1
|
Peng Y, Lin C, Zhang B, Yan L, Zhang B, Zhao C, Qiu L. Characteristics and preliminary immune function of SRA5 in Lateolabrax maculatus. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110266. [PMID: 40064212 DOI: 10.1016/j.fsi.2025.110266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/26/2025] [Accepted: 03/07/2025] [Indexed: 03/26/2025]
Abstract
Scavenger receptors (SRs) are crucial for pattern recognition in the innate immune system. However, the role of Scavenger Receptors class A member 5 (SRA5) in the immunological response of bony fish to pathogen invasion remains unclear. This study identified and characterized the SRA5 of Lateolabrax maculatus (LmSRA5) from its transcriptome database. LmSRA5 has a 1494 bp open reading frame, encodes 497 amino acids, has a molecular weight of 55.01 kDa, and contains a collagen domain and a conserved Scavenger Receptor Cysteine-Rich domain. LmSRA5 exhibited high sequence similarity to previously reported SRA5 genes. LmSRA5 exhibited high sequence similarity to previously reported SRA5 genes. LmSRA5 is primarily localized in the cytoplasm, with its encoded proteins distributed in both the cytoplasm and the cell membrane. LmSRA5 was expressed in all tissues. The highest expression was observed in the pituitary gland, with significant levels in the stomach, intestines, liver, and kidney. LmSRA5 expression in the head kidney, spleen, blood, and intestines initially increased, then decreased following infection with Aeromonas veronii. The binding affinity of LmSRA5 for A. veronii was enhanced by increasing concentrations of the extracellular domain recombinant LmSRA5. Knockdown and overexpression experiments in liver cells demonstrated that LmSRA5 significantly regulates the expression of IL-8 and c-Jun. LmSRA5 participates in the immune response by recognizing pathogen-associated molecular patterns (PAMPs) and contributes to immune regulation through modulation IL-8 and c-Jun. This study offers valuable insights into the role of SRA5 in pathogen resistance and immune regulation in bony fish, thereby contributing to the advancement of aquaculture under escalating disease pressures.
Collapse
Affiliation(s)
- Yangtao Peng
- College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China
| | - Changhong Lin
- College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China
| | - Bo Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Sanya Tropical Fisheries Research Institute, Sanya, PR China.
| | - Lulu Yan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Sanya Tropical Fisheries Research Institute, Sanya, PR China
| | - Bo Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Sanya Tropical Fisheries Research Institute, Sanya, PR China.
| | - Chao Zhao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Sanya Tropical Fisheries Research Institute, Sanya, PR China
| | - Lihua Qiu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Sanya Tropical Fisheries Research Institute, Sanya, PR China; Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Science, Beijing, PR China.
| |
Collapse
|
2
|
Jin A, DuPré N, Holm R, Smith T, Kavalukas S. Environmental Levels of Volatile Organic Compounds, Race, and Socioeconomic Markers Correlate with Areas of High Colorectal Cancer Incidence. J Racial Ethn Health Disparities 2025; 12:2045-2051. [PMID: 38755478 DOI: 10.1007/s40615-024-02030-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/06/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Ambient levels of volatile organic compounds (VOCs) released from nearby industrial plants have shown positive associations with increased colorectal cancer (CRC) rates. The objective of this study is to analyze the distribution of CRC in the context of socioeconomic status and its correlation with community environmental data. METHODS A retrospective study analyzed CRC patients from 2021 to 2023. The census tracts of the patients' residential addresses were obtained, and CRC rates were calculated for each census tract. Socioeconomic data was gathered on these communities. Environmental VOC measurements were obtained from the National Scale Air Toxics Assessment. All datapoints were compared to statewide levels. RESULTS Three census tracts in the county had higher CRC cases comparatively. These areas exhibited higher incidence rates and localized clusters of CRC cases, higher distribution of Black or African Americans, lower household incomes, lower home values, and lower educational attainment. VOC measurements in these census tracts had higher levels compared to county and state averages: specifically, 10.68% higher than county and 48.07% higher than state benzene levels (0.52 µg/m3 clusters vs 0.47µg/m3 county vs 0.35 µg/m3 state), 10.84% and 129.15% higher toluene (1.65 µg/m3 vs 1.49 vs 0.72 µg/m3), and 15.64% and 141.87% higher butadiene (0.048 µg/m3 vs 0.041 µg/m3 vs 0.020 µg/m3). CONCLUSION This study illustrates a positive correlation between higher ambient exposure to VOCs with increased CRC incidence. These findings underscore the potential interplay of environmental factors, socioeconomic determinants, and environmental injustice when considering strategies to address health disparities and CRC incidence.
Collapse
Affiliation(s)
- Allie Jin
- School of Medicine, Department of Surgery, University of Louisville, 550 South Jackson Street, Louisville, KY, 40292, USA
| | - Natalie DuPré
- School of Public Health and Information Sciences, Department of Epidemiology and Population Health, University of Louisville, Louisville, KY, USA
| | - Rochelle Holm
- School of Medicine, Envirome Institute, University of Louisville, Louisville, KY, USA
| | - Ted Smith
- School of Medicine, Envirome Institute, University of Louisville, Louisville, KY, USA
| | - Sandy Kavalukas
- School of Medicine, Department of Surgery, University of Louisville, 550 South Jackson Street, Louisville, KY, 40292, USA.
| |
Collapse
|
3
|
Dong D, Yu X, Liu H, Xu J, Guo J, Guo W, Li X, Wang F, Zhang D, Liu K, Sun Y. Study of immunosenescence in the occurrence and immunotherapy of gastrointestinal malignancies. Semin Cancer Biol 2025; 111:16-35. [PMID: 39929408 DOI: 10.1016/j.semcancer.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/18/2025] [Accepted: 01/26/2025] [Indexed: 02/25/2025]
Abstract
In human beings heterogenous, pervasive and lethal malignancies of different parts of the gastrointestinal (GI) tract viz., tumours of the oesophagus, stomach, small intestine, colon, and rectum, represent gastrointestinal malignancies. Primary treatment modality for gastric cancer includes chemotherapy, surgical interventions, radiotherapy, monoclonal antibodies and inhibitors of angiogenesis. However, there is a need to improve upon the existing treatment modality due to associated adverse events and the development of resistance towards treatment. Additionally, age has been found to contribute to increasing the incidence of tumours due to immunosenescence-associated immunosuppression. Immunosenescence is the natural process of ageing, wherein immune cells as well as organs begin to deteriorate resulting in a dysfunctional or malfunctioning immune system. Accretion of senescent cells in immunosenescence results in the creation of a persistent inflammatory environment or inflammaging, marked with elevated expression of pro-inflammatory and immunosuppressive cytokines and chemokines. Perturbation in the T-cell pools and persistent stimulation by the antigens facilitate premature senility of the immune cells, and senile immune cells exacerbate inflammaging conditions and the inefficiency of the immune system to identify the tumour antigen. Collectively, these conditions contribute positively towards tumour generation, growth and eventually proliferation. Thus, activating the immune cells to distinguish the tumour cells from normal cells and invade them seems to be a logical strategy for the treatment of cancer. Consequently, various approaches to immunotherapy, viz., programmed death ligand-1 (PD-1) inhibitors, Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors etc are being extensively evaluated for their efficiency in gastric cancer. In fact, PD-1 inhibitors have been sanctioned as late late-line therapy modality for gastric cancer. The present review will focus on deciphering the link between the immune system and gastric cancer, and the alterations in the immune system that incur during the development of gastrointestinal malignancies. Also, the mechanism of evasion by tumour cells and immune checkpoints involved along with different approaches of immunotherapy being evaluated in different clinical trials will be discussed.
Collapse
Affiliation(s)
- Daosong Dong
- Department of Pain, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xue Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
| | - Haoran Liu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Jingjing Xu
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Jiayan Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiang Li
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Fei Wang
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Dongyong Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Kaiwei Liu
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yanbin Sun
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
4
|
Berends AMA, Wardenaar R, van den Bos H, Tijhuis AE, Links TP, Feelders RA, Hofland LJ, Kruijff S, Pacak K, Spierings DCJ, Kerstens MN, Foijer F. Single-cell chromosome and bulk transcriptome analysis as a diagnostic tool to differentiate between localized and metastatic pheochromocytoma and sympathetic paraganglioma. Oncogene 2025:10.1038/s41388-025-03391-3. [PMID: 40319142 DOI: 10.1038/s41388-025-03391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/16/2025] [Accepted: 04/01/2025] [Indexed: 05/07/2025]
Abstract
Approximately 10-20% of patients with pheochromocytoma or sympathetic paraganglioma (PPGL) develop metastatic disease, most often as metachronous lesions. Unfortunately, there is a lack of accurate biomarkers that can predict the biologic behavior of a PPGL at the initial diagnosis. We investigated tumor samples from patients with PPGL and a diagnosis of either localized or metastatic disease with synchronous or metachronous metastases and performed a comprehensive molecular analysis through application of single-cell whole-genome sequencing and bulk transcriptome analysis, including variant detection analysis of RNA sequences. We found that PPGL displayed complex karyotypes with recurrent aneuploidies and substantial cell-to-cell karyotype variability, indicating ongoing chromosomal instability (CIN) in both localized and metastatic tumors. Transcriptome analysis on the other hand revealed several differences between localized and metastatic PPGL including TNFα and TGFβ signaling in metastatic PPGL that were already detectable in primary tumor samples of initially non-metastatic-appearing PPGLs that developed metachronous metastases. Altogether our findings indicate that while localized and metastatic PPGL in general have comparable genomic landscapes, they do show transcriptional differences that are already detectable in primary tumor PPGL before development of metastases. This finding could provide an important tool for improvement of patient stratification at initial diagnosis.
Collapse
Affiliation(s)
- Annika M A Berends
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - René Wardenaar
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hilda van den Bos
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andréa E Tijhuis
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Thera P Links
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Richard A Feelders
- Department of Endocrinology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Leo J Hofland
- Department of Endocrinology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Schelto Kruijff
- Department of Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD, USA
| | - Diana C J Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Michiel N Kerstens
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Lou K, Cheng X. Prognostic value of the neutrophil‑to‑lymphocyte ratio in renal cell carcinoma: A systematic review and meta‑analysis. Oncol Lett 2025; 29:231. [PMID: 40114748 PMCID: PMC11925002 DOI: 10.3892/ol.2025.14977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/11/2025] [Indexed: 03/22/2025] Open
Abstract
The neutrophil-to-lymphocyte ratio (NLR) not only indicates the inflammatory response within the tumor microenvironment but may also correlate with tumor biological behavior (such as aggressiveness). The present study aimed to systematically review and conduct a meta-analysis on the impact of the NLR on the prognosis of patients with renal cell carcinoma (RCC). To this aim, a comprehensive search of multiple relevant databases, including PubMed, Embase and the Cochrane Library, was conducted to identify literature related to NLR and RCC prognosis. Following rigorous literature screening and quality assessment, a systematic quantitative analysis was ultimately performed on several studies that met the inclusion criteria. The results indicated a significant association between elevated NLR levels and poor prognosis in patients with RCC, suggesting that high NLR levels may serve as an independent predictor of unfavorable outcomes. Therefore, the present study provides important evidence for clinical decision-making, further demonstrating that NLR can serve as an independent prognostic indicator for patients with RCC, aiding healthcare professionals in making more precise judgments in patient management and treatment strategy formulation.
Collapse
Affiliation(s)
- Kecheng Lou
- Department of Urology, Lanxi People's Hospital, Jinhua, Zhejiang 321100, P.R. China
| | - Xin Cheng
- Department of Urology, Ganzhou Cancer Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
6
|
Cai Z, Meng K, Yu T, Xi Y, Yuan Z, Wang X, Wang C, Li L, Fu X. IFN-γ-mediated suppression of ANGPT2-Tie2 in endothelial cells facilitates tumor vascular normalization during immunotherapy. Front Immunol 2025; 16:1551322. [PMID: 40370455 PMCID: PMC12075545 DOI: 10.3389/fimmu.2025.1551322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 04/08/2025] [Indexed: 05/16/2025] Open
Abstract
Introduction Tumor angiogenesis is a critical biological hallmark of cancer, which involves multiple molecularly regulated signaling pathways, including the angiopoietin (ANGPT)-Tie2 and the vascular endothelial growth factor (VEGF) signaling pathways. Despite initial optimism, targeting tumor angiogenesis in the treatment of lung adenocarcinoma (LUAD) has been unsatisfactory. Currently, monotherapy with PD-1/PD-L1 inhibitors, or their combination with bevacizumab, is considered the standard therapeutic approach for LUAD. Recent studies have shown that immunotherapy suppresses tumor angiogenesis and facilitates vascular normalization. However, whether and how anti-PD-L1 therapy influences tumor vasculature remains unclear. Methods To investigate the impact of immunotherapy on the vasculature of LUAD, a mouse model of lung adenocarcinoma was established by subcutaneous implantation of Lewis lung carcinoma cells in vivo. The effects of different treatments on microvessel density and pericyte coverage were explored, and the expression of angiogenesis-related factors was analyzed. Furthermore, to explore the molecular mechanisms through which IFN-γ regulates tumor blood vessels during immunotherapy, we elucidated the specific mechanisms in vitro by means of techniques such as siRNA, ChIP, RT-qPCR, Western blot, and immunofluorescence. Finally, the effects of IFN-γ on the proliferation, migration, and angiogenic function of endothelial cells (ECs) were evaluated through CCK-8, Transwell, and HUVEC tube formation assays. Results Employing a mouse model of LUAD, we demonstrated that PD-L1 blockade therapy inhibits tumor angiogenesis and normalizes vasculature in an IFN-γ-signaling-dependent manner. Notably, anti-PD-L1 therapy reduced Tie2 and ANGPT2 expression, and these effects were reversed by the JAK1/2 inhibitor. Mechanistically, we demonstrated that IFN-γ inhibited Tie2 and ANGPT2 expression in ECs, and suppressed ANGPT2 gene transcription through the AKT-FOXO1 signaling pathway. Interestingly, IFN-γ-mediated activation of STAT1 exerts negative regulation by directly binding to the promoter regions of the ANGPT2 and TEK genes. Functionally, IFN-γ limits the migration, proliferation, and tube formation of ECs. Discussion In conclusion, our results revealed a novel mechanism wherein IFN-γ-mediated inhibition of ANGPT2-Tie2 facilitates vascular normalization during immunotherapy in LUAD, which performs an essential function in the antitumor efficacy of immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lequn Li
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, China
| | - Xiangning Fu
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, China
| |
Collapse
|
7
|
Aparajay P, Madhyastha H, Altamimi MA, Dev A, Hussain A, Bhowmik S. Functionalized Niosomes for Co-Delivery of Curcumin and Imatinib Mesylate to Treat Breast Cancer: In Vitro and In Vivo Investigations. AAPS PharmSciTech 2025; 26:119. [PMID: 40301277 DOI: 10.1208/s12249-025-03102-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/29/2025] [Indexed: 05/01/2025] Open
Abstract
Breast cancer is notable for its aggressive mutations, high resistance, and delayed diagnosis. Traditional treatments often cause severe side effects, highlighting the need for targeted therapies. This study developed a targeted delivery system using folic acid and Arginylglycylaspartic acid (RGD)-modified niosomes to deliver hydrophilic imatinib mesylate (IM) and hydrophobic curcumin (C) to treat breast cancer. The formulations were prepared and characaterized for size, zet potential, polydispersity index, % entrapment efficiency, and morphology. Moreover, FTIR (Fourier Transform Infrared) study negated incompatibility. In vitro drug release study was carried out at two different pH. In vitro cytotoxicity (dose dependent and ROS activity) and in vivo bioavailability studies were conducted to generate a proof of concept. The dual drug-loaded niosomal vesicles (R-F-PL64oxNS@IM-C) were designed for effective delivery of IM and C having particle size (< 300 nm) with high zeta potential (- 18 mV). The formulation achieved high entrapment efficiency (>70%) for both drugs with sustained release over 36 h at the explored two pH. In vitro results using MCF- 7 cells revealed significant cell death by R-F-PL64oxNS@IM-C as compared to pure drugs (IM & C) through upregulation and downregulation of proapoptotic and antiapoptotic genes, respectively. In vivo studies showed approximately 1.9- and 5-fold higher biodistribution of C and IM, respectively using targeted niosomal systems as compared to pure drugs. The pharmacokinetic analysis revealed that Cmax and AUC of IM from R-F-PL64oxNS@IM and C from R-F-PL64oxNS@IM-C were significantly higher compared to pure IM and curcumin. Moreover, the Tmax had also increased for both IM (3 h) and C (3 h) using RGD and folic acid guided niosomal formulation suggesting its enhanced retention in systemic circulation leading to more bioavailability as compared to IM (0.5 h) and C (0.5 h). The targeted delivery also led to significant reduction in TNF-α levels, indicating improved therapeutic potential. The developed R-F-PL64oxNS@IM-C shown more precisely killing of breast cancer cell than pure IM and C.
