1
|
Valenza C, Trapani D, Zagami P, Antonarelli G, Boscolo Bielo L, Nicolò E, Ribeiro JM, Guidi L, Reduzzi C, Spotti M, Adamoli L, Cortès J, Pistilli B, Tolaney SM, Ueno N, Layman RM, Cristofanilli M, Carey LA, Munzone E, Criscitiello C, Lynce F, Woodward WA, Curigliano G. Immune checkpoint inhibitors for patients with metastatic triple-negative inflammatory breast cancer (INCORPORATE): An international cohort study. Eur J Cancer 2024; 213:115097. [PMID: 39486164 DOI: 10.1016/j.ejca.2024.115097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Inflammatory breast cancer (IBC) is the most aggressive clinical presentation of breast cancer, recapitulating a specific biology with more immune-vulnerability than non-IBC. Patients with metastatic, triple-negative IBC (mTN-IBC) receive immune checkpoint inhibitors (ICIs) and chemotherapy, similarly to patients with triple-negative non-IBC. However, the benefit derived from ICI incorporation in this rare type of breast cancer is unknown. METHODS We conducted a multicenter, international, retrospective, cohort study to evaluate the activity of ICIs in patients with metastatic, triple-negative, primary IBC, who received ICIs plus first line chemotherapy from January 2015 to April 2023. A sample size of 42 patients allowed to detect an increase in 6-months real-world progression-free survival (rwPFS) rate from 40 % with only chemotherapy to 60 % with ICI and chemotherapy. RESULTS 41 patients from eight international IBC referral centers were included (61 % with primary, de novo mTN-IBC, 61 % with visceral disease). All received ICIs plus first line chemotherapy and 24 % underwent breast surgery and/or locoregional radiotherapy. After a median follow-up of 19.3 months, the 6-months rwPFS rate was 30 % (95 % Confidence Interval [CI], 17-45 %), the median rwPFS was 3.3 months (95 % CI: 2.2-5.4), the median overall survival was 15.7 months (95 % CI: 6.8-16.3). CONCLUSIONS This one-sample analysis showed a poor outcome of patients with mTN-IBC, despite the treatment with ICI, in contrast with the expected benefit based on preclinical evidence of immune-vulnerability of IBC. These results suggest the need to further investigate the role of immunotherapy in this aggressive and rare type of breast cancer presentation.
Collapse
Affiliation(s)
- Carmine Valenza
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Harvard Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Dario Trapani
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| | - Paola Zagami
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gabriele Antonarelli
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Luca Boscolo Bielo
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Eleonora Nicolò
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| | | | - Lorenzo Guidi
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Carolina Reduzzi
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Martina Spotti
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| | - Laura Adamoli
- Clinical Trial Office, European Institute of Oncology, IRCCS, Milan, Italy
| | - Javier Cortès
- Medica Scientia Innovation Research (MEDSIR) - Oncoclínicas&Co, Jersey City, NJ, USA; International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, Barcelona, Spain; Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, Department of Medicine, Madrid, Spain; IOB Madrid, Institute of Oncology, Hospital Beata María Ana, Madrid, Spain
| | - Barbara Pistilli
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| | - Sara M Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Naoto Ueno
- University of Hawai'i Cancer Center, Honolulu, HI, USA
| | - Rachel M Layman
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Massimo Cristofanilli
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Lisa A Carey
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elisabetta Munzone
- Division of Medical Senology, European Institute of Oncology IRCCS, Milan, Italy
| | - Carmen Criscitiello
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Filipa Lynce
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Wendy A Woodward
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Breast Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
2
|
Cao JQ, Surgeoner B, Manna M, Boileau JF, Gelmon KA, Brackstone M, Brezden-Masley C, Jerzak KJ, Prakash I, Sehdev S, Wong SM, Bouganim N, Cescon DW, Chia S, Dayes IS, Joy AA, Henning JW. Guidance for Canadian Breast Cancer Practice: National Consensus Recommendations for Clinical Staging of Patients Newly Diagnosed with Breast Cancer. Curr Oncol 2024; 31:7226-7243. [PMID: 39590163 PMCID: PMC11592626 DOI: 10.3390/curroncol31110533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
The accurate staging of breast cancer is fundamental for guiding treatment decisions and predicting patient outcomes. However, there can be considerable variation in routine clinical practice based on individual interpretation of guidelines and depending on the healthcare provider initially involved in working up patients newly diagnosed with breast cancer, ranging from primary care providers, triage nurses, surgeons, and/or oncologists. The optimal approach for clinical staging, particularly in asymptomatic patients presenting with intermediate-risk disease, remains a topic of dialogue among clinicians. Given this area of uncertainty, the Research Excellence, Active Leadership (REAL) Canadian Breast Cancer Alliance conducted a modified Delphi process to assess the level of agreement among Canadian expert clinicians on various staging recommendations. In total, 20 items were drafted covering staging based on biological status, the utilization of localization clips, both for the axilla during diagnosis and primary surgical site for margins and radiation therapy planning, and the use of advanced imaging for the investigation of distant metastases. Overall, the consensus threshold among all participants (i.e., ≥75% agreement) was reached in 20/20 items. Differences in clinical practice and recent findings from the literature are provided in the discussion. These consensus recommendations are meant to help standardize breast cancer staging practices in Canada, ensuring accurate diagnosis and optimal treatment planning.
Collapse
Affiliation(s)
- Jeffrey Q. Cao
- Arthur Child Comprehensive Cancer Centre, Calgary, AB T2N 5G2, Canada
| | | | - Mita Manna
- Saskatoon Cancer Centre, Saskatoon, SK S7N 4H4, Canada
| | | | - Karen A. Gelmon
- Department of Medical Oncology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | | | | | | | | | - Sandeep Sehdev
- The Ottawa Hospital Cancer Centre, Ottawa, ON K1H 8L6, Canada
| | | | | | - David W. Cescon
- Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| | - Stephen Chia
- BC Cancer—Vancouver, Vancouver, BC V5Z 4E6, Canada
| | - Ian S. Dayes
- Juravinski Cancer Center, McMaster University, Hamilton, ON L8V 5C2, Canada
| | | | | |
Collapse
|
3
|
Steadman JA, Hieken TJ. Advances from targeted therapy for non-metastatic HER2-positive inflammatory breast cancer. J Surg Oncol 2024; 130:366-370. [PMID: 39101322 DOI: 10.1002/jso.27797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/21/2024] [Indexed: 08/06/2024]
Abstract
Among inflammatory breast cancer (IBC) patients, over one-third have HER2-overexpressing (HER2+) tumors. Pathologic complete response (pCR) rates to neoadjuvant targeted and chemotherapy for patients with HER2+ non-metastatic IBC now apporach 60% and favorable long-term survival rates are being reported for those with a pCR. Immune mechanisms contributing to this phenomenon include antibody-mediated immune activation and induction of memory T-cell reponses which may explain the sustained antitumor response seen after discontinuation of targeted therapies.
Collapse
Affiliation(s)
- Jessica A Steadman
- Department of Surgery, Division of Breast and Melanoma Surgical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Tina J Hieken
- Department of Surgery, Division of Breast and Melanoma Surgical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
4
|
Iwase T, Cohen EN, Gao H, Alexander A, Kai M, Chiv V, Wang X, Krishnamurthy S, Liu D, Shen Y, Kida K, Reuben A, Layman R, Ramirez D, Tripathy D, Moulder SL, Yam C, Valero V, Lim B, Reuben JM, Ueno NT. Maintenance Pembrolizumab Therapy in Patients with Metastatic HER2-negative Breast Cancer with Prior Response to Chemotherapy. Clin Cancer Res 2024; 30:2424-2432. [PMID: 38629963 PMCID: PMC11147689 DOI: 10.1158/1078-0432.ccr-23-2947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/16/2024] [Accepted: 04/04/2024] [Indexed: 06/04/2024]
Abstract
PURPOSE Accumulating toxicities hinder indefinite chemotherapy for many patients with metastatic/recurrent HER2-negative breast cancer. We conducted a phase II trial of pembrolizumab monotherapy following induction chemotherapy to determine the efficacy of maintenance immunotherapy in patients with metastatic HER2-negative inflammatory breast cancer (IBC) and non-IBC triple-negative breast cancer (TNBC) and a biomarker study. PATIENTS AND METHODS Patients with a complete response, partial response, or stable disease (SD) after at least three cycles of chemotherapy for HER2-negative breast cancer received pembrolizumab, regardless of programmed death-ligand 1 expression. Pembrolizumab (200 mg) was administered every 3 weeks until disease progression, intolerable toxicity, or 2 years of pembrolizumab exposure. The endpoints included the 4-month disease control rate (DCR), progression-free survival (PFS), overall survival, and response biomarkers in the blood. RESULTS Of 43 treated patients, 11 had metastatic IBC and 32 non-IBC TNBC. The 4-month DCR was 58.1% [95% confidence interval (CI), 43.4-72.9]. For all patients, the median PFS was 4.8 months (95% CI, 3.0-7.1 months). The toxicity profile was similar to the previous pembrolizumab monotherapy study. Patients with high T-cell clonality at baseline had a longer PFS with pembrolizumab treatment than did those with low T-cell clonality (10.4 vs. 3.6 months, P = 0.04). Patients who achieved SD also demonstrated a significant increase in T-cell clonality during therapy compared with those who did not achieve SD (20% vs. 5.9% mean increase, respectively; P = 0.04). CONCLUSIONS Pembrolizumab monotherapy achieved durable treatment responses. Patients with a high baseline T-cell clonality had prolonged disease control with pembrolizumab.
Collapse
MESH Headings
- Humans
- Female
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/adverse effects
- Middle Aged
- Receptor, ErbB-2/metabolism
- Aged
- Adult
- Antineoplastic Agents, Immunological/therapeutic use
- Antineoplastic Agents, Immunological/adverse effects
- Antineoplastic Agents, Immunological/administration & dosage
- Biomarkers, Tumor
- Triple Negative Breast Neoplasms/drug therapy
- Triple Negative Breast Neoplasms/pathology
- Triple Negative Breast Neoplasms/mortality
- Neoplasm Metastasis
- Breast Neoplasms/drug therapy
- Breast Neoplasms/pathology
- Breast Neoplasms/mortality
- Maintenance Chemotherapy
Collapse
Affiliation(s)
- Toshiaki Iwase
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Translational and Clinical Research Program, University of Hawai’i Cancer Center, Honolulu, Hawaii
| | - Evan N. Cohen
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hui Gao
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Angela Alexander
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Megumi Kai
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vivian Chiv
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaoping Wang
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Translational and Clinical Research Program, University of Hawai’i Cancer Center, Honolulu, Hawaii
| | - Savitri Krishnamurthy
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Diane Liu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yu Shen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kumiko Kida
- Department of Breast Surgery, St. Luke’s International Hospital, Tokyo, Japan
| | - Alexandre Reuben
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rachel Layman
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David Ramirez
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Clinton Yam
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vicente Valero
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bora Lim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Oncology/Medicine, Baylor College of Medicine, Houston, Texas
| | - James M Reuben
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naoto T Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Translational and Clinical Research Program, University of Hawai’i Cancer Center, Honolulu, Hawaii
| |
Collapse
|
5
|
Yoshikawa GT, Miyazaki KSY, Acoba JD, Fujii T. Racial and survival disparities in inflammatory breast cancer (IBC) and non-IBC: a population-based study focused on Native Hawaiians and other Pacific Islanders. Front Oncol 2024; 14:1390080. [PMID: 38826792 PMCID: PMC11140018 DOI: 10.3389/fonc.2024.1390080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/30/2024] [Indexed: 06/04/2024] Open
Abstract
Background It is well known that race is an independent predictor of breast cancer mortality and advanced stage at diagnosis. Inflammatory breast cancer (IBC) is the most aggressive type of breast cancer and has distinct clinical and biological features. Previous studies have shown that Blacks have a higher incidence of IBC than Whites. However, the proportion of IBC and the role of race on prognosis in Native Hawaiian and other Pacific Islander (NH/PI) populations with breast cancer are poorly understood. In this study, we aimed to examine the proportion of IBC to non-IBC in NH/PIs and to identify the clinicopathological, biological, and socioeconomic factors associated with the overall survival of NH/PIs compared to other races. Methods Utilizing a comprehensive cancer registry from the largest hospital in Hawaii, newly diagnosed primary invasive breast cancer patients diagnosed between 2000 and 2018 were identified. Univariate and multivariate Cox proportional hazards models were used to test the association between race and clinical outcomes. Variables with P-values <0.05 in the univariate analysis and race (variable of interest) were included in a multivariate analysis. Results The cohort included 3691 patients, 60 of whom had IBC. NH/PI race had the highest proportion of IBC compared to other races (3.44%) but was not found to be an independent poor prognostic factor in IBC (HR 1.17 [95%CI 0.26-5.22]). Conversely, NH/PI race was associated with worse survival outcomes in patients with non-IBC (HR 1.65 [95%CI, 1.14-2.39]) along with other factors such as lack of insurance, underinsured status, triple-negative breast cancer (TNBC) subtype, age, and advanced clinical stage. Conclusions The findings of this study highlight that NH/PIs had higher rates of IBC and inferior survival in non-IBC compared to other races but not in IBC. It is essential to disaggregate NH/PI race from Asians in future population-based research studies. Further research is needed to understand the factors contributing to higher rates of IBC and poor survival outcomes in NH/PIs with non-IBC as well as targeted interventions to improve breast cancer outcomes in this population to ultimately help improve survival rates and reduce health inequities in NH/PIs with breast cancer.
