: 10.1016/j.chemosphere.2020.128148] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/29/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) has been confirmed to be associated with breast carcinogenesis, but the mechanism was not clarified yet. Given that epigenetic modification was speculated as underlying mechanism, we examined the differential epigenome caused by Cd in breast cancer cells. Profiles of DNA methylation, microRNA (miRNA), long non-coding RNA (lncRNA), and message RNA (mRNA) were derived from Cd-treated and untreated MCF-7 breast cancer cells by microarray. We identified 997 target genes epigenetically regulated by Cd through cross-verification with the differential epigenome and transcriptome, and 400 of them were further validated in a breast cancer cohort. Biological function analyses suggested that several pathways were involved in Cd-induced breast carcinogenesis, such as Wnt signaling, metabolism, and human papilloma virus (HPV) infection. TXNRD1 and CCT3 were further identified as the critical genes based on the degree of expression change, hazard ratio difference, and connectivity. The present study revealed that Cd epigenetically regulated several pathways involving in breast carcinogenesis, particularly the Wnt signaling and metabolic pathways, among which TXNRD1 and CCT3 might play critical roles. It was also suggested that Cd and HPV infection might jointly participate in breast tumorigenesis.
Collapse
Affiliation(s)
- Zhuo-Zhi Liang
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Rui-Mei Zhu
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yue-Lin Li
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hong-Mei Jiang
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ruo-Bi Li
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Lu-Ying Tang
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Qing Wang
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Ze-Fang Ren
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
40
|
Fadaka AO, Sibuyi NRS, Madiehe AM, Meyer M. MicroRNA-based regulation of Aurora A kinase in breast cancer. Oncotarget 2020; 11:4306-4324. [PMID: 33245732 PMCID: PMC7679040 DOI: 10.18632/oncotarget.27811] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
The involvement of non-coding RNAs (ncRNAs) in cellular physiology and disease pathogenesis is becoming increasingly relevant in recent years specifically in cancer research. Breast cancer (BC) has become a health concern and accounts for most of the cancer-related incidences and mortalities reported amongst females. In spite of the presence of promising tools for BC therapy, the mortality rate of metastatic BC cases is still high. Therefore, the genomic exploration of the BC subtype and the use of ncRNAs for possible regulation is pivotal. The expression and prognostic values of AURKA gene were assessed by Oncomine, GEPIA, KM-plotter, and bc-GenExMiner v4.4, respectively. Associated proteins and functional enrichment were evaluated by Cytoscape and DAVID databases. Additionally, molecular docking approach was employed to investigate the regulatory role of hsa-miR-32-3p assisted argonaute (AGO) protein of AURKA gene in BC. AURKA gene was highly expressed in patients with BC relative to normal counterpart and significantly correlated with poor survival. The docking result suggested that AURKA could be regulated by hsa-miR-32-3p as confirmed by the reported binding energy and specific interactions. The study gives some insights into role of AURKA and its regulation by microRNAs through AGO protein. It also provides exciting opportunities for cancer therapeutic intervention.