Collapse
Affiliation(s)
- Priyadarshi Aparajay
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, 8891692, Japan
| | - Mohammad A Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Abhimanyu Dev
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| | - Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Shuvadip Bhowmik
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| |
Collapse
|
8
|
Zhang M, Chen M, Yan Y, Lu J, Sheng J, Gui M, Ma X. Comprehensive characterisation of bioactive compounds in Boletus edulis as functional foods to improve muscle atrophy; through whole plant targeted metabolomics, network pharmacology, in vivo and in vitro experiments, molecular docking and molecular dynamics analysis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119685. [PMID: 40139578 DOI: 10.1016/j.jep.2025.119685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/13/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
ETHNOPHARMACOLOGICAL SIGNIFICANCE Boletus edulis (BE) is a naturally occurring fungus that has been traditionally used in ancient Chinese herbal medicine. It is a key component of the formula 'Shujin Pill', commonly prescribed for the treatment or relief of muscular dystrophy. However, the specific efficacy of BE within Shujin Pill or its primary active components remains unclear. AIMS OF THE STUDY This study aims to elucidate the biological function and molecular mechanisms of BE in alleviating muscular atrophy in mice. We employed a comprehensive approach, integrating metabolomics, network pharmacological analysis, molecular docking, molecular dynamics simulation, and in vivo and in vitro experimental validation, to verify these effects. MATERIALS AND METHODS The bioactive components in BE were quantified by UPLC-QTOF-MS/MS. To evaluate the muscle function indexes after 14 days of action of different doses of BE and to analyze the pathological changes in muscle tissue. Enabling network pharmacology to analyze the potential active components in BE for the alleviation of muscle atrophy, using computer molecular simulation for docking scores, molecular dynamics simulation to assist in the validation of the active components in BE, and in vitro experiments for the validation of the active components. RESULT BE administered alone was able to slow down Lipopolysaccharide (LPS)-induced muscle atrophy. 996 non-volatile components were detected in BE by metabolomics, and GAPDH, TP53, AKT1, TNF-α and IL-6 were more strongly associated with muscle atrophy by using web-based pharmacological analyses. Folic acid, Cycloartenol and Sesamin active ingredients have greater potential to treat or alleviate muscle atrophy, molecular docking, molecular dynamics detected that Sesamin and AKT both have high binding energy, in vitro using C2C12 skeletal muscle cells to verify the efficacy of Sesamin and BE, found that in the presence of the LY294002 (PI3K inhibitor) and GSK21417 (AKT inhibitor) treatment conditions, the elimination of the up-regulation of the PI3K/AKT signaling pathway by Sesamin and BE and loss of biological efficacy. It suggests that BE may slow down or treat muscle atrophy through the PI3K/AKT signaling pathway, in which Sesamin plays a major role. Meanwhile BE and Sesamin were able to enhance the antioxidant level of C2C12 skeletal muscle cells.
Collapse
Affiliation(s)
- Ming Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China; Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, 650201, China; College of Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Minmin Chen
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, 650201, China
| | - Yizhe Yan
- College of Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Juan Lu
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, 650201, China
| | - Jun Sheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China; College of Science, Yunnan Agricultural University, Kunming, 650201, China.
| | - Mingying Gui
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China; Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, 650201, China.
| | - Xiao Ma
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China; Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
9
|
Zhao L, Liu W, Wang F. Research progress on ADAM28 in malignant tumors. Discov Oncol 2025; 16:566. [PMID: 40252142 PMCID: PMC12009250 DOI: 10.1007/s12672-025-02342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/08/2025] [Indexed: 04/21/2025] Open
Abstract
A disintegrin and metalloproteinase (ADAM) 28 belongs to the zinc-dependent metalloproteinase superfamily and has a signal sequence at its N-terminus that can direct the protein into the secretory pathway. ADAM28 is a multifunctional protein that has been shown to play a role in regulating numerous biological processes, including cell adhesion, cell fusion, membrane protein shedding, protein hydrolysis, and signaling pathway modulation. ADAM28 is highly expressed in numerous malignant tumors and plays a pivotal role in the proliferation, metastasis and drug resistance of these tumors by acting on substrates such as IGFBP-3, vWF and CTGF, thereby promoting PSGL-1/P-selectin-mediated cell adhesion. Consequently, inhibiting ADAM28 could impede tumor proliferation, metastasis and drug resistance, which suggests that ADAM28 may serve as a prognostic indicator of and potential therapeutic target for malignant tumors. In this article, the structure and function of ADAM28 and its correlation with the onset and progression of human malignant tumors are primarily examined. Additionally, the potential applications of ADAM28 in tumor research are investigated to offer a theoretical foundation and reference for the clinical diagnosis and treatment of malignant tumors.
Collapse
Affiliation(s)
- Lanlan Zhao
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Weiqi Road, Jinan, 250021, Shandong, China
| | - Wei Liu
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Weiqi Road, Jinan, 250021, Shandong, China
| | - Fei Wang
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Weiqi Road, Jinan, 250021, Shandong, China.
| |
Collapse
|
10
|
Cho SY, Eun HS, Kim J, Ko YD, Rou WS, Joo JS. The Solute Carrier Superfamily as Therapeutic Targets in Pancreatic Ductal Adenocarcinoma. Genes (Basel) 2025; 16:463. [PMID: 40282424 PMCID: PMC12027052 DOI: 10.3390/genes16040463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/10/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC), a challenging and malignant cancer, primarily originates from the exocrine cells of the pancreas. The superfamily of solute carrier (SLC) transporters, consisting of more than 450 proteins divided into 65 families, is integral to various cellular processes and represents a promising target in precision oncology. As therapeutic targets, SLC transporters are explored through an integrative analysis. MATERIALS AND METHODS The expression profiles of SLCs were systematically analyzed using mRNA data from The Cancer Genome Atlas (TCGA) and protein data from the Human Protein Atlas (HPA). Survival analysis was examined to evaluate the prognostic significance of SLC transporters for overall survival (OS) and disease-specific survival (DSS). Genetic alterations were examined using cBioPortal, while structural studies were performed with AlphaFold and AlphaMissense to predict functional impacts. Furthermore, Gene Set Enrichment Analysis (GSEA) was carried out to identify oncogenic pathways linked to SLC transporter expression. RESULTS SLC transporters were significantly upregulated in tumors relative to normal tissues. Higher expression levels of SLC39A10 (HR = 1.89, p = 0.0026), SLC22B5 (HR = 1.84, p = 0.0042), SLC55A2 (HR = 2.15, p = 0.00023), and SLC30A6 (HR = 1.90, p = 0.003) were strongly associated with unfavorable OS, highlighting their connection to poor prognosis in PDAC. GSEA highlighted that these four transporters are significantly involved in key oncogenic pathways, such as epithelial-mesenchymal transition (EMT), TNF-α signaling, and angiogenesis. CONCLUSIONS The study identifies four SLCs as therapeutic targets in PDAC, highlighting their crucial role in essential metabolic pathways. These findings lay the groundwork for developing next-generation metabolic anti-cancer treatment to improve survival for PDAC patients.
Collapse
Affiliation(s)
- Sang Yeon Cho
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea;
- CHOMEDICINE Inc., TIPS Town, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyuk Soo Eun
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Jaejeung Kim
- Department of Computer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Yun Dam Ko
- Seoul Teunteun Rehabilitation Clinic, Jeungpyeong-gun, Chungcheongbuk-do 27937, Republic of Korea
| | - Woo Sun Rou
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
- Department of Internal Medicine, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
| | - Jong Seok Joo
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
- Department of Internal Medicine, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
| |
Collapse
|
11
|
Zhou X, Liang W, Hong L, Gong S, Liu Z, Li W, Cao N, Tian Y, Xu D, Li B. Transcriptome analysis reveals the alleviating effect of Polysaccharide of Atractylodes macrocephala Koidz on thymic involution in Magang geese. Poult Sci 2025; 104:105155. [PMID: 40245540 PMCID: PMC12032336 DOI: 10.1016/j.psj.2025.105155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025] Open
Abstract
Thymic involution is one of the important causes of decreased immunity in the body. Noncoding RNAs (miRNAs and lncRNAs) play crucial roles in regulating organ growth and development. Polysaccharide of Atractylodes macrocephala Koidz (PAMK) is widely acknowledged for its anti-oxidant, anti-aging, and immune-enhancing effects. However, its potential application in preventing the age-related thymic involution of Magang geese has not been previously reported. In this study, 54 4-month-old Magang geese were randomly divided into 3 groups, the thymus and serum of 18 geese were collected aseptically after 3 days of prefeeding period, and the remaining geese were randomly divided into control and PAMK groups (3 replicates per group and 6 Magang geese per replicate). Geese in the control group were fed a basal diet, and geese in the PAMK group were fed a basal diet supplemented with 400 mg/kg PAMK. The thymus and serum were collected 1 month later. The results of thymus index measurement showed that PAMK could alleviate thymus index. Furthermore, compared with the M5-Control group, HE staining showed that PAMK made the proportion of thymus medulla increased, and the boundary between cortex and medulla was clearer. Antioxidant function and cytokine content detection showed that, compared with the M5-Control group, PAMK increased T-AOC and GSH-Px levels in thymus, increased T-AOC level and SOD activity in serum, decreased MDA content in thymus and serum, and decreased IL-1β, IL-6 and TNF-α levels. To further explore the mechanism, 3 samples from the control and PAMK groups were selected for RNA-Seq. Through transcriptome analysis and prediction, a triple regulatory ceRNA network of 9 mRNAs, 11 miRNAs and 32 lncRNAs associated with alleviating thymic involution was constructed. Moreover, these genes were respectively enriched in the PPAR, Cytokine-cytokine receptor interaction, WNT, Apelin and MAPK signaling pathways. In summary, PAMK may alleviate age-related thymic involution in Magang geese by alleviating the thymus index, increasing the antioxidant level and regulating the cytokine content, potentially via the PPAR, Cytokine-cytokine receptor interaction, WNT, Apelin, and MAPK signaling pathways.
Collapse
Affiliation(s)
- Xiang Zhou
- Science & Technology Innovation Platform of Guangdong Waterfowl, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Weijun Liang
- Science & Technology Innovation Platform of Guangdong Waterfowl, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Longsheng Hong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Shuying Gong
- Science & Technology Innovation Platform of Guangdong Waterfowl, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhuokun Liu
- Science & Technology Innovation Platform of Guangdong Waterfowl, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wanyan Li
- Science & Technology Innovation Platform of Guangdong Waterfowl, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Nan Cao
- Science & Technology Innovation Platform of Guangdong Waterfowl, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yunbo Tian
- Science & Technology Innovation Platform of Guangdong Waterfowl, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Danning Xu
- Science & Technology Innovation Platform of Guangdong Waterfowl, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Bingxin Li
- Science & Technology Innovation Platform of Guangdong Waterfowl, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
12
|
Zheng J, Jiao Z, Yang X, Ruan Q, Huang Y, Jin C, Gui S, Xuan Z, Jia X. Network pharmacology-based exploration of the mechanism of Wenweishu granule in treating chronic atrophic gastritis with spleen-stomach cold deficiency syndrome. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119591. [PMID: 40054637 DOI: 10.1016/j.jep.2025.119591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/14/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wenweishu (WWS) is a traditional Chinese medicine compound formulated for chronic atrophic gastritis (CAG) treatment by warming the stomach and alleviating pain. However, its pharmacological mechanisms remain underexplored. AIM OF THE STUDY This study investigated the therapeutic effects and potential mechanisms of WWS on CAG with spleen-stomach cold deficiency syndrome (SSCDS). METHODS To achieve this, an SSCDS-CAG rat model and a human gastric mucosal epithelial cells (GES-1) cell model were established using multi-factor modeling and N-Methyl-N'-nitro-N-nitrosoguanidine (MNNG) induction, respectively. WWS's effects on gastric injury were evaluated through pathology, inflammation, serum biomarkers, and apoptosis. Additionally, MNNG's effects on GES-1 cells were analyzed. Network pharmacology, involving protein-protein interaction networks, GO/KEGG enrichment, and molecular docking, was employed to predict WWS's potential targets and mechanisms in SSCDS-CAG. Mechanistic insights were further validated using immunohistochemistry, quantitative reverse transcription polymerase chain reaction, and western blotting. RESULTS In vivo results showed that WWS alleviated symptoms in SSCDS-CAG rats, lowering symptom scores and improving gastric histopathology. It modulated serum biomarkers and reduced inflammation and apoptosis in both in vivo and in vitro studies. Network pharmacology results revealed 263 overlapping targets between WWS and SSCDS-CAG, associated with apoptosis, inflammation, and the PI3K/AKT pathway. Molecular docking revealed strong binding affinity between the core target and active WWS components. In SSCDS-CAG rats and GES-1 cells, WWS inhibited PI3K/AKT phosphorylation, increased PTEN expression, and regulated Bcl-2, Bax, and cleaved caspase-3 levels. CONCLUSION WWS reduces inflammation and apoptosis in multi-factor CAG rats and MNNG-induced GES-1 cells by modulating the PTEN/PI3K/AKT signaling pathway and apoptosis-related proteins.