Collapse
Affiliation(s)
- Gene T. Yoshikawa
- Department of Medicine, University of Hawai’i Internal Medicine Residency Program, Honolulu, HI, United States
- John A. Burns School of Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
| | - Kyle SY. Miyazaki
- Department of Medicine, University of Hawai’i Internal Medicine Residency Program, Honolulu, HI, United States
- John A. Burns School of Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
| | - Jared D. Acoba
- John A. Burns School of Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
- Cancer Biology Program, Translational and Clinical Research, University of Hawai’i Cancer Center, Honolulu, HI, United States
| | - Takeo Fujii
- John A. Burns School of Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
- Cancer Biology Program, Translational and Clinical Research, University of Hawai’i Cancer Center, Honolulu, HI, United States
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
6
|
Van Berckelaer C, Van Laere S, Lee S, Morse MA, Geradts J, Dirix L, Kockx M, Bertucci F, Van Dam P, Devi GR. XIAP overexpressing inflammatory breast cancer patients have high infiltration of immunosuppressive subsets and increased TNFR1 signaling targetable with Birinapant. Transl Oncol 2024; 43:101907. [PMID: 38412664 PMCID: PMC10907867 DOI: 10.1016/j.tranon.2024.101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/29/2024] Open
Abstract
OBJECTIVE To assess the expression pattern of X-linked inhibitor of apoptosis protein (XIAP), a cellular stress sensor, and delineate the associated changes in the tumor immune microenvironment (TiME) for prognostic value and new therapeutic targets in inflammatory breast cancer (IBC). METHODS Immunohistochemistry was conducted to assess the spatial localization of immune subsets, XIAP, and PDL1 expression in IBC and non-inflammatory breast cancer (nIBC) pretreatment tumors (n = 142). Validation and further exploration were performed by gene expression analysis of patient tumors along with signaling studies in a co-culture model. RESULTS High XIAP in 37/81 IBC patients correlated significantly with high PD-L1, increased infiltration of FOXP3+ Tregs, CD163+ tumor-associated macrophages (TAMs), low CD8/CD163 ratio in both tumor stroma (TS) and invasive margins (IM), and higher CD8+ T cells and CD79α+ B cells in the IM. Gene set enrichment analysis identified cellular stress response- and inflammation-related genes along with tumor necrosis factor receptor 1 (TNFR1) expression in high-XIAP IBC tumors. Induction of TNFR1 and XIAP was observed when patient-derived SUM149 IBC cells were co-cultured with human macrophage-conditioned media simulating TAMs, further demonstrating that the TNF-α signaling pathway is a likely candidate governing TAM-induced XIAP overexpression in IBC cells. Finally, addition of Birinapant, a pan IAP antagonist, induced cell death in the pro-survival cytokine-enriched conditions. CONCLUSION Using immunophenotyping and gene expression analysis in patient biospecimens along with in silico modeling and a preclinical model with a pan-IAP antagonist, this study revealed an interplay between increased TAMs, TNF-α signaling, and XIAP activation during (immune) stress in IBC. These data demonstrate the potential of IAP antagonists as immunomodulators for improving IBC therapeutic regimens.
Collapse
Affiliation(s)
- Christophe Van Berckelaer
- Multidisciplinary Breast Clinic, Antwerp University Hospital (UZA), Molecular Imaging, Pathology, Radiotherapy, Oncology (MIPRO); Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; Duke Consortium for Inflammatory Breast Cancer, Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Steven Van Laere
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Seayoung Lee
- Department of Surgery, Division of Surgical Sciences, Duke University School of Medicine, Durham, NC, USA; Duke Consortium for Inflammatory Breast Cancer, Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Michael A Morse
- Department of Surgery, Division of Surgical Sciences, Duke University School of Medicine, Durham, NC, USA; Duke Consortium for Inflammatory Breast Cancer, Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA; Department of Medicine, Duke University, Durham, NC, USA
| | - Joseph Geradts
- Duke Consortium for Inflammatory Breast Cancer, Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA; Department of Medicine, Duke University, Durham, NC, USA; Department of Pathology, East Carolina University Brody School of Medicine, Greenville, NC, USA
| | - Luc Dirix
- Department of Oncology, GZA Hospitals, University of Antwerp, Antwerpen, Belgium
| | | | - François Bertucci
- Predictive Oncology team, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Marseille, France
| | - Peter Van Dam
- Multidisciplinary Breast Clinic, Antwerp University Hospital (UZA), Molecular Imaging, Pathology, Radiotherapy, Oncology (MIPRO); Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| | - Gayathri R Devi
- Department of Surgery, Division of Surgical Sciences, Duke University School of Medicine, Durham, NC, USA; Duke Consortium for Inflammatory Breast Cancer, Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
7
|
Sanli AN, Tekcan Sanli DE, Aydogan F, Altundag MK. Should the Breast Cancer Staging System be Revised? Am Surg 2024; 90:1066-1073. [PMID: 38128067 DOI: 10.1177/00031348231223074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
OBJECTIVE The purpose of this study was to determine whether breast cancer patients at stage T2N0 with tumor size ≥4 cm and <4 cm. METHOD Patients with T2N0 stage breast cancer diagnosed between 2010 and 2019 were analyzed in 2 groups as <4 cm (T2a) and ≥4 cm (T2b) in the study using the SEER 17 Research Plus database. The patients' clinicopathological characteristics and oncological outcomes were included. Group comparisons of prognostic factors, overall survival (OS), and cancer-specific survival (CSS) were made. RESULTS In this study, which involved 70971 patients, the T2a group had higher 5-year OS rate (87.2 ± .2 vs 80.8 ± .5%) and 5-year CSS rate (93.7 ± .1% vs 89.4 ± .4%) than the T2b group (P < .001). Univariate analysis revealed that the overall risk of death was 1.5 times higher in T2b than T2a (HR: 1.533 [95% CI: 1.450-1.622], P < .001), whereas multivariate analysis demonstrated the risk was 1.4 times higher (HR: 1.384 [95% CI: 1.307-1.466], P < .001). The risk of cancer-specific death was 1.7 times higher in univariate analysis (HR: 1.691 [95% CI: 1.561-1.832], P < .001) and 1.4 times higher in multivariate analysis (HR: 1.420 [95% CI: 1.309-1.541], P < .001). CONCLUSION Overall survival and BCSS rates in stage T2b breast cancer patients are significantly lower than in T2a patients. Tumor size ≥4 cm in breast cancer is a negative predictor of prognosis.
Collapse
Affiliation(s)
- Ahmet Necati Sanli
- Department of General Surgery, Abdulkadir Yuksel State Hospital, Gaziantep, Turkey
| | | | - Fatih Aydogan
- Department of General Surgery, Kirklareli University, Faculty of Medicine, Kirklareli, Turkey
- Breast Health Center, Memorial Bahcelievler Hospital, Istanbul, Turkey
| | | |
Collapse
|
8
|
Lai HY, Loh EW, Su CM, Chiang MH, Tam KW. Outcomes of Breast-Conserving Therapy in Patients With Inflammatory Breast Cancer: A Meta-Analysis. J Surg Res 2024; 293:458-467. [PMID: 37820394 DOI: 10.1016/j.jss.2023.08.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/15/2023] [Accepted: 08/26/2023] [Indexed: 10/13/2023]
Abstract
INTRODUCTION Inflammatory breast cancer (IBC) is a rare and aggressive form of breast cancer. Currently, patients who respond to neoadjuvant chemotherapy (NAC) are treated with mastectomy and axillary lymph node dissection. This study aimed to synthesize real-world data to evaluate the feasibility of breast-conserving therapy (BCT), sentinel lymph node (SLN), and sentinel lymph node biopsy (SLNB) for patients with IBC who respond to NAC. METHODS PubMed, Embase, and Cochrane Library databases were searched for relevant articles. Clinical studies that compared mastectomy with BCT for IBC treatment were reviewed. The primary outcomes were local recurrence rate and 5-y survival rate in patients with IBC who responded to NAC. Furthermore, the SLN detection rate and false-negative rate (FNR) for SLNB were also evaluated. RESULTS In the final analysis, 17 studies were included. The pooled estimates of the local recurrence rate for mastectomy and no surgical intervention were 18.6% and 15.9%, respectively (P = 0.956). Five-y survival was similar for mastectomy, partial mastectomy, and no surgical intervention (45.8%, 57.1%, and 39.4%, respectively). The pooled estimates of the SLN detection rate and FNR for SLNB were 81.9% and 21.8%, respectively. CONCLUSIONS Among patients with IBC who respond to NAC, the local recurrence and 5-y survival rates in those undergoing BCT are noninferior to the rates in those undergoing mastectomy; therefore, BCT could be a feasible option for surgical management. However, a poor SLN detection rate and a high FNR were found in patients undergoing SLNB. Further large-scale clinical studies are required to confirm our findings.
Collapse
Affiliation(s)
- Hui-Ying Lai
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - El-Wui Loh
- Cochrane Taiwan, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Center for Evidence-based Health Care, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chih-Ming Su
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Division of General Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Meng-Hsuan Chiang
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Ka-Wai Tam
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Cochrane Taiwan, Taipei Medical University, Taipei, Taiwan; Center for Evidence-based Health Care, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Division of General Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
9
|
Bahrami P, Moayeri H, Moradi G, Nouri E, Moradi Y. Systematic Review and Meta-Analysis of Treatment Effects on Survival in Patients with Inflammatory Breast Cancer. Asian Pac J Cancer Prev 2023; 24:3335-3343. [PMID: 37898836 PMCID: PMC10770693 DOI: 10.31557/apjcp.2023.24.10.3335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023] Open
Abstract
The objective of this study was to determine the survival rate and the effects of different treatments on patients with inflammatory breast cancer (IBC). The study employed a systematic approach that included a search strategy across four databases: Embase, Web of Sciences, PubMed, and Scopus. The results obtained were screened initially by titles and abstracts, followed by full-texts in EndNote 8 software. The next stage involved data extraction and qualitative evaluation, where the Metan command was used to estimate the pooled survival rate. A total of 28 studies with a sample size of 63,796 were finally analyzed. The overall 3- and 5-year survival rates (OS) for IBC patients were found to be 52% (95% CI; 46-58%, I2: 99.42%) and 61% (95% CI; 53-69%, I2: 93.63%), respectively. The 5-year OS rates in patients with non-metastatic and metastatic IBC were 59% (95% CI; 54-63%, I2: 98.31%) and 30% (95% CI; 26-35%, I2: 50.84%), respectively. The 5-year OS rate in non-metastatic patients who underwent BCS surgery was 60% (CI 95%; 26-94%, I2: 95.13%). The overall 5- and 3-year OS rates for patients with IBC were lower than those for all types of breast cancer, and the rates were even lower in patients with metastasis. Therefore, it is recommended that healthcare workers and women at risk should be vigilant of early symptoms of IBC to prevent metastasis by seeking medical attention on time.
Collapse
Affiliation(s)
- Pourya Bahrami
- School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Hassan Moayeri
- Department of Surgery, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Ghobad Moradi
- Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Elham Nouri
- Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Yousef Moradi
- Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
10
|
Meng X, Chang X, Qin P, Li Y, Guo Y. Risk-dependent conditional survival analysis and annual hazard rate of inflammatory breast cancer. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2023; 49:106957. [PMID: 37328310 DOI: 10.1016/j.ejso.2023.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/22/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
PURPOSE The real-time prognosis of patients with inflammatory breast cancer (IBC) after surviving for several years was unclear. We aimed to estimate survival over time in IBC using conditional survival (CS) and annual hazard functions. PATIENTS AND METHODS This study recruited 679 patients diagnosed with IBC between 2010 and 2019 from the Surveillance, Epidemiology, and End Results (SEER) database. We used the Kaplan-Meier method to estimate overall survival (OS). CS was the probability of surviving for another y years after surviving for x years after the diagnosis, and the annual hazard rate was the cumulative mortality rate of follow-up patients. Cox regression analyses were used to identify prognostic factors, and changes in real-time survival and immediate mortality in surviving patients were assessed within these prognostic factors. RESULTS CS analysis showed real-time improvement in survival, with 5-year OS updated annually from the initial 43.5% to 52.2%, 65.3%, 78.5%, and 89.0% (surviving 1-4 years, respectively). However, this improvement was relatively small in the first two years after diagnosis, and the smoothed annual hazard rate curve showed increasing mortality during this period. Cox regression identified seven unfavorable factors at diagnosis, but only distant metastases remained after five years of survival. Analysis of the annual hazard rate curves showed that mortality continued to decrease for most survivors, except for metastatic IBC. CONCLUSION Real-time survival of IBC improved dynamically over time, and the magnitude of this improvement was non-linear, depending on survival time and clinicopathological characteristics.
Collapse
Affiliation(s)
- Xiangdi Meng
- Department of Radiation Oncology, Weifang People's Hospital, Weifang, China
| | - Xiaolong Chang
- Department of Radiation Oncology, Weifang People's Hospital, Weifang, China
| | - Peiyan Qin
- Department of Radiation Oncology, Weifang People's Hospital, Weifang, China
| | - Yang Li
- Department of Radiation Oncology, Weifang People's Hospital, Weifang, China
| | - Yinghua Guo
- Department of Radiation Oncology, Weifang People's Hospital, Weifang, China.
| |
Collapse
|
11
|
Garrido-Castro AC, Regan MM, Niman SM, Nakhlis F, Remolano C, Rosenbluth JM, Block C, Warren LE, Bellon JR, Yeh E, Harrison BT, Troll E, Lin NU, Tolaney SM, Overmoyer B, Lynce F. Clinical outcomes of de novo metastatic HER2-positive inflammatory breast cancer. NPJ Breast Cancer 2023; 9:50. [PMID: 37268625 DOI: 10.1038/s41523-023-00555-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/19/2023] [Indexed: 06/04/2023] Open
Abstract
Inflammatory breast cancer (IBC) is a rare, aggressive form of breast cancer that presents as de novo metastatic disease in 20-30% of cases, with one-third of cases demonstrating HER2-positivity. There has been limited investigation into locoregional therapy utilization following HER2-directed systemic therapy for these patients, and their locoregional progression or recurrence (LRPR) and survival outcomes. Patients with de novo HER2-positive metastatic IBC (mIBC) were identified from an IRB-approved IBC registry at Dana-Farber Cancer Institute. Clinical, pathology, and treatment data were abstracted. Rates of LRPR, progression-free survival (PFS), overall survival (OS), and pathologic complete response (pCR) were determined. Seventy-eight patients diagnosed between 1998 and 2019 were identified. First-line systemic therapy comprised chemotherapy for most patients (97.4%) and HER2-directed therapy for all patients (trastuzumab [47.4%]; trastuzumab+pertuzumab [51.3%]; or trastuzumab emtansine [1.3%]). At a median follow-up of 2.7 years, the median PFS was 1.0 year, and the median OS was 4.6 years. The 1- and 2-year cumulative incidence of LRPR was 20.7% and 29.0%, respectively. Mastectomy was performed after systemic therapy in 41/78 patients (52.6%); 10 had a pCR (24.4%) and all were alive at last follow-up (1.3-8.9 years after surgery). Among 56 patients who were alive and LRPR-free at one year, 10 developed LRPR (surgery group = 1; no-surgery group = 9). In conclusion, patients with de novo HER2-positive mIBC who undergo surgery have favorable outcomes. More than half of patients received systemic and local therapy with good locoregional control and prolonged survival, suggesting a potential role for local therapy.