Collapse
Affiliation(s)
- Adewale Oluwaseun Fadaka
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Nicole Remaliah Samantha Sibuyi
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Abram Madimabe Madiehe
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa.,Nanobiotechnology Research Group, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Mervin Meyer
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
41
|
Jiang Y, Wang J, Chen J, Wang J, Xu J. Construction and analysis of an aberrant lncRNA-miRNA-mRNA network associated with papillary thyroid cancer. Medicine (Baltimore) 2020; 99:e22705. [PMID: 33157921 PMCID: PMC7647549 DOI: 10.1097/md.0000000000022705] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Accumulating evidence has indicated that long noncoding RNAs (lncRNAs) are the main constituents of competing endogenous RNA (ceRNA) networks. Nonetheless, in the lncRNA-related ceRNA network of papillary thyroid cancer (PTC), the function of cancer-specific lncRNAs, as well as their use for the potential prediction of PTC prognosis, remains unclear. In this study, 384 RNA sequencing (RNA-seq) profiles of PTC patients were attained from The Cancer Genome Atlas (TCGA), an open-source database that offers vast amounts of RNA-seq data, and 75 miRNAs, 495 lncRNAs, and 1099 mRNAs (P < .05 and |logFC| >2) were detected when compared with normal tissues. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed using the Cytoscape plug-in BinGo. An aberrant lncRNA-mRNA-miRNA ceRNA network consisting of 31 differentially expressed (DE)-lncRNAs, 13 DE-miRNAs, and 134 DE-mRNAs was built in TCGA. On the basis of overall survival (OS) analysis, 6 lncRNAs (CCAT1, SYNPR, SFTA1P, HOTAIR, HCG22, and CLDN10) were identified as prognostic biomarkers for patients in TCGA (P < .05). Through qRT-PCR, we designated 6 cancer-specific lncRNAs as having great significance for survival by verifying their expression in the 60 PTC patients who were diagnosed. The qRT-PCR and TCGA results were completely consistent. Our research provides data for further understanding the lncRNA-miRNA-mRNA ceRNA network and elucidating the molecular mechanisms of PTC.
Collapse
Affiliation(s)
| | - Jiao Wang
- Department of Endocrinology and Metabolism
| | - Jian Chen
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | | | - Jixiong Xu
- Department of Endocrinology and Metabolism
| |
Collapse
|
42
|
Nalairndran G, Hassan Abdul Razack A, Mai C, Fei‐Lei Chung F, Chan K, Hii L, Lim W, Chung I, Leong C. Phosphoinositide-dependent Kinase-1 (PDPK1) regulates serum/glucocorticoid-regulated Kinase 3 (SGK3) for prostate cancer cell survival. J Cell Mol Med 2020; 24:12188-12198. [PMID: 32926495 PMCID: PMC7578863 DOI: 10.1111/jcmm.15876] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 02/05/2023] Open
Abstract
Prostate cancer (PCa) is the most common malignancy and is the second leading cause of cancer among men globally. Using a kinome-wide lentiviral small-hairpin RNA (shRNA) library screen, we identified phosphoinositide-dependent kinase-1 (PDPK1) as a potential mediator of cell survival in PCa cells. We showed that knock-down of endogenous human PDPK1 induced significant tumour-specific cell death in PCa cells (DU145 and PC3) but not in the normal prostate epithelial cells (RWPE-1). Further analyses revealed that PDPK1 mediates cancer cell survival predominantly via activation of serum/glucocorticoid-regulated kinase 3 (SGK3). Knock-down of endogenous PDPK1 in DU145 and PC3 cells significantly reduced SGK3 phosphorylation while ectopic expression of a constitutively active SGK3 completely abrogated the apoptosis induced by PDPK1. In contrast, no such effect was observed in SGK1 and AKT phosphorylation following PDPK1 knock-down. Importantly, PDPK1 inhibitors (GSK2334470 and BX-795) significantly reduced tumour-specific cell growth and synergized docetaxel sensitivity in PCa cells. In summary, our results demonstrated that PDPK1 mediates PCa cells' survival through SGK3 signalling and suggest that inactivation of this PDPK1-SGK3 axis may potentially serve as a novel therapeutic intervention for future treatment of PCa.