Collapse
Affiliation(s)
- Jia Zheng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Bioactive Natural Products, Hefei, 230012, China
| | - Zhiyong Jiao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Bioactive Natural Products, Hefei, 230012, China
| | - Xinyu Yang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Bioactive Natural Products, Hefei, 230012, China
| | - Qing Ruan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Bioactive Natural Products, Hefei, 230012, China
| | - Yuzhe Huang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Cheng Jin
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Shuangying Gui
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Zihua Xuan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Bioactive Natural Products, Hefei, 230012, China
| | - Xiaoyi Jia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Bioactive Natural Products, Hefei, 230012, China.
| |
Collapse
|
13
|
Li H, Tang Y, Wang H, Liu X, Zeng Y, Zhang R, Yang C, Khan A, Wu B, Wang X, Zhang M. Nano-selenium alleviated immunoresponse, apoptosis and oxidative stress in Leydig cells of yak. Colloids Surf B Biointerfaces 2025; 252:114684. [PMID: 40222115 DOI: 10.1016/j.colsurfb.2025.114684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/30/2025] [Accepted: 04/05/2025] [Indexed: 04/15/2025]
Abstract
Nano-selenium(SENP) plays a crucial role in maintaining cellular redox homeostasis and serves as an antioxidant in cell culture medium. This study investigated the cytoprotective effects of SENP against lipopolysaccharide (LPS)-induced toxicity in yak Leydig cells. In this research, in vitro cultured Leydig cells were exposed to LPS to simulate Gram-negative bacterial infection. Following LPS induction, the cell apoptosis rate reached 28 %, with significant increases in inflammation and oxidative stress markers including IL-6, IL-8, MDA, and ROS. Concurrently, testosterone concentration decreased by nearly 60 %. Subsequently, SENP was introduced into the culture medium. We then evaluated apoptosis, oxidative stress, immune response, and testosterone concentration in Leydig cells. The results demonstrated that SENP effectively protected Leydig cells from LPS-induced damage.
Collapse
Affiliation(s)
- Hao Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yujun Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hui Wang
- College of Science, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xinyue Liu
- College of Science, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yutian Zeng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Run Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Cuiting Yang
- College of Science, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Arab Khan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan
| | - Bing Wu
- Sichuan Chelota Biotechnology Group Co., Ltd, Chengdu, Sichuan 618302, China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Ming Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
14
|
Wang M, Zhao JH, Tang MX, Li M, Zhao H, Li ZY, Liu AD. Cell Death Modalities in Therapy of Melanoma. Int J Mol Sci 2025; 26:3475. [PMID: 40331942 PMCID: PMC12026598 DOI: 10.3390/ijms26083475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 05/08/2025] Open
Abstract
Melanoma, one of the most lethal cancers, demands urgent and effective treatment strategies. However, a successful therapeutic approach requires a precise understanding of the mechanisms underlying melanoma initiation and progression. This review provides an overview of melanoma pathogenesis, identifies current pathogenic factors contributing to mortality, and explores targeted therapy and checkpoint inhibitor therapy. Furthermore, we examine melanoma classification and corresponding therapies, along with advancements in various cell death mechanisms for melanoma treatment. We also discuss the current treatment status along with some drawbacks encountered during research stages such as resistance and metastasis.
Collapse
Affiliation(s)
- Meng Wang
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
| | - Jia-Hui Zhao
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
| | - Ming-Xuan Tang
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
| | - Meng Li
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
| | - Hu Zhao
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
- National Demonstration Center for Experimental Basic Medical Education, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhong-Yu Li
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
- National Demonstration Center for Experimental Basic Medical Education, Huazhong University of Science and Technology, Wuhan 430030, China
| | - An-Dong Liu
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.W.); (J.-H.Z.); (M.-X.T.); (M.L.); (H.Z.)
- National Demonstration Center for Experimental Basic Medical Education, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
15
|
Gupta R, Schärer P, Liao Y, Roy B, Benoit RM, Shivashankar GV. Regulation of p65 nuclear localization and chromatin states by compressive force. Mol Biol Cell 2025; 36:ar37. [PMID: 39908115 PMCID: PMC12005105 DOI: 10.1091/mbc.e23-11-0431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/07/2025] Open
Abstract
The tumor microenvironment (TME) is a dynamic ecosystem, that evolves with the developing tumor to support its growth and metastasis. A key aspect of TME evolution is the recruitment of stromal fibroblasts, carried out via the release of various tumor signals including tumor necrosis factor (TNFα). These tumor signals in turn alter the mechanical properties of the TME as the tumor grows. Because of the important role of stromal cells in supporting tumor progression, new therapies aim to target stromal fibroblasts. However, these therapies have been unsuccessful in part due to the limited understanding of cross-talk between chemical and altered mechanical signaling within stromal fibroblasts. To investigate this, we designed a coculture assay with YFP-TNFα releasing spheroids embedded within collagen gels alongside fibroblasts to mimic the stromal response within the TME. This resulted in the nuclear translocation of p65 in the stromal fibroblasts which was further intensified by the addition of compressive stress. The combination of mechanical and chemical signals led to cytoskeletal disruption and induced a distinct chromatin state in the stromal fibroblasts. These results highlight the important cross-talk between cytokine signaling and mechanical forces on stromal cells within the TME and facilitate the development of a better spheroid model for therapeutic interventions.
Collapse
Affiliation(s)
- Rajshikhar Gupta
- Laboratory of Multiscale Bioimaging, Paul Scherrer Institut, Villigen, Aargau, Switzerland 5232
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland 8092
| | - Paulina Schärer
- Laboratory of Multiscale Bioimaging, Paul Scherrer Institut, Villigen, Aargau, Switzerland 5232
| | - Yawen Liao
- Laboratory of Multiscale Bioimaging, Paul Scherrer Institut, Villigen, Aargau, Switzerland 5232
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland 8092
| | - Bibhas Roy
- Laboratory of Multiscale Bioimaging, Paul Scherrer Institut, Villigen, Aargau, Switzerland 5232
- Department of Biological Science, BITS-Pilani Hyderabad Campus, Secunderabad, Telngana, India 500078
| | - Roger M. Benoit
- Laboratory of Multiscale Bioimaging, Paul Scherrer Institut, Villigen, Aargau, Switzerland 5232
| | - G. V. Shivashankar
- Laboratory of Multiscale Bioimaging, Paul Scherrer Institut, Villigen, Aargau, Switzerland 5232
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland 8092
| |
Collapse
|
16
|
Zhang L, Zhao P, Liu Y, Shi N, Zhou Y, Peng S, Sun T, Zhang M, Wu Y, Yang X, Wen Y, Shi G, Gao X, Luo L. Detection of TNF-α using the established ab-MPs-CLIA. Talanta 2025; 285:127301. [PMID: 39637773 DOI: 10.1016/j.talanta.2024.127301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Tumor necrosis factor alpha (TNF-α) is a key cytokine in inflammation and immune responses, making its rapid and accurate detection essential for disease diagnosis and management. In this study, we developed a highly sensitive chemiluminescence immunoassay (CLIA) using antibody-coated magnetic particles (Ab-MPs-CLIA) for TNF-α detection. From nine candidate antibodies, we identified an optimal pair through epitope competition and affinity assessments, significantly improving assay performance. The Ab-MPs-CLIA achieved a detection limit of 0.25 pg/mL, 6.8 times more sensitive than Siemens commercial kits, with a broad linear range of 9.2-1077 pg/mL. The method demonstrated excellent stability, both under accelerated conditions at 37 °C for 7 days and long-term storage at 4 °C for 12 months. It showed no cross-reactivity with common interfering substances in human serum, ensuring high specificity. Notably, the entire process, from sample preparation to result, takes just 25 min, compared to 3-4 h for both ELISA and RIA, and CLIA typically offers 10-100 times higher sensitivity than these methods. These advantages make the Ab-MPs-CLIA an ideal option for clinical laboratories, providing superior sensitivity, specificity, broader dynamic range, and greater operational efficiency than existing TNF-α detection technologies.
Collapse
Affiliation(s)
- Liang Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212003, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Pinnan Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yujun Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Ning Shi
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China; Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yangyihua Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Shangde Peng
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212003, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Tieqiang Sun
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Min Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yahui Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China; Hunan Normal University School of Medicine, Changsha, Hunan Province, 410081, China
| | - Xuechen Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yan Wen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Gang Shi
- Kangpu Biotechnology (Beijing) Co., Ltd., Beijing, 100102, China.
| | - Xiang Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| |
Collapse
|
17
|
Xie H, Sun L, Yao S, Tian X, Jin L, Dai Y, Li Y, Li Y, Fang J, Guo P, Zhang Y. Therapeutically targeting endometrial cancer in preclinical models by ICAM1 antibody-drug conjugates. Gynecol Oncol 2025; 196:16-27. [PMID: 40147093 DOI: 10.1016/j.ygyno.2025.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
OBJECTIVE The incidence of mortality and morbidity from endometrial cancer (EC) is increasing annually, and there is a paucity of effective targeted therapies for the condition. Antibody-drug conjugates (ADCs) represent a promising approach to tumor-targeted therapy. In this study, we aim to identify a novel molecular target for the preclinical development of EC-targeted ADCs. METHODS Through quantitative and unbiased bioinformatics analyses intercellular adhesion molecule-1 (ICAM1) was identified as a potential cell membrane target. Two ADCs, ICAM1-MMAE and ICAM1-DXd, were subsequently developed by conjugating ICAM1 monoclonal antibodies with microtubule inhibitors and DNA topoisomerase inhibitors, respectively. The preclinical efficacy and biosafety of these ICAM1 ADCs were validated in both in vitro and in vivo models. Furthermore, transcriptomic analysis was conducted to elucidate the therapeutic effects of the ICAM1 ADCs. RESULTS Quantitative flow screening and bioinformatics analyses revealed significant overexpression of ICAM1 in EC. ICAM1-MMAE and ICAM1-DXd were developed using clinically effective linkers and payloads. In preclinical models, ICAM1 ADCs showed superior antitumor efficacy compared to standard chemotherapy, achieving sustained tumor regression with an excellent safety profile in both subcutaneous and orthotopic xenograft models. Transcriptomic analysis further revealed that ICAM1-DXd potently activated tumor immunity. CONCLUSIONS ICAM1 was identified as a promising cell membrane protein target for ADC development in EC. As-synthesized ICAM1 ADCs demonstrated potent antitumor activity, favorable biosafety profiles in vitro and in vivo, and the ability to activate tumor immunity. These findings support the potential of ICAM1 ADCs as a therapeutic strategy and warrant further investigation in clinical studies.
Collapse
Affiliation(s)
- Hanfei Xie
- Department of Gynecologic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Clinical and Translational Research Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China; Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Lu Sun
- Department of Gynecologic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Clinical and Translational Research Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China
| | - Shili Yao
- Clinical and Translational Research Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China; School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xuefei Tian
- Clinical and Translational Research Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China; Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, Fudan University, Shanghai 201203, China
| | - Liming Jin
- Clinical and Translational Research Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China; Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, China
| | - Yujie Dai
- Clinical and Translational Research Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China; MOE Frontier Science Centre for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Yuanzheng Li
- Clinical and Translational Research Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China; School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Yuxuan Li
- Clinical and Translational Research Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China
| | - Jianmin Fang
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Peng Guo
- Department of Gynecologic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Clinical and Translational Research Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China; School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; Department of Urology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, China; School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; MOE Frontier Science Centre for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; Eye Research Center, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Eye Hospital, Wenzhou Medical University, Hangzhou, Zhejiang 310018, China.
| | - Yingli Zhang
- Department of Gynecologic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Clinical and Translational Research Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China; Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, China.
| |
Collapse
|
18
|
Zhang H, Cui JG, Chen MS, Wang JX, Sun XH, Zhao Y, Li JL. TNF/TNFR1 Signaling Mediates DEHP-Induced Hepatocyte Pyroptosis via the GSDMD-mtROS Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7432-7444. [PMID: 39999303 DOI: 10.1021/acs.jafc.4c11022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Di(2-ethylhexyl) phthalate (DEHP), which is widely used in agricultural plastics, accumulates in humans and animals through the food chain over time, resulting in liver toxicity. Recent studies have reported that pyroptosis and mitochondrial damage are closely related to a variety of liver diseases, but the specific mechanism is still unclear. To address this issue, in vitro and in vivo hepatotoxicity models were established. The results demonstrated that exposure to DEHP caused a buildup of MEHP in livers, altered liver metabolite composition, and caused pyroptosis-like changes in hepatocytes. After DEHP treatment, REDOX homeostasis was unbalanced, and mitochondrial reactive oxygen species (mtROS) were overproduced. MEHP exposure activates pyroptosis mediated by TNF/TNFR1 signaling and upregulates the perforating protein GSDMD-N to destroy the mitochondrial membrane of hepatocytes. Above all, this study elucidates the potential involvement of TNF/TNFR1 signaling-mediated pyroptosis in mitochondrial damage and confirms that the regulation of pyroptosis is helpful in maintaining normal mitochondrial function.
Collapse
Affiliation(s)
- Hao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jia-Gen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Ming-Shan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jia-Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xiao-Han Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P.R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P.R. China
| |
Collapse
|
19
|
Martora F, Tommasino N, Battista T, Potestio L, Megna M. Hidradenitis Suppurativa Cancer Risk: A Review of the Literature. Clin Cosmet Investig Dermatol 2025; 18:617-626. [PMID: 40124933 PMCID: PMC11929415 DOI: 10.2147/ccid.s512373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Background This systematic review explores the increased cancer risk in patients with hidradenitis suppurativa (HS), particularly cutaneous squamous cell carcinoma (SCC) and lymphoma. Chronic inflammation and immune dysregulation in HS are identified as key factors contributing to malignant transformation, often observed in areas of prolonged tissue damage. Objectives and Results The NOTCH signaling pathway, disrupted by smoking, plays a dual role in cancer, acting as both a tumor suppressor and a proto-oncogene depending on the context. Mutations in NOTCH and TP53 are common in SCC linked to HS, with a prevalence of 0.5% to 4.6%, predominantly in men and localized to the buttock and anogenital regions. Histological analyses suggest that malignant transformation occurs within keratinized epithelium, supported by altered cytokeratin expression. Immune dysregulation in HS-affected areas, compounded by scarring and lymphatic disruption, further exacerbates tumorigenic potential. While anti-TNF-alpha therapies have been implicated in cancer risk, conflicting evidence and meta-analyses suggest no consistent increase in non-melanoma skin cancers (NMSC). Similarly, IL-17 inhibitors show potential risks but lack robust evidence in HS-specific populations. Conclusion In conclusion, HS-associated malignancies, particularly SCC, underscore the need for further research to elucidate the mechanisms linking chronic inflammation to cancer development. Insights from such studies could guide preventative and therapeutic strategies, improving outcomes for HS patients.
Collapse
Affiliation(s)
- Fabrizio Martora
- Section of Dermatology - Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Nello Tommasino
- Section of Dermatology - Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Teresa Battista
- Section of Dermatology - Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Luca Potestio
- Section of Dermatology - Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| | - Matteo Megna
- Section of Dermatology - Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
20
|
Liu W, Hu K, Fu Y, Zhou T, Zhong Q, Wang W, Gui Y, Zhang P, Yao D, Yang X, Zhu W, Liu Z, Luo D, Xiao Y. Identification of methionine metabolism related prognostic model and tumor suppressive functions of BHMT in hepatocellular carcinoma. Sci Rep 2025; 15:9250. [PMID: 40102459 PMCID: PMC11920202 DOI: 10.1038/s41598-025-93650-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/07/2025] [Indexed: 03/20/2025] Open
Abstract
Given the resistance to conventional treatments and limitations of immune checkpoint blockade therapy in hepatocellular carcinoma (HCC), it is imperative to explore novel prognostic models and biomarkers. The dependence of cancer cell on exogenous methionine, known as Hoffman effect, is a hallmark of HCC, with numerous studies reporting a strong correlation between methionine metabolism and tumor development. Betaine-homocysteine S-methyltransferase (BHMT), a critical component of methionine metabolism pathway, has polymorphisms linking to poor prognosis in multiple cancers. Nevertheless, there is little literature regarding the relationship between methionine metabolism and incidence, mortality of HCC, as well as the function of BHMT in HCC progression. In this study, by analyzing multiple datasets, we constructed a methionine metabolism-related prognostic model and thoroughly investigated the influence of BHMT on the prognosis of HCC. Bioinformatics analysis revealed a marked decrease in BHMT expression in HCC, which was linked to adverse clinical outcomes. CIBERSORT results suggest that BHMT promotes infiltration of M1 macrophages. Our results suggest its potential as an ideal prognostic biomarker for anti PD-L1 immunotherapy. In summary, this study innovatively provides first methionine metabolism-related prognostic model and unveils the tumor suppressive function of BHMT in HCC, providing potential mechanism by which BHMT exert its function.
