1
|
Márquez-Mendoza JM, Baranda-Ávila N, Lizano M, Langley E. Micro-RNAs targeting the estrogen receptor alpha involved in endocrine therapy resistance in breast cancer. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167783. [PMID: 40057206 DOI: 10.1016/j.bbadis.2025.167783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025]
Abstract
Endocrine therapy resistance (ETR) in breast cancer (BC) is a multicausal phenomenon with diverse alterations in the tumor cell interactome. Within these alterations, non-coding RNAs (ncRNAs) such as micro-RNAs (miRNAs) modulate the expression of tumor suppressor genes and proto-oncogenes, such as the ESR1 gene encoding estrogen receptor alpha (ERα). This work aims to review the effects of miRNAs targeting ERα mRNA and their mechanisms related to ETR in BC. A thorough review of the literature and an in silico study were carried out to elucidate the involvement of each miRNA, thus contributing to the understanding of ETR in BC.
Collapse
Affiliation(s)
- J M Márquez-Mendoza
- Programa de Doctorado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| | - N Baranda-Ávila
- Unidad de Investigación Biomédica en Cáncer, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico
| | - M Lizano
- Unidad de Investigación Biomédica en Cáncer, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| | - E Langley
- Unidad de Investigación Biomédica en Cáncer, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico.
| |
Collapse
|
2
|
Wang X, Fu F, Li Z, Wang X, Shu Y, Wang J. Entropy-driven DNA circuit induced rolling circle transcription generates fluorescent light-up RNA aptamer for one-pot and label-free detection of miRNA-133a. Talanta 2025; 294:128173. [PMID: 40262346 DOI: 10.1016/j.talanta.2025.128173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/15/2025] [Accepted: 04/16/2025] [Indexed: 04/24/2025]
Abstract
MiRNA-133a is a marker for the early diagnosis of acute myocardial infarction. Specific detection of miRNA-133a is of great significance for early diagnosis and treatment of heart disease. Here, a cascade amplification strategy based on entropy-driven DNA circuit (EDC) and rolling circle transcription (RCT) was constructed to generate repeated fluorescent light-up RNA aptamers for one-pot, and label-free detection of miRNA-133a. In this study, target miRNA-initiated EDC to produce single-stranded DNA would allow for the ligation of RCT's padlock into a loop and the formation of the complete T7 promoter. Subsequently the RCT was triggered, and effectively generated large number of repeated Spinach sequences. The aptamer combined with the corresponding fluorophore DFHBI-1T and formed RNA aptamer-fluorophore complexes to generate enhanced fluorescence signals. The developed biosensor exhibits sensitive detection of miRN-133a, with a linear range of 50 pM to 50 nM and a detection limit of 38.3 pM. The recovery of the actual sample was 99.1 %-103.0 %, and the relative standard deviation (RSD) was 1.6 %-3.6 %. In addition, the detection has high selectivity and can distinguish RNA sequences with single base mutation. This work provides a general method for the sensitive detection of miRNA biomarkers in molecular diagnosis.
Collapse
Affiliation(s)
- Xue Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Fan Fu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Zhihao Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Xiaojuan Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Jianhua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
3
|
Li X, Wang F, Lin F, Xie B, Liu Y, Xiao Y, Qin K, Li W, Zeng Q. The diagnostic value of a breast cancer diagnosis model based on serum MiRNAs and serum tumor markers. World J Surg Oncol 2025; 23:109. [PMID: 40158122 PMCID: PMC11954258 DOI: 10.1186/s12957-025-03719-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/16/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Breast cancer (BCa) is the leading cause of cancer-related death among women worldwide. MicroRNAs (miRNAs) are promising tools for diagnosis and prognosis. This study investigated the role of serum miRNAs and tumor markers (TMs) in the diagnosis of BCa. METHODS Differentially expressed miRNAs were screened from serum samples of BCa patients and healthy individuals via high-throughput sequencing. The expression of hsa-miR-1911-3p, hsa-miR-4694-5p, hsa-miR-548ao-5p, and hsa-miR-4804-3p in 169 BCa patients and 116 healthy controls was detected via qRT-PCR. Serum tumor-associated antigens were detected by chemiluminescence. Logistic regression was subsequently used to develop the miRNA panel I, TM panel II, and (miRNA + TM) panel III models. Receiver operating characteristic (ROC) curve, precision-recall (PR) curve and decision curve analyses (DCA) were performed to assess the accuracy of the three models for BCa diagnosis. Additionally, the relationships between miRNA expression and the clinical characteristics of patients with BCa were assessed. RESULTS Four serum miRNAs (hsa-miR-1911-3p, hsa-miR-548ao-5p, hsa-miR-4694-5p, and hsa-miR-4804-3p) were newly associated with BCa. The miRNA panel I based on hsa-miR-548ao-5p and hsa-miR-4804-3p showed greater diagnostic effectiveness for BCa than TM panel II based on cancer antigen 125 (CA125) and cancer antigen 153 (CA153), with AUC values of 0.816 and 0.777, respectively. (miRNA + TM) panel III had higher diagnostic effectiveness than miRNA panel I, with an AUC value of 0.870. The expression of miR-548ao-5p and miR-4804-3p is closely related to clinical features, such as human epidermal growth factor receptor 2 (HER2), estrogen receptor (ER), progesterone receptor (PR), HER2-enriched subtype, stage III/IV, and lymph node-transplanted breast cancer. CONCLUSION MiR-548ao-5p and miR-4804-3 could serve as potential biomarkers for the diagnosis of BCa.
Collapse
Affiliation(s)
- Xiaohui Li
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Feng Wang
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
- Key Laboratory of Biological Molecular Medicine Research, Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China
| | - Faquan Lin
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Binbin Xie
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Yi Liu
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Yi Xiao
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Kai Qin
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Weicheng Li
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Qiyan Zeng
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning, Guangxi, People's Republic of China.