Collapse
Affiliation(s)
- Geetha Nalairndran
- Department of PharmacologyFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | | | - Chun‐Wai Mai
- Center for Cancer and Stem Cell ResearchInstitute for ResearchDevelopment and Innovation (IRDI)International Medical UniversityKuala LumpurMalaysia
- School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
| | - Felicia Fei‐Lei Chung
- Mechanisms of Carcinogenesis Section (MCA)Epigenetics Group (EGE)International Agency for Research on Cancer World Health OrganizationLyonFrance
| | - Kok‐Keong Chan
- School of MedicineInternational Medical UniversityKuala LumpurMalaysia
| | - Ling‐Wei Hii
- Center for Cancer and Stem Cell ResearchInstitute for ResearchDevelopment and Innovation (IRDI)International Medical UniversityKuala LumpurMalaysia
- School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
- School of Postgraduate StudiesInternational Medical UniversityKuala LumpurMalaysia
| | - Wei‐Meng Lim
- Center for Cancer and Stem Cell ResearchInstitute for ResearchDevelopment and Innovation (IRDI)International Medical UniversityKuala LumpurMalaysia
- School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
- School of Postgraduate StudiesInternational Medical UniversityKuala LumpurMalaysia
| | - Ivy Chung
- Department of PharmacologyFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
- Faculty of MedicineUniversity of Malaya Cancer Research InstituteUniversity of MalayaKuala LumpurMalaysia
| | - Chee‐Onn Leong
- Center for Cancer and Stem Cell ResearchInstitute for ResearchDevelopment and Innovation (IRDI)International Medical UniversityKuala LumpurMalaysia
- School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
| |
Collapse
|
43
|
de Heer EC, Jalving M, Harris AL. HIFs, angiogenesis, and metabolism: elusive enemies in breast cancer. J Clin Invest 2020; 130:5074-5087. [PMID: 32870818 PMCID: PMC7524491 DOI: 10.1172/jci137552] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) and the HIF-dependent cancer hallmarks angiogenesis and metabolic rewiring are well-established drivers of breast cancer aggressiveness, therapy resistance, and poor prognosis. Targeting of HIF and its downstream targets in angiogenesis and metabolism has been unsuccessful so far in the breast cancer clinical setting, with major unresolved challenges residing in target selection, development of robust biomarkers for response prediction, and understanding and harnessing of escape mechanisms. This Review discusses the pathophysiological role of HIFs, angiogenesis, and metabolism in breast cancer and the challenges of targeting these features in patients with breast cancer. Rational therapeutic combinations, especially with immunotherapy and endocrine therapy, seem most promising in the clinical exploitation of the intricate interplay of HIFs, angiogenesis, and metabolism in breast cancer cells and the tumor microenvironment.
Collapse
Affiliation(s)
- Ellen C. de Heer
- University of Groningen, University Medical Center Groningen, Department of Medical Oncology, Groningen, Netherlands
| | - Mathilde Jalving
- University of Groningen, University Medical Center Groningen, Department of Medical Oncology, Groningen, Netherlands
| | - Adrian L. Harris
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
44
|
PET Imaging of l-Type Amino Acid Transporter (LAT1) and Cystine-Glutamate Antiporter (xc−) with [18F]FDOPA and [18F]FSPG in Breast Cancer Models. Mol Imaging Biol 2020; 22:1562-1571. [DOI: 10.1007/s11307-020-01529-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
|
45
|
Ehmsen S, Pedersen MH, Wang G, Terp MG, Arslanagic A, Hood BL, Conrads TP, Leth-Larsen R, Ditzel HJ. Increased Cholesterol Biosynthesis Is a Key Characteristic of Breast Cancer Stem Cells Influencing Patient Outcome. Cell Rep 2020; 27:3927-3938.e6. [PMID: 31242424 DOI: 10.1016/j.celrep.2019.05.104] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/01/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022] Open
Abstract
Tumor eradication may be greatly improved by targeting cancer stem cells (CSCs), as they exhibit resistance to conventional therapy. To gain insight into the unique biology of CSCs, we developed patient-derived xenograft tumors (PDXs) from ER- breast cancers from which we isolated mammospheres that are enriched for CSCs. Comparative global proteomic analysis was performed on patient tumor tissues and corresponding PDXs and mammospheres. Mammospheres exhibited increased expression of proteins associated with de novo cholesterol synthesis. The clinical relevance of increased cholesterol biosynthesis was verified in a large breast cancer cohort showing correlation with shorter relapse-free survival. RNAi and chemical inhibition of the cholesterol biosynthesis pathway reduced mammosphere formation, which could be rescued by a downstream metabolite. Our findings identify the cholesterol biosynthesis pathway as central for CSC propagation and a potential therapeutic target, as well as providing a mechanistic explanation for the therapeutic benefit of statins in breast cancer.