Collapse
Affiliation(s)
- Wenli Liu
- Department of Pathology, Infectious Diseases Hospital of Nanchang University, Nanchang, 330001, Jiangxi, China
| | - Kaiheng Hu
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yaqing Fu
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Tianmin Zhou
- Department of Pathology, Infectious Diseases Hospital of Nanchang University, Nanchang, 330001, Jiangxi, China
| | - Qingmei Zhong
- Department of Pathology, Infectious Diseases Hospital of Nanchang University, Nanchang, 330001, Jiangxi, China
| | - Wu Wang
- Department of Pathology, Infectious Diseases Hospital of Nanchang University, Nanchang, 330001, Jiangxi, China
| | - Yang Gui
- Department of Pathology, Infectious Diseases Hospital of Nanchang University, Nanchang, 330001, Jiangxi, China
| | - Ping Zhang
- Department of Pathology, Infectious Diseases Hospital of Nanchang University, Nanchang, 330001, Jiangxi, China
| | - Di Yao
- Department of Pathology, Infectious Diseases Hospital of Nanchang University, Nanchang, 330001, Jiangxi, China
| | - Xiaohong Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Weifeng Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Zhuoqi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| | - Daya Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| | - Yingqun Xiao
- Department of Pathology, Infectious Diseases Hospital of Nanchang University, Nanchang, 330001, Jiangxi, China.
| |
Collapse
|
21
|
Zhou Y, Geng S, Tang RC, Yu H, Zhang A, Bai Y, Zhang J. Clinical and functional significance of SPATA2 in cancer particularly in LIHC. Sci Rep 2025; 15:8392. [PMID: 40069269 PMCID: PMC11897323 DOI: 10.1038/s41598-025-91386-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/20/2025] [Indexed: 03/15/2025] Open
Abstract
Spermatogenesis-associated protein 2 (SPATA2) is primarily named for its important role in spermatogenesis. Its function in tumorigenesis remains elusive. Here, we used various bioinformatic tools to systematically analyze the expression patterns of SPATA2 in cancers, the correlation of SPATA2 expression with clinical parameters, genetic variation, methylation, phosphorylation, immune infiltration and immune therapy. SPATA2 is significantly upregulated in multiple cancers and its expression was associated with tumor stage, grade and serve as a potential prognostic marker in LIHC. Notably, SPATA2 was also linked to immune suppression, exhibiting positive correlations with immune checkpoint genes and immune suppressive cells such as regulatory T cells and MDSCs. Furthermore, SPATA2 interacted and co-expressed with proteins involved in DNA repair mechanisms, indicating its potential role in maintaining genomic stability. Finally, we conducted biological experiments to investigate the role of SPATA2 in LIHC. SPATA2 knockdown enhances the migration and proliferation capabilities of Hep-G2 and HuH7 cell lines. These findings underscore the significance of SPATA2 in cancer biology, suggests its role in both the tumor microenvironment and the tumor cell level and its potential as a prognostic marker and therapeutic target in oncology, particularly in LIHC.
Collapse
Affiliation(s)
- Yunxuan Zhou
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-Related Diseases, Peking University, Beijing, China
| | - Shijin Geng
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-Related Diseases, Peking University, Beijing, China
| | - Rong-Chun Tang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-Related Diseases, Peking University, Beijing, China
| | - Hengxiang Yu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-Related Diseases, Peking University, Beijing, China
| | - Ao Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-Related Diseases, Peking University, Beijing, China
| | - Yuekui Bai
- General Surgery, Haidian Hospital, Beijing, China.
| | - Jun Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-Related Diseases, Peking University, Beijing, China.
| |
Collapse
|
22
|
Xie Y, Liu F, Wu Y, Zhu Y, Jiang Y, Wu Q, Dong Z, Liu K. Inflammation in cancer: therapeutic opportunities from new insights. Mol Cancer 2025; 24:51. [PMID: 39994787 PMCID: PMC11849313 DOI: 10.1186/s12943-025-02243-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
As one part of the innate immune response to external stimuli, chronic inflammation increases the risk of various cancers, and tumor-promoting inflammation is considered one of the enabling characteristics of cancer development. Recently, there has been growing evidence on the role of anti-inflammation therapy in cancer prevention and treatment. And researchers have already achieved several noteworthy outcomes. In the review, we explored the underlying mechanisms by which inflammation affects the occurrence and development of cancer. The pro- or anti-tumor effects of these inflammatory factors such as interleukin, interferon, chemokine, inflammasome, and extracellular matrix are discussed. Since FDA-approved anti-inflammation drugs like aspirin show obvious anti-tumor effects, these drugs have unique advantages due to their relatively fewer side effects with long-term use compared to chemotherapy drugs. The characteristics make them promising candidates for cancer chemoprevention. Overall, this review discusses the role of these inflammatory molecules in carcinogenesis of cancer and new inflammation molecules-directed therapeutic opportunities, ranging from cytokine inhibitors/agonists, inflammasome inhibitors, some inhibitors that have already been or are expected to be applied in clinical practice, as well as recent discoveries of the anti-tumor effect of non-steroidal anti-inflammatory drugs and steroidal anti-inflammatory drugs. The advantages and disadvantages of their application in cancer chemoprevention are also discussed.
Collapse
Affiliation(s)
- Yifei Xie
- Department of Pathology and Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Fangfang Liu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Yunfei Wu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yuer Zhu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yanan Jiang
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Qiong Wu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China
| | - Zigang Dong
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China.
| | - Kangdong Liu
- State Key Laboratory of Metabolic Dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, 450052, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450007, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
23
|
Wang Z, Dai W, Zhang Z, Wang H. Aptamer-Based Graphene Field-Effect Transistor Biosensor for Cytokine Detection in Undiluted Physiological Media for Cervical Carcinoma Diagnosis. BIOSENSORS 2025; 15:138. [PMID: 40136934 PMCID: PMC11939848 DOI: 10.3390/bios15030138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025]
Abstract
Personalized monitoring of disease biomarkers is of great interest in women's health. However, existing approaches typically involve invasive inspection or bulky equipment, making them challenging to implement at home. Hence, we present a general strategy for label-free and specific detection of disease biomarkers in physiological media using an aptamer-based biosensor. The biosensor is a graphene field-effect transistor that involves immobilizing the aptamer and a biomolecule-permeable polyethylene glycol (PEG) layer on the graphene surface. The aptamer is capable of specifically binding with the target biomarker, thus inducing a change in the sensing responses. The PEG layer can effectively reduce the nonspecific adsorption of nontarget molecules in the solution, and increase the effective Debye screening length in the region directly adjacent to the graphene. In this work, studies of a biosensor with modification of the aptamer and PEG show that cervical carcinoma biomarkers such as tumor necrosis factor-α and interleukin 6 can be sensitively and specifically detected in undiluted physiological media, with detection limits as low as 0.13 pM for TNF-a and 0.20 pM for IL-6. This work presents a significant method for the general application of the biosensor for disease diagnosis in women's health.
Collapse
Affiliation(s)
- Ziran Wang
- Key Laboratory of High-Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan 250100, China
| | - Wenting Dai
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Zaiyu Zhang
- Key Laboratory of High-Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan 250100, China
| | - Haipeng Wang
- Key Laboratory of High-Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
24
|
Kraus SG, Johnson KA, Emmerich PB, Clipson L, Pasch CA, Zhang W, Matkowskyj KA, Deming DA. Micro-environmental changes indicate potential for subclinical intestinal tissue damage in early-age-onset colorectal cancer patients. Gastroenterol Rep (Oxf) 2025; 13:goaf015. [PMID: 39980836 PMCID: PMC11842056 DOI: 10.1093/gastro/goaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/17/2024] [Accepted: 01/14/2025] [Indexed: 02/22/2025] Open
Abstract
Background While improved screening rates have contributed to an overall decrease in the incidence of colorectal cancer (CRC), the incidence of early-age-onset CRC (EAO CRC; age <50 years) has increased. Here, we characterize the genetic alterations and tumor microenvironment (TME) for EAO and later-age-onset (LAO) CRCs to identify relevant biological differences that might point to etiologic factors. Methods A cohort of EAO (n = 60) and LAO (n = 93) CRC patients were evaluated for mutations by using targeted DNA sequencing and for TME differences by using immunohistochemistry and immunofluorescence. The Cancer Genome Atlas (TCGA) PanCancer Atlas colorectal adenocarcinoma cohort was evaluated for transcriptional changes between EAO (n = 82) and LAO (n = 510) patients. Results KRAS and BRAF mutations were less frequent in EAO CRCs. Gene-set enrichment analysis of TCGA data revealed the downregulation of immune-related pathways in EAO CRCs. Both age cohorts had similar numbers of CD8+ tumor-infiltrating lymphocytes (TILs), although LAO patients had more CD4+ TILs and Th1-polarized CD4s. While significant associations between immune subsets and versican (VCAN), versikine, and alpha-smooth muscle actin (αSMA) were found, none of these trends differed between age cohorts. EAO patients trended towards greater VCAN accumulation in adjacent normal tissue, lower rates of VCAN proteolysis, and decreased αSMA accumulation vs LAO patients. Conclusions Overall, established EAO cancers are similar to LAO cancers in mutational profile and key TME features. High VCAN and αSMA expression in adjacent normal colon indicates a presence of factors that are associated with increased intestinal subclinical inflammation. Future mechanistic studies will be conducted to better understand the importance of these findings and related processes should be prioritized as potential etiologic factors for EAO tumorigenesis.
Collapse
Affiliation(s)
- Sean G Kraus
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI, USA
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin–Madison, Madison, WI, USA
| | - Katherine A Johnson
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI, USA
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin–Madison, Madison, WI, USA
| | - Philip B Emmerich
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI, USA
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin–Madison, Madison, WI, USA
| | - Linda Clipson
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin–Madison, Madison, WI, USA
| | - Cheri A Pasch
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Wei Zhang
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, WI, USA
| | - Kristina A Matkowskyj
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, WI, USA
- William S. Middleton Veterans Administration Health System, Madison, WI, USA
| | - Dustin A Deming
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI, USA
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin–Madison, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| |
Collapse
|
25
|
John-Olabode SO, Udenze IC, Adejimi AA, Ajie O, Okunade KS. Association between tumour necrosis factor-a polymorphism and cervical cancer in Lagos State, Nigeria. Ecancermedicalscience 2025; 19:1845. [PMID: 40259899 PMCID: PMC12010130 DOI: 10.3332/ecancer.2025.1845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Indexed: 04/23/2025] Open
Abstract
Background The data on tumour necrosis factor-α (TNF-α) promoter gene polymorphism in the African population are relatively limited, especially in Nigerian women. Objectives This study aimed to determine the prevalence and allele distribution of three TNF-α promoter gene SNPs loci - rs361525 (-238 G>A), rs1799964(-1031 T>C) and rs1800629 (-308 G>A) in women with cervical cancer (CC) and then evaluated the association between TNF-α SNPs and CC among women in Lagos, Nigeria. Methods This is a cross-sectional study of 75 unmatched human immunodeficiency virus (HIV)-infected and uninfected women with and without CC enrolled from October 2021 to January 2023 at the gynaecological oncology, cytology, adult HIV and blood donor clinics of the Lagos University Teaching Hospital. About 5 mL of peripheral blood was collected from each participant for total Deoxyribonucleic acid extraction, primer synthesis and genotyping. The probability of developing CC based on the given SNP genotype was expressed as an odds ratio (OR) with a 95% confidence interval. Allelic frequency deviations from Hardy-Weinberg equilibrium were calculated using chi-square, and the statistical significance level was considered as two-tailed and set at p ≤ 0.05. Results Our study found that TNF-α -1031 T>C polymorphism was significantly associated with increased CC risk in HIV-negative women (HIV+/CC-; OR = 1.4, 95%CI 0.23-8.42, p = 0.03 and HIV-/CC-; OR = 1.37, 95%CI 0.01-1.68, p = 0.03) while the -308A>G A allele was also significantly associated with CC in HIV-positive women (OR = 1.33, 95%CI = 0.23-7.75). Conclusion We observed that HIV-negative and HIV-positive women who carry the C allele of -1031T>C and the A allele of -308G>A TNF-a promoter gene loci, respectively, are more susceptible to CC. We were also able to show protective linkages for the minor allele of the three SNPs of interest suggesting the potential of TNF-a as a surrogate marker for CC screening in addition to human papillomavirus primary testing. Further studies are required to determine the association between host factors and TNF-a polymorphism to harness the diagnostic and therapeutic advantage these associations will provide in the management of CC.
Collapse
Affiliation(s)
- Sarah O John-Olabode
- Department of Haematology and Blood Transfusion, College of Medicine, University of Lagos, PMB 12003, Lagos, Nigeria
| | - Ifeoma C Udenze
- Department of Clinical Pathology, College of Medicine, University of Lagos, PMB 12003, Lagos, Nigeria
| | - Adebola A Adejimi
- Department of Community Health, College of Medicine, University of Lagos, PMB 12003, Lagos, Nigeria
| | - Obiefuna Ajie
- Department of Clinical Pathology, College of Medicine, University of Lagos, PMB 12003, Lagos, Nigeria
| | - Kehinde S Okunade
- Department of Obstetrics and Gynaecology, College of Medicine, University of Lagos, PMB 12003, Lagos, Nigeria
| |
Collapse
|
26
|
Safir W, Malik A, Saadia H, Zahid A, Li J. Extraction, GC-MS analysis, cytotoxic, anti-inflammatory and anticancer potential of Cannabis sativa female flower; in vitro, in vivo and in silico. Front Pharmacol 2025; 16:1546062. [PMID: 40008130 PMCID: PMC11850312 DOI: 10.3389/fphar.2025.1546062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
This work examines the anticancer activity, the anti-inflammatory nature, and the cytotoxicity of the ethanol extract obtained from the female flowers of Cannabis sativa L using molecular methods in vitro, animal testing in vivo, as well as computational methods and simulations in silico. From the GC-MS analysis, the following bioactive compounds were found: cannabidiol (CBD), tetrahydrocannabinol (THC), and humulene. The antiproliferative activities of the extract were determined on HeLa cells by using MTT, Crystal Violet, and Trypan Blue assays with an IC50 value suggesting 51%-77.6% lethality. The bioinformatics analysis of molecular docking proved significant ligand-protein interactions of CBD, THC, and humulene with cancer-associated proteins such as PD-1/PD-L1, TNF-α, and MMP-9. In vivo, breast cancer was first established in female Sprague-Dawley rats with 7,12-dimethylbenz(a)anthracene (DMBA) then treated with cannabinoids either singularly or in combination. Detailed treatment demonstrated that the use of the three cannabinoids simultaneously yielded the best anticancer and anti-inflammatory outcomes together with the best tumor reduction. The concentration of serum biomarkers of inflammation and tumor progression was substantially reduced in treated groups compared to the control group, which proves the synergistic effects of these cannabinoids in breast cancer therapy. This study emphasizes the importance of medical Cannabis sativa derivatives in cancer treatment.