- Key Laboratory of Biological Molecular Medicine Research, Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China.
| |
Collapse
|
4
|
Chandran Manimegalai S, Krishnamoorthy SP, Kalimuthu V, Thirunavukarasu RD, Chandrabose S, Balamuthu K. An investigative study on the impact of DLK1 and NCoR1 knockdown by siRNA transfection on endometrial cancer proliferation: unveiling notch interactions. Med Oncol 2025; 42:124. [PMID: 40111664 DOI: 10.1007/s12032-025-02676-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
Endometrial cancer is the most common gynecological malignancy. Despite advances in treatment, many patients experience disease recurrence or metastasis. This study investigates the impact of siRNA-mediated gene knockdown of NCoR1 and DLK1 genes in the proliferation of endometrial cancer cell lines Ishikawa and AN3CA and normal HEK 293 cells. Cellular growth and survival before and after the treatment of predesigned siRNAs in the endometrial cancer cell lines were evidenced using fluorescent stains. The mRNA expression of BID, BAX, BCL2, Caspases 3, 8, and 9 GPR78, EGFR, VEGF, NCoR1, DLK1 and ARID1A was analyzed in the untreated HEK 293, Ishikawa, and AN3CA cell lines to substantiate the oncogenic property of Ishikawa and AN3CA cell lines. Then, to evidence the successful transfection of NCoR1 and DLK1 gene in endometrial cancer cells, the mRNA and protein expression of targeted genes before and after being transfected were also validated. As a result, the mRNA expression significantly increased in BID, BAX, BCL2, GPR78, EGFR and VEGF. On the other hand, Caspases 3, 8, and 9 were down-regulated in Ishikawa and AN3CA compared to the control cell line (HEK 293). The mRNA and protein expression of NCoR1 and DLK1 in siRNA-mediated transfection supported the reduced proliferation in endometrial cancer cells by interfering with certain pathways like Notch, MAPK, SWI/SNF, and NF-κB, which have crucial roles in the grade of receptor to the histone remodeling. With these findings, the study recommends exploring the possible role and interactions of NCoR1 and DLK1, signaling pathways that favor the progression of endometrial cancer.
Collapse
Affiliation(s)
| | | | - Vignesh Kalimuthu
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India
| | | | - Sureka Chandrabose
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Kadalmani Balamuthu
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India.
- National Centre for Alternatives to Animal Experiments, Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India.
| |
Collapse
|
5
|
Wang F, Li L, Sun X, Cai X, Wang J, Luo H, Wang Y, Ni D, Wang D. The feedback loop between miR-222-3p and ZEB1 harnesses metastasis in renal cell carcinoma. Cell Death Discov 2025; 11:97. [PMID: 40074730 PMCID: PMC11903659 DOI: 10.1038/s41420-025-02385-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/12/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Renal cell carcinoma (RCC) is an aggressive malignancy originating from the renal parenchyma, often leading to high mortality due to local invasion and distant metastasis. MicroRNAs (miRNAs) play essential roles in RCC progression. Through miRNA sequencing, we identified significant upregulation of miR-222-3p in metastatic RCC tissues. Exosomes from highly metastatic RCC cells were found to transfer miR-222-3p to low-metastatic cells, enhancing their migration and invasion. Mechanistically, miR-222-3p directly targets the 3' untranslated region (3'UTR) of the tumor-suppressor TRPS1, reducing its expression. TRPS1 downregulation releases its inhibitory effect on ZEB1, a key regulator of epithelial-mesenchymal transition (EMT), thereby promoting EMT and metastatic traits. ZEB1 further transactivates miR-222-3p, establishing a positive feedback loop. Additionally, miR-222-3p promotes a pre-metastatic niche by inducing M2 macrophage polarization, facilitating distant metastasis. These findings highlight miR-222-3p as a critical driver of RCC metastasis and suggest its potential as a diagnostic marker and therapeutic target for RCC.
Collapse
Affiliation(s)
- Fan Wang
- Department of Thyroid and Breast Surgery, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Liao Li
- Department of Child Healthcare, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Xiangfu Sun
- Department of Cardiothoracic Surgery, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Xianfu Cai
- Department of Renal Transplantation, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jianjun Wang
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Huiwen Luo
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Yaodong Wang
- Department of Urology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Dong Ni
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Decai Wang
- Department of Urology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China.
| |
Collapse
|
6
|
Xu J, Luo X, Chen H, Guo B, Wang Z, Wang F. Machine Learning-Aided Intelligent Monitoring of Multivariate miRNA Biomarkers Using Bipolar Self-powered Sensors. ACS NANO 2025; 19:8812-8825. [PMID: 40008497 DOI: 10.1021/acsnano.4c16423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Breast cancer has become the most prevalent form of cancer among women on a global scale. The early and timely diagnosis of breast cancer is of the utmost importance for improving the survival rate of patients with this disease. The occurrence of breast cancer is typically accompanied by the dysregulation of multiple microRNA (miRNA) expression profiles. Consequently, simultaneous detection of multiple miRNAs is vital for the early and accurate diagnosis of breast cancer. In this study, a bipolar self-powered sensor was developed for the simultaneous detection of miRNA-451 and miRNA-145 breast cancer biomarkers based on the specific catalytic properties of enzymes. Selenides with a microporous hollow cubic structure were designed and prepared, which can markedly enhance the enzyme load and activity, as well as detection sensitivity, due to their extensive surface area and three-dimensional porous channel. The designed bipolar self-powered sensor platform is integrated into the commercial chip, and the signal is presented in the smartphone interface, thereby enabling real-time and continuous monitoring. Furthermore, machine learning was utilized to predict miRNA detection, which encompasses numerous stages, including data collection, feature extraction, model training, and validation. In comparison to the limited sensing efficiency of self-powered biosensors driven by enzyme biofuel cells, our bipolar self-powered sensor achieved simultaneous quantitative analysis of multiple miRNA targets, thereby providing a robust tool for a more comprehensive understanding of miRNA function and its association with cancers.
Collapse
Affiliation(s)
- Jing Xu
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Xinqi Luo
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Hanxiao Chen
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Bin Guo
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhenlong Wang
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Fu Wang
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
7
|
Molina Calistro L, Arancibia Y, Olivera MA, Domke S, Torres RF. Interaction of GPER-1 with the endocrine signaling axis in breast cancer. Front Endocrinol (Lausanne) 2025; 16:1494411. [PMID: 39936103 PMCID: PMC11811623 DOI: 10.3389/fendo.2025.1494411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/06/2025] [Indexed: 02/13/2025] Open
Abstract
G Protein-Coupled Estrogen Receptor 1 (GPER-1) is a membrane estrogen receptor that has emerged as a key player in breast cancer development and progression. In addition to its direct influence on estrogen signaling, a crucial interaction between GPER-1 and the hypothalamic-pituitary-gonadal (HPG) axis has been evidenced. The novel and complex relationship between GPER-1 and HPG implies a hormonal regulation with important homeostatic effects on general organ development and reproductive tissues, but also on the pathophysiology of cancer, especially breast cancer. Recent research points to a great versatility of GPER-1, interacting with classical estrogen receptors and with signaling pathways related to inflammation. Importantly, through its activation by environmental and synthetic estrogens, GPER-1 is associated with hormone therapy resistance in breast cancer. These findings open new perspectives in the understanding of breast tumor development and raise the possibility of future applications in the design of more personalized and effective therapeutic approaches.