Collapse
Affiliation(s)
- Ana C Garrido-Castro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Meredith M Regan
- Harvard Medical School, Boston, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Samuel M Niman
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Faina Nakhlis
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Claire Remolano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jennifer M Rosenbluth
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Caroline Block
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Laura E Warren
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jennifer R Bellon
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Eren Yeh
- Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Beth T Harrison
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Elizabeth Troll
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nancy U Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sara M Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Beth Overmoyer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Filipa Lynce
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Rickard AG, Sannareddy DS, Bennion A, Patel P, Sauer SJ, Rouse DC, Bouchal S, Liu H, Dewhirst MW, Palmer GM, Devi GR. A Novel Preclinical Murine Model to Monitor Inflammatory Breast Cancer Tumor Growth and Lymphovascular Invasion. Cancers (Basel) 2023; 15:cancers15082261. [PMID: 37190189 DOI: 10.3390/cancers15082261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023] Open
Abstract
Inflammatory breast cancer (IBC), an understudied and lethal breast cancer, is often misdiagnosed due to its unique presentation of diffuse tumor cell clusters in the skin and dermal lymphatics. Here, we describe a window chamber technique in combination with a novel transgenic mouse model that has red fluorescent lymphatics (ProxTom RFP Nu/Nu) to simulate IBC clinicopathological hallmarks. Various breast cancer cells stably transfected to express green or red fluorescent reporters were transplanted into mice bearing dorsal skinfold window chambers. Intravital fluorescence microscopy and the in vivo imaging system (IVIS) were used to serially quantify local tumor growth, motility, length density of lymph and blood vessels, and degree of tumor cell lymphatic invasion over 0-140 h. This short-term, longitudinal imaging time frame in studying transient or dynamic events of diffuse and collectively migrating tumor cells in the local environment and quantitative analysis of the tumor area, motility, and vessel characteristics can be expanded to investigate other cancer cell types exhibiting lymphovascular invasion, a key step in metastatic dissemination. It was found that these models were able to effectively track tumor cluster migration and dissemination, which is a hallmark of IBC clinically, and was recapitulated in these mouse models.
Collapse
Affiliation(s)
- Ashlyn G Rickard
- Program of Medical Physics, Duke University, Durham, NC 27705, USA
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dorababu S Sannareddy
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Alexandra Bennion
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27705, USA
| | - Pranalee Patel
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27705, USA
| | - Scott J Sauer
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Douglas C Rouse
- Division of Laboratory Animal Resources, Duke University School of Medicine, Durham, NC 27710, USA
| | - Samantha Bouchal
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27705, USA
| | - Harrison Liu
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mark W Dewhirst
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Inflammatory Breast Cancer Consortium, Duke Cancer Institute, Durham, NC 27710, USA
| | - Gregory M Palmer
- Program of Medical Physics, Duke University, Durham, NC 27705, USA
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Inflammatory Breast Cancer Consortium, Duke Cancer Institute, Durham, NC 27710, USA
| | - Gayathri R Devi
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Inflammatory Breast Cancer Consortium, Duke Cancer Institute, Durham, NC 27710, USA
- Program in Cancer Risk, Detection, and Interception, Duke Cancer Institute, Durham, NC 27710, USA
| |
Collapse
|
13
|
Operative Management in Stage IV Breast Cancer. Surg Clin North Am 2023; 103:93-106. [DOI: 10.1016/j.suc.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Ibrahim AS, El-Shinawi M, Sabet S, Ibrahim SA, Mohamed MM. Role of adipose tissue-derived cytokines in the progression of inflammatory breast cancer in patients with obesity. Lipids Health Dis 2022; 21:67. [PMID: 35927653 PMCID: PMC9351154 DOI: 10.1186/s12944-022-01678-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Inflammatory breast cancer (IBC) represents a deadly aggressive phenotype of breast cancer (BC) with a unique clinicopathological presentation and low survival rate. In fact, obesity represents an important risk factor for BC. Although several studies have identified different cellular-derived and molecular factors involved in IBC progression, the role of adipocytes remains unclear. Cancer-associated adipose tissue (CAAT) expresses a variety of adipokines, which contribute to tumorigenesis and the regulation of cancer stem cell (CSC). This research investigated the potential effect of the secretome of CAAT explants from patients with BC on the progression and metastasis of the disease. METHODS This study established an ex-vivo culture of CAAT excised from IBC (n = 13) vs. non-IBC (n = 31) patients with obesity and profiled their secretome using a cytokine antibody array. Furthermore, the quantitative PCR (qPCR) methodology was used to validate the levels of predominant cytokines at the transcript level after culture in a medium conditioned by CAAT. Moreover, the impact of the CAAT secretome on the expression of epithelial-mesenchymal transition (EMT) and cells with stem cell (CSC) markers was studied in the non-IBC MDA-MB-231 and the IBC SUM-149 cell lines. The statistical differences between variables were evaluated using the chi-squared test and unpaired a Student's t-test. RESULTS The results of cytokine array profiling revealed an overall significantly higher level of a panel of 28 cytokines secreted by the CAAT ex-vivo culture from IBC patients with obesity compared to those with non-IBC. Of note, interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte chemo-attractant protein 1 (MCP-1) were the major adipokines secreted by the CAAT IBC patients with obesity. Moreover, the qPCR results indicated a significant upregulation of the IL-6, IL-8, and MCP-1 mRNAs in CAAT ex-vivo culture of patients with IBC vs. those with non-IBC. Intriguingly, a qPCR data analysis showed that the CAAT secretome secretions from patients with non-IBC downregulated the mRNA levels of the CD24 CSC marker and of the epithelial marker E-cadherin in the non-IBC cell line. By contrast, E-cadherin was upregulated in the SUM-149 cell. CONCLUSIONS This study identified the overexpression of IL-6, IL-8, and MCP-1 as prognostic markers of CAAT from patients with IBC but not from those with non-IBC ; moreover, their upregulation might be associated with IBC aggressiveness via the regulation of CSC and EMT markers. This study proposed that targeting IL-6, IL-8, and MCP-1 may represent a therapeutic option that should be considered in the treatment of patients with IBC.
Collapse
Affiliation(s)
- Aya Saber Ibrahim
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo, 11566, Egypt
- International Affairs, Galala University, Suez, Egypt
| | - Salwa Sabet
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | | | - Mona Mostafa Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
- Molecular Biotechnology Program, Faculty of Science, Galala University, Suez, Egypt
| |
Collapse
|
15
|
Al Abo M, Gearhart-Serna L, Van Laere S, Freedman JA, Patierno SR, Hwang ESS, Krishnamurthy S, Williams KP, Devi GR. Adaptive stress response genes associated with breast cancer subtypes and survival outcomes reveal race-related differences. NPJ Breast Cancer 2022; 8:73. [PMID: 35697736 PMCID: PMC9192737 DOI: 10.1038/s41523-022-00431-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 04/05/2022] [Indexed: 11/12/2022] Open
Abstract
Aggressive breast cancer variants, like triple negative and inflammatory breast cancer, contribute to disparities in survival and clinical outcomes among African American (AA) patients compared to White (W) patients. We previously identified the dominant role of anti-apoptotic protein XIAP in regulating tumor cell adaptive stress response (ASR) that promotes a hyperproliferative, drug resistant phenotype. Using The Cancer Genome Atlas (TCGA), we identified 46-88 ASR genes that are differentially expressed (2-fold-change and adjusted p-value < 0.05) depending on PAM50 breast cancer subtype. On average, 20% of all 226 ASR genes exhibited race-related differential expression. These genes were functionally relevant in cell cycle, DNA damage response, signal transduction, and regulation of cell death-related processes. Moreover, 23% of the differentially expressed ASR genes were associated with AA and/or W breast cancer patient survival. These identified genes represent potential therapeutic targets to improve breast cancer outcomes and mitigate associated health disparities.
Collapse
Affiliation(s)
- Muthana Al Abo
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | | | - Steven Van Laere
- Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences-University of Antwerp, Campus Drie Eiken‑Universiteitsplein 1, 2610, Wilrijk‑Antwerp, Belgium
| | - Jennifer A Freedman
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Steven R Patierno
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Eun-Sil Shelley Hwang
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | | | - Kevin P Williams
- Department of Pharmaceutical Sciences and BRITE, North Carolina Central University, Durham, NC, 27707, USA
| | - Gayathri R Devi
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
16
|
Rogic A, Pant I, Grumolato L, Fernandez-Rodriguez R, Edwards A, Das S, Sun A, Yao S, Qiao R, Jaffer S, Sachidanandam R, Akturk G, Karlic R, Skobe M, Aaronson SA. High endogenous CCL2 expression promotes the aggressive phenotype of human inflammatory breast cancer. Nat Commun 2021; 12:6889. [PMID: 34824220 PMCID: PMC8617270 DOI: 10.1038/s41467-021-27108-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammatory Breast Cancer (IBC) is a highly aggressive malignancy with distinct clinical and histopathological features whose molecular basis is unresolved. Here we describe a human IBC cell line, A3250, that recapitulates key IBC features in a mouse xenograft model, including skin erythema, diffuse tumor growth, dermal lymphatic invasion, and extensive metastases. A3250 cells express very high levels of the CCL2 chemokine and induce tumors enriched in macrophages. CCL2 knockdown leads to a striking reduction in macrophage densities, tumor proliferation, skin erythema, and metastasis. These results establish IBC-derived CCL2 as a key factor driving macrophage expansion, and indirectly tumor growth, with transcriptomic analysis demonstrating the activation of multiple inflammatory pathways. Finally, primary human IBCs exhibit macrophage infiltration and an enriched macrophage RNA signature. Thus, this human IBC model provides insight into the distinctive biology of IBC, and highlights potential therapeutic approaches to this deadly disease. Inflammatory breast cancer (IBC) is an aggressive form of breast cancer with a poor prognosis. Here the authors report the characterization of a human IBC cell line recapitulating the clinical and histopathological features of the human disease, and implicating its high level of CCL2 in macrophage infiltration and tumor progression.
Collapse
Affiliation(s)
- Anita Rogic
- Laboratory of Cancer Lymphangiogenesis, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ila Pant
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Luca Grumolato
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Normandie University, UNIROUEN, INSERM, DC2N, Rouen, France
| | - Ruben Fernandez-Rodriguez
- Laboratory of Cancer Lymphangiogenesis, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrew Edwards
- Laboratory of Cancer Lymphangiogenesis, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Suvendu Das
- Laboratory of Cancer Lymphangiogenesis, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Institute of Advanced Research, Department of Biological Sciences and Biotechnology, Koba Institutional, Area, Gandhinagar 382 426, Gujarat, India
| | - Aaron Sun
- Laboratory of Cancer Lymphangiogenesis, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shen Yao
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rui Qiao
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shabnam Jaffer
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ravi Sachidanandam
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Guray Akturk
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rosa Karlic
- Bioinformatics group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Mihaela Skobe
- Laboratory of Cancer Lymphangiogenesis, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA. .,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - Stuart A Aaronson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA. .,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
17
|
Villodre ES, Hu X, Larson R, Finetti P, Gomez K, Balema W, Stecklein SR, Santiago‐Sanchez G, Krishnamurthy S, Song J, Su X, Ueno NT, Tripathy D, Van Laere S, Bertucci F, Vivas‐Mejía P, Woodward WA, Debeb BG. Lipocalin 2 promotes inflammatory breast cancer tumorigenesis and skin invasion. Mol Oncol 2021; 15:2752-2765. [PMID: 34342930 PMCID: PMC8486564 DOI: 10.1002/1878-0261.13074] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/21/2021] [Accepted: 08/02/2021] [Indexed: 12/28/2022] Open
Abstract
Inflammatory breast cancer (IBC) is an aggressive form of primary breast cancer characterized by rapid onset and high risk of metastasis and poor clinical outcomes. The biological basis for the aggressiveness of IBC is still not well understood and no IBC-specific targeted therapies exist. In this study, we report that lipocalin 2 (LCN2), a small secreted glycoprotein belonging to the lipocalin superfamily, is expressed at significantly higher levels in IBC vs non-IBC tumors, independently of molecular subtype. LCN2 levels were also significantly higher in IBC cell lines and in their culture media than in non-IBC cell lines. High expression was associated with poor-prognosis features and shorter overall survival in IBC patients. Depletion of LCN2 in IBC cell lines reduced colony formation, migration, and cancer stem cell populations in vitro and inhibited tumor growth, skin invasion, and brain metastasis in mouse models of IBC. Analysis of our proteomics data showed reduced expression of proteins involved in cell cycle and DNA repair in LCN2-silenced IBC cells. Our findings support that LCN2 promotes IBC tumor aggressiveness and offer a new potential therapeutic target for IBC.
Collapse
Affiliation(s)
- Emilly S. Villodre
- Department of Breast Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research ProgramThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Xiaoding Hu
- Department of Breast Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research ProgramThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Richard Larson
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research ProgramThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Pascal Finetti
- Laboratory of Predictive OncologyAix‐Marseille UniversityInsermCNRSInstitut Paoli‐CalmettesCRCMMarseilleFrance
| | - Kristen Gomez
- Department of Biological SciencesThe University of Texas at BrownsvilleTXUSA
| | - Wintana Balema
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research ProgramThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Shane R. Stecklein
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research ProgramThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Ginette Santiago‐Sanchez
- Department Biochemistry and Cancer CenterUniversity of Puerto Rico Medical Sciences CampusSan Juan, Puerto Rico
| | - Savitri Krishnamurthy
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research ProgramThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- Department of PathologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Juhee Song
- Department of BiostatisticsThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Xiaoping Su
- Department of Bioinformatics and Computational BiologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Naoto T. Ueno
- Department of Breast Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research ProgramThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Debu Tripathy
- Department of Breast Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research ProgramThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Steven Van Laere
- Center for Oncological Research (CORE)Integrated Personalized and Precision Oncology Network (IPPON)University of AntwerpBelgium
| | - François Bertucci
- Laboratory of Predictive OncologyAix‐Marseille UniversityInsermCNRSInstitut Paoli‐CalmettesCRCMMarseilleFrance
| | - Pablo Vivas‐Mejía
- Department Biochemistry and Cancer CenterUniversity of Puerto Rico Medical Sciences CampusSan Juan, Puerto Rico
| | - Wendy A. Woodward
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research ProgramThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Bisrat G. Debeb
- Department of Breast Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research ProgramThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| |
Collapse
|
18
|
Inflammatory breast cancer: early recognition and diagnosis is critical. Am J Obstet Gynecol 2021; 225:392-396. [PMID: 33845027 DOI: 10.1016/j.ajog.2021.04.217] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/14/2021] [Accepted: 04/04/2021] [Indexed: 11/20/2022]
Abstract
Inflammatory breast cancer is a rare and aggressive malignancy that is often initially misdiagnosed because of its similar presentation to more benign breast pathologies such as mastitis, resulting in treatment delays. Presenting symptoms of inflammatory breast cancer include erythema, skin changes such as peau d' orange or nipple inversion, edema, and warmth of the affected breast. The average age at diagnosis is younger than in noninflammatory breast cancer cases. Known risk factors include African American race and obesity. Diagnostic criteria include erythema occupying at least one-third of the breast, edema, peau d' orange, and/or warmth, with or without an underlying mass; a rapid onset of <3 months; and pathologic confirmation of invasive carcinoma. Treatment of inflammatory breast cancer includes trimodal therapy with chemotherapy, surgery, and radiation. An aggressive surgical approach that includes a modified radical mastectomy enhances survival outcomes. Although the outcomes for patients with inflammatory breast cancer are poor compared with those of patients with noninflammatory breast cancer, patients with inflammatory breast cancer who complete trimodal therapy have a favorable locoregional control rate, underscoring the importance of a prompt diagnosis of this serious but treatable disease. Obstetrician-gynecologists and other primary care providers must recognize the signs and symptoms of inflammatory breast cancer to make a timely diagnosis and referral for specialized care.