Collapse
Affiliation(s)
- Waqas Safir
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Sciences and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Arif Malik
- School of Pain and Regenerative Medicine (SPRM), The University of Lahore, Lahore, Pakistan
- Faculty of Health Sciences, Equator University of Science and Technology, (EQUSaT), Masaka, Uganda
| | - Haleema Saadia
- Department of Biochemistry, Islam Medical College, Sialkot, Pakistan
| | - Ayesha Zahid
- School of Pain and Regenerative Medicine (SPRM), The University of Lahore, Lahore, Pakistan
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Sciences and Technology, Xinjiang University, Urumqi, Xinjiang, China
| |
Collapse
|
27
|
Wang J, Wang H, Ding Y, Cao N, Nan F, Wu F, Li C, Liang X, Xiao M, Guo J, Gao Z, Yan L, Zhou T, Li Y, Zhai Z. Gp350-targeted CAR-T therapy in EBV-positive Burkitt lymphoma: pre-clinical development of gp350 CAR-T. J Transl Med 2025; 23:171. [PMID: 39930509 PMCID: PMC11809011 DOI: 10.1186/s12967-025-06188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/28/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) is an oncovirus belonging to the herpesvirus family, associated with the pathogenesis of multiple malignancies, particularly Burkitt lymphoma (BL). The virus remains latent in host cells and plays a critical role in tumor progression through various mechanisms. A key glycoprotein, gp350, expressed during the lytic phase of EBV, is instrumental in viral entry into B cells and presents a unique antigenic target, making it a promising candidate for immunotherapeutic approaches, such as chimeric antigen receptor T-cell (CAR-T) therapy. METHODS In this study, we engineered CAR-T cells targeted against the gp350 glycoprotein and assessed their therapeutic potential through a series of in vitro and in vivo experiments. The efficacy of the gp350-CAR-T cells was evaluated by comparing their cytotoxic effects against both EBV-positive and -negative tumor cell lines. We utilized a xenograft model of Burkitt lymphoma to monitor the impact of gp350-CAR-T cell administration on tumor progression and overall survival. RESULTS The engineered gp350-CAR-T cells demonstrated potent cytotoxicity specifically against EBV-positive tumor cell lines. In our in vivo xenograft model, administration of gp350-CAR-T cells resulted in significant inhibition of tumor growth, highlighting their capability to effectively target and eliminate EBV-positive lymphomas. This selectivity underscores the potential of utilizing gp350 as a specific target for immunotherapy. CONCLUSION Our findings advocate for the clinical application of gp350-directed CAR-T therapy as a prospective treatment strategy for patients with relapsed or refractory EBV-positive tumors. Given the encouraging preclinical results, further research is warranted to optimize CAR-T cell production processes and extend the potential of this therapy to other EBV-associated malignancies, paving the way for improved outcomes in affected patient populations.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Hematology/Hematologic Diseases Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
- Department of Hematology, Tongling People's Hospital, Tongling, 244000, Anhui, China
| | - Huiping Wang
- Department of Hematology/Hematologic Diseases Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Yangyang Ding
- Department of Hematology/Hematologic Diseases Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Nengneng Cao
- Department of Hematology/Hematologic Diseases Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Fengya Nan
- Department of Pathology, Department of Pathology, Anhui Medical University, The First Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Fan Wu
- Department of Hematology/Hematologic Diseases Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Cong Li
- Department of Hematology/Hematologic Diseases Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Xue Liang
- Department of Hematology/Hematologic Diseases Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Meng Xiao
- Department of Hematology/Hematologic Diseases Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
- Department of Hematology, Jining NO. 1 People's Hospital, Jining, 272000, Shandong, China
| | - Jinjing Guo
- Department of Hematology/Hematologic Diseases Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
- Department of Laboratory, Fuyang People's Hospital, Fuyang, 236000, Anhui, China
| | - Zhimai Gao
- ZENO Biotechnology (Shenzhen) Co, Shenzhen, 518000, Guangdong, China
| | - Li Yan
- Department of Hematology/Hematologic Diseases Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Tielin Zhou
- Zeno Therapeutics Pte. Ltd., 600 North Bridge Road, Singapore, 188778, Singapore
- Eximmium Pte. Ltd., 600 North Bridge Road, Singapore, 188778, Singapore
| | - Yanli Li
- Department of Hematology/Hematologic Diseases Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
- Department of Pathology, Department of Pathology, Anhui Medical University, The First Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
| | - Zhimin Zhai
- Department of Hematology/Hematologic Diseases Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
| |
Collapse
|
28
|
Ließem A, Leimer U, Germann GK, Köllensperger E. Adipokines in Breast Cancer: Decoding Genetic and Proteomic Mechanisms Underlying Migration, Invasion, and Proliferation. BREAST CANCER (DOVE MEDICAL PRESS) 2025; 17:79-102. [PMID: 39882382 PMCID: PMC11776935 DOI: 10.2147/bctt.s491277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/04/2024] [Indexed: 01/31/2025]
Abstract
Background Adipokines, bioactive peptides secreted by adipose tissue, appear to contribute to breast cancer development and progression. While numerous studies suggest their role in promoting tumor growth, the exact mechanisms of their involvement are not yet completely understood. Methods In this project, varying concentrations of recombinant human adipokines (Leptin, Lipocalin-2, PAI-1, and Resistin) were used to study their effects on four selected breast cancer cell lines (EVSA-T, MCF-7, MDA-MB-231, and SK-Br-3). Over a five-day proliferation phase, linear growth was assessed by calculating doubling times and malignancy-associated changes in gene and protein expression were identified using quantitative TaqMan real-time PCR and multiplex protein analysis. Migration and invasion behaviors were quantified using specialized Boyden chamber assays. Results We found significant, adipokine-mediated genetic and proteomic alterations, with PCR showing an up to 6-fold increase of numerous malignancy-associated genes after adipokine-supplementation. Adipokines further altered protein secretion, such as raising the concentrations of different tumor-associated proteins up to 13-fold. Effects on proliferation varied, however, with most approaches showing significant enhancement in growth kinetics. A concentration-dependent increase in migration and invasion was generally observed, with no significant reductions in any approaches. Conclusion We could show a robust promoting effect of several adipokines on different breast cancer cells in vitro. Understanding the interaction between adipose tissue and breast cancer cells opens potential avenues for innovative breast cancer prevention and therapy strategies. Our findings indicate that antibodies against specific adipokines could become a beneficial component of clinical breast cancer treatment in the future.
Collapse
Affiliation(s)
- Anne Ließem
- Clinic for Plastic, Aesthetic and Reconstructive Surgery, Spine, Orthopedic and Hand Surgery, Preventive Medicine – ETHIANUM, Heidelberg, 69115, Germany
| | - Uwe Leimer
- Clinic for Plastic, Aesthetic and Reconstructive Surgery, Spine, Orthopedic and Hand Surgery, Preventive Medicine – ETHIANUM, Heidelberg, 69115, Germany
| | - Günter K Germann
- Clinic for Plastic, Aesthetic and Reconstructive Surgery, Spine, Orthopedic and Hand Surgery, Preventive Medicine – ETHIANUM, Heidelberg, 69115, Germany
| | - Eva Köllensperger
- Clinic for Plastic, Aesthetic and Reconstructive Surgery, Spine, Orthopedic and Hand Surgery, Preventive Medicine – ETHIANUM, Heidelberg, 69115, Germany
| |
Collapse
|
29
|
Debnath JP, Hossen K, Sayed SB, Khandaker MS, Dev PC, Sarker S, Hossain T. Identification of potential biomarkers for 2022 Mpox virus infection: a transcriptomic network analysis and machine learning approach. Sci Rep 2025; 15:2922. [PMID: 39848951 PMCID: PMC11758390 DOI: 10.1038/s41598-024-80519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/19/2024] [Indexed: 01/25/2025] Open
Abstract
Monkeypox virus (MPXV), a zoonotic pathogen, re-emerged in 2022 with the Clade IIb variant, raising global health concerns due to its unprecedented spread in non-endemic regions. Recent studies have shown that Clade IIb (2022 MPXV) is marked by unique genomic mutations and epidemiological behaviors, suggesting variations in host-virus interactions. This study aimed to identify the differentially expressed genes (DEGs) induced by the 2022 MPXV infection through comprehensive bioinformatics analyses of microarray and RNA-Seq datasets from post-infected cell types with different MPXV clades. Subsequently, gene expression network analyses pinpoint the key DEGs, followed by their candidate drug assessment using the Drug SIGnatures DataBase (DSigDB) and validation by multiple machine learning algorithms. Comparative differential gene expression (DGE) analysis revealed 798 DEGs exclusive to the 2022 MPXV invasion in the skin cell types (keratinocytes). Intriguingly, 13 key DEGs were identified across hubs and clusters, highlighting their aberrant expressions in cell cycle regulation, immune responses, and cancer pathways. Biomarker screening via Random Forest (RF) model (selected with PyCaret from multiple models) and validation through t-distributed stochastic neighbor embedding (t-SNE) algorithm, principal component analysis (PCA), and ROC curve analysis employing Logistic Regression and Random Forest, identified 6 key DEGs (TXNRD1, CCNB1, BUB1, CDC20, BUB1B, and CCNA2) as promising biomarkers (AUC > 0.7) for clade IIb infection. This study anticipates that further investigation and clinical trials will catalyze novel detection and therapeutic options to combat 2022 MPXV infection in humans.
Collapse
Affiliation(s)
- Joy Prokash Debnath
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Kabir Hossen
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Sabrina Bintay Sayed
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Md Sayeam Khandaker
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | | | - Saifuddin Sarker
- Clinical Laboratory, Medi Check Medical Service Limited, Cumilla, 3500, Bangladesh.
| | - Tanvir Hossain
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| |
Collapse
|
30
|
Zhu M, Zhang S, Tang J, Hou H, Wang L, Lin H, Zhang X, Jin M. Two Small Peptides from Buthus martensii Hydrolysates Exhibit Antitumor Activity Through Inhibition of TNF-α-Mediated Signal Transduction Pathways. Life (Basel) 2025; 15:105. [PMID: 39860044 PMCID: PMC11766664 DOI: 10.3390/life15010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The scorpion Buthus martensii Karsch is edible and has been an essential resource in traditional Chinese medicine for treating numerous diseases. In this study, two small peptides from B. martensii hydrolysates were examined to elucidate their potential against gastric cancer. The small peptides (AK and GK) were identified using the LC-QTOF-MS-based approach. In silico prediction of therapeutic targets, MGC-803 cells and transgenic zebrafish models, and immunoblotting experiments were used to reveal the molecular mechanism of action of the peptides. The peptides AK and GK competitively bound to the receptor to modulate the TNF/TNFR-signaling cascade and alter the tumor microenvironment. EGFR, TP53, MYC, PTEN, and STAT3 were also identified as major functional targets of the peptides. Mechanistically, AK and GK inactivated the TNF-α/EGFR/STAT3-signaling pathway, decreased c-myc protein expression levels, and upregulated p53 and PTEN expression, thereby preventing TNF-α-induced tumor growth. Our findings indicated that AK and GK played a pivotal role in offsetting the inflammatory stimuli that caused gastric cancer cell invasion and highlighted the use of B. martensii resources as functional products with health benefits.
Collapse
Affiliation(s)
- Mengshuang Zhu
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (M.Z.); (S.Z.); (J.T.); (H.H.); (L.W.); (H.L.)
| | - Shanshan Zhang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (M.Z.); (S.Z.); (J.T.); (H.H.); (L.W.); (H.L.)
| | - Jiyang Tang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (M.Z.); (S.Z.); (J.T.); (H.H.); (L.W.); (H.L.)
| | - Hairong Hou
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (M.Z.); (S.Z.); (J.T.); (H.H.); (L.W.); (H.L.)
| | - Lizhen Wang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (M.Z.); (S.Z.); (J.T.); (H.H.); (L.W.); (H.L.)
| | - Houwen Lin
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (M.Z.); (S.Z.); (J.T.); (H.H.); (L.W.); (H.L.)
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xuanming Zhang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (M.Z.); (S.Z.); (J.T.); (H.H.); (L.W.); (H.L.)
| | - Meng Jin
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (M.Z.); (S.Z.); (J.T.); (H.H.); (L.W.); (H.L.)
| |
Collapse
|
31
|
Rossetto IMU, Alves LF, Marson LA, Geraldo MV, Santos FR, Montico F, Cagnon VHA. MiRNAs and tempol therapeutic potential in prostate cancer: a preclinical approach. J Mol Histol 2025; 56:69. [PMID: 39804465 DOI: 10.1007/s10735-024-10341-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/16/2024] [Indexed: 02/07/2025]
Abstract
This study investigated tempol action on genes and miRNAs related to NFκB pathway in androgen dependent or independent cell lines and in TRAMP model in the early and late-stages of cancer progression. A bioinformatic search was conducted to select the miRNAs to be measured based on the genes of interest from NFκB pathway. The miR-let-7c-5p, miR-26a-5p and miR-155-5p and five target genes (BCL2, BCL2L1, RELA, TNF, PTGS2) were chosen for RT-PCR and gene enrichment analyses. In vitro, PC-3 and LNCaP cells were exposed, respectively, to 1.0 or 2.0 mM of tempol during 48 h. In vivo, five experimental groups were evaluated regarding tempol effects in the early (CT12 and TPL12 groups) and late-stages (CT20, TPL20-I and TLP20-II) of PCa development. TPL groups were treated with 50 mg/kg or 100 mg/kg of tempol. The ventral lobe of the prostate and the plasma was collected. Tempol treatment increased miRs expression in PC-3 and LNCaP. For both cell lines, tempol decreased RELA expression. In TRAMP model, tempol increased miRNA expression in prostate for all treated groups. Tempol upregulated the miRNA expressions related to the NFκB pathway in the prostate tissue and human tumor cell lines. Their increase is mainly linked to increased cell death and delayed CaP aggressivenes. Thus, tempol's capacity for miRNA-mediated gene silencing to decrease tissue proliferation and cell survival processes is part of its tissue mechanics.