Collapse
Affiliation(s)
- Sidse Ehmsen
- Department of Molecular Medicine, Cancer, and Inflammation Research Unit, University of Southern Denmark, 5000 Odense, Denmark; Department of Oncology, Odense University Hospital, 5000 Odense, Denmark; Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, 5000 Odense, Denmark
| | - Martin H Pedersen
- Department of Molecular Medicine, Cancer, and Inflammation Research Unit, University of Southern Denmark, 5000 Odense, Denmark
| | - Guisong Wang
- Women's Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Annandale, VA 22003, USA
| | - Mikkel G Terp
- Department of Molecular Medicine, Cancer, and Inflammation Research Unit, University of Southern Denmark, 5000 Odense, Denmark
| | - Amina Arslanagic
- Department of Molecular Medicine, Cancer, and Inflammation Research Unit, University of Southern Denmark, 5000 Odense, Denmark
| | - Brian L Hood
- Women's Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Annandale, VA 22003, USA
| | - Thomas P Conrads
- Women's Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Annandale, VA 22003, USA; Inova Schar Cancer Institute, Inova Center for Personalized Health, Fairfax, VA 22031, USA
| | - Rikke Leth-Larsen
- Department of Molecular Medicine, Cancer, and Inflammation Research Unit, University of Southern Denmark, 5000 Odense, Denmark; Department of Regional Health Research, University of Southern Denmark, 5000 Odense, Denmark.
| | - Henrik J Ditzel
- Department of Molecular Medicine, Cancer, and Inflammation Research Unit, University of Southern Denmark, 5000 Odense, Denmark; Department of Oncology, Odense University Hospital, 5000 Odense, Denmark; Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark; Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, 5000 Odense, Denmark.
| |
Collapse
|
46
|
Kim SJ, Ju JS, Kang MH, Won JE, Kim YH, Raninga PV, Khanna KK, Győrffy B, Pack CG, Han HD, Lee HJ, Gong G, Shin Y, Mills GB, Eyun SI, Park YY. RNA-binding protein NONO contributes to cancer cell growth and confers drug resistance as a theranostic target in TNBC. Theranostics 2020; 10:7974-7992. [PMID: 32724453 PMCID: PMC7381744 DOI: 10.7150/thno.45037] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022] Open
Abstract
Breast cancer (BC) is one of the most common cancers in women. TNBC (Triple-negative breast cancer) has limited treatment options and still lacks viable molecular targets, leading to poor outcomes. Recently, RNA-binding proteins (RBPs) have been shown to play crucial roles in human cancers, including BC, by modulating a number of oncogenic phenotypes. This suggests that RBPs represent potential molecular targets for BC therapy. Methods: We employed genomic data to identify RBPs specifically expressed in TNBC. NONO was silenced in TNBC cell lines to examine cell growth, colony formation, invasion, and migration. Gene expression profiles in NONO-silenced cells were generated and analyzed. A high-throughput screening for NONO-targeted drugs was performed using an FDA-approved library. Results: We found that the NONO RBP is highly expressed in TNBC and is associated with poor patient outcomes. NONO binds to STAT3 mRNA, increasing STAT3 mRNA levels in TNBC. Surprisingly, NONO directly interacts with STAT3 protein increasing its stability and transcriptional activity, thus contributing to its oncogenic function. Importantly, high-throughput drug screening revealed that auranofin is a potential NONO inhibitor and inhibits cell growth in TNBC. Conclusions: NONO is an RBP upstream regulator of both STAT3 RNA and protein levels and function. It represents an important and clinically relevant promoter of growth and resistance of TNBCs. NONO is also therefore a potential therapeutic target in TNBC.