Collapse
Affiliation(s)
| | - Yennyfer Arancibia
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | | | - Sigrid Domke
- Facultad de Ciencias para el cuidado de la salud, Universidad San Sebastián, Puerto Montt, Chile
| | | |
Collapse
|
8
|
Du L, Xu G, Zhang X, Zhang Z, Yang Y, Teng H, Yang T. AQP4-AS1 Can Regulate the Expression of Ferroptosis-Related Regulator ALOX15 through Competitive Binding with miR-4476 in Lung Adenocarcinoma. Glob Med Genet 2024; 11:241-250. [PMID: 39155888 PMCID: PMC11329318 DOI: 10.1055/s-0044-1789199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
Background The AQP4-AS1/miR-4476-ALOX15 regulatory axis was discovered in previous studies. We aimed to investigate the regulatory mechanism of the ferroptosis-related regulator ALOX15 by AQP4-AS1 and miR-4476 in lung adenocarcinoma (LUAD) and find new targets for clinical treatment. Methods After bioinformatics analysis, we contained one ferroptosis-related gene (FRG), namely ALOX15. MicroRNAs (miRNAs) and long noncoding RNAs were predicted by miRWalk. Furthermore, we constructed overexpressed LUAD cell lines. Real-time quantitative polymerase chain reaction and western blot were used to determine the expression of mRNA and protein, respectively. Cell Counting Kit-8 (CCK-8) and EdU assay were used to detect the cell proliferation. Double luciferase assay was used to detect the binding relationship between AQP4-AS1 and miR-4464. Results ALOX15 was the most significantly downregulated FRG compared with normal tissues. Furthermore, protein-protein interaction network analysis indicated that the AQP4-AS1-miR-4476-ALOX15 regulatory axis might be involved in the occurrence and development of LUAD and there might be direct interaction between AQP4-AS1 and miR-4476, and miR-4476 and ALOX15. Furthermore, AQP4-AS1 and ALOX15 were significantly downregulated in the LUAD tissue and cell lines, whereas miR-4476 showed the opposite results ( p < 0.001). AQP4-AS1 overexpression improved the ALOX15 expression in LUAD cell lines. CCK-8 and EdU assay revealed that overexpression of AQP4-AS1 and ALOX15 inhibited the LUAD cell proliferation. Double luciferase assay results indicated that there was a combination between AQP4-AS1 and miRNA-4476. In addition, we found that overexpressed AQP4-AS1 activates the ferroptosis in LUAD cell lines. Conclusions AQP4-AS1 can regulate the expression of ALOX15 through competitive binding with miR-4476, further activate ferroptosis and inhibit the proliferation of LUAD cells.
Collapse
Affiliation(s)
- Lin Du
- Department of Thoracic Surgery, Tianjin Fifth Center Hospital, Tianjin, China
| | - Geng Xu
- Department of Thoracic Surgery, Tianjin Fifth Center Hospital, Tianjin, China
| | - Xiuqiang Zhang
- Department of Thoracic Surgery, Tianjin Fifth Center Hospital, Tianjin, China
| | - Zhiwei Zhang
- Department of Thoracic Surgery, Tianjin Fifth Center Hospital, Tianjin, China
| | - Yang Yang
- Department of Thoracic Surgery, Tianjin Fifth Center Hospital, Tianjin, China
| | - Hongsheng Teng
- Department of Thoracic Surgery, Tianjin Fifth Center Hospital, Tianjin, China
| | - Tao Yang
- Department of Thoracic Surgery, Tianjin Fifth Center Hospital, Tianjin, China
| |
Collapse
|
9
|
Mayo B, Penroz S, Torres K, Simón L. Curcumin Administration Routes in Breast Cancer Treatment. Int J Mol Sci 2024; 25:11492. [PMID: 39519045 PMCID: PMC11546575 DOI: 10.3390/ijms252111492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Breast cancer is a public health concern worldwide, characterized by increasing incidence and mortality rates, requiring novel and effective therapeutic strategies. Curcumin is a bioactive compound extracted from turmeric with several pharmacological activities. Curcumin is a multifaceted anticancer agent through mechanisms including the modulation of signaling pathways, inhibition of cell proliferation, induction of apoptosis, and production of reactive oxygen species. However, the poor water solubility and bioavailability of curcumin create important barriers in its clinical application. This review elaborates on the therapeutic potential of curcumin in breast cancer treatment, focusing on the efficacy of different administration routes and synergistic effects with other therapeutic agents. The intravenous administration of curcumin-loaded nanoparticles significantly improves bioavailability and therapeutic outcomes compared to oral routes. Innovative formulations, such as nano-emulsifying drug delivery systems, have shown promise in enhancing oral bioavailability. While intravenous delivery ensures higher bioavailability and direct action on tumor cells, it is more invasive and expensive than oral administration. Advancing research on curcumin in breast cancer treatment is essential for improving therapeutic outcomes and enhancing the quality of life of patients.
Collapse
Affiliation(s)
| | | | - Keila Torres
- Nutrition and Dietetic School, Universidad Finis Terrae, Santiago 7501014, Chile; (B.M.); (S.P.)
| | - Layla Simón
- Nutrition and Dietetic School, Universidad Finis Terrae, Santiago 7501014, Chile; (B.M.); (S.P.)
| |
Collapse
|
10
|
Ritter A, Han J, Bianconi S, Henrich D, Marzi I, Leppik L, Weber B. The Ambivalent Role of miRNA-21 in Trauma and Acute Organ Injury. Int J Mol Sci 2024; 25:11282. [PMID: 39457065 PMCID: PMC11508407 DOI: 10.3390/ijms252011282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Since their initial recognition, miRNAs have been the subject of rising scientific interest. Especially in recent years, miRNAs have been recognized to play an important role in the mediation of various diseases, and further, their potential as biomarkers was recognized. Rising attention has also been given to miRNA-21, which has proven to play an ambivalent role as a biomarker. Responding to the demand for biomarkers in the trauma field, the present review summarizes the contrary roles of miRNA-21 in acute organ damage after trauma with a specific focus on the role of miRNA-21 in traumatic brain injury, spinal cord injury, cardiac damage, lung injury, and bone injury. This review is based on a PubMed literature search including the terms "miRNA-21" and "trauma", "miRNA-21" and "severe injury", and "miRNA-21" and "acute lung respiratory distress syndrome". The present summary makes it clear that miRNA-21 has both beneficial and detrimental effects in various acute organ injuries, which precludes its utility as a biomarker but makes it intriguing for mechanistic investigations in the trauma field.