Collapse
Affiliation(s)
- Isabela Maria Urra Rossetto
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
- Department of Structural and Functional Biology, University of Campinas, 255 Monteiro Lobato St, Campinas, SP, 13083-862, Brazil.
| | - Letícia F Alves
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Leonardo A Marson
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Murilo V Geraldo
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Felipe R Santos
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Fábio Montico
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Valéria H A Cagnon
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
32
|
Jiang W, Xu S, Li P. SLC2A3 is a Potential Factor for Head and Neck Squamous Cancer Development through Tumor Microenvironment Alteration. Curr Gene Ther 2025; 25:157-177. [PMID: 38778609 PMCID: PMC11774314 DOI: 10.2174/0115665232291300240509104344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/13/2024] [Accepted: 03/27/2024] [Indexed: 05/25/2024]
Abstract
INTRODUCTION Tumor immunity has garnered increasing attention in cancer treatment and progression. However, there is still a challenge in understanding the mechanisms of specific molecules affecting the clinical prognosis and tumor microenvironment (TME). METHODS Here, we applied the ESTIMATE algorithm to calculate the immune and stromal scores in 504 HNSC cases from TCGA. Patients were grouped according to the median value of the immune and stromal. Clinicopathological characteristics and differentially expressed genes (DEG) were analyzed. Subsequently, LASSO, COX regression, survival analysis, and clinicopathological characteristics were conducted. Subsequently, SLC2A3 was determined as a predictive factor that high expression of SLC2A3 at the mRNA and protein levels predicted a worse clinical prognosis. GSEA25099 was utilized for external validation of immune infiltration, while tissue PCR, IHC, and Western Blot were used to confirm the expression levels of SLC2A3. RESULTS A series of immune-infiltration analyses showed that SLC2A3 expression was negatively correlated with CD8+ T cells, significantly affecting the survival prognosis of HNSC. In the GSEA analysis, the high expression of SLC2A3 was mainly enriched for immune-related biological processes. Meanwhile, high expression of SLC2A3 possessed higher TIDE scores and was also strongly positively correlated with a series of immune checkpoints affecting survival prognosis, thus causing greater susceptibility to immune escape. CONCLUSION Conclusively, SLC2A3 is a potential oncogene and factor of HNSC development, notably by an altered state of the immune microenvironment, immune-suppressive regulation, and immune escape.
Collapse
Affiliation(s)
- Wei Jiang
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- College of Stomatology, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Sheng Xu
- Department of Dental Laboratory, Guangxi Medical University College of Stomatology, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Ping Li
- Department of Pathology, Guangxi Medical University College of Stomatology, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
33
|
Zhu C, Liu H, Li Z, Shi Y, Zhao J, Bai Y, Chen Q, Li W. Prognostic Significance and Therapeutic Potential of SERPINE1 in Head and Neck Squamous Cell Carcinoma. Cancer Med 2025; 14:e70605. [PMID: 39817507 PMCID: PMC11736624 DOI: 10.1002/cam4.70605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/24/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND This study aims to elucidate the expression pattern of SERPINE1, assess its prognostic significance, and explore potential therapeutic drugs targeting this molecule. METHODS AND RESULTS In this study, we delved into the variations in gene mutation, methylation patterns, and expression levels of SERPINE1 in head and neck squamous cell carcinoma (HNSCC) and normal tissues, leveraging comprehensive analyses of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. The connection between the biological function of the gene and prognosis was scrutinized through immune infiltration and enrichment analyses. Concurrently, we assessed the potential therapeutic value of SERPINE1 through drug sensitivity analysis. It was observed that, particularly in human papillomavirus (HPV) negative HNSCC, SERPINE1 exhibited elevated expression levels, correlating with poorer prognosis. The infiltration levels of eight cell types, such as eosinophils, Tgd, and macrophages, showed a positive correlation with SERPINE1 expression, whereas infiltration levels of four cell types, including cytotoxic cells, B cells, and pDCs, displayed a negative correlation. Furthermore, copy number variations of SERPINE1 were primarily characterized by homologous amplification, positively correlating with its expression, while methylation showed an inverse correlation. The outcomes of drug sensitivity analysis underscored the potential of SERPINE1 as a therapeutic target. CONCLUSION Elevated expression of SERPINE1 in HNSCC is intricately linked with adverse prognostic outcomes and has the potential to influence the immune microenvironment. Subsequent investigations are imperative to fully elucidate the prognostic implications of SERPINE1 as a biomarker and to unlock its therapeutic promise as a target for intervention.
Collapse
Affiliation(s)
- Changyu Zhu
- Cancer CenterBeijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Heshu Liu
- Cancer CenterBeijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Zhixin Li
- Cancer CenterBeijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Yijun Shi
- Cancer CenterBeijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Jingyang Zhao
- Cancer CenterBeijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Yuping Bai
- Department of PathologyBeijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Head and Neck Molecular Diagnostic PathologyBeijingChina
| | | | - Wei Li
- Cancer CenterBeijing Tongren Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
34
|
Ma Y, Qian X, Yu Q, Dong Y, Wang J, Liu H, Xiao H. Inosine Prevents Colorectal Cancer Progression by Inducing M1 Phenotypic Polarization of Macrophages. Molecules 2024; 30:123. [PMID: 39795180 PMCID: PMC11721193 DOI: 10.3390/molecules30010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/21/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Inosine (IS) is a naturally occurring metabolite of adenosine with potent immunomodulatory effects. This study investigates the immunomodulatory effects of inosine, particularly its ability to inhibit the development of colorectal cancer (CRC) cells CT26 through modulation of macrophage phenotypes. Aside from the already reported effects of inosine on T cells, in this study, in vitro experiments revealed that inosine could modulate macrophage phenotype. The effects of inosine on the M1/M2 macrophage polarization were investigated at the cellular level. Its role in regulating CRC proliferation and migration was further examined. In addition, a CT26 tumor mouse model was established to assess the mechanism of action of inosine by tumor weight measurement, immunohistochemistry, and immunofluorescence. Inosine significantly increased M1 macrophage markers CD86 and iNOS and enhanced the anti-tumor activity of M1 macrophages, effectively inhibiting CRC progression and metastasis potential. In vivo, inosine had significant tumor inhibitory activity. It also significantly reduced the expression of Ki-67 and promoted the polarization of M1 macrophages.
Collapse
Affiliation(s)
| | | | | | | | | | - Heng Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, National-Local Joint Engineering Research Center of Entomoceutics, College of Pharmacy, Dali University, Dali 671000, China; (Y.M.); (X.Q.)
| | - Huai Xiao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, National-Local Joint Engineering Research Center of Entomoceutics, College of Pharmacy, Dali University, Dali 671000, China; (Y.M.); (X.Q.)
| |
Collapse
|
35
|
Liu C, Wu K, Li C, Zhang Z, Zhai P, Guo H, Zhang J. SPP1+ macrophages promote head and neck squamous cell carcinoma progression by secreting TNF-α and IL-1β. J Exp Clin Cancer Res 2024; 43:332. [PMID: 39726047 DOI: 10.1186/s13046-024-03255-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a very aggressive disease characterized by a heterogeneous tumor immune microenvironment (TIME). Tumor-associated macrophages (TAMs) constitute the major innate immune population in the TIME where they facilitate crucial regulatory processes that participate in malignant tumor progression. SPP1 + macrophages (SPP1 + Macs) are found in many cancers, but their effects on HNSCC remain unknown. This study aimed to identify and validate the role and function of SPP1 + Macs in the malignant progression of HNSCC. METHODS In this study, we applied single-cell RNA sequencing (scRNA-seq) analyses of paired tumor and normal tissues from 5 HNSCC patients to identify tumor-specific SPP1 + Macs. RT-qPCR and multiplex immunohistochemical and multiplex immunofluorescence staining were used to verify the presence of SPP1 + Macs in the clinical samples. Gene set variation analysis suggested that SPP1 + Macs were actively involved in cytokine production. Thus, we constructed SPP1-OE macrophages and SPP1-KD macrophages (both differentiated from THP-1 cells), performed a Luminex liquid suspension chip detection assay to detect differential cytokines, and further assessed their biological functions and mechanisms in several HNSCC cell lines and adjacent macrophages. An in vivo experiment was used to verify the function of SPP1 + Macs in HNSCC progression. RESULTS The scRNA-seq results revealed that myeloid cells were heterogeneous and strongly correlated with tumor cells in the TIME in HNSCC and identified tumor-specific SPP1 + Macs, which were positively correlated with poor prognosis of HNSCC patients. Gene set variation analysis (GSVA) suggested that SPP1 + Macs were actively involved in cytokine production. Luminex liquid suspension chip detection assay indicated that SPP1 + Mac-derived TNF-α and IL-1β played important roles. Both in vitro and in vivo experiments and the use of VGX-1027, an inhibitor of macrophage-derived TNF-α and IL-1β, confirmed that SPP1 + Mac-derived TNF-α and IL-1β promoted HNSCC progression by supporting tumor cell proliferation and migration. Mechanistically, we found that TNF-α and IL-1β were upregulated due to NF-kappa B signaling pathway activation in SPP1 + Macs. Moreover, SPP1 + Mac-derived TNF-α and IL-1β promoted the expression of OPN in both tumor cells and other adjacent macrophages through different signaling pathways. CONCLUSIONS SPP1 + Macs increase the secretion of TNF-α and IL-1β via the NF-kappa B pathway to promote HNSCC cell proliferation, and TNF-α and IL-1β in turn upregulate the expression of OPN in tumor cells and macrophages; thus, SPP1 + Macs may be a candidate target through which antitumor efficacy can be enhanced.
Collapse
Affiliation(s)
- Chun Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai Jiao Tong University, Shanghai, China
| | - Kun Wu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai Jiao Tong University, Shanghai, China
- Department of Oral and Maxillofacial Surgery, Second Xiangya Hospital of Central South University, Changsha, China
| | - Chuwen Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai Jiao Tong University, Shanghai, China
| | - Peisong Zhai
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyan Guo
- Department of Clinical Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jianjun Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.
- National Center for Stomatology, Shanghai Jiao Tong University, Shanghai, China.
- National Clinical Research Center for Oral Diseases, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Key Laboratory of Stomatology, Shanghai, China.
- Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
36
|
Wang Y, Chen Q, Luo Y, Qu Y, Li X, Song H, Li C, Zhang Y, Sun T, Jiang C. Metabolic Nanoregulators Induce Ferroptosis and Change Metabolite Flow to Reverse Immunosuppressive Tumor Microenvironment. ACS NANO 2024; 18:34996-35012. [PMID: 39666893 DOI: 10.1021/acsnano.4c13425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Aberrant energy and substance metabolic pathways of tumor cells critically support tumor cell proliferation by hijacking the resources from nonmalignant cells, thereby establishing a metabolite flow favorable to tumor progression. This metabolic adaptation of tumor cells further modulates the immune landscape, ultimately creating a tumor microenvironment characterized by drug resistance and immunosuppression. The synergistic regulation of energy and substance metabolic pathways might be a good antitumor therapeutic paradigm. However, due to the metabolic convergence, it is crucial to selectively modulate the aberrant metabolism of tumor cells without compromising the functionality of other cells. Small-molecule drugs have the ability to target a wide range of biomolecules for antitumor therapy, but their application is limited by undesirable toxicities. Constructing nanodrug delivery systems can improve their properties and allow for the inclusion of multiple drugs, thereby exerting synergistic antitumor effects. In this study, we developed a two-drug codelivery system using drugs-conjugated multibranched polymers to modulate tumor cell metabolism by exploiting synthetic lethal pathways for safe and effective antitumor therapy. By delivery of adapalene and erastin simultaneously through nanoparticles, the material and energy metabolism of tumor cells can be regulated. This nanoparticle construction achieves tumor tissue targeting and responsive drug release, alters metabolite flow within tumor cells, and effectively kills tumor cells. Additionally, the nanoparticles can reverse the tumor immunosuppressive microenvironment, starting from single-cell regulation to whole-lesion control.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Qinjun Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Yifan Luo
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Yangqi Qu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Xuwen Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Haolin Song
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Chufeng Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Yiwen Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Tao Sun
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
| | - Chen Jiang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China
- Department of Digestive Diseases, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| |
Collapse
|
37
|
Abu Rached N, Rüth J, Gambichler T, Ocker L, Bechara FG. A state-of-the-art systematic review of cancer in hidradenitis suppurativa. Ann Med 2024; 56:2382372. [PMID: 39046819 PMCID: PMC11271124 DOI: 10.1080/07853890.2024.2382372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 07/27/2024] Open
Abstract
PURPOSE Hidradenitis suppurativa (HS) is a chronic inflammatory disease associated with an increased risk of malignancy. The aim of this systematic review was to investigate the prevalence of different malignancies in HS. METHODS This review meets the PRISMA criteria. A data-driven approach was used to conduct the research, which involved a detailed keyword search. The study considered meta-analyses, experimental studies, case-control studies, cross-sectional studies, cohort studies, and recently published cases, published in English or German. Excluded were reviews, summaries, and letters to the editor, as well as studies, which are not based on the human population. RESULTS Out of the initial 443 publications found, 25 met the inclusion criteria for this systematic review. Patients with HS have a significantly increased risk of cancer, up to 50%. Additionally, the risk of oropharyngeal, central nervous system, colorectal, prostate, vulvar and non-melanocytic skin cancers increase with the severity of HS. The likelihood of comorbid lymphoma in patients with HS is significantly higher compared to healthy controls. In severe cases of HS, malignant degeneration of lesions in the groin, perianal, perineal, and gluteal region can occur in up to 4.6% of cases. This leads to the development of cSCC, which often have a complicated course, are more refractory to treatment and associated with a poorer outcome. The pathogenic mechanisms responsible for the malignant transformation of HS are currently unknown. CONCLUSIONS Patients with HS have a higher risk of cancer compared to the general population. Untreated, long-standing HS lesions can lead to complicated malignant degeneration resulting in cutaneous squamous cell carcinoma. The mechanisms underlying this malignant degeneration are not fully understood. HS patients also have an increased risk of developing other cancers, including prostate, oral, pharyngeal and colorectal cancers of the central nervous system and lymphomas.
Collapse
Affiliation(s)
- Nessr Abu Rached
- International Centre for Hidradenitis suppurativa/Acne inversa (ICH), Department of Dermatology, Venereology and Allergology, Ruhr-University, Bochum, Germany
- Skin Cancer Centre, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Bochum, Germany
| | - Jonas Rüth
- International Centre for Hidradenitis suppurativa/Acne inversa (ICH), Department of Dermatology, Venereology and Allergology, Ruhr-University, Bochum, Germany
- Skin Cancer Centre, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Bochum, Germany
| | - Thilo Gambichler
- Skin Cancer Centre, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Bochum, Germany
- Department of Dermatology and Phlebology, Christian Hospital Unna, Unna, Germany
- Department of Dermatology, Dortmund Hospital gGmbH and Faculty of Health, Witten/Herdecke University, Dortmund, Germany
| | - Lennart Ocker
- International Centre for Hidradenitis suppurativa/Acne inversa (ICH), Department of Dermatology, Venereology and Allergology, Ruhr-University, Bochum, Germany
- Skin Cancer Centre, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Bochum, Germany
| | - Falk G. Bechara
- International Centre for Hidradenitis suppurativa/Acne inversa (ICH), Department of Dermatology, Venereology and Allergology, Ruhr-University, Bochum, Germany
- Skin Cancer Centre, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
38
|
Mussa A, Ismail NH, Hamid M, Al-Hatamleh MAI, Bragoli A, Hajissa K, Mokhtar NF, Mohamud R, Uskoković V, Hassan R. Understanding the role of TNFR2 signaling in the tumor microenvironment of breast cancer. J Exp Clin Cancer Res 2024; 43:312. [PMID: 39609700 PMCID: PMC11603874 DOI: 10.1186/s13046-024-03218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed malignancy among women. It is characterized by a high level of heterogeneity that emerges from the interaction of several cellular and soluble components in the tumor microenvironment (TME), such as cytokines, tumor cells and tumor-associated immune cells. Tumor necrosis factor (TNF) receptor 2 (TNFR2) appears to play a significant role in microenvironmental regulation, tumor progression, immune evasion, drug resistance, and metastasis of many types of cancer, including BC. However, the significance of TNFR2 in BC biology is not fully understood. This review provides an overview of TNFR2 biology, detailing its activation and its interactions with important signaling pathways in the TME (e.g., NF-κB, MAPK, and PI3K/Akt pathways). We discuss potential therapeutic strategies targeting TNFR2, with the aim of enhancing the antitumor immune response to BC. This review provides insights into role of TNFR2 as a major immune checkpoint for the future treatment of patients with BC.