Collapse
|
47
|
Horimoto Y, Sasahara N, Sasaki R, Hlaing MT, Sakaguchi A, Saeki H, Arakawa A, Himuro T, Saito M. High FOXA1 protein expression might predict late recurrence in patients with estrogen-positive and HER2-negative breast cancer. Breast Cancer Res Treat 2020; 183:41-48. [PMID: 32572714 DOI: 10.1007/s10549-020-05751-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/13/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Multi-gene expression assays have been developed with the aim of predicting late recurrence in patients with estrogen receptor (ER)-positive breast cancer. However, establishment of alternative markers based on immunohistochemistry is also important for achieving practical use. Based on our previous study, forkhead box A1 (FOXA1) protein was tested as a potentially useful predictive marker for late recurrence. METHODS 117 patients with ER-positive HER2-negative invasive breast cancer who developed distant metastasis following curative surgery were retrospectively investigated. We also evaluated responsiveness to endocrine therapy according to FOXA1 expression. Furthermore, publicly available mRNA microarray data were analyzed to examine patterns of metastasis according to FOXA1 mRNA expression, employing the Kaplan-Meier plotter. RESULTS High expression of FOXA1 was an independent factor predicting long disease-free survival (DFS), along with small tumor size (p = 0.010 and 0.016, respectively). Discrimination of DFS was improved by combining these two factors, i.e., patients with FOXA1-high small tumors had the longest DFS while those with FOXA1-low large tumors had the shortest DFS. Moreover, we revealed that risk of distant metastasis started to increase after the completion of adjuvant endocrine therapy in patients with FOXA1-high tumors. CONCLUSION Among patients who developed distant metastasis, those with FOXA1-high tumors had significantly longer DFS. We believe our data to raise the possibility of FOXA1 being a useful predictive marker for late recurrence and to provide new insights into the biology of FOXA1-high breast cancers.
Collapse
MESH Headings
- Adult
- Aged
- Breast Neoplasms/chemistry
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Disease-Free Survival
- Estrogens
- Female
- Gene Expression Regulation, Neoplastic
- Hepatocyte Nuclear Factor 3-alpha/biosynthesis
- Hepatocyte Nuclear Factor 3-alpha/genetics
- Hepatocyte Nuclear Factor 3-alpha/physiology
- Humans
- Kaplan-Meier Estimate
- Middle Aged
- Neoplasm Invasiveness
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Neoplasms, Hormone-Dependent/chemistry
- Neoplasms, Hormone-Dependent/genetics
- Neoplasms, Hormone-Dependent/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- Receptor, ErbB-2/analysis
- Receptors, Estrogen/analysis
- Recurrence
- Time Factors
Collapse
Affiliation(s)
- Yoshiya Horimoto
- Department of Breast Oncology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Department of Human Pathology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Noriko Sasahara
- Department of Human Pathology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ritsuko Sasaki
- Department of Breast Oncology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - May Thinzar Hlaing
- Department of Breast Oncology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Asumi Sakaguchi
- Department of Human Pathology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Harumi Saeki
- Department of Human Pathology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Atsushi Arakawa
- Department of Human Pathology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takanori Himuro
- Department of Breast Oncology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mitsue Saito
- Department of Breast Oncology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
48
|
Chen C, Yang L, Rivandi M, Franken A, Fehm T, Neubauer H. Bioinformatic Identification of a Breast-Specific Transcript Profile. Proteomics Clin Appl 2020; 14:e2000007. [PMID: 32558282 DOI: 10.1002/prca.202000007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/23/2020] [Indexed: 11/10/2022]
Abstract
PURPOSE To identify a breast-specific transcript profile for the first time, and present an updated bioinformatics strategy for searching tissue-specific transcripts and predicting their significance in cancer. EXPERIMENTAL DESIGN The RNA-seq data of 49 311 transcripts in 88 human tissues from the GTEx, the Illumina Body Map, and the RIKEN FANTOM5 project are integrated to screen breast-specific transcripts. Gene Expression Profiling Interactive Analysis, TGCA, and Kaplan-Meier Plotter are used to examine their expression in cancer tissues and values for prognosis prediction. RESULTS Only 96 transcripts in human genome are breast-specific for women. Among them, ankyrin repeat domain 30A (ANKRD30A) and long intergenic non-protein coding RNA 993 (LINC00993) are further analyzed. The two transcripts are also breast-specific in 33 types of common female cancer and are often dysregulated in breast cancer tissues. Their expression is higher in the luminal breast cancer while significantly downregulated in triple-negative breast cancer. Moreover, the high expression levels of ANKRD30A and LINC0993 in breast cancer tissues indicate a better prognosis of patients with breast cancer. CONCLUSIONS AND CLINICAL RELEVANCE Breast-specific transcripts in human genome are rare and poorly understood currently. The data indicate that these breast-specific biomarkers are promising candidates for screening early cancer, assessing treatment response, monitoring recurrence, identifying metastatic tumor origin, and serving as potential targets for immunotherapy.