Collapse
Affiliation(s)
- Aileen Ritter
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, 60486 Frankfurt am Main, Germany; (J.H.); (S.B.); (D.H.); (I.M.); (L.L.); (B.W.)
| | | | | | | | | | | | | |
Collapse
|
11
|
Syed RU, Banu H, Alshammrani A, Alshammari MD, G SK, Kadimpati KK, Khalifa AAS, Aboshouk NAM, Almarir AM, Hussain A, Alahmed FK. MicroRNA-21 (miR-21) in breast cancer: From apoptosis dysregulation to therapeutic opportunities. Pathol Res Pract 2024; 262:155572. [PMID: 39226804 DOI: 10.1016/j.prp.2024.155572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Breast cancer, a pervasive and complex disease, continues to pose significant challenges in the field of oncology. Its heterogeneous nature and diverse molecular profiles necessitate a nuanced understanding of the underlying mechanisms driving tumorigenesis and progression. MicroRNA-21 (miR-21) has emerged as a crucial player in breast cancer development and progression by modulating apoptosis, a programmed cell death mechanism that eliminates aberrant cells. MiR-21 overexpression is a hallmark of breast cancer, and it is associated with poor prognosis and resistance to conventional therapies. This miRNA exerts its oncogenic effects by targeting various pro-apoptotic genes, including Fas ligand (FasL), programmed cell death protein 4 (PDCD4), and phosphatase and tensin homolog (PTEN). By suppressing these genes, miR-21 promotes breast cancer cell survival, proliferation, invasion, and metastasis. The identification of miR-21 as a critical regulator of apoptosis in breast cancer has opened new avenues for therapeutic intervention. This review investigates the intricate mechanisms through which miR-21 influences apoptosis, offering insights into the molecular pathways and signaling cascades involved. The dysregulation of apoptosis is a hallmark of cancer, and understanding the role of miR-21 in this context holds immense therapeutic potential. Additionally, the review highlights the clinical significance of miR-21 as a diagnostic and prognostic biomarker in breast cancer, underscoring its potential as a therapeutic target.
Collapse
Affiliation(s)
- Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia.
| | - Humera Banu
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia.
| | - Alia Alshammrani
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia
| | - Maali D Alshammari
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - Satheesh Kumar G
- Department of Pharmaceutical Chemistry, College of Pharmacy, Seven Hills College of Pharmacy, Venkataramapuram, Tirupati, India
| | - Kishore Kumar Kadimpati
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, The Silesian University of Technology, Poland
| | - Amna Abakar Suleiman Khalifa
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Nayla Ahmed Mohammed Aboshouk
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | | | - Arshad Hussain
- Department of Clinical Pharmacy, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia
| | - Farah Khaled Alahmed
- Department of Clinical Pharmacy, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia
| |
Collapse
|
12
|
Liu Q, Bao H, Zhang S, Li C, Sun G, Sun X, Fu T, Wang Y, Liang P. MicroRNA-522-3p promotes brain metastasis in non-small cell lung cancer by targeting Tensin 1 and modulating blood-brain barrier permeability. Exp Cell Res 2024; 442:114199. [PMID: 39103070 DOI: 10.1016/j.yexcr.2024.114199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/03/2024] [Accepted: 08/03/2024] [Indexed: 08/07/2024]
Abstract
Brain metastases account for more than 50 % of intracranial central nervous system tumors. The blood-brain barrier (BBB) is mainly composed of endothelial cells, which exhibit low endocytosis and high efflux pumps. Although they are connected by continuous tight junctions and serve as a protective insulation, the BBB does not prevent the development of brain metastases from non-small cell lung cancer (NSCLC). Improving understanding on the mechanisms underlying the development of brain metastasis and the differential molecular characteristics relative to the primary tumor are therefore key in the treatment of brain metastases. This study evaluated the differential expression of miR-522-3p in NSCLC and brain metastases using the Gene Expression Omnibus database. NSCLC brain metastasis model was constructed to screen for cell lines that demonstrated high potential for brain metastasis; We also observed differential expression of miRNA-522-3p in the paraffin-embedded specimens of non-small cell lung cancer and brain metastases from our hospital. The molecular biological functions of miRNA-522-3p were verified using 5-ethynyl-2'-deoxyuridine (EdU) proliferation assay and Transwell invasion assays. RNA-seq was employed to identify downstream target proteins, and the dual-luciferase reporter assay confirmed Tensin 1 (TNS1), a protein that links the actin cytoskeleton to the extracellular matrix, as the downstream regulatory target protein. In vitro blood-brain barrier models and co-culture models were constructed to further identify the role of miRNA-522-3p and TNS1; the expression of BBB-related proteins (ZO-1 and OLCN) was also identified. In vivo experiments were performed to verify the effects of miRNA-522-3p on the time and incidence of NSCLC brain metastasis. The results showed significantly high expression in GSE51666; consistent results were obtained in brain metastasis cells and paraffin samples. RNA-seq combined with miRNA target protein prediction demonstrated TNS1 to be directly downstream of miR-522-3p and to be associated with cell proliferation and invasion. By regulating ZO-1 and OCLN expression, mi-522-3p/TNS1 may increase tumor cell penetration through the BBB while decreasing its permeability. In vivo, miR-522-3p was further demonstrated to significantly promote the formation of brain metastases. miR-522-3p/TNS1 can affect BBB permeability and encourage the growth of brain metastases by modifying the BBB TJ proteins. This axis offers new therapeutic targets for the prevention of brain metastasis.
Collapse
Affiliation(s)
- Qing Liu
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hongbo Bao
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Sibin Zhang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chenlong Li
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guiyin Sun
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaoyang Sun
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tianjiao Fu
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yujie Wang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Peng Liang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
13
|
Guo W, Hou W, Xiang Q, Chen C, Yang H, Li S, Ye L, Xiao T, Zhu L, Zou Y, Zheng D. MicroRNA-1205 promotes breast cancer cell metastasis by regulating epithelial-to-mesenchymal transition via targeting of CDK3. Cell Signal 2024; 121:111264. [PMID: 38897528 DOI: 10.1016/j.cellsig.2024.111264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/30/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Metastasis poses a huge obstacle to the survival of breast cancer patients. The microRNA miR-1205 acts as a tumor suppressor in various cancers, but its roles in breast cancer and metastasis remain unclear. To elucidate its function in breast cancer progression, we analyzed miR-1205 expression in human tumor samples and carried out a series of functional studies in in vitro and in vivo. miR-1205 was expressed more highly in metastatic breast tumor samples than in non-metastatic samples and was associated with lymph node metastasis, clinical stage, and poor prognosis. Moreover, miR-1205 promoted breast cancer cell invasiveness in vitro and metastasis in mice by directly targeting CDK3 and reducing CDK3 protein levels. We also showed that CDK3 interacts with Snail protein, inducing Snail degradation via the ubiquitin-proteasome system and potentially affecting epithelial-to-mesenchymal transition. Furthermore, analysis of clinical tissue samples indicated that CDK3 and miR-1205 levels were inversely correlated in lymph node metastasis-positive primary tumors. This study demonstrated the pro-metastatic role of miR-1205 in breast cancer, mediated via a novel miR-1205/CDK3/Snail axis. Moreover, we identified miR-1205 and CDK3 as potential markers of invasion and progression in breast cancer.