Collapse
Affiliation(s)
- Ali Mussa
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, P.O. Box 382, Omdurman, Sudan
| | - Nor Hayati Ismail
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
| | - Mahasin Hamid
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Hunan Province, Changsha, 410013, China
- Department of Zoology, Faculty of Sciences and Information Technology, University of Nyala, Nyala, 63311, Sudan
| | - Mohammad A I Al-Hatamleh
- Division of Hematology and Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Anthony Bragoli
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Khalid Hajissa
- Department of Zoology, Faculty of Science and Technology, Omdurman Islamic University, P.O. Box 382, Omdurman, Sudan
| | - Noor Fatmawati Mokhtar
- Institute for Research in Molecular Medicine (iNFORMM), Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia.
| | - Vuk Uskoković
- TardigradeNano LLC, Irvine, CA, 92604, USA
- Division of Natural Sciences, Fullerton College, Fullerton, CA, 92832, USA
| | - Rosline Hassan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia.
| |
Collapse
|
39
|
Jiang C, Chen W, Yang Y, Li X, Jin M, Ghonaim AH, Li S, Ren M. Regulation of Isoleucine on Colonic Barrier Function in Rotavirus-Infected Weanling Piglets and Analysis of Gut Microbiota and Metabolomics. Microorganisms 2024; 12:2396. [PMID: 39770598 PMCID: PMC11676416 DOI: 10.3390/microorganisms12122396] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Rotavirus (RV) is a significant contributor to diarrhea in both young children and animals, especially in piglets, resulting in considerable economic impacts on the global pig industry. Isoleucine (Ile), a branched-chain amino acid, is crucial for regulating nutrient metabolism and has been found to help mitigate diarrhea. This study aimed to assess the impact of isoleucine supplementation in feed on colonic barrier function, colonic microbiota, and metabolism in RV-infected weanling piglets. A total of thirty-two weaned piglets, aged 21 days, were randomly assigned to two dietary groups (each further divided into two subgroups, with eight replicates in each subgroup), receiving diets with either 0% or 1% isoleucine for a duration of 14 days. One group from each treatment was then challenged with RV, and the experimental period lasted for 19 days. The results showed that dietary Ile significantly increased the secretion of IL-4, IL-10, and sIgA in the colon of RV-infected weanling piglets (p < 0.05). In addition, Ile supplementation notably increased the expression of tight junction proteins, including Claudin-3, Occludin, and ZO-1 (p < 0.01), as well as the mucin protein MUC-1 in the colon of RV-infected weanling piglets (p < 0.05). Gut microbiota analysis revealed that dietary Ile increased the relative abundance of Prevotella and decreased the relative abundance of Rikenellaceae in the colons of RV-infected weanling piglets. Compared with the RV+CON, metabolic pathways in the RV+ILE group were significantly enriched in vitamin digestion and absorption, steroid biosynthesis, purine metabolism, pantothenate and CoA biosynthesis, cutin, suberine, and wax biosynthesis, as well as fatty acid biosynthesis, and unsaturated fatty acid biosynthesis. In conclusion, dietary Ile supplementation can improve immunity, colonic barrier function, colonic microbiota, and colonic metabolism of RV-infected weaned piglets. These findings provide valuable insights into the role of isoleucine in the prevention and control of RV.
Collapse
Affiliation(s)
- Changsheng Jiang
- Anhui Provincial Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (C.J.); (W.C.); (Y.Y.); (X.L.); (M.J.)
| | - Weiying Chen
- Anhui Provincial Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (C.J.); (W.C.); (Y.Y.); (X.L.); (M.J.)
| | - Yanan Yang
- Anhui Provincial Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (C.J.); (W.C.); (Y.Y.); (X.L.); (M.J.)
| | - Xiaojin Li
- Anhui Provincial Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (C.J.); (W.C.); (Y.Y.); (X.L.); (M.J.)
| | - Mengmeng Jin
- Anhui Provincial Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (C.J.); (W.C.); (Y.Y.); (X.L.); (M.J.)
| | - Ahmed H. Ghonaim
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- Desert Research Center, Cairo 11435, Egypt
| | - Shenghe Li
- Anhui Provincial Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (C.J.); (W.C.); (Y.Y.); (X.L.); (M.J.)
| | - Man Ren
- Anhui Provincial Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (C.J.); (W.C.); (Y.Y.); (X.L.); (M.J.)
| |
Collapse
|
40
|
Xiong W, Li Y, Hu L, He G, Huang J. Risks of malignancies related to disease-modifying antirheumatic drugs in rheumatoid arthritis: a pharmacovigilance analysis using the FAERS database. Front Pharmacol 2024; 15:1458500. [PMID: 39605908 PMCID: PMC11598350 DOI: 10.3389/fphar.2024.1458500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Objectives Over the years when disease-modifying antirheumatic drugs (DMARDs) have been used in rheumatoid arthritis patients, reports of malignancies have emerged. This study aims to investigate the association between malignancies and DMARDs by using data extracted from the Food and Drug Administration Adverse Event Reporting System (FAERS). Methods FAERS data (January 2019 to December 2023) were reviewed. For each drug-event pair, the disproportionality analysis was conducted to evaluate the risk of malignancy. Multivariate logistic regression was implemented to mitigate potential biases. Moreover, the time to onset of malignancy was also evaluated. Results We conducted a detailed search for rheumatoid arthritis indications and identified a total of 17,412 adverse event reports associated with malignancies, with selective DMARDs designated as the role code "primary suspect". At the preferred term level, there were 198 positive signals, among which the lower limit of the 95% confidence interval for the information component is 3.55 for squamous cell carcinoma of the skin, 2.39 for breast cancer, and 2.27 for lymphoproliferative disorder. In comparison to other DMARDs, targeted synthetic DMARDs were associated with a broader range of malignancies at both preferred term and Standardized MedDRA Queries levels. The number of adverse events reported in female patients is approximately 2-3 times higher than men, and the median age across the population was approximately 62 years. In terms of onset time, the conventional synthetic DMRADs exhibited a relatively longer median time, ranging from 3.58 to 7.08 years, while the targeted synthetic DMARDs demonstrated a shorter median time of 0.83-1.67 years. Conclusion Our study uncovers varying degrees of malignancy risks related to DMARDs, with a significantly higher risk observed in targeted synthetic DMARDs. Additionally, novel malignancy signals, not documented in product labels, have been detected. In the future, further research will be necessary to validate our findings.
Collapse
Affiliation(s)
- Wan Xiong
- Department of Pharmacy, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pharmacy, The First Hospital of Changsha, Changsha, China
| | - Yilin Li
- Department of Information and Digital Technology, PowerChina Zhongnan Engineering Corporation Limited, Changsha, China
| | - Lin Hu
- Department of Pharmacy, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pharmacy, The First Hospital of Changsha, Changsha, China
| | - Gefei He
- Department of Pharmacy, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pharmacy, The First Hospital of Changsha, Changsha, China
| | - Juanjuan Huang
- Department of Pharmacy, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pharmacy, The First Hospital of Changsha, Changsha, China
| |
Collapse
|
41
|
Guo R, Zhong L, Ma S, Gong B, Shen C, Wang Z, Deng L, Zhao D, Gao H, Gong T. A biomimetic solution, albumin-doxorubicin molecular complex, targeting tumor and tumor-draining lymph nodes. J Mater Chem B 2024. [PMID: 39479935 DOI: 10.1039/d4tb01917b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Chemotherapy-induced immunologic cell death is haunted by the non-specific distribution of chemotherapeutic drugs and insignificant immune activation effects, which render efforts to inhibit the distant metastasis of tumors frustrated. Given the pivotal role that lymph nodes play in tumor metastasis, it is of vital importance whether the drug delivery to tumor-draining lymph nodes (TDLNs) succeeds. In the current study, we developed a doxorubicin-albumin complex (DOX-HSA) solution with the specific ability to simultaneously target the primary tumor and the TDLNs. DOX-HSA could effectively activate and amplify the immunogenic cell death (ICD) effect in both the tumor tissues and the TDLNs, resulting in increased release of damage-associated molecular patterns (DAMPs), which further promoted phagocytosis and maturation of dendritic cells (DCs), stimulated activation of CD8+T cells, and then significantly enhanced the therapeutic effects of doxorubicin on orthotopic 4T1 tumor-bearing model mice. Therefore, the DOX-HSA solution demonstrated a more prominent ability to control cancer cells and curb metastasis, as well as improved security by reducing cardiotoxicity and myelosuppression toxicity of doxorubicin itself. This DOX-HSA strengthened the synergistic anti-tumor effects based on the ICD effect in combination with traditional chemotherapy, thus providing promising prospects for clinical application.
Collapse
Affiliation(s)
- Rui Guo
- Key Laboratory of Drug-Targeting & Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drugs & Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, P. R. China.
| | - Lanlan Zhong
- Key Laboratory of Drug-Targeting & Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drugs & Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, P. R. China.
| | - Sirui Ma
- Key Laboratory of Drug-Targeting & Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drugs & Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, P. R. China.
| | - Bokai Gong
- Key Laboratory of Drug-Targeting & Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drugs & Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, P. R. China.
| | - Chen Shen
- Key Laboratory of Drug-Targeting & Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drugs & Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, P. R. China.
| | - Zijun Wang
- Key Laboratory of Drug-Targeting & Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drugs & Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, P. R. China.
| | - Li Deng
- Key Laboratory of Drug-Targeting & Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drugs & Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, P. R. China.
| | - Dong Zhao
- Sichuan Kelun Pharmaceutical Research Institute Co. Ltd., Chengdu 611130, P. R. China
| | - Huile Gao
- Key Laboratory of Drug-Targeting & Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drugs & Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, P. R. China.
| | - Tao Gong
- Key Laboratory of Drug-Targeting & Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drugs & Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
42
|
Baez A, Singh D, He S, Hajiaghayi M, Gholizadeh F, Darlington PJ, Helfield B. Immunomodulation of human T cells by microbubble-mediated focused ultrasound. Front Immunol 2024; 15:1486744. [PMID: 39502696 PMCID: PMC11534865 DOI: 10.3389/fimmu.2024.1486744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
While met with initial and ground-breaking success targeting blood borne cancers, cellular immunotherapy remains significantly hindered in the context of solid tumors by the tumor microenvironment. Focused ultrasound, in conjunction with microbubbles, has found tremendous potential as a targeted and local drug/gene delivery technique for cancer therapy. The specific immunomodulating effects of this technique on immune cells, including T-cells, remain unexplored. Here, with freshly isolated human immune cells, we examine how focused ultrasound can viably modulate immune cell membrane permeability and influence the secretion of over 90 cytokines, chemokines and other analytes relevant to a potent immune response against cancer. We determine that microbubble-mediated focused ultrasound modulates the immune cell secretome in a time-dependent manner - ranging in ~0.1-3.6-fold changes in the concentration of a given cytokine compared to sham controls over 48 hours post-treatment (e.g. IL-1β, TNF-α, CX3CL1, CCL21). Further, we determine the general trend of a negative correlation between secreted cytokine concentration and viable ultrasound-assisted membrane permeability with negligible loss of cell viability. Taken together, the data presented here highlights the potential of microbubble-mediated focused ultrasound to viably enhance T-cell permeability and modulate key pro-immune pathways, offering a novel approach to augment targeted cellular therapies for solid tumors.
Collapse
Affiliation(s)
- Ana Baez
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Davindra Singh
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Stephanie He
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Mehri Hajiaghayi
- Department of Biology, Concordia University, Montreal, QC, Canada
| | | | | | - Brandon Helfield
- Department of Biology, Concordia University, Montreal, QC, Canada
- Department of Physics, Concordia University, Montreal, QC, Canada
| |
Collapse
|
43
|
Chen X, Wei Y, Li Z, Zhou C, Fan Y. Distinct role of Klotho in long bone and craniofacial bone: skeletal development, repair and regeneration. PeerJ 2024; 12:e18269. [PMID: 39465174 PMCID: PMC11505971 DOI: 10.7717/peerj.18269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/17/2024] [Indexed: 10/29/2024] Open
Abstract
Bone defects are highly prevalent diseases caused by trauma, tumors, inflammation, congenital malformations and endocrine abnormalities. Ideally effective and side effect free approach to dealing with bone defects remains a clinical conundrum. Klotho is an important protein, which plays an essential role in regulating aging and mineral ion homeostasis. More recently, research revealed the function of Klotho in regulating skeleton development and regeneration. Klotho has been identified in mesenchymal stem cells, osteoblasts, osteocytes and osteoclasts in different skeleton regions. The specific function and regulatory mechanisms of Klotho in long bone and craniofacial bone vary due to their different embryonic development, ossification and cell types, which remain unclear and without conclusion. Moreover, studies have confirmed that Klotho is a multifunctional protein that can inhibit inflammation, resist cancer and regulate the endocrine system, which may further accentuate the potential of Klotho to be the ideal molecule in inducing bone restoration clinically. Besides, as an endogenous protein, Klotho has a promising potential for clinical therapy without side effects. In the current review, we summarized the specific function of Klotho in long bone and craniofacial skeleton from phenotype to cellular alternation and signaling pathway. Moreover, we illustrated the possible future clinical application for Klotho. Further research on Klotho might help to solve the existing clinical difficulties in bone healing and increase the life quality of patients with bone injury and the elderly.
Collapse
Affiliation(s)
- Xinyu Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yali Wei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zucen Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
44
|
Mao Z, Gu Y, Tao G, Dai Q, Xu Y, Fei Z. The co-expression of Crohn's disease and colon cancer network was analyzed by bioinformatics-CXCL1 tumour microenvironment and prognosis-related gene CXCL1. Discov Oncol 2024; 15:557. [PMID: 39402186 PMCID: PMC11479648 DOI: 10.1007/s12672-024-01423-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/03/2024] [Indexed: 10/17/2024] Open
Abstract
PURPOSE This study aimed to investigate the molecular links and mechanisms between Crohn's disease (CD) and colorectal cancer (CRC). METHODS This study used the Gene Expression Omnibus (GEO) database to identify Differentially expressed genes (DEGs) in CD (GSE112366) and CRC (GSE110224), analyzed by 'edgeR' and 'limma'. The Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes explored DEG functions, and the Search Tool for the Retrieval of Interacting Genes (STRING) informed the protein-protein interaction network construction visualized in Cytoscape (version 3.7.2). Cyto-Hubba identified key genes, whose biomarker potential for CD and CRC was evaluated. RESULTS The study discovered 61 DEGs, with 44 up- and 17 down-regulated, linked to immune responses and signaling pathways. CXCL1, highly expressed in colon cancer, correlated with better prognosis and lower staging. It also showed associations with immune infiltration and checkpoint molecules, suggesting a role in cancer progression and retreat. CONCLUSION CXCL1 may play a role in the development of colorectal cancer from inflammatory bowel disease.