Collapse
|
19
|
Lehrberg A, Sebai M, Finn D, Lee D, Karabon P, Kiran S, Dekhne N. Trends, survival outcomes, and predictors of nonadherence to mastectomy guidelines for nonmetastatic inflammatory breast cancer. Breast J 2021; 27:753-760. [PMID: 34431161 DOI: 10.1111/tbj.14283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/21/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND The Current National Comprehensive Cancer Network guidelines recommend modified radical mastectomy (MRM) as the surgical treatment of choice for nonmetastatic inflammatory breast cancer (IBC). Limited studies have looked into the outcomes of breast conserving surgery (BCS) vs. MRM for IBC. METHODS National Cancer Database (NCDB) data from 2004 to 2014 were retrospectively analyzed. Patients' demographics, tumor characteristics, and overall survival (OS) trends were compared for BCS and MRM cases of nonmetastatic IBC. Univariate and multivariate analyses were performed. RESULTS A total of 413 (3.89%) BCS and 10,197 (96.11%) MRM cases were identified. Median follow-up was 58.45 months. Compared to MRM, BCS patients were more likely to be older, be African American, have Medicare/Medicaid or be uninsured, live in lower education ZIP codes, and live in a metropolitan area (all p < 0.05). BCS rates significantly decreased from 5.84% in 2004 to 3.19% in 2014 (p < 0.001). BCS patients also were more likely to have less than 50% of the breast involved (51.57% vs. 43.88%; p = 0.0081) and were less likely to receive trimodal therapy (50.85% vs. 74.62%; p = <0.0001). The OS was significantly higher in the mastectomy group over 9 years at 62.02% vs. 54.47% in the BCS group. Additionally, in the adjusted multivariate model, BCS cases were associated with 23% higher hazards of overall mortality (p = 0.0091). CONCLUSION BCS was performed in a limited number of cases, which decreased over the study period. The analysis identified both demographic predictors of receiving BCS and significantly lower OS for IBC patients undergoing a BCS.
Collapse
Affiliation(s)
- Anna Lehrberg
- Breast Cancer Center, Beaumont Health, Oakland University WB School of Medicine, Royal Oak, Michigan, USA
| | - Mohamad Sebai
- Breast Cancer Center, Beaumont Health, Oakland University WB School of Medicine, Royal Oak, Michigan, USA
| | - Daniel Finn
- Breast Cancer Center, Beaumont Health, Oakland University WB School of Medicine, Royal Oak, Michigan, USA
| | - David Lee
- Breast Cancer Center, Beaumont Health, Oakland University WB School of Medicine, Royal Oak, Michigan, USA
| | - Patrick Karabon
- Breast Cancer Center, Beaumont Health, Oakland University WB School of Medicine, Royal Oak, Michigan, USA
| | - Sayee Kiran
- Breast Cancer Center, Beaumont Health, Oakland University WB School of Medicine, Royal Oak, Michigan, USA
| | - Nayana Dekhne
- Breast Cancer Center, Beaumont Health, Oakland University WB School of Medicine, Royal Oak, Michigan, USA
| |
Collapse
|
20
|
Gong Y, Nagarathinam R, Arisi MF, Gerratana L, Winn JS, Slifker M, Pei J, Cai KQ, Hasse Z, Obeid E, Noriega J, Sebastiano C, Ross E, Alpaugh K, Cristofanilli M, Fernandez SV. Genetic Variants and Tumor Immune Microenvironment: Clues for Targeted Therapies in Inflammatory Breast Cancer (IBC). Int J Mol Sci 2021; 22:ijms22168924. [PMID: 34445631 PMCID: PMC8396191 DOI: 10.3390/ijms22168924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/24/2022] Open
Abstract
To better understand the etiology of inflammatory breast cancer (IBC) and identify potential therapies, we studied genomic alterations in IBC patients. Targeted, next-generation sequencing (NGS) was performed on cell-free DNA (cfDNA) (n = 33) and paired DNA from tumor tissues (n = 29) from 32 IBC patients. We confirmed complementarity between cfDNA and tumor tissue genetic profiles. We found a high incidence of germline variants in IBC patients that could be associated with an increased risk of developing the disease. Furthermore, 31% of IBC patients showed deficiencies in the homologous recombination repair (HRR) pathway (BRCA1, BRCA2, PALB2, RAD51C, ATM, BARD1) making them sensitive to poly (ADP-ribose) polymerase (PARP) inhibitors. We also characterized the tumor-infiltrating lymphocytes (TILs) in tumor tissue biopsies by studying several markers (CD4, CD8, FoxP3, CD20, PD-1, and PD-L1) through immunohistochemistry (IHC) staining. In 7 of 24 (29%) patients, tumor biopsies were positive for PD-L1 and PD-1 expression on TILs, making them sensitive to PD-1/PD-L1 blocking therapies. Our results provide a rationale for considering PARP inhibitors and PD-1/PDL1 blocking immunotherapy in qualifying IBC patients.
Collapse
Affiliation(s)
- Yulan Gong
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (J.S.W.); (M.S.); (J.P.); (K.Q.C.); (Z.H.); (E.O.); (J.N.); (E.R.); (K.A.)
- Correspondence: (Y.G.); (R.N.); (S.V.F.); Tel.: +1-215-728-4767 (S.V.F.)
| | - Rajeswari Nagarathinam
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (J.S.W.); (M.S.); (J.P.); (K.Q.C.); (Z.H.); (E.O.); (J.N.); (E.R.); (K.A.)
- Correspondence: (Y.G.); (R.N.); (S.V.F.); Tel.: +1-215-728-4767 (S.V.F.)
| | - Maria F. Arisi
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (M.F.A.); (C.S.)
| | - Lorenzo Gerratana
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (L.G.); (M.C.)
| | - Jennifer S. Winn
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (J.S.W.); (M.S.); (J.P.); (K.Q.C.); (Z.H.); (E.O.); (J.N.); (E.R.); (K.A.)
| | - Michael Slifker
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (J.S.W.); (M.S.); (J.P.); (K.Q.C.); (Z.H.); (E.O.); (J.N.); (E.R.); (K.A.)
| | - Jianming Pei
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (J.S.W.); (M.S.); (J.P.); (K.Q.C.); (Z.H.); (E.O.); (J.N.); (E.R.); (K.A.)
| | - Kathy Q. Cai
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (J.S.W.); (M.S.); (J.P.); (K.Q.C.); (Z.H.); (E.O.); (J.N.); (E.R.); (K.A.)
| | - Zachary Hasse
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (J.S.W.); (M.S.); (J.P.); (K.Q.C.); (Z.H.); (E.O.); (J.N.); (E.R.); (K.A.)
| | - Elias Obeid
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (J.S.W.); (M.S.); (J.P.); (K.Q.C.); (Z.H.); (E.O.); (J.N.); (E.R.); (K.A.)
| | - Julio Noriega
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (J.S.W.); (M.S.); (J.P.); (K.Q.C.); (Z.H.); (E.O.); (J.N.); (E.R.); (K.A.)
| | - Christopher Sebastiano
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (M.F.A.); (C.S.)
| | - Eric Ross
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (J.S.W.); (M.S.); (J.P.); (K.Q.C.); (Z.H.); (E.O.); (J.N.); (E.R.); (K.A.)
| | - Katherine Alpaugh
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (J.S.W.); (M.S.); (J.P.); (K.Q.C.); (Z.H.); (E.O.); (J.N.); (E.R.); (K.A.)
| | - Massimo Cristofanilli
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (L.G.); (M.C.)
| | - Sandra V. Fernandez
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (J.S.W.); (M.S.); (J.P.); (K.Q.C.); (Z.H.); (E.O.); (J.N.); (E.R.); (K.A.)
- Correspondence: (Y.G.); (R.N.); (S.V.F.); Tel.: +1-215-728-4767 (S.V.F.)
| |
Collapse
|
21
|
Abstract
Patients may present to the emergency department with breast complaints due to traumatic or nontraumatic changes in the breast. Benign and malignant breast pathologies may mimic each other both in clinical presentation and imaging appearance. A complex cystic and solid mass seen on ultrasound in a patient with a palpable mass can represent breast cancer, abscess, or hematoma. A unilateral swollen breast may result from inflammatory breast cancer, mastitis, or other benign etiologies; correlation with clinical history, physical exam, and close follow-up are required to ensure complete resolution of symptoms. Uncommon breast entities such as granulomatous mastitis and breast implant-associated anaplastic large-cell lymphoma may cause changes in the appearance of the breast that prompt a patient to seek initial evaluation in the emergency department. Imaging evaluation of the breast in the emergency department is limited, and it is important that patients with a breast complaint be referred to a dedicated breast center for complete evaluation at an appropriate time interval after their discharge from the emergency department.
Collapse
Affiliation(s)
- Deanna L Lane
- University of Texas MD Anderson Cancer Center, Department of Breast Imaging, Houston, TX,USA
| | - Jay R Parikh
- University of Texas MD Anderson Cancer Center, Department of Breast Imaging, Houston, TX,USA
| |
Collapse
|
22
|
Balema W, Liu D, Shen Y, El-Zein R, Debeb BG, Kai M, Overmoyer B, Miller KD, Le-Petross HT, Ueno NT, Woodward WA. Inflammatory breast cancer appearance at presentation is associated with overall survival. Cancer Med 2021; 10:6261-6272. [PMID: 34327874 PMCID: PMC8446552 DOI: 10.1002/cam4.4170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/07/2021] [Accepted: 07/03/2021] [Indexed: 11/06/2022] Open
Abstract
Background Inflammatory breast cancer (IBC) is a clinical diagnosis. Here, we examined the association of a “classic” triad of clinical signs, swollen involved breast, nipple change, and diffuse skin change, with overall survival (OS). Method Breast medical photographs from patients enrolled on a prospective IBC registry were scored by two independent reviewers as classic (triad above), not classic, and difficult to assign. Chi‐squared test, Fisher's exact test, and Wilcoxon rank‐sum test were used to assess differences between patient groups. Kaplan–Meier estimates and the log‐rank test and Cox proportional hazard regression were used to assess the OS. Results We analyzed 245 IBC patients with median age 54 (range 26–81), M0 versus M1 status (157 and 88 patients, respectively). The classic triad was significantly associated with smoking, post‐menopausal status, and metastatic disease at presentation (p = 0.002, 0.013, and 0.035, respectively). Ten‐year actuarial OS for not classic and difficult to assign were not significantly different and were grouped for further analyses. Ten‐year OS was 29.7% among patients with the classic sign triad versus 57.2% for non‐classic (p < 0.0001). The multivariate Cox regression model adjusting for clinical staging (p < 0.0001) and TNBC status (<0.0001) demonstrated classic presentation score significantly associated with poorer OS time (HR 2.6, 95% CI 1.7–3.9, p < 0.0001). Conclusions A triad of classic IBC signs independently predicted OS in patients diagnosed with IBC. Further work is warranted to understand the biology related to clinical signs and further extend the understanding of physical examination findings in IBC.
Collapse
Affiliation(s)
- Wintana Balema
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Radiation Oncology, Morgan Welch IBC Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Diane Liu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yu Shen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Randa El-Zein
- Department of Radiology, Houston Methodist Cancer Center, Houston, TX, USA
| | - Bisrat G Debeb
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Megumi Kai
- Department of Radiation Oncology, Morgan Welch IBC Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Kathy D Miller
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Huong T Le-Petross
- Department of Radiation Oncology, Morgan Welch IBC Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naoto T Ueno
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wendy A Woodward
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Radiation Oncology, Morgan Welch IBC Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
23
|
Metastatic inflammatory breast cancer: survival outcomes and prognostic factors in the national, multicentric, and real-life French cohort (ESME). ESMO Open 2021; 6:100220. [PMID: 34303929 PMCID: PMC8327489 DOI: 10.1016/j.esmoop.2021.100220] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 11/24/2022] Open
Abstract
Background Primary inflammatory breast cancer (IBC) is a rare and aggressive entity whose prognosis has been improved by multimodal therapy. However, 5-year overall survival (OS) remains poor. Given its low incidence, the prognosis of IBC at metastatic stage is poorly described. Materials and methods This study aimed to compare OS calculated from the diagnosis of metastatic disease between IBC patients and non-IBC patients in the Epidemiological Strategy and Medical Economics database (N = 16 702 patients). Secondary objectives included progression-free survival (PFS) after first-line metastatic treatment, identification of prognostic factors for OS and PFS, and evolution of survival during the study period. Results From 2008 to 2014, 7465 patients with metastatic breast cancer and known clinical status of their primary tumor (T) were identified (582 IBC and 6883 non-IBC). Compared with metastatic non-IBC, metastatic IBC was associated with less hormone receptor-positive (44% versus 65.6%), more human epidermal growth factor receptor 2-positive (30% versus 18.6%), and more triple-negative (25.9% versus 15.8%) cases, more frequent de novo M1 stage (53.3% versus 27.7%; P < 0.001), and shorter median disease-free interval (2.02 years versus 4.9 years; P < 0.001). With a median follow-up of 50.2 months, median OS was 28.4 months [95% confidence interval (CI) 24.1-33.8 months] versus 37.2 months (95% CI 36.1-38.5 months) in metastatic IBC and non-IBC cases, respectively (P < 0.0001, log-rank test). By multivariate analysis, OS was significantly shorter in the metastatic IBC group compared with the metastatic non-IBC group [hazard ratio = 1.27 (95% CI 1.1-1.4); P = 0.0001]. Survival of metastatic IBC patients improved over the study period: median OS was 24 months (95% CI 20-31.9 months), 29 months (95% CI 21.7-39.9 months), and 36 months (95% CI 27.9-not estimable months) if diagnosis of metastatic disease was carried out until 2010, between 2011 and 2012, and from 2013, respectively (P = 0.003). Conclusion IBC is independently associated with adverse outcome when compared with non-IBC in the metastatic setting. IBC is a rare and aggressive form of breast cancer with poor prognosis. OS was compared between IBC and non-IBC patients in a national French cohort of metastatic breast cancer. IBC was correlated with more pejorative histologic characteristics. Outcomes (OS and PFS) were significantly and independently worse in IBC than in non-IBC metastatic breast cancer.