Collapse
Affiliation(s)
- Wenjun Guo
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, PR China
| | - Wulei Hou
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, PR China
| | - Qin Xiang
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, PR China
| | - Cheng Chen
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, PR China; Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, Guangdong 518055, PR China
| | - Heng Yang
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, PR China; Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, Guangdong 518055, PR China
| | - Shuaihu Li
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, PR China
| | - Linhui Ye
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, PR China
| | - Tian Xiao
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, PR China
| | - Lizhi Zhu
- Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, Guangdong 518055, PR China
| | - Yongdong Zou
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, PR China.
| | - Duo Zheng
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Cell Biology and Genetics, School of Medicine, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, PR China.
| |
Collapse
|
14
|
Fan X, Qi A, Zhang M, Jia Y, Li S, Han D, Liu Y. Expression and clinical significance of CLDN7 and its immune-related cells in breast cancer. Diagn Pathol 2024; 19:113. [PMID: 39175074 PMCID: PMC11340154 DOI: 10.1186/s13000-024-01513-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/18/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND CLDN is a core component of tight junctions (TJs). Abnormal expressions of CLDNs are commonly detected in various types of tumors. CLDNs are of interest as a potential therapeutic target. CLDNs are closely associated with most cancers of epithelial origin, especially when CLDN7 promotes cancer cell metastasis, such as in gastric, cervical, and ovarian cancers.Its expression and prognosis in breast cancer (BC) remain unknown.The purpose of this study was to investigate the expression pattern of CLDN7 and related immune factors in BC and shed light on a better therapeutic avenue for BC patients. METHOD The cBioPortal, GEPIA, and TCGA databases were used to comprehensively assess the expression of CLDN7 in BC. The Kaplan-Meier Plotter (KMP) database was applied to examine the relationship among the CLDN7 overexpression (OE), prognosis, and overall survival (OS) of BC patients. Immunohistochemical staining was performed on 92 BC tissue samples and 20 benign breast tumors to verify the expression level of CLDN-7 protein and its correlation with clinicopathological features and prognosis. TIMER2.0 was used to analyze the correlation between the CLDN7 OE and immune gene activation using BC-related transcriptomic data. Enrichment analyses of CLDN7-related immune pathways were conducted using online databases. The risk of expression of CLDN7-related immune genes was assessed and differentially expressed (DE) genes were included in the construction of the risk prognosis nomogram. RESULTS Both database analysis and clinical sample validation results showed that CLDN7 was significantly overexpressed (OE) in BC, and the OE was correlated with poor DFS in BC patients (p < 0.05). TIMER2.0 analysis indicated that CLDN7 OE was negatively associated with the activation of B-cells, CD4+ T-cells, and CD8+ T-cells but positively with the M0 macrophages. Pathway enrichment analysis suggested that CLDN7-related immune factors were mostly involved in the NF-κB and T-cell receptor (TCR) signaling pathways. Univariate Cox regression was used to analyze the correlation between 52 CLDN7 related genes and OS, and 22 genes that are related to prognosis were identified. Prognostic genes were included in the prognostic nomogram of BC with a C-index of 0.76 to predict the 3-year and 5-year OS probabilities of BC individuals. CONCLUSIONS These findings provide evidence for the role of CLDN7-linked tumor immunity, suggesting that CLDN7 might be a potential immunotherapeutic target for BC, and its association with immune markers could shed light on the better prognosis of BC.
Collapse
Affiliation(s)
- Xiaojie Fan
- Departments of Pathology, the Fourth Hospital of Hebei Medical University, No.12, Jiankang Road, Shijiazhuang, 050011, PR China
| | - Aifeng Qi
- Shijiazhuang Hospital of Traditional Chinese Medicine, No.233, zhongshan Road, Shijiazhuang, 050011, PR China
| | - Meng Zhang
- Departments of Pathology, the Fourth Hospital of Hebei Medical University, No.12, Jiankang Road, Shijiazhuang, 050011, PR China
| | - Ying Jia
- Departments of Pathology, the Fourth Hospital of Hebei Medical University, No.12, Jiankang Road, Shijiazhuang, 050011, PR China
| | - Shi Li
- Departments of Pathology, the Fourth Hospital of Hebei Medical University, No.12, Jiankang Road, Shijiazhuang, 050011, PR China
| | - Dandan Han
- Departments of Pathology, the Fourth Hospital of Hebei Medical University, No.12, Jiankang Road, Shijiazhuang, 050011, PR China
| | - Yueping Liu
- Departments of Pathology, the Fourth Hospital of Hebei Medical University, No.12, Jiankang Road, Shijiazhuang, 050011, PR China.
| |
Collapse
|
15
|
Chen Y, Wang X, Na X, Zhang Y, Cai L, Song J, Yang C. DMF-DM-seq: Digital-Microfluidics Enabled Dual-Modality Sequencing of Single-Cell mRNA and microRNA with High Integration, Sensitivity, and Automation. Anal Chem 2024; 96:12916-12926. [PMID: 39038243 DOI: 10.1021/acs.analchem.4c03378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Multimodal measurement of single cells provides deep insights into the intricate relationships between individual molecular layers and the regulatory mechanisms underlying intercellular variations. Here, we reported DMF-DM-seq, a highly integrated, sensitive, and automated platform for single-cell mRNA and microRNA (miRNA) co-sequencing based on digital microfluidics. This platform first integrates the processes of single-cell isolation, lysis, component separation, and simultaneous sequencing library preparation of mRNA and miRNA within a single DMF device. Compared with the current half-cell measuring strategy, DMF-DM-seq enables complete separation of single-cell mRNA and miRNA via a magnetic field application, resulting in a higher miRNA detection ability. DMF-DM-seq revealed differential expression patterns of single cells of noncancerous breast cells and noninvasive and aggressive breast cancer cells at both mRNA and miRNA levels. The results demonstrated the anticorrelated relationship between miRNA and their mRNA targets. Further, we unravel the tumor growth and metastasis-associated biological processes enriched by miRNA-targeted genes, along with important miRNA-interaction networks involved in significant signaling pathways. We also deconstruct the miRNA regulatory mechanisms underlying different signaling pathways across different breast cell types. In summary, DMF-DM-seq offers a powerful tool for a comprehensive study of the expression heterogeneity of single-cell mRNA and miRNA, which will be widely applied in basic and clinical research.