Collapse
Affiliation(s)
- Zijuan Mao
- Department of Radiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yuyang Gu
- Department of Oncology, The First Affiliated Hospital of Jiaxing University, No. 1882, Zhonghuan South Road, Jiaxing, 314000, Zhejiang, People's Republic of China
| | - Ganxue Tao
- Department of Radiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qiang Dai
- Department of Medical Oncology, Rui'an People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, 108 Wansong Road, Rui'an, 325200, China
| | - Yangjie Xu
- Department of Oncology, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China.
| | - Zhenghua Fei
- Department of Radiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
45
|
Guo M, Peng R, Jin K, Zhang X, Mo H, Li X, Qu F, Tang J, Cao S, Zhou Y, He Z, Mao Z, Fan J, Li J, Liu Z. Effects of Aeromonas infection on the immune system, physical barriers and microflora structure in the intestine of juvenile grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2024; 153:109790. [PMID: 39059563 DOI: 10.1016/j.fsi.2024.109790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Grass carp (Ctenopharyngodon idella) is an intensively cultured and economically important herbivorous fish species in China, but its culture is often impacted by Aeromonas pathogens such as Aeromonas hydrophila and Aeromonas veronii. In this study, healthy grass carp were separately infected with A. hydrophila or A. veronii for 12, 24, 48 or 72 h. The results showed that the mRNA expression levels of intestinal inflammatory factors (tnf-α, il-1β and il-8), complement factors (c3 and c4), antimicrobial peptides (hepcidin, nk-lysin and β-defensin-1), immunoglobulins (igm and igt), and immune pathway-related signaling molecules (tlr1, tlr2, tlr4, myd88, irak4, irak1, traf6, nf-κb p65 and ap-1) were differentially upregulated in response to A. hydrophila and A. veronii challenge. Additionally, the expression levels of the intestinal pro-apoptotic genes tnfr1, tnfr2, tradd, caspase-8, caspase-3 and bax were significantly increased, whereas the expression of the inhibitory factor bcl-2 was significantly downregulated, indicating that Aeromonas infection significantly induced apoptosis in the intestine of grass carp. Moreover, the expression of intestinal tight junction proteins (occludin, zo-1, claudin b and claudin c) was significantly decreased after infection with Aeromonas. Histopathological analysis indicated the Aeromonas challenge caused severe damage to the intestinal villi with adhesions and detachment of intestinal villi accompanied by severe inflammatory cell infiltration at 12 h and 72 h. The 16S rRNA sequencing results showed that Aeromonas infection significantly altered the structure of the intestinal microflora of the grass carp at the phylum (Proteobacteria, Fusobacteria, Bacteroidetes and Firmicutes) and genus (Proteus, Cetobacterium, Bacteroides, and Aeromonas) levels. Take together, the findings of this study revealed that Aeromonas infection induces an intestinal immune response, triggers cell apoptosis, destroys physical barriers and alters microflora structure in the intestine of juvenile grass carp; the results will help to reveal the pathogenesis of intestinal bacterial diseases in grass carp.
Collapse
Affiliation(s)
- Meixing Guo
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Department of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Ran Peng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Department of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Kelan Jin
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Xia Zhang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Department of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Huilan Mo
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Xiang Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Fufa Qu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China.
| | - Jianzhou Tang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Shenping Cao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Yonghua Zhou
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Zhimin He
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Zhuangwen Mao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Junde Fan
- Yueyang Yumeikang Biotechnology Co., Ltd., Yueyang, 414100, China
| | - Jianzhong Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Department of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Zhen Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China.
| |
Collapse
|
46
|
Cruceriu D, Balacescu L, Baldasici O, Gaal OI, Balacescu O, Russom A, Irimia D, Tudoran O. Gene expression-phenotype association study reveals the dual role of TNF-α/TNFR1 signaling axis in confined breast cancer cell migration. Life Sci 2024; 354:122982. [PMID: 39151886 DOI: 10.1016/j.lfs.2024.122982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
AIMS While enhanced tumor cell migration is a key process in the tumor dissemination, mechanistic insights into causal relationships between tumor cells and mechanical confinement are still limited. Here we combine the use of microfluidic platforms to characterize confined cell migration with genomic tools to systematically unravel the global signaling landscape associated with the migratory phenotype of breast cancer (BC) cells. METERIALS AND METHODS The spontaneous migration capacity of seven BC cell lines was evaluated in 3D microfluidic devices and their migration capacity was correlated with publicly available molecular signatures. The role of identified signaling pathways on regulating BC migration capacity was determined by receptor stimulation through ligand binding or inhibition through siRNA silencing. Downstream effects on cell migration were evaluated in microfluidic devices, while the molecular changes were monitored by RT-qPCR. KEY FINDINGS Expression of 715 genes was correlated with BC cells migratory phenotype, revealing TNF-α as one of the top upstream regulators. Signal transduction experiments revealed that TNF-α stimulates the confined migration of triple negative, mesenchymal-like BC cells that are also characterized by high TNFR1 expression, but inhibits the migration of epithelial-like cells with low TNFR1 expression. TNFR1 was strongly associated with the migration capacity and triple-negative, mesenchymal phenotype. Downstream of TNF/TNFR1 signaling, transcriptional regulation of NFKB seems to be important in driving cell migration in confined spaces. SIGNIFICANCE TNF-α/TNFR1 signaling axis reveals as a key player in driving BC cells confined migration, emerging as a promising therapeutic strategy in targeting dissemination and metastasis of triple negative, mesenchymal BC cells.
Collapse
Affiliation(s)
- Daniel Cruceriu
- The Oncology Institute "Prof. Dr. Ion Chiricuta", Department of Genetics, Genomics and Experimental Pathology, 34-36 Republicii Street, Cluj-Napoca, Romania; "Babes-Bolyai" University, Department of Molecular Biology and Biotechnology, 1 Mihail Kogalniceanu Street, Cluj-Napoca, Romania.
| | - Loredana Balacescu
- The Oncology Institute "Prof. Dr. Ion Chiricuta", Department of Genetics, Genomics and Experimental Pathology, 34-36 Republicii Street, Cluj-Napoca, Romania.
| | - Oana Baldasici
- The Oncology Institute "Prof. Dr. Ion Chiricuta", Department of Genetics, Genomics and Experimental Pathology, 34-36 Republicii Street, Cluj-Napoca, Romania.
| | - Orsolya Ildiko Gaal
- The Oncology Institute "Prof. Dr. Ion Chiricuta", Department of Genetics, Genomics and Experimental Pathology, 34-36 Republicii Street, Cluj-Napoca, Romania; Iuliu Hațieganu University of Medicine and Pharmacy, Department of Medical Genetics, 8 Victor Babes Street, Cluj-Napoca, Romania.
| | - Ovidiu Balacescu
- The Oncology Institute "Prof. Dr. Ion Chiricuta", Department of Genetics, Genomics and Experimental Pathology, 34-36 Republicii Street, Cluj-Napoca, Romania.
| | - Aman Russom
- KTH Royal Institute of Technology, Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, Tomtebodavägen 23a 171 65, Solna, Sweden.
| | - Daniel Irimia
- Harvard Medical School, Center for Engineering in Medicine and Surgery, Department of Surgery, 51 Blossom Street, Boston, MA, United States of America.
| | - Oana Tudoran
- The Oncology Institute "Prof. Dr. Ion Chiricuta", Department of Genetics, Genomics and Experimental Pathology, 34-36 Republicii Street, Cluj-Napoca, Romania; KTH Royal Institute of Technology, Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, Tomtebodavägen 23a 171 65, Solna, Sweden.
| |
Collapse
|
47
|
Xu P, Du Z, Xie X, Yang L, Zhang J. Cancer marker TNFRSF1A: From single‑cell heterogeneity of renal cell carcinoma to functional validation. Oncol Lett 2024; 28:425. [PMID: 39021735 PMCID: PMC11253100 DOI: 10.3892/ol.2024.14559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024] Open
Abstract
During the progression of renal cell carcinoma (RCC), tumor growth, metastasis and treatment response heterogeneity are regulated by both the tumor itself and the tumor microenvironment (TME). The aim of the present study was to investigate the role of the TME in RCC and construct a crosstalk network for clear cell RCC (ccRCC). An additional aim was to evaluate whether TNF receptor superfamily member 1A (TNFRSF1A) is a potential therapeutic target for ccRCC. Single-cell data analysis of RCC was performed using the GSE152938 dataset, focusing on key cellular components and their involvement in the ccRCC TME. Additionally, cell-cell communication was analyzed to elucidate the complex network of the ccRCC microenvironment. Analyses of data from The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium databases were performed to further mine the key TNF receptor genes, with a particular focus on the prediction and assessment of the cancer-associated features of TNFRSF1A. In addition, following the silencing of TNFRSF1A using small interfering RNA in the 786-O ccRCC cell line, a number of in vitro experiments were conducted to further investigate the cancer-promoting characteristics of TNFRSF1A. These included 5-ethynyl-2'-deoxyuridine incorporation, Cell Counting Kit-8, colony formation, Transwell, cell cycle and apoptosis assays. The TNF signaling pathway was found to have a critical role in the development of ccRCC. Based on the specific crosstalk identified between TNF and TNFRSF1A, the communication of this signaling pathway within the TME was elucidated. The results of the cellular phenotype experiments indicated that TNFRSF1A promotes the proliferation, migration and invasion of ccRCC cells. Consequently, it is proposed that targeting TNFRSF1A may disrupt tumor progression and serve as a therapeutic strategy. In conclusion, by understanding the TME and identifying significant crosstalk within the TNF signaling pathway, the potential of TNFRSF1A as a therapeutic target is highlighted. This may facilitate an advance in precision medicine and improve the prognosis for patients with RCC.
Collapse
Affiliation(s)
- Ping Xu
- Department of Ultrasound, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang 315153, P.R. China
| | - Zusheng Du
- Department of Ultrasound, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang 315153, P.R. China
| | - Xiaohong Xie
- Department of Ultrasound, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang 315153, P.R. China
| | - Lifei Yang
- Department of Ultrasound, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang 315153, P.R. China
| | - Jingjing Zhang
- Department of Ultrasound, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang 315153, P.R. China
| |
Collapse
|
48
|
Porciani C, Colombatto P, Guadagni S, Ricco G, Morelli L, Caponi L, Campani D, Comandatore A, Sciume' GD, Migliorini P, Boraschi P, Brunetto M, Candio GD. Stauffer syndrome in a tumor of the pancreatic tail: A paracrine pathogenesis, rather than an inflammatory disimmune phenomenon – a case report. CURRENT PROBLEMS IN CANCER: CASE REPORTS 2024; 15:100320. [DOI: 10.1016/j.cpccr.2024.100320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024] Open
|
49
|
Li H, Wang K, Hao M, Liu Y, Liang X, Yuan D, Ding L. Intestinal epithelial Cldn-7 regulates intestinal inflammation by altering the gut microbiota. Pathol Res Pract 2024; 260:155448. [PMID: 39004000 DOI: 10.1016/j.prp.2024.155448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/05/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND AND AIM Tight junctions maintain gut homeostasis by forming a physical barrier that protects the gut from invasion by microbiota. Cldn-7 is an important component involved in this protection, but the relationship between Cldn-7, intestinal inflammation, and gut microbiota has not been clarified. Here, we hypothesize that Cldn-7 depletion affects intestinal inflammation by altering the gut microbiota. METHODS Based on the induced intestinal condition of Cldn-7 knockout mice (Cldn7fl/fl;villin-CreaERT2), we established the intestinal flora depletion model and colitis model by antibiotic drinking and feeding with dextran sodium sulfate (DSS). The environment of Cldn-7 gene deletion mice was changed by co-housing experiment. AB-PAS staining and Muc2 were used to detect the effect of co-housing and Cldn-7 deficiency on the mucus layer after flora depletion. qRT-PCR was used to detect the expression of intestinal inflammatory factors and AMPs in mice. Feces were collected and proportions of microbiota were analyzed by 16 S rRNA amplicon sequencing. RESULTS Mice in the co-housing experiment had altered intestinal microbiota, including diversity, composition, and functional prediction, compared to controls. Intestinal inflammation was restored to some extent following altered intestinal microbiota. The intestinal inflammation caused by Cldn-7 deficiency and susceptibility to DSS could be reduced after antibiotic administration compared to controls, in terms of phenotype, pathological changes, inflammatory factors, mucus barrier, and expression of AMPs. CONCLUSIONS In analyses of intestinal tissues, colitis induction, and gut microbiota in mice with intestinal disruption of Cldn-7, we found this protein to prevent intestinal inflammation by regulating the gut microbiota. Cldn-7might therefore be an important mediator of host-microbiome interactions. Our research has revealed that Cldn-7 plays an indispensable role in maintaining intestinal homeostasis by regulating the gut microbiota and impacting intestinal inflammation. These findings provide new insights into the pathogenesis of ulcerative colitis.
Collapse
Affiliation(s)
- Huimin Li
- Department of Gastrointestinal Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Kun Wang
- Department of Gastrointestinal Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Mengdi Hao
- Department of Gastrointestinal Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Yin Liu
- Department of Gastrointestinal Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Xiaoqing Liang
- Department of Gastrointestinal Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Dajin Yuan
- Department of Gastrointestinal Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Lei Ding
- Department of Gastrointestinal Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.
| |
Collapse
|
50
|
Mancini A, Gentile MT, Pentimalli F, Cortellino S, Grieco M, Giordano A. Multiple aspects of matrix stiffness in cancer progression. Front Oncol 2024; 14:1406644. [PMID: 39015505 PMCID: PMC11249764 DOI: 10.3389/fonc.2024.1406644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/27/2024] [Indexed: 07/18/2024] Open
Abstract
The biophysical and biomechanical properties of the extracellular matrix (ECM) are crucial in the processes of cell differentiation and proliferation. However, it is unclear to what extent tumor cells are influenced by biomechanical and biophysical changes of the surrounding microenvironment and how this response varies between different tumor forms, and over the course of tumor progression. The entire ensemble of genes encoding the ECM associated proteins is called matrisome. In cancer, the ECM evolves to become highly dysregulated, rigid, and fibrotic, serving both pro-tumorigenic and anti-tumorigenic roles. Tumor desmoplasia is characterized by a dramatic increase of α-smooth muscle actin expressing fibroblast and the deposition of hard ECM containing collagen, fibronectin, proteoglycans, and hyaluronic acid and is common in many solid tumors. In this review, we described the role of inflammation and inflammatory cytokines, in desmoplastic matrix remodeling, tumor state transition driven by microenvironment forces and the signaling pathways in mechanotransduction as potential targeted therapies, focusing on the impact of qualitative and quantitative variations of the ECM on the regulation of tumor development, hypothesizing the presence of matrisome drivers, acting alongside the cell-intrinsic oncogenic drivers, in some stages of neoplastic progression and in some tumor contexts, such as pancreatic carcinoma, breast cancer, lung cancer and mesothelioma.
Collapse
Affiliation(s)
- Alessandro Mancini
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- BioUp Sagl, Lugano, Switzerland
| | - Maria Teresa Gentile
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Francesca Pentimalli
- Department of Medicine and Surgery, LUM University “Giuseppe De Gennaro,” Casamassima, Bari, Italy
| | - Salvatore Cortellino
- Laboratory of Molecular Oncology, Responsible Research Hospital, Campobasso, Italy
- Scuola Superiore Meridionale (SSM), Clinical and Translational Oncology, Naples, NA, Italy
- Sbarro Health Research Organization (S.H.R.O.) Italia Foundation ETS, Candiolo, TO, Italy
| | - Michele Grieco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, United States
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|