Collapse
|
24
|
Song SE, Seo BK, Cho KR, Woo OH, Ganeshan B, Kim ES, Cha J. Prediction of Inflammatory Breast Cancer Survival Outcomes Using Computed Tomography-Based Texture Analysis. Front Bioeng Biotechnol 2021; 9:695305. [PMID: 34354986 PMCID: PMC8329959 DOI: 10.3389/fbioe.2021.695305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/18/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Although inflammatory breast cancer (IBC) has poor overall survival (OS), there is little information about using imaging features for predicting the prognosis. Computed tomography (CT)-based texture analysis, a non-invasive technique to quantify tumor heterogeneity, could be a potentially useful imaging biomarker. The aim of the article was to investigate the usefulness of chest CT-based texture analysis to predict OS in IBC patients. Methods: Of the 3,130 patients with primary breast cancers between 2006 and 2016, 104 patients (3.3%) with IBC were identified. Among them, 98 patients who underwent pre-treatment contrast-enhanced chest CT scans, got treatment in our institution, and had a follow-up period of more than 2 years were finally included for CT-based texture analysis. Texture analysis was performed on CT images of 98 patients, using commercially available software by two breast radiologists. Histogram-based textural features, such as quantification of variation in CT attenuation (mean, standard deviation, mean of positive pixels [MPP], entropy, skewness, and kurtosis), were recorded. To dichotomize textural features for survival analysis, receiver operating characteristic curve analysis was used to determine cutoff points. Clinicopathologic variables, such as age, node stage, metastasis stage at the time of diagnosis, hormonal receptor positivity, human epidermal growth factor receptor 2 positivity, and molecular subtype, were assessed. A Cox proportional hazards model was used to determine the association of textural features and clinicopathologic variables with OS. Results: During a mean follow-up period of 47.9 months, 41 of 98 patients (41.8%) died, with a median OS of 20.0 months. The textural features of lower mean attenuation, standard deviation, MPP, and entropy on CT images were significantly associated with worse OS, as was the M1 stage among clinicopathologic variables (all P-values < 0.05). In multivariate analysis, lower mean attenuation (hazard ratio [HR], 3.26; P = 0.003), lower MPP (HR, 3.03; P = 0.002), and lower entropy (HR, 2.70; P = 0.009) on chest CT images were significant factors independent from the M1 stage for predicting worse OS. Conclusions: Lower mean attenuation, MPP, and entropy on chest CT images predicted worse OS in patients with IBC, suggesting that CT-based texture analysis provides additional predictors for OS.
Collapse
Affiliation(s)
- Sung Eun Song
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Bo Kyoung Seo
- Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, South Korea
| | - Kyu Ran Cho
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Ok Hee Woo
- Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Balaji Ganeshan
- Institute of Nuclear Medicine, University College London Hospitals NHS Trust, London, United Kingdom
| | - Eun Sil Kim
- Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, South Korea
| | - Jaehyung Cha
- Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, South Korea
| |
Collapse
|
25
|
Progress for Immunotherapy in Inflammatory Breast Cancer and Emerging Barriers to Therapeutic Efficacy. Cancers (Basel) 2021; 13:cancers13112543. [PMID: 34067257 PMCID: PMC8196819 DOI: 10.3390/cancers13112543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Despite recent advances in the treatment of other breast cancer subtypes, inflammatory breast cancer (IBC) remains a significant clinical challenge, with an overall 5-year survival rate of 39%. Though immunotherapy has shown remarkable efficacy in other difficult-to-treat cancers, such approaches have yet to show substantial therapeutic efficacy in IBC. Here, we summarize the known immune composition of IBC tumors, as well as past and present efforts to advance immunotherapy in the treatment of IBC. Abstract Inflammatory breast cancer (IBC) is a rare and aggressive subtype of breast cancer that carries a particularly poor prognosis. Despite the efficacy of immunotherapy in other difficult to treat forms of breast cancer, progress for immunotherapy in IBC has been difficult. Though immunotherapy has been under clinical investigation in IBC since the 1970s, few approaches have shown significant therapeutic efficacy, and no immunotherapy regimens are currently used in the treatment of IBC. Here, we provide a comprehensive summary of what is known about the immune composition of IBC tumors, clinical and basic science evidence describing the role for immune checkpoints such as PD-L1 in IBC pathobiology, as well as past and present attempts to advance ICIs in the treatment of IBC.
Collapse
|
26
|
Abstract
OPINION STATEMENT Inflammatory breast cancer (IBC) remains the most aggressive type of breast cancer. During the past decade, enormous progress has been made to refine diagnostic criteria and establish multimodality treatment strategies as keys for the improvement of survival outcomes. Multiple genomic studies enabled a better understanding of underlying tumor biology, which is responsible for the complex and aggressive nature of IBC. Despite these important achievements, outcomes for this subgroup of patients remain unsatisfactory compared to locally advanced non-IBC counterparts. Global efforts are now focused on identifying novel strategies that will improve treatment response, prolong survival for metastatic patients, achieve superior local control, and possibly increase the cure rate for locally advanced disease. Genomic technologies constitute the most important tool that will support future clinical progress. Gene-expressing profiling of the tumor tissue and liquid biopsy are important parts of the everyday clinical practice aiming to guide treatment decisions by providing information on tumor molecular drivers or primary and acquired resistance to treatment. The International IBC expert panel and IBC International Consortium made a tremendous effort to define IBC as a distinct entity of BC, and they will continue to lead and support the research for this rare and very aggressive disease. Finally, a uniform platform is now required to develop and lead large, multi-arm, proof-of-concept clinical trials that perform rapid, focused, and cost-effective evaluations of potential novel therapeutics in IBC.
Collapse
|
27
|
Dragomir R, Dragomir AS, Negru A, Săftescu S, Popovici D, Schenker M, Lupușoru R, Negru Ș. Role of combining neutrophil-to-lymphocyte ratio and pretreatment body mass index in predicting progression-free survival in patients with non-small cell lung cancer treated with nivolumab. Exp Ther Med 2021; 21:526. [PMID: 33815599 PMCID: PMC8014982 DOI: 10.3892/etm.2021.9958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/26/2021] [Indexed: 01/04/2023] Open
Abstract
Identifying markers capable of predicting outcomes in lung cancer patients treated with nivolumab represents a growing research interest. The combination of neutrophil-to-lymphocyte ratio (NLR) and body mass index (BMI) may help predict treatment efficacy. Thus, the present study aimed to investigate the influence of NLR and BMI on progression-free survival (PFS) in non-small-cell lung cancer (NSCLC) patients treated with nivolumab. A retrospective study was made on 80 patients with NSCLC that were treated with nivolumab at the OncoHelp Oncology Center, Timisoara, Romania after platinum-based chemotherapy, from January 2018 to April 2020. Patients were administered nivolumab at a dose of 3 mg/m2 or 240 mg total dose, every 2 weeks. The predictive impact of NLR (baseline at 2 and 4 weeks after the start of nivolumab) and BMI for disease progression was assessed. Median PFS for subjects with NLR <3 before treatment was 18.5 weeks, while in subjects with NLR ≥3 was 14 weeks (P=0.50). Median PFS for subjects with NLR2 <3 at 2 weeks after treatment was 21 weeks, while in subjects with NLR2 ≥3, PFS was 14 weeks (P=0.17). Median PFS for subjects with NLR4 <3 at 4 weeks after treatment was 23 weeks, while in subjects with NLR4 ≥3, PFS was 19 weeks (P=0.33). Multivariate analysis for the association with PFS showed that baseline NLR, male sex and BMI were associated independently, thus we could develop a significant statistical model [AUROC=0.76, 95% CI (0.45-0.89), P=0.03], a new predictive score for PFS. The assessment of NLR and BMI may represent simple and useful biomarkers; combining them and taking into consideration the male sex may predict PFS in patients with advanced NSCLC treated with nivolumab.
Collapse
Affiliation(s)
- Radu Dragomir
- Department of Obstetrics and Gynecology, 'Victor Babeș' University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania
| | - Adelina Silvana Dragomir
- Department of Oncology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Alina Negru
- Department of Cardiology, 'Victor Babeș' University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania
| | - Sorin Săftescu
- Department of Oncology, 'Victor Babeș' University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania
| | - Dorel Popovici
- Department of Oncology, 'Victor Babeș' University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania
| | - Michael Schenker
- Department of Oncology, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania
| | - Raluca Lupușoru
- II Department of Internal Medicine, Gastroenterology and Hepatology Discipline, 'Victor Babeș' University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania.,Department of Functional Sciences, Medical Informatics and Biostatistics Discipline, Center for Modeling Biological Systems and Data Analysis, 'Victor Babeș' University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania
| | - Șerban Negru
- Department of Oncology, 'Victor Babeș' University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania
| |
Collapse
|
28
|
Chainitikun S, Saleem S, Lim B, Valero V, Ueno NT. Update on systemic treatment for newly diagnosed inflammatory breast cancer. J Adv Res 2021; 29:1-12. [PMID: 33842000 PMCID: PMC8020152 DOI: 10.1016/j.jare.2020.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/31/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022] Open
Abstract
Background Inflammatory breast cancer (IBC) is a rare and aggressive disease, accounting for 2-4% of new cases of breast cancer. Owing to its aggressive nature, IBC represent approximately 8-10% of breast cancer deaths. Management of IBC requires a multidisciplinary team for decision-making involving a composite of systemic treatment, surgery, and radiation, or "Trimodality Treatment." Because of the rarity of the disease, systemic therapy of IBC traditionally has been extrapolated from non-IBC clinical trials. Aim of Review The purpose of this review is to provide an overview of the development of systemic treatment of IBC from the past to the present by focusing on IBC clinical trials, including chemotherapy and targeted therapies. Key Scientific Concepts of Review We discuss their effects on pathologic complete response (pCR) and survival outcomes, the predictive markers, and the adverse events of these therapies. Further, we summarized the current standard treatment stratified by molecular subtypes based on clinical data. Finally, we discuss the future trend of systemic therapy, including immunotherapy and ongoing IBC clinical trials.
Collapse
Affiliation(s)
- Sudpreeda Chainitikun
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Sadia Saleem
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Bora Lim
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Vicente Valero
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Naoto T. Ueno
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
29
|
Hou N, Yi J, Wang Z, Yang L, Wu Y, Huang M, Hou G, Ling R. Development and validation of a risk stratification nomogram for predicting prognosis in bone metastatic breast cancer: A population-based study. Medicine (Baltimore) 2021; 100:e24751. [PMID: 33578627 PMCID: PMC10545337 DOI: 10.1097/md.0000000000024751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/18/2020] [Accepted: 01/11/2021] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT Bone metastasis seriously affects the survival of breast cancer. Therefore, the study aimed to explore the independent prognostic factors in bone metastatic breast cancer (BMBC) and to construct a prognostic nomogram that can accurately predict the survival of BMBC and strictly divide the patients into different risk stratification.Four thousand three hundred seventy six patients with BMBC from the surveillance, epidemiology, and end results database in 2010 to 2015 were collected and randomly divided into training and validation cohort. Multivariate Cox regression identified the independent prognostic factors of BMBC. A nomogram for predicting cancer-specific survival (CSS) in BMBC was created using R software. The predictive performance of the nomogram was evaluated by plotting receiver operating characteristic (ROC) curves and calibration curves.Marital status, race, age, T stage, tumor grade, estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2, brain metastasis, liver metastasis, lung metastasis, chemotherapy, and breast surgery were identified as independent prognostic factors for CSS of BMBC. The area under the ROC curve at 1-, 3-, and 5-year of the nomogram were 0.775, 0.756, and 0.717 in the internal validation and 0.785, 0.737, and 0.735 in the external validation, respectively. Calibration curves further confirmed the unbiased prediction of the model. Kaplan-Meier analysis verified the excellent risk stratification of our model.The first prognostic nomogram for BMBC constructed in our study can accurately predict the survival of BMBC, which may provide a practical tool to help clinicians evaluate prognosis and stratify the prognostic risk for BMBC, thereby determining which patients should be given intensive treatment and optimizing individual treatment strategies for BMBC.
Collapse
Affiliation(s)
- Niuniu Hou
- Department of Thyroid, Breast and Vascular Surgery
| | - Jun Yi
- Department of Thyroid, Breast and Vascular Surgery
| | - Zhe Wang
- Department of Thyroid, Breast and Vascular Surgery
| | - Lu Yang
- Department of Thyroid, Breast and Vascular Surgery
| | - Ying Wu
- Department of Thyroid, Breast and Vascular Surgery
| | | | - Guangdong Hou
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, PR China
| | - Rui Ling
- Department of Thyroid, Breast and Vascular Surgery
| |
Collapse
|
30
|
NDRG1 Expression Is an Independent Prognostic Factor in Inflammatory Breast Cancer. Cancers (Basel) 2020; 12:cancers12123711. [PMID: 33321961 PMCID: PMC7763268 DOI: 10.3390/cancers12123711] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Inflammatory breast cancer (IBC) is a rare and aggressive variant of breast cancer that is responsible for a significant number of breast cancer-related deaths. Herein, we describe how the expression of a specific protein named N-myc downstream-regulated gene 1 (NDRG1), commonly described as a gene that prevents the spread of cancer cells to distant organs, may have a paradoxical role in cancer progression in IBC. We found that the level of expression of NDRG1 in tumor tissues predicts the survival outcome of patients with IBC. We also observed that NDRG1, together with other important prognostic factors such as estrogen receptor status and stage, could be used to further analyze prognostic outcome or treatment response of patients. Abstract NDRG1 is widely described as a metastasis suppressor in breast cancer. However, we found that NDRG1 is critical in promoting tumorigenesis and brain metastasis in mouse models of inflammatory breast cancer (IBC), a rare but highly aggressive form of breast cancer. We hypothesized that NDRG1 is a prognostic marker associated with poor outcome in patients with IBC. NDRG1 levels in tissue microarrays from 64 IBC patients were evaluated by immunohistochemical staining with NDRG1 (32 NDRG1-low (≤median), 32 NDRG1-high (>median)). Overall and disease-free survival (OS and DSS) were analyzed with Kaplan–Meier curves and log-rank test. Univariate analysis showed NDRG1 expression, tumor grade, disease stage, estrogen receptor (ER) status, and receipt of adjuvant radiation to be associated with OS and DSS. NDRG1-high patients had poorer 10-year OS and DSS than NDRG1-low patients (OS, 19% vs. 45%, p = 0.0278; DSS, 22% vs. 52%, p = 0.0139). On multivariable analysis, NDRG1 independently predicted OS (hazard ratio (HR) = 2.034, p = 0.0274) and DSS (HR = 2.287, p = 0.0174). NDRG1-high ER-negative tumors had worse outcomes OS, p = 0.0003; DSS, p = 0.0003; and NDRG1-high tumors that received adjuvant radiation treatment had poor outcomes (OS, p = 0.0088; DSS, p = 0.0093). NDRG1 was a significant independent prognostic factor for OS and DSS in IBC patients. Targeting NDRG1 may represent a novel strategy for improving clinical outcomes for patients with IBC.