Collapse
Affiliation(s)
- Yingwen Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xuanqun Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Na
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yingkun Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Linfeng Cai
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jia Song
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Chaoyong Yang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, No. 55, Zhenhai Road, Siming District, Xiamen 361003, China
| |
Collapse
|
16
|
Jalali F, Fakhari F, Sepehr A, Zafari J, Sarajar BO, Sarihi P, Jafarzadeh E. Synergistic anticancer effects of doxorubicin and metformin combination therapy: A systematic review. Transl Oncol 2024; 45:101946. [PMID: 38636389 PMCID: PMC11040171 DOI: 10.1016/j.tranon.2024.101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/05/2024] [Accepted: 03/24/2024] [Indexed: 04/20/2024] Open
Abstract
INTRODUCTION Doxorubicin (DOX) a chemotherapy drug often leads to the development of resistance, in cancer cells after prolonged treatment. Recent studies have suggested that using metformin plus doxorubicin could result in synergic effects. This study focuses on exploring the co-treat treatment of doxorubicin and metformin for various cancers. METHOD Following the PRISMA guidelines we conducted a literature search using different databases such as Embase, Scopus, Web of Sciences, PubMed, Science Direct and Google Scholar until July 2023. We selected search terms based on the objectives of this study. After screening a total of 30 articles were included. RESULTS The combination of doxorubicin and metformin demonstrated robust anticancer effects, surpassing the outcomes of monotherapy drug treatment. In vitro experiments consistently demonstrated inhibition of cancer cell growth and increased rates of cell death. Animal studies confirmed substantial reductions in tumor growth and improved survival rates, emphasizing the synergistic impact of the combined therapy. The research' discoveries collectively emphasize the capability of the co-treat doxorubicin-metformin as a compelling approach in cancer treatment, highlighting its potential to address medicate resistance and upgrade generally helpful results. CONCLUSION The findings of this study show that the combined treatment regimen including doxorubicin and metformin has significant promise in fighting cancer. The observed synergistic effects suggest that this combination therapy could be valuable, in a setting. This study highlights the need for clinical research to validate and enhance the application of the doxorubicin metformin regimen.
Collapse
Affiliation(s)
- Fereshtehsadat Jalali
- Department of Obstetrics and Gynecology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fakhari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Afrah Sepehr
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Jaber Zafari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Behnam Omidi Sarajar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouria Sarihi
- Research Institute of Bioscience and Biotechnology, University of Tabriz, Tabriz, Iran.
| | - Emad Jafarzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Yue G. Screening of lung cancer serum biomarkers based on Boruta-shap and RFC-RFECV algorithms. J Proteomics 2024; 301:105180. [PMID: 38663548 DOI: 10.1016/j.jprot.2024.105180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
OBJECTIVE This study aimed to identify a set of serum miRNAs as potential biomarkers for lung cancer diagnosis using algorithmic approaches. METHODS Serum miRNA expression data from lung cancer patients and non-tumor controls were obtained. The top six miRNAs were selected using Boruta-shap and RFC-RFECV algorithms. A Gaussian Naive Bayes (NB) classifier was trained and evaluated using cross-validation, ROC curve analysis, and evaluation metrics. RESULTS Six miRNAs (hsa-miRNA-144, hsa-miRNA-107, hsa-miRNA-484, hsa-miRNA-103, hsa-miRNA-26b, and hsa-miRNA-641) were identified as feature genes. The NB classifier achieved an area under curve (AUC) of 0.8966 and a mean AUC of 0.88 in cross-validation. Accuracy, recall, and F1 scores exhibited promising results, with an accuracy of 82%. In the validation set, the AUC values for the NB and SVC classifiers were 0.9345 and 0.9423, respectively, with a mean AUC of 0.95 in cross-validation. The classifiers demonstrated an accuracy of 89% in diagnosing lung cancer. CONCLUSION This study identified a panel of six serum miRNAs with potential as non-invasive biomarkers for lung cancer diagnosis. These miRNAs show promise in providing sensitive and specific tools for detecting lung cancer. SIGNIFICANCE Lung cancer is one of the top cancers worldwide, threatening the health and lives of tens of thousands of people. miRNA is a biomarker, which can be used as a potential clinical tool for diagnosis and prognosis of cancer patients. Therefore, the use of multiple miRNAs to construct diagnostic models may be one of the future methods of accurate diagnosis of lung cancer. In this study, we used the Boruta-shap and RFC-RFECV algorithms to automatically identify and extract characteristic miRNAs highly associated with lung cancer, thereby establishing an accurate classifier for the diagnosis of lung cancer with characteristic miRNAs.
Collapse
Affiliation(s)
- Guangcheng Yue
- Department of Thoracic Surgery, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, China.
| |
Collapse
|
18
|
Sirek T, Sirek A, Borawski P, Ryguła I, Król-Jatręga K, Opławski M, Boroń D, Chalcarz M, Ossowski P, Dziobek K, Zmarzły N, Boroń K, Mickiewicz P, Grabarek BO. Expression Profiles of Dopamine-Related Genes and miRNAs Regulating Their Expression in Breast Cancer. Int J Mol Sci 2024; 25:6546. [PMID: 38928253 PMCID: PMC11203454 DOI: 10.3390/ijms25126546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/21/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
This study aimed to assess the expression profile of messenger RNA (mRNA) and microRNA (miRNA) related to the dopaminergic system in five types of breast cancer in Polish women. Patients with five breast cancer subtypes were included in the study: luminal A (n = 130), luminal B (n = 196, including HER2-, n = 100; HER2+, n = 96), HER2+ (n = 36), and TNBC (n = 43); they underwent surgery, during which tumor tissue was removed along with a margin of healthy tissue (control material). The molecular analysis included a microarray profile of mRNAs and miRNAs associated with the dopaminergic system, a real-time polymerase chain reaction preceded by reverse transcription for selected genes, and determinations of their concentration using enzyme-linked immunosorbent assay (ELISA). The conducted statistical analysis showed that five mRNAs statistically significantly differentiated breast cancer sections regardless of subtype compared to control samples; these were dopamine receptor 2 (DRD2), dopamine receptor 3 (DRD3), dopamine receptor 25 (DRD5), transforming growth factor beta 2 (TGF-β-2), and caveolin 2 (CAV2). The predicted analysis showed that hsa-miR-141-3p can regulate the expression of DRD2 and TGF-β-2, whereas hsa-miR-4441 is potentially engaged in the expression regulation of DRD3 and DRD5. In addition, the expression pattern of DRD5 mRNA can also be regulated by has-miR-16-5p. The overexpression of DRD2 and DRD3, with concomitant silencing of DRD5 expression, confirms the presence of dopaminergic abnormalities in breast cancer patients. Moreover, these abnormalities may be the result of miR-141-3P, miR-16-5p, and miR-4441 activity, regulating proliferation or metastasis.
Collapse
Affiliation(s)
- Tomasz Sirek
- Department of Plastic Surgery, Faculty of Medicine, Academia of Silesia, 40-555 Katowice, Poland
- Department of Plastic and Reconstructive Surgery, Hospital for Minimally Invasive and Reconstructive Surgery in Bielsko-Biała, 43-316 Bielsko-Biala, Poland; (A.S.); (K.K.-J.)
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Agata Sirek
- Department of Plastic and Reconstructive Surgery, Hospital for Minimally Invasive and Reconstructive Surgery in Bielsko-Biała, 43-316 Bielsko-Biala, Poland; (A.S.); (K.K.-J.)