Collapse
Affiliation(s)
- Chen Chen
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, Duesseldorf, 40225, Germany.,Department of Breast and Thyroid Surgery, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563000, China
| | - Liwen Yang
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, Duesseldorf, 40225, Germany
| | - Mahdi Rivandi
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, Duesseldorf, 40225, Germany
| | - André Franken
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, Duesseldorf, 40225, Germany
| | - Tanja Fehm
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, Duesseldorf, 40225, Germany
| | - Hans Neubauer
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, Duesseldorf, 40225, Germany
| |
Collapse
|
49
|
From the Argonauts Mythological Sailors to the Argonautes RNA-Silencing Navigators: Their Emerging Roles in Human-Cell Pathologies. Int J Mol Sci 2020; 21:ijms21114007. [PMID: 32503341 PMCID: PMC7312461 DOI: 10.3390/ijms21114007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022] Open
Abstract
Regulation of gene expression has emerged as a fundamental element of transcript homeostasis. Key effectors in this process are the Argonautes (AGOs), highly specialized RNA-binding proteins (RBPs) that form complexes, such as the RNA-Induced Silencing Complex (RISC). AGOs dictate post-transcriptional gene-silencing by directly loading small RNAs and repressing their mRNA targets through small RNA-sequence complementarity. The four human highly-conserved family-members (AGO1, AGO2, AGO3, and AGO4) demonstrate multi-faceted and versatile roles in transcriptome’s stability, plasticity, and functionality. The post-translational modifications of AGOs in critical amino acid residues, the nucleotide polymorphisms and mutations, and the deregulation of expression and interactions are tightly associated with aberrant activities, which are observed in a wide spectrum of pathologies. Through constantly accumulating information, the AGOs’ fundamental engagement in multiple human diseases has recently emerged. The present review examines new insights into AGO-driven pathology and AGO-deregulation patterns in a variety of diseases such as in viral infections and propagations, autoimmune diseases, cancers, metabolic deficiencies, neuronal disorders, and human infertility. Altogether, AGO seems to be a crucial contributor to pathogenesis and its targeting may serve as a novel and powerful therapeutic tool for the successful management of diverse human diseases in the clinic.