Collapse
|
31
|
Fernandez SV, MacFarlane AW, Jillab M, Arisi MF, Yearley J, Annamalai L, Gong Y, Cai KQ, Alpaugh RK, Cristofanilli M, Campbell KS. Immune phenotype of patients with stage IV metastatic inflammatory breast cancer. Breast Cancer Res 2020; 22:134. [PMID: 33267869 PMCID: PMC7709446 DOI: 10.1186/s13058-020-01371-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/15/2020] [Indexed: 01/11/2023] Open
Abstract
Background Inflammatory breast cancer (IBC) is a rare but aggressive carcinoma characterized by severe erythema and edema of the breast, with many patients presenting in advanced metastatic disease. The “inflammatory” nature is not due to classic immune-mediated inflammation, but instead results from tumor-mediated blockage of dermal lymphatic ducts. Previous work has shown that expression of PD-L1 on tumor cells can suppress T cell activation in triple-negative (TN) non-IBC breast cancer. In the present work, we investigated immune parameters in peripheral blood of metastatic IBC patients to determine whether cellular components of the immune system are altered, thereby contributing to pathogenesis of the disease. These immune parameters were also compared to PD-1 and PD-L1 expression in IBC tumor biopsies. Methods Flow cytometry-based immune phenotyping was performed using fresh peripheral blood from 14 stage IV IBC patients and compared to 11 healthy age-similar control women. Immunohistochemistry for CD20, CD3, PD-1, and PD-L1 was performed on tumor biopsies of these metastatic IBC patients. Results IBC patients with Stage IV disease had lymphopenia with significant reductions in circulating T, B, and NK cells. Reductions were observed in all subsets of CD4+ T cells, whereas reductions in CD8+ T cells were more concentrated in memory subsets. Immature cytokine-producing CD56bright NK cells expressed higher levels of FcγRIIIa and cytolytic granule components, suggesting accelerated maturation to cytolytic CD56dim cells. Immunohistochemical analysis of tumor biopsies demonstrated moderate to high expression of PD-1 in 18.2% of patients and of PD-L1 in 36.4% of patients. Interestingly, a positive correlation was observed between co-expression levels of PD-L1 and PD-1 in tumor biopsies, and higher expression of PD-L1 in tumor biopsies correlated with higher expression of cytolytic granule components in blood CD4+ T cells and CD56dim NK cells, and higher numbers of CD8+ effector memory T cells in peripheral blood. PD-1 expression in tumor also correlated with increased infiltration of CD20+ B cells in the tumor. Conclusions Our results suggest that while lymphocyte populations are severely compromised in stage IV IBC patients, an immune response toward the tumor had occurred in some patients, providing biological rationale to evaluate PD-1/PD-L1 immunotherapies for IBC. Supplementary information The online version contains supplementary material available at 10.1186/s13058-020-01371-x.
Collapse
Affiliation(s)
- Sandra V Fernandez
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Alexander W MacFarlane
- Blood Cell Development and Function Program, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA, 19111, USA
| | - Mowafaq Jillab
- Blood Cell Development and Function Program, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA, 19111, USA
| | - Maria F Arisi
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.,Present address: Thomas Jefferson University, Sidney Kimmel Medical School, Philadelphia, PA, 19107, USA
| | | | | | - Yulan Gong
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Kathy Q Cai
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - R Katherine Alpaugh
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.,Protocol Support Laboratory, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Massimo Cristofanilli
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.,Present address: Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Kerry S Campbell
- Blood Cell Development and Function Program, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA, 19111, USA.
| |
Collapse
|
32
|
Xu B, Amallraja A, Swaminathan P, Elsey R, Davis C, Theel S, Viet S, Petersen J, Krie A, Davies G, Williams CB, Ehli E, Meißner T. Case report: 16-yr life history and genomic evolution of an ER + HER2 - breast cancer. Cold Spring Harb Mol Case Stud 2020; 6:a005629. [PMID: 33008833 PMCID: PMC7784492 DOI: 10.1101/mcs.a005629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/28/2020] [Indexed: 11/25/2022] Open
Abstract
Metastatic breast cancer is one of the leading causes of cancer-related death in women. Limited studies have been done on the genomic evolution between primary and metastatic breast cancer. We reconstructed the genomic evolution through the 16-yr history of an ER+ HER2- breast cancer patient to investigate molecular mechanisms of disease relapse and treatment resistance after long-term exposure to hormonal therapy. Genomic and transcriptome profiling was performed on primary breast tumor (2002), initial recurrence (2012), and liver metastasis (2015) samples. Cell-free DNA analysis was performed at 11 time points (2015-2017). Mutational analysis revealed a low mutational burden in the primary tumor that doubled at the time of progression, with driver mutations in PI3K-Akt and RAS-RAF signaling pathways. Phylogenetic analysis showed an early branching off between primary tumor and metastasis. Liquid biopsies, although initially negative, started to detect an ESR1 E380Q mutation in 2016 with increasing allele frequency until the end of 2017. Transcriptome analysis revealed 721 (193 up, 528 down) genes to be differentially expressed between primary tumor and first relapse. The most significantly down-regulated genes were TFF1 and PGR, indicating resistance to aromatase inhibitor (AI) therapy. The most up-regulated genes included PTHLH, S100P, and SOX2, promoting tumor growth and metastasis. This phylogenetic reconstruction of the life history of a single patient's cancer as well as monitoring tumor progression through liquid biopsies allowed for uncovering the molecular mechanisms leading to initial relapse, metastatic spread, and treatment resistance.
Collapse
Affiliation(s)
- Bing Xu
- Center for Precision Oncology, Avera Cancer Institute, Sioux Falls, South Dakota 57105, USA
| | - Anu Amallraja
- Center for Precision Oncology, Avera Cancer Institute, Sioux Falls, South Dakota 57105, USA
| | - Padmapriya Swaminathan
- Center for Precision Oncology, Avera Cancer Institute, Sioux Falls, South Dakota 57105, USA
| | - Rachel Elsey
- Center for Precision Oncology, Avera Cancer Institute, Sioux Falls, South Dakota 57105, USA
| | - Christel Davis
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, USA
| | - Stephanie Theel
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, USA
| | - Sarah Viet
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, USA
| | - Jason Petersen
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, USA
| | - Amy Krie
- Center for Precision Oncology, Avera Cancer Institute, Sioux Falls, South Dakota 57105, USA
| | - Gareth Davies
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, USA
| | - Casey B Williams
- Center for Precision Oncology, Avera Cancer Institute, Sioux Falls, South Dakota 57105, USA
| | - Erik Ehli
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, USA
| | - Tobias Meißner
- Center for Precision Oncology, Avera Cancer Institute, Sioux Falls, South Dakota 57105, USA
| |
Collapse
|
33
|
Kaneko K, Osada T, Morse MA, Gwin WR, Ginzel JD, Snyder JC, Yang XY, Liu CX, Diniz MA, Bodoor K, Hughes PF, Haystead TA, Lyerly HK. Heat shock protein 90-targeted photodynamic therapy enables treatment of subcutaneous and visceral tumors. Commun Biol 2020; 3:226. [PMID: 32385408 PMCID: PMC7210113 DOI: 10.1038/s42003-020-0956-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 04/21/2020] [Indexed: 01/10/2023] Open
Abstract
Photodynamic therapy (PDT) ablates malignancies by applying focused near-infrared (nIR) light onto a lesion of interest after systemic administration of a photosensitizer (PS); however, the accumulation of existing PS is not tumor-exclusive. We developed a tumor-localizing strategy for PDT, exploiting the high expression of heat shock protein 90 (Hsp90) in cancer cells to retain high concentrations of PS by tethering a small molecule Hsp90 inhibitor to a PS (verteporfin, VP) to create an Hsp90-targeted PS (HS201). HS201 accumulates to a greater extent than VP in breast cancer cells both in vitro and in vivo, resulting in increased treatment efficacy of HS201-PDT in various human breast cancer xenografts regardless of molecular and clinical subtypes. The therapeutic index achieved with Hsp90-targeted PDT would permit treatment not only of localized tumors, but also more diffusely infiltrating processes such as inflammatory breast cancer.
Collapse
Affiliation(s)
- Kensuke Kaneko
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Takuya Osada
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Michael A Morse
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - William R Gwin
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Joshua D Ginzel
- Department of Cell Biology, Duke University, Durham, NC, 27710, USA
| | - Joshua C Snyder
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Cell Biology, Duke University, Durham, NC, 27710, USA
| | - Xiao-Yi Yang
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Cong-Xiao Liu
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Márcio A Diniz
- Biostatistics and Bioinformatics Research Center, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Khaldon Bodoor
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Philip F Hughes
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Timothy Aj Haystead
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA.
| | - H Kim Lyerly
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
34
|
Epigenetics in Inflammatory Breast Cancer: Biological Features and Therapeutic Perspectives. Cells 2020; 9:cells9051164. [PMID: 32397183 PMCID: PMC7291154 DOI: 10.3390/cells9051164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/25/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022] Open
Abstract
Evidence has emerged implicating epigenetic alterations in inflammatory breast cancer (IBC) origin and progression. IBC is a rare and rapidly progressing disease, considered the most aggressive type of breast cancer (BC). At clinical presentation, IBC is characterized by diffuse erythema, skin ridging, dermal lymphatic invasion, and peau d'orange aspect. The widespread distribution of the tumor as emboli throughout the breast and intra- and intertumor heterogeneity is associated with its poor prognosis. In this review, we highlighted studies documenting the essential roles of epigenetic mechanisms in remodeling chromatin and modulating gene expression during mammary gland differentiation and the development of IBC. Compiling evidence has emerged implicating epigenetic changes as a common denominator linking the main risk factors (socioeconomic status, environmental exposure to endocrine disruptors, racial disparities, and obesity) with IBC development. DNA methylation changes and their impact on the diagnosis, prognosis, and treatment of IBC are also described. Recent studies are focusing on the use of histone deacetylase inhibitors as promising epigenetic drugs for treating IBC. All efforts must be undertaken to unravel the epigenetic marks that drive this disease and how this knowledge could impact strategies to reduce the risk of IBC development and progression.
Collapse
|
35
|
Genetic Variants Detected Using Cell-Free DNA from Blood and Tumor Samples in Patients with Inflammatory Breast Cancer. Int J Mol Sci 2020; 21:ijms21041290. [PMID: 32075053 PMCID: PMC7072950 DOI: 10.3390/ijms21041290] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/27/2022] Open
Abstract
We studied genomic alterations in 19 inflammatory breast cancer (IBC) patients with advanced disease using samples of tissue and paired blood serum or plasma (cell-free DNA, cfDNA) by targeted next generation sequencing (NGS). At diagnosis, the disease was triple negative (TN) in eleven patients (57.8%), ER+ Her2- IBC in six patients (31.6%), ER+ Her2+ IBC in one patient (5.3%), and ER- Her2+ IBC in one other patient (5.3%). Pathogenic or likely pathogenic variants were frequently detected in TP53 (47.3%), PMS2 (26.3%), MRE11 (26.3%), RB1 (10.5%), BRCA1 (10.5%), PTEN (10.5%) and AR (10.5%); other affected genes included PMS1, KMT2C, BRCA2, PALB2, MUTYH, MEN1, MSH2, CHEK2, NCOR1, PIK3CA, ESR1 and MAP2K4. In 15 of the 19 patients in which tissue and paired blood were collected at the same time point, 80% of the variants detected in tissue were also detected in the paired cfDNA. Higher concordance between tissue and cfDNA was found for variants with higher allele fraction in tissue (AFtissue ≥ 5%). Furthermore, 86% of the variants detected in cfDNA were also detected in paired tissue. Our study suggests that the genetic profile measured in blood cfDNA is complementary to that of tumor tissue in IBC patients.
Collapse
|
36
|
Reddy SM, Reuben A, Barua S, Jiang H, Zhang S, Wang L, Gopalakrishnan V, Hudgens CW, Tetzlaff MT, Reuben JM, Tsujikawa T, Coussens LM, Wani K, He Y, Villareal L, Wood A, Rao A, Woodward WA, Ueno NT, Krishnamurthy S, Wargo JA, Mittendorf EA. Poor Response to Neoadjuvant Chemotherapy Correlates with Mast Cell Infiltration in Inflammatory Breast Cancer. Cancer Immunol Res 2019; 7:1025-1035. [PMID: 31043414 DOI: 10.1158/2326-6066.cir-18-0619] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/18/2018] [Accepted: 04/22/2019] [Indexed: 12/28/2022]
Abstract
Our understanding is limited concerning the tumor immune microenvironment of inflammatory breast cancer (IBC), an aggressive form of primary cancer with low rates of pathologic complete response to current neoadjuvant chemotherapy (NAC) regimens. We retrospectively identified pretreatment (N = 86) and matched posttreatment tissue (N = 27) from patients with stage III or de novo stage IV IBC who received NAC followed by a mastectomy. Immune profiling was performed including quantification of lymphoid and myeloid infiltrates by IHC and T-cell repertoire analysis. Thirty-four of 86 cases in this cohort (39.5%) achieved a pathologic complete response. Characterization of the tumor microenvironment revealed that having a lower pretreatment mast cell density was significantly associated with achieving a pathologic complete response to NAC (P = 0.004), with responders also having more stromal tumor-infiltrating lymphocytes (P = 0.035), CD8+ T cells (P = 0.047), and CD20+ B cells (P = 0.054). Spatial analysis showed close proximity of mast cells to CD8+ T cells, CD163+ monocytes/macrophages, and tumor cells when pathologic complete response was not achieved. PD-L1 positivity on tumor cells was found in fewer than 2% of cases and on immune cells in 27% of cases, but with no correlation to response. Our results highlight the strong association of mast cell infiltration with poor response to NAC, suggesting a mechanism of treatment resistance and a potential therapeutic target in IBC. Proximity of mast cells to immune and tumor cells may suggest immunosuppressive or tumor-promoting interactions of these mast cells.