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | | | - Izabella Ryguła
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Katarzyna Król-Jatręga
- Department of Plastic and Reconstructive Surgery, Hospital for Minimally Invasive and Reconstructive Surgery in Bielsko-Biała, 43-316 Bielsko-Biala, Poland; (A.S.); (K.K.-J.)
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Marcin Opławski
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, 31-826 Kraków, Poland;
- Department of Gynecology and Obstetrics, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski University in Kraków, 30-705 Kraków, Poland
| | - Dariusz Boroń
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, 31-826 Kraków, Poland;
- Institute of Clinical Science, Skłodowska-Curie Medical University, 00-136 Warszawa, Poland
- Department of Gynecology and Obstetrics, TOMMED Specjalisci od Zdrowia, 40-662 Katowice, Poland
| | - Michał Chalcarz
- Chalcarz Clinic-Aesthetic Surgery, Aesthetic Medicine, 60-001 Poznan, Poland;
- Bieńkowski Medical Center-Plastic Surgery, 85-020 Bydgoszcz, Poland
| | - Piotr Ossowski
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Konrad Dziobek
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Nikola Zmarzły
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Kacper Boroń
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Patrycja Mickiewicz
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Beniamin Oskar Grabarek
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
- Department of Molecular, Biology Gyncentrum Fertility Clinic, 40-055 Katowice, Poland
| |
Collapse
|
19
|
Bai Y, Zhang Z, Bi J, Tang Q, Jiang K, Yao C, Wang W. miR-181c-5p/DERL1 pathway controls breast cancer progression mediated by TRAF6-linked K63 ubiquitination of AKT. Cancer Cell Int 2024; 24:204. [PMID: 38858669 PMCID: PMC11165795 DOI: 10.1186/s12935-024-03395-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Aberrant Derlin-1 (DERL1) expression is associated with an overactivation of p-AKT, whose involvement in breast cancer (BRCA) development has been widely speculated. However, the precise mechanism that links DERL1 expression and AKT activation is less well-studied. METHODS Bioinformatic analyses hold a promising approach by which to detect genes' expression levels and their association with disease prognoses in patients. In the present work, a dual-luciferase assay was employed to investigate the relationship between DERL1 expression and the candidate miRNA by both in vitro and in vivo methods. Further in-depth studies involving immunoprecipitation-mass spectrum (IP-MS), co-immunoprecipitation (Co-IP), as well as Zdock prediction were performed. RESULTS Overexpression of DERL1 was detected in all phenotypes of BRCA, and its knockdown showed an inhibitory effect on BRCA cells both in vitro and in vivo. The Cancer Genome Atlas (TCGA) database reported that DERL1 overexpression was correlated with poor overall survival in BRCA cases, and so the quantification of DERL1 expression could be a potential marker for the clinical diagnosis of BRCA. On the other hand, miR-181c-5p was downregulated in BRCA, suggesting that its overexpression could be a potent therapeutic route to improve the overall survival of BRCA cases. Prior bioinformatic analyses indicated a somewhat positive correlation between DERL1 and TRAF6 as well as between TRAF6 and AKT, but not between miR-181c-5p and DERL1. In retrospect, DERL1 overexpression promoted p-AKT activation through K63 ubiquitination. DERL1 was believed to directly interact with the E3 ligase TRAF6. As Tyr77Ala or Tyr77Ala/Gln81Ala/Arg85Ala/Val158Ala attempts to prevent the interaction between DERL1 and TRAF domain of TRAF6, resulted in a significant reduction in K63-ubiquitinated p-AKT production. However, mutations in Gln81Ala, Arg85Ala, or Val158Ala could possibly interrupt with these processes. CONCLUSIONS Our data confirm that mediation of the miR-181c-5p/DERL1 pathway by TRAF6-linked AKT K63 ubiquitination holds one of the clues to set our focus on toward meeting the therapeutic goals of BRCA.
Collapse
Affiliation(s)
- Yang Bai
- Laboratory of Department of Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Zhanqiang Zhang
- Department of Thyroid, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Jiong Bi
- Laboratory of Department of Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Qian Tang
- Department of Anesthesiology, Guiqian International General Hospital, Guiyang, 550000, Guizhou, China
| | - Keying Jiang
- Laboratory of Department of Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Chen Yao
- Laboratory of Department of Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Wenjian Wang
- Laboratory of Department of Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
20
|
Gherman LM, Zanoaga O, Budisan L, Isachesku E, Lajos R, Ciocan C, Braicu C, Atanasov AG, Berindan-Neagoe I. Altered miRNA pattern in canine mammary tumors - pilot study. ANIMAL SCIENCE PAPERS AND REPORTS 2024; 42:217-230. [DOI: 10.2478/aspr-2023-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Abstract
Canine mammary tumors (CMTs) represent a prevalent malignancy in female dogs. MicroRNAs (miRNAs) have emerged as critical regulators of gene expression and are implicated in various cancer types, including CMTs. This study aimed to investigate the altered miRNA expression patterns in CMTs and their potential role in tumorigenesis. We analyzed miRNA profiles in a cohort of CMT samples and matched normal tissues using a custom canine panel microarray slide (Agilent technology). The bioinformatics analysis overlapped the altered miRNA signature in CMT with human breast cancer miRNA (TCGA patient cohort). The biological significance of this altered miRNA signature was evaluated using Ingenuity Pathway Analysis. Our results revealed a distinctive miRNA expression signature associated with CMTs compared to normal mammary tissues, and when overlapped with human breast cancer miRNA data (TCGA cohort), we identified a common signature composed of one overexpressed transcript and eight downregulated transcripts. In conclusion, our study provides comprehensive insights into the altered miRNA expression patterns in CMTs, shedding light on their potential contribution to the pathogenesis of these tumors. Further investigation into the specific roles of these dysregulated miRNAs is warranted to elucidate their precise involvement in CMT progression and to explore their therapeutic implications.