Collapse
|
50
|
Donini CF, El Helou M, Wierinckx A, Győrffy B, Aires S, Escande A, Croze S, Clezardin P, Lachuer J, Diab-Assaf M, Ghayad SE, Fervers B, Cavaillès V, Maguer-Satta V, Cohen PA. Long-Term Exposure of Early-Transformed Human Mammary Cells to Low Doses of Benzo[a]pyrene and/or Bisphenol A Enhances Their Cancerous Phenotype via an AhR/GPR30 Interplay. Front Oncol 2020; 10:712. [PMID: 32670863 PMCID: PMC7326103 DOI: 10.3389/fonc.2020.00712] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
It is of utmost importance to decipher the role of chronic exposure to low doses of environmental carcinogens on breast cancer progression. The early-transformed triple-negative human mammary MCF10AT1 cells were chronically (60 days) exposed to low doses (10−10 M) of Benzo[a]pyrene (B[a]P), a genotoxic agent, and/or Bisphenol A (BPA), an endocrine disruptor. Our study revealed that exposed MCF10AT1 cells developed, in a time-dependent manner, an acquired phenotype characterized by an increase in cancerous properties (anchorage independent growth and stem-like phenotype). Co-exposure of MCF10AT1 cells to B[a]P and BPA led to a significantly greater aggressive phenotype compared to B[a]P or BPA alone. This study provided new insights into the existence of a functional interplay between the aryl hydrocarbon receptor (AhR) and the G protein-coupled receptor 30 (GPR30) by which chronic and low-dose exposure of B[a]P and/or BPA fosters the progression of MCF10AT1 cells into a more aggressive substage. Experiments using AhR or GPR30 antagonists, siRNA strategies, and RNAseq analysis led us to propose a model in which AhR signaling plays a “driver role” in the AhR/GPR30 cross-talk in mediating long-term and low-dose exposure of B[a]P and/or BPA. Retrospective analysis of two independent breast cancer cohorts revealed that the AhR/GPR30 mRNA expression signature resulted in poor breast cancer prognosis, in particular in the ER-negative and the triple-negative subtypes. Finally, the study identified targeting AhR and/or GPR30 with specific antagonists as a strategy capable of inhibiting carcinogenesis associated with chronic exposure to low doses of B[a]P and BPA in MCF10AT1 cells. Altogether, our results indicate that the engagement of both AhR and GPR30 functions, in particular in an ER-negative/triple-negative context of breast cells, favors tumor progression and leads to poor prognosis.
Collapse
Affiliation(s)
- Caterina F Donini
- Université Lyon 1, Lyon, France.,CRCL-Centre de Recherche en Cancérologie de Lyon-Inserm U1052-CNRS U5286, Lyon, France.,Département Cancer et Environnement, Centre Léon Bérard, Lyon, France
| | - Myriam El Helou
- Université Lyon 1, Lyon, France.,CRCL-Centre de Recherche en Cancérologie de Lyon-Inserm U1052-CNRS U5286, Lyon, France.,Faculty of sciences II, Lebanese University, Fanar, Lebanon
| | - Anne Wierinckx
- Université Lyon 1, Lyon, France.,CRCL-Centre de Recherche en Cancérologie de Lyon-Inserm U1052-CNRS U5286, Lyon, France.,ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, Lyon, France
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University and TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary
| | - Sophie Aires
- Université Lyon 1, Lyon, France.,CRCL-Centre de Recherche en Cancérologie de Lyon-Inserm U1052-CNRS U5286, Lyon, France
| | | | - Séverine Croze
- Université Lyon 1, Lyon, France.,ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, Lyon, France
| | | | - Joël Lachuer
- Université Lyon 1, Lyon, France.,CRCL-Centre de Recherche en Cancérologie de Lyon-Inserm U1052-CNRS U5286, Lyon, France.,ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, Lyon, France
| | | | | | - Béatrice Fervers
- Université Lyon 1, Lyon, France.,CRCL-Centre de Recherche en Cancérologie de Lyon-Inserm U1052-CNRS U5286, Lyon, France.,Département Cancer et Environnement, Centre Léon Bérard, Lyon, France
| | - Vincent Cavaillès
- IRCM - Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, CNRS, Montpellier, France
| | | | - Pascale A Cohen
- Université Lyon 1, Lyon, France.,CRCL-Centre de Recherche en Cancérologie de Lyon-Inserm U1052-CNRS U5286, Lyon, France.,Département Cancer et Environnement, Centre Léon Bérard, Lyon, France.,ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, Lyon, France.,INSERM, UMR1033 LYOS, Lyon, France
| |
Collapse
|