Collapse
Affiliation(s)
- Sangeetha M Reddy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Alexandre Reuben
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Souptik Barua
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Hong Jiang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shaojun Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Courtney W Hudgens
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael T Tetzlaff
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - James M Reuben
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Houston, Texas
| | - Takahiro Tsujikawa
- Department of Cell, Developmental, and Cancer Biology, Oregon Health and Science University, Portland, Oregon.,Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Lisa M Coussens
- Department of Cell, Developmental, and Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | - Khalida Wani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yan He
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lily Villareal
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Houston, Texas
| | - Anita Wood
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Houston, Texas
| | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan.,Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Wendy A Woodward
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Houston, Texas.,Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naoto T Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Houston, Texas
| | - Savitri Krishnamurthy
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Houston, Texas. .,Department of Breast Surgical Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elizabeth A Mittendorf
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts.,Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts
| |
Collapse
|
37
|
Pathologic complete response and overall survival in breast cancer subtypes in stage III inflammatory breast cancer. Breast Cancer Res Treat 2019; 176:217-226. [PMID: 30972613 PMCID: PMC6548753 DOI: 10.1007/s10549-019-05219-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/30/2019] [Indexed: 12/21/2022]
Abstract
Purpose To analyze the influence of hormone receptors (HR) and Human Epidermal growth factor Receptor-2 (HER2)-based molecular subtypes in stage III inflammatory breast cancer (IBC) on tumor characteristics, treatment, pathologic response to neoadjuvant chemotherapy (NACT), and overall survival (OS). Methods Patients with stage III IBC, diagnosed in the Netherlands between 2006 and 2015, were classified into four breast cancer subtypes: HR+/HER2− , HR+/HER2+ , HR−/HER2+ , and HR−/HER2− . Patient-, tumor- and treatment-related characteristics were compared. In case of NACT, pathologic complete response (pCR) was compared between subgroups. OS of the subtypes was compared using Kaplan–Meier curves and the log-rank test. Results 1061 patients with stage III IBC were grouped into subtypes: HR+/HER2− (N = 453, 42.7%), HR−/HER2− (N = 258, 24.3%), HR−/HER2+ (N = 180,17.0%), and HR+/HER2+ (N = 170,16.0%). In total, 679 patients (85.0%) received NACT. In HR−/HER2+ tumors, pCR rate was highest (43%, (p < 0.001). In case of pCR, an improved survival was observed for all subtypes, especially for HR+/HER2+ and HR−/HER2+ tumor subtypes. Trimodality therapy (NACT, surgery, radiotherapy) improved 5-year OS as opposed to patients not receiving this regimen: HR+/HER2− (74.9 vs. 46.1%), HR+/HER2+ (80.4 vs. 52.6%), HR−/HER2+ (76.4 vs. 29.7%), HR−/HER2− (47.6 vs. 27.8%). Conclusions In stage III IBC, breast cancer subtypes based on the HR and HER2 receptor are important prognostic factors of response to NACT and OS. Patients with HR−/HER2− IBC were less likely to achieve pCR and had the worst OS, irrespective of receiving most optimal treatment regimen to date (trimodality therapy).
Collapse
|
38
|
Ye H, Wang K, Wang M, Liu R, Song H, Li N, Lu Q, Zhang W, Du Y, Yang W, Zhong L, Wang Y, Yu B, Wang H, Kan Q, Zhang H, Wang Y, He Z, Sun J. Bioinspired nanoplatelets for chemo-photothermal therapy of breast cancer metastasis inhibition. Biomaterials 2019; 206:1-12. [PMID: 30921730 DOI: 10.1016/j.biomaterials.2019.03.024] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 11/16/2022]
Abstract
Breast cancer is associated with high mortality due to tumor metastasis. The anti-metastasis efficacy of photochemotherapy is strictly limited by poor targeting capability with respect to circulating tumor cells (CTCs) in blood and lymph. Herein, we decorate the platelet membrane (PM) on a surface of nanoparticles (NPs), referred to as nanoplatelets. A chemotherapeutic drug, doxorubicin (DOX), and an FDA-approved photothermal agent, indocyanine green (ICG), are co-encapsulated into the biomimetic nanoplatelets. Nanoplatelets possess immune surveillance-escaping capability and specifically capture and clear CTCs in both blood and lymphatic circulations via high-affinity interactions between the P-Selectin of PM and CD44 receptors of tumor cells. PM-coated NPs show greater cellular uptake in MDA-MB-231 breast cancer cells and further elicit higher cytotoxicity to tumor cells relative to uncoated NPs. In vivo, we disclose that the multifunctional nanoplatelets not only completely ablate the primary tumor but also inhibit breast cancer metastasis with high efficiency in the three established xenograft or orthotopic breast tumor-bearing mice models. We conclude that such biomimetic nanoplatelets represent a promising strategy of coating a surface of nanoparticles with platelet membrane to actively capture and destroy CTCs in blood and lymph in breast cancer anti-metastasis therapy.
Collapse
Affiliation(s)
- Hao Ye
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Kaiyuan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Menglin Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Rongzheng Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Hang Song
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Na Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Qi Lu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Wenjuan Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Yuqian Du
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Wenqian Yang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Lu Zhong
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Yu Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Bohong Yu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Hong Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Qiming Kan
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Haotian Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Yongjun Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| |
Collapse
|
39
|
Watson GA, Deac O, Aslam R, O'Dwyer R, Tierney A, Sukor S, Kennedy J. Real-World Experience of Palbociclib-Induced Adverse Events and Compliance With Complete Blood Count Monitoring in Women With Hormone Receptor–Positive/HER2-Negative Metastatic Breast Cancer. Clin Breast Cancer 2019; 19:e186-e194. [DOI: 10.1016/j.clbc.2018.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/20/2018] [Accepted: 09/04/2018] [Indexed: 11/16/2022]
|
40
|
Han S, Jin X, Liu Z, Xing F, Han Y, Yu X, He G, Qiu F. The long noncoding RNA HOTTIP promotes breast cancer cell migration, invasiveness, and epithelial-mesenchymal transition via the Wnt-β-catenin signaling pathway. Biochem Cell Biol 2019; 97:655-664. [PMID: 30676763 DOI: 10.1139/bcb-2018-0313] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Long noncoding RNA HOTTIP (HOXA transcript at the distal tip) has recently been reported to have a role in the proliferation of various cancer cells, yet its role in cell migration, invasiveness, and the EMT (epithelial-mesenchymal transition) in breast cancer and the potential mechanisms remain unknown. Breast cancer cell lines MDA-MB-231 and MDA-MB-468 were transfected with shRNA (short hairpin RNA) that specifically targeting HOTTIP. We observed a remarkable decrease in migration and invasiveness in these two breast cancer cell lines after knock-down of HOTTIP by shHOTTIP. We also demonstrated that the EMT of these two breast cell lines was suppressed after HOTTIP knock-down, as evidenced by increased E-cadherin levels, and decreased levels of N-cadherin, Snail, and Twist. Moreover, HOTTIP silencing also suppressed tumor metastasis in nude mice in vivo. In addition, we found that the expression of β-catenin was significantly decreased in breast cancer cells after knock-down of HOTTIP. In a further rescue experiment using overexpression of β-catenin, the rates of cell migration, invasiveness, and EMT of HOTTIP-silenced breast cancer cells were promoted, disclosing a potential role of the Wnt-β-catenin signaling pathway in this process. Overall, we discovered the positive regulatory function of HOTTIP in the migration, invasiveness, and EMT of breast cancer cells, via regulating the Wnt-β-catenin pathway.
Collapse
Affiliation(s)
- Sijia Han
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Xiaoming Jin
- Department of Endocrinology, Northern Theater Command Airforce Hospital of Chinese PLA, Shenyang 110042, People's Republic of China
| | - Zhen Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Fei Xing
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Ye Han
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Xiaopeng Yu
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Guijin He
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Fang Qiu
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| |
Collapse
|
41
|
CUL1 promotes breast cancer metastasis through regulating EZH2-induced the autocrine expression of the cytokines CXCL8 and IL11. Cell Death Dis 2018; 10:2. [PMID: 30578411 PMCID: PMC6315038 DOI: 10.1038/s41419-018-1258-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/24/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023]
Abstract
CUL1 is an essential component of SCF (SKP1-CUL1-F-box protein) E3 ubiquitin ligase complex. Our previous study has showed that CUL1 is positively associated with poor overall and disease-specific survival of breast cancer patients. Here, we further explored its roles in breast cancer metastasis. Our data showed that CUL1 significantly promoted breast cancer cell migration, invasion, tube formation in vitro, as well as angiogenesis and metastasis in vivo. In mechanism, the human gene expression profiling was used to determine global transcriptional changes in MDA-MB-231 cells, and we identified autocrine expression of the cytokines CXCL8 and IL11 as the target genes of CUL1 in breast cancer cell migration, invasion, metastasis, and angiogenesis. CUL1 regulated EZH2 expression to promote the production of cytokines, and finally significantly aggravating the breast cancer cell metastasis and angiogenesis through the PI3K-AKT-mTOR signaling pathway. Combined with the previous report about CUL1, we proposed that CUL1 may serve as a promising therapeutic target for breast cancer metastasis.
Collapse
|
42
|
Bernard S, Myers M, Fang WB, Zinda B, Smart C, Lambert D, Zou A, Fan F, Cheng N. CXCL1 Derived from Mammary Fibroblasts Promotes Progression of Mammary Lesions to Invasive Carcinoma through CXCR2 Dependent Mechanisms. J Mammary Gland Biol Neoplasia 2018; 23:249-267. [PMID: 30094610 PMCID: PMC6582941 DOI: 10.1007/s10911-018-9407-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 07/24/2018] [Indexed: 12/21/2022] Open
Abstract
With improved screening methods, the numbers of abnormal breast lesions diagnosed in women have been increasing over time. However, it remains unclear whether these breast lesions will develop into invasive cancers. To more effectively predict the outcome of breast lesions and determine a more appropriate course of treatment, it is important to understand the underlying mechanisms that regulate progression of non-invasive lesions to invasive breast cancers. A hallmark of invasive breast cancers is the accumulation of fibroblasts. Fibroblast proliferation and activation in the mammary gland is in part regulated by the Transforming Growth Factor beta1 pathway (TGF-β). In animal models, TGF-β suppression of CCL2 and CXCL1 chemokine expression is associated with metastatic progression of mammary carcinomas. Here, we show that transgenic overexpression of the Polyoma middle T viral antigen in the mouse mammary gland of C57BL/6 mice results in slow growing non-invasive lesions that progress to invasive carcinomas in a stage dependent manner. Invasive carcinomas are associated with accumulation of fibroblasts that show decreased TGF-β expression and high levels of CXCL1, but not CCL2. Using co-transplant models, we show that decreased TGF-β signaling in fibroblasts contribute to mammary carcinoma progression through enhancement of CXCL1/CXCR2 dependent mechanisms. Using cell culture models, we show that CXCL1 mediated mammary carcinoma cell invasion through NF-κB, AKT, Stat3 and p42/44MAPK dependent mechanisms. These studies provide novel mechanistic insight into the progression of pre-invasive lesions and identify new stromal biomarkers, with important prognostic implications.
Collapse
Affiliation(s)
- Shira Bernard
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Megan Myers
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Wei Bin Fang
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Brandon Zinda
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Curtis Smart
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Diana Lambert
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - An Zou
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Fang Fan
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Nikki Cheng
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
43
|
Zou Y, Ouyang Q, Wei W, Yang S, Zhang Y, Yang W. FAT10 promotes the invasion and migration of breast cancer cell through stabilization of ZEB2. Biochem Biophys Res Commun 2018; 506:563-570. [PMID: 30361097 DOI: 10.1016/j.bbrc.2018.10.109] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 10/17/2018] [Indexed: 01/08/2023]
Abstract
FAT10, an ubiquitin-like protein, functions as a potential tumor promoter in several caners. However, the function and clinical significance of FAT10 in breast cancer (BC) remains unclear. Here, we found that high FAT10 expression was detected frequently in primary BC tissues, and was closely associated with malignant phenotype and shorter survival among the BC patients. Multivariate analyses also revealed that FAT10 overexpression was independent prognostic factors for poor outcome of patients with BC. Function assay demonstrated that FAT10 knockdown significantly inhibited the metastasis abilities and the epithelial-mesenchymal transition (EMT) of breast cancer cell. Further investigation revealed that FAT10 directly bound ZEB2 and decreased its ubiquitination to enhance the protein stability of ZEB2 in BC cells. Moreover, our data shown that the pro-metastasis effect of FAT10 in BC is partially dependent on ZEB2 enhancement. Collectively, our data suggest that FAT10 plays a crucial oncogenic role in BC metastasis, and we provide a novel evidence that FAT10 may be serve as a prognostic and therapeutic target for BC patients.
Collapse
Affiliation(s)
- Yufeng Zou
- Department of Breast Surgery, The Third Hospital of Nanchang, Jiangxi Provincial-Key-Laboratory for Breast Diseases, Jiangxi Province, 330006, China
| | - Qianwen Ouyang
- Department of Breast Surgery, The Third Hospital of Nanchang, Jiangxi Provincial-Key-Laboratory for Breast Diseases, Jiangxi Province, 330006, China
| | - Wensong Wei
- Department of Breast Surgery, The Third Hospital of Nanchang, Jiangxi Provincial-Key-Laboratory for Breast Diseases, Jiangxi Province, 330006, China
| | - Shixin Yang
- Department of Breast Surgery, The Third Hospital of Nanchang, Jiangxi Provincial-Key-Laboratory for Breast Diseases, Jiangxi Province, 330006, China
| | - Yan Zhang
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wenlong Yang
- Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| |
Collapse
|
44
|
Distinct epidemiological profiles associated with inflammatory breast cancer (IBC): A comprehensive analysis of the IBC registry at The University of Texas MD Anderson Cancer Center. PLoS One 2018; 13:e0204372. [PMID: 30248155 PMCID: PMC6152950 DOI: 10.1371/journal.pone.0204372] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022] Open
Abstract
Background To date, studies on inflammatory breast cancer (IBC) lack comprehensive epidemiological data. We analyzed detailed prospectively collected clinical and epidemiological data from the IBC Registry at The University of Texas MD Anderson Cancer Center. Methods Patients with IBC (n = 248) were consecutively diagnosed and prospectively enrolled between November 2006 and April 2013. All patients were newly diagnosed and at least 18 years old. Secondary IBC was excluded. Overall 160 variables were collected and evaluated including sociodemographics, anthropometrics, tobacco and alcohol consumption, reproductive variables, and family history data. Results Mean age at diagnosis was 51.6 (±11.5 SD) years, and the majority of patients were White (77.8%). A mean BMI ≥ 25 kg/m2, irrespective of menopausal status, was observed in 80.2% of all patients, with 82.6% of African Americans being obese. Approximately 42.2% of patients were ever smokers, and 91% reported ever being pregnant. A history of breastfeeding was reported in 54% of patients, with significant differences between ethnic groups in favor of White women (P<0.0001). Other reproductive factors such as use of birth control pills & hormone replacement therapy were also more frequently associated with White women compare to other ethnic groups (P < 0.05). In the multivariate Cox proportional hazard analysis, African American or Hispanic ethnicity, not having breastfed, higher clinical stage, and TNBC subtype were associated with shorter survival. Conclusion Our data suggest that IBC is associated with distinct epidemiological profiles. This information could assist in targeting patients with specific preventive strategies based on their modifiable behavioral patterns.
Collapse
|
45
|
Badr M, Said H, Louka ML, Elghazaly HA, Gaballah A, Atef Abd El Mageed M. MicroRNA-21 as a predictor and prognostic factor for trastuzumab therapy in human epidermal growth factor receptor 2-positive metastatic breast cancer. J Cell Biochem 2018; 120:3459-3466. [PMID: 30246355 DOI: 10.1002/jcb.27620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/14/2018] [Indexed: 01/04/2023]
Abstract
Breast cancer is the second most common cancer diagnosed worldwide. Human epidermal growth factor receptor 2 (HER2)-positive breast cancer represents about 20% to 30% of all breast cancers. Trastuzumab is used in the treatment of HER2-positive breast cancer. MicroRNA-21 (miR-21) is an oncomiR that acts by inhibiting many tumor-suppressor genes. We analyzed the relative expression levels of serum miR-21 in 20 HER2-positive metastatic breast cancer patients before and after 3 months of treatment with trastuzumab. miR-21 levels decreased with a high significant difference after trastuzumab therapy (P = 0.001). Although miR-21 expression levels were lower in responders than in nonresponders, the difference was not statistically significant ( P = 0.6). Our results demonstrated a significant negative correlation between its basal expression, expression levels after treatment, and time to progression ( P = 0.03 and 0.01, respectively). These results make miR-21 a potential prognostic factor for HER2-positive metastatic breast cancer patients. Additionally, it can be an interesting potential target in therapy using antisense oligonucleotides for miR-21.
Collapse
Affiliation(s)
- Marwa Badr
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hebatallah Said
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Manal L Louka
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hesham A Elghazaly
- Clinical Oncology and Nuclear Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ahmed Gaballah
- Clinical Oncology and Nuclear Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mai Atef Abd El Mageed
- Clinical Oncology and Nuclear Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
46
|
Weiss A, Chu CK, Lin H, Shen Y, Shaitelman SF, Garvey PB, Bedrosian I, Babiera GV. Reconstruction in the Metastatic Breast Cancer Patient: Results from the National Cancer Database. Ann Surg Oncol 2018; 25:3125-3133. [PMID: 30109538 DOI: 10.1245/s10434-018-6693-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Indexed: 11/18/2022]
Abstract
PURPOSE Modern treatments are prolonging life for metastatic breast cancer patients. Reconstruction in these patients is controversial. The purpose of this study was to characterize de novo metastatic breast cancer patients who undergo mastectomy and reconstruction and to report complication and survival rates. METHODS We queried the National Cancer Database for de novo metastatic breast cancer patients, who underwent systemic therapy and mastectomy with reconstruction (R) or without reconstruction (NR) between 2004 and 2013. Patient-tumor characteristics, mortality, and readmissions were compared. Propensity score matched analysis was performed, and survival was calculated using the Kaplan-Meier method. RESULTS A total of 8554 patients fulfilled study criteria (n = 980/11.5% R vs. n = 7574/88.5% NR). There was a significant increase in reconstruction rates by year: 5.2% in 2004, 14.3% in 2013 (p < 0.0001). Compared with the NR patients, R patients were younger (mean age 49 vs. 58 years, p < 0.0001), more hormone receptor-positive (76.1% vs. 70.5%, p = 0.0004), had lower grade disease (p = 0.0082), and fewer sites of metastases (85.7% had 1 metastasis; 14.3% had ≥ 2 R vs. 79% had 1; 21% had ≥ 2 NR, p = 0.0002). R patients received more hormonal and chemotherapy than NR but equally received radiation. Median overall survival of the total cohort was 45 months, and median overall survivals of R and NR groups by matched analysis were 56.7 and 55.3 months respectively (p = 0.86). Thirty-day mortality (0.2%-R, 0.3%-NR, p = 0.56) and readmissions (5.9%-R, 5.8%-NR, p = 0.81) were similar; 90-day mortality also was similar (1.1%-R vs. 1.6%-NR, p = 0.796). CONCLUSIONS There is an increasing trend to reconstruct metastatic breast cancer patients with low complication rates, without survival compromise. Impact on quality of life warrants further assessment.
Collapse
Affiliation(s)
- Anna Weiss
- Department of Surgical Oncology, Brigham and Women's Hospital, Boston, MA, USA.
| | - Carrie K Chu
- Plastic Surgery, UT MD Anderson, Houston, TX, USA
| | - Heather Lin
- Department of Biostatistics, UT MD Anderson, Houston, TX, USA
| | - Yu Shen
- Department of Biostatistics, UT MD Anderson, Houston, TX, USA
| | | | | | | | | |
Collapse
|
47
|
Abstract
The role of operative therapy in stage IV breast cancer continues to evolve with advances in therapy and improvements in survival among this population. Traditionally surgery was performed with palliative intent to alleviate symptoms related to the intact breast primary. Several retrospective studies have challenged this paradigm, demonstrating survival advantage with surgery in de novo metastatic disease. Prospective studies are ongoing and maturing data. A comprehensive approach to local therapy following systemic therapy may be beneficial to achieve improved survival outcome associated with stage IV- no evidence of disease and to decrease local failure in inflammatory breast cancer.
Collapse
Affiliation(s)
- Mediget Teshome
- Department of Breast Surgical Oncology, University of Texas M.D. Anderson Cancer Center, 1400 Pressler Street, Unit 1434, Houston, TX 77030, USA.
| |
Collapse
|
48
|
Menta A, Fouad TM, Lucci A, Le-Petross H, Stauder MC, Woodward WA, Ueno NT, Lim B. Inflammatory Breast Cancer: What to Know About This Unique, Aggressive Breast Cancer. Surg Clin North Am 2018; 98:787-800. [PMID: 30005774 DOI: 10.1016/j.suc.2018.03.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inflammatory breast cancer (IBC) is a rare form of breast cancer that accounts for only 2% to 4% of all breast cancer cases. Despite its low incidence, IBC contributes to 7% to 10% of breast cancer caused mortality. Despite ongoing international efforts to formulate better diagnosis, treatment, and research, the survival of patients with IBC has not been significantly improved, and there are no therapeutic agents that specifically target IBC to date. The authors present a comprehensive overview that aims to assess the present and new management strategies of IBC.
Collapse
Affiliation(s)
- Arjun Menta
- The University of Texas at Austin, 110 Inner Campus Drive, Austin, TX 78705, USA
| | - Tamer M Fouad
- Morgan Welch Inflammatory Breast Cancer Research and Clinic Program, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Medical Oncology, The National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Anthony Lucci
- Morgan Welch Inflammatory Breast Cancer Research and Clinic Program, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Huong Le-Petross
- Morgan Welch Inflammatory Breast Cancer Research and Clinic Program, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Breast Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Michael C Stauder
- Morgan Welch Inflammatory Breast Cancer Research and Clinic Program, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Wendy A Woodward
- Morgan Welch Inflammatory Breast Cancer Research and Clinic Program, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Naoto T Ueno
- Morgan Welch Inflammatory Breast Cancer Research and Clinic Program, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Bora Lim
- Morgan Welch Inflammatory Breast Cancer Research and Clinic Program, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
49
|
Eckhardt BL, Gagliardi M, Iles L, Evans K, Ivan C, Liu X, Liu CG, Souza G, Rao A, Meric-Bernstam F, Ueno NT, Bartholomeusz GA. Clinically relevant inflammatory breast cancer patient-derived xenograft-derived ex vivo model for evaluation of tumor-specific therapies. PLoS One 2018; 13:e0195932. [PMID: 29768500 PMCID: PMC5955489 DOI: 10.1371/journal.pone.0195932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/03/2018] [Indexed: 02/05/2023] Open
Abstract
Inflammatory breast cancer (IBC) is a rare and aggressive presentation of invasive breast cancer with a 62% to 68% 5-year survival rate. It is the most lethal form of breast cancer, and early recognition and treatment is important for patient survival. Like non-inflammatory breast cancer, IBC comprises multiple subtypes, with the triple-negative subtype being overrepresented. Although the current multimodality treatment regime of anthracycline- and taxane-based neoadjuvant therapy, surgery, and radiotherapy has improved the outcome of patients with triple-negative IBC, overall survival continues to be worse than in patients with non-inflammatory locally advanced breast cancer. Translation of new therapies into the clinics to successfully treat IBC has been poor, in part because of the lack of in vitro preclinical models that can accurately predict the response of the original tumor to therapy. We report the generation of a preclinical IBC patient-derived xenograft (PDX)-derived ex vivo (PDXEx) model and show that it closely replicates the tissue architecture of the original PDX tumor harvested from mice. The gene expression profile of our IBC PDXEx model had a high degree of correlation to that of the original tumor. This suggests that the process of generating the PDXEx model did not significantly alter the molecular signature of the original tumor. We demonstrate a high degree of similarity in drug response profile between a PDX mouse model and our PDXEx model generated from the same original PDX tumor tissue and treated with the same panel of drugs, indicating that our PDXEx model had high predictive value in identifying effective tumor-specific therapies. Finally, we used our PDXEx model as a platform for a robotic-based high-throughput drug screen of a 386-drug anti-cancer compound library. The top candidates identified from this drug screen all demonstrated greater therapeutic efficacy than the standard-of-care drugs used in the clinic to treat triple-negative IBC, doxorubicin and paclitaxel. Our PDXEx model is simple, and we are confident that it can be incorporated into a PDX mouse system for use as a first-pass screening platform. This will permit the identification of effective tumor-specific therapies with high predictive value in a resource-, time-, and cost-efficient manner.
Collapse
Affiliation(s)
- Bedrich L. Eckhardt
- Department of Breast Medical Oncology, The University of Texas, MD, Anderson Cancer Center, Houston, Texas, United States of America
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas, MD, Anderson Cancer Center, Houston, Texas, United States of America
| | - Maria Gagliardi
- Department of Breast Medical Oncology, The University of Texas, MD, Anderson Cancer Center, Houston, Texas, United States of America
| | - LaKesla Iles
- Department of Experimental Therapeutics, The University of Texas, MD, Anderson Cancer Center, Houston, Texas, United States of America
| | - Kurt Evans
- Department of Investigational Cancer Therapeutics, The University of Texas, MD, Anderson Cancer Center, Houston, Texas, United States of America
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas, MD, Anderson Cancer Center, Houston, Texas, United States of America
| | - Xiuping Liu
- Department of Experimental Therapeutics, The University of Texas, MD, Anderson Cancer Center, Houston, Texas, United States of America
| | - Chang-Gong Liu
- Department of Experimental Therapeutics, The University of Texas, MD, Anderson Cancer Center, Houston, Texas, United States of America
| | - Glauco Souza
- Nano3D Biosciences, Houston, Texas, United States of America
- University of Texas Health Science Center, Houston, Texas, United States of America
| | - Arvind Rao
- Department of Bioinformatics and Computational Biology, The University of Texas, MD, Anderson Cancer Center, Houston, Texas, United States of America
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas, MD, Anderson Cancer Center, Houston, Texas, United States of America
| | - Naoto T. Ueno
- Department of Breast Medical Oncology, The University of Texas, MD, Anderson Cancer Center, Houston, Texas, United States of America
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas, MD, Anderson Cancer Center, Houston, Texas, United States of America
| | - Geoffrey A. Bartholomeusz
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas, MD, Anderson Cancer Center, Houston, Texas, United States of America
- Department of Experimental Therapeutics, The University of Texas, MD, Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
50
|
Mego M, Gao H, Cohen EN, Anfossi S, Giordano A, Tin S, Fouad TM, De Giorgi U, Giuliano M, Woodward WA, Alvarez RH, Valero V, Ueno NT, Hortobagyi GN, Cristofanilli M, Reuben JM. Circulating tumor cells (CTCs) are associated with abnormalities in peripheral blood dendritic cells in patients with inflammatory breast cancer. Oncotarget 2018; 8:35656-35668. [PMID: 27374101 PMCID: PMC5482606 DOI: 10.18632/oncotarget.10290] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/13/2016] [Indexed: 12/20/2022] Open
Abstract
CTCs are involved in tumor dissemination and are an independent prognostic factor in primary and metastatic breast cancer patients. Dendritic cells (DCs) are the most efficient antigen presenting cells and are comprised of plasmacytoid-(pDC) and myeloid-(mDC) derived DC subsets. This study aimed to correlate CTC counts with the peripheral blood DC immunophenotypes and functions of inflammatory breast cancer (IBC) patients. This study included 65 IBC patients. Peripheral blood (PB) was obtained from patients prior to starting a new line of chemotherapy for CTCs enumeration by CellSearch® and DC phenotype and function by flow cytometry; the characteristics of DCs were then correlated with CTC counts and clinical outcome. Twenty-one (32.3%) patients with CTCs ≥5 had a significantly inferior overall survival (OS) compared to patients with <5 CTCs (p=0.045). In addition, patients with ≥5 CTCs had a lower percentage of mDCs capable of producing TNF-α before or after activation through the toll-like receptor (TLR), as well as a lower percentage of mDCs producing IL-12 after TLR-activation. There was a positive correlation between CTCs counts and expression of the activation (CCR7) and costimulatory (CD86) receptors on TLR-activated mDCs and pDCs, respectively. Moreover, presence of high percentage of mDC capable to produce increased levels of TNF-α was independently associated with inferior OS (p = 0.0006). An increase in the percentage of mDC producing TNF-α might induce a pro-inflammatory environment that could play a role in determining the poor clinical outcome in IBC patients and could add further prognostic value to CTCs.
Collapse
Affiliation(s)
- Michal Mego
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Currently at Department of Medical Oncology, Comenius University, School of Medicine, National Cancer Institute, Bratislava, Slovakia
| | - Hui Gao
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Evan N Cohen
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Simone Anfossi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Antonio Giordano
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Currently at Department of Medicine at Medical University of South Carolina, Charleston, SC, USA
| | - Sanda Tin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tamer M Fouad
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Currently at Department of Medical Oncology, The National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ugo De Giorgi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Currently at Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) - IRCCS, Meldola (FC), Italy
| | - Mario Giuliano
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Currently at Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Wendy A Woodward
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of MD Anderson Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ricardo H Alvarez
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of MD Anderson Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vicente Valero
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of MD Anderson Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naoto T Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of MD Anderson Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriel N Hortobagyi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Massimo Cristofanilli
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Currently at Division of Hematology-Oncology at Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - James M Reuben
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of MD Anderson Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|