Collapse
Affiliation(s)
- Luciana-Mădălina Gherman
- Research Center of Functional Genomics , Biomedicine, and Translational Medicine Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania
- Animal Facility University of Medicine and Pharmacy Iuliu-Hatieganu , Cluj-Napoca , Romania
| | - Oana Zanoaga
- Research Center of Functional Genomics , Biomedicine, and Translational Medicine Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Liviuta Budisan
- Research Center of Functional Genomics , Biomedicine, and Translational Medicine Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Ekaterina Isachesku
- Research Center of Functional Genomics , Biomedicine, and Translational Medicine Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Raduly Lajos
- Research Center of Functional Genomics , Biomedicine, and Translational Medicine Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Cristina Ciocan
- Research Center of Functional Genomics , Biomedicine, and Translational Medicine Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Cornelia Braicu
- Research Center of Functional Genomics , Biomedicine, and Translational Medicine Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Atanas G. Atanasov
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna , Spitalgasse 23, 1090 Vienna , Austria
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences , Jastrzebiec, 05-552 Magdalenka , Poland
| | - Ioana Berindan-Neagoe
- Research Center of Functional Genomics , Biomedicine, and Translational Medicine Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania
| |
Collapse
|
21
|
Ma Q, Ye S, Liu H, Zhao Y, Zhang W. The emerging role and mechanism of HMGA2 in breast cancer. J Cancer Res Clin Oncol 2024; 150:259. [PMID: 38753081 PMCID: PMC11098884 DOI: 10.1007/s00432-024-05785-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
High mobility group AT-hook 2 (HMGA2) is a member of the non-histone chromosomal high mobility group (HMG) protein family, which participate in embryonic development and other biological processes. HMGA2 overexpression is associated with breast cancer (BC) cell growth, proliferation, metastasis, and drug resistance. Furthermore, HMGA2 expression is positively associated with poor prognosis of patients with BC, and inhibiting HMGA2 signaling can stimulate BC cell progression and metastasis. In this review, we focus on HMGA2 expression changes in BC tissues and multiple BC cell lines. Wnt/β-catenin, STAT3, CNN6, and TRAIL-R2 proteins are upstream mediators of HMGA2 that can induce BC invasion and metastasis. Moreover, microRNAs (miRNAs) can suppress BC cell growth, invasion, and metastasis by inhibiting HMGA2 expression. Furthermore, long noncoding RNAs (LncRNAs) and circular RNAs (CircRNAs) mainly regulate HMGA2 mRNA and protein expression levels by sponging miRNAs, thereby promoting BC development. Additionally, certain small molecule inhibitors can suppress BC drug resistance by reducing HMGA2 expression. Finally, we summarize findings demonstrating that HMGA2 siRNA and HMGA2 siRNA-loaded nanoliposomes can suppress BC progression and metastasis.
Collapse
Affiliation(s)
- Qing Ma
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, China
| | - Sisi Ye
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, China
| | - Hong Liu
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, China
| | - Yu Zhao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, China
| | - Wei Zhang
- Emergency Department of West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China.
| |
Collapse
|
22
|
Arefnezhad R, Ashna S, Rezaei-Tazangi F, Arfazadeh SM, Seyedsalehie SS, Yeganeafrouz S, Aghaei M, Sanandaji M, Davoodi R, Abadi SRK, Vosough M. Noncoding RNAs and programmed cell death in hepatocellular carcinoma: Significant role of epigenetic modifications in prognosis, chemoresistance, and tumor recurrence rate. Cell Biol Int 2024; 48:556-576. [PMID: 38411312 DOI: 10.1002/cbin.12145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/26/2024] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer with a high death rate in the world. The molecular mechanisms related to the pathogenesis of HCC have not been precisely defined so far. Hence, this review aimed to address the potential cross-talk between noncoding RNAs (ncRNAs) and programmed cell death in HCC. All related papers in the English language up to June 2023 were collected and screened. The searched keywords in scientific databases, including Scopus, PubMed, and Google Scholar, were HCC, ncRNAs, Epigenetic, Programmed cell death, Autophagy, Apoptosis, Ferroptosis, Chemoresistance, Tumor recurrence, Prognosis, and Prediction. According to the reports, ncRNAs, comprising long ncRNAs, microRNAs, circular RNAs, and small nucleolar RNAs can affect cell proliferation, migration, invasion, and metastasis, as well as cell death-related processes, such as autophagy, ferroptosis, necroptosis, and apoptosis in HCC by regulating cancer-associated genes and signaling pathways, for example, phosphoinositide 3-kinase/Akt, extracellular signal-regulated kinase/MAPK, and Wnt/β-catenin signaling pathways. It seems that ncRNAs, as epigenetic regulators, can be utilized as biomarkers in diagnosis, prognosis, survival and recurrence rates prediction, chemoresistance, and evaluation of therapeutic response in HCC patients. However, more scientific evidence is suggested to be accomplished to confirm these results.
Collapse
Affiliation(s)
- Reza Arefnezhad
- Coenzyme R Research Institute, Tehran, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Ashna
- Student Research Committee, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Seyede Shabnam Seyedsalehie
- Department of Pediatrics, Faculty of Medicine, Ahvaz Jundishapur, University of Medical Sciences, Ahvaz, Iran
| | - Shaghayegh Yeganeafrouz
- Department of Medical Science, Faculty of Medicine, Islamic Azad University, Medical branch, Tehran, Iran
| | - Melika Aghaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mandana Sanandaji
- Department of Physical Education and Sport Sciences, Tehran University, Tehran, Iran
| | | | | | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Institution for Laboratory Medicine, Karolinska Institutet, Experimental Cancer Medicine, Huddinge, Sweden
| |
Collapse
|
23
|
Sang H, Li L, Zhao Q, Liu Y, Hu J, Niu P, Hao Z, Chai K. The regulatory process and practical significance of non-coding RNA in the dissemination of prostate cancer to the skeletal system. Front Oncol 2024; 14:1358422. [PMID: 38577343 PMCID: PMC10991771 DOI: 10.3389/fonc.2024.1358422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
Prostate cancer is a major contributor to male cancer-related mortality globally. It has a particular affinity for the skeletal system with metastasis to bones seriously impacting prognosis. The identification of prostate cancer biomarkers can significantly enhance diagnosis and patient monitoring. Research has found that cancer and metastases exhibit abnormal expression of numerous non-coding RNA. Some of these RNA facilitate prostate cancer bone metastasis by activating downstream signaling pathways, while others inhibit this process. Elucidating the functional processes of non-coding RNA in prostate cancer bone metastasis will likely lead to innovative treatment strategies for this malignant condition. In this review, the mechanistic role of the various RNA in prostate cancer is examined. Our goal is to provide a new avenue of approach to the diagnosis and treatment of bone metastasis in this cancer.
Collapse
Affiliation(s)
- Hui Sang
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Luxi Li
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Qiang Zhao
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Yulin Liu
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Jinbo Hu
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Peng Niu
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Zhenming Hao
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Keqiang Chai
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| |
Collapse
|
24
|
Wang Y, Bu N, Luan XF, Song QQ, Ma BF, Hao W, Yan JJ, Wang L, Zheng XL, Maimaitiyiming Y. Harnessing the potential of long non-coding RNAs in breast cancer: from etiology to treatment resistance and clinical applications. Front Oncol 2024; 14:1337579. [PMID: 38505593 PMCID: PMC10949897 DOI: 10.3389/fonc.2024.1337579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Breast cancer (BC) is the most common malignancy among women and a leading cause of cancer-related deaths of females worldwide. It is a complex and molecularly heterogeneous disease, with various subtypes that require different treatment strategies. Despite advances in high-resolution single-cell and multinomial technologies, distant metastasis and therapeutic resistance remain major challenges for BC treatment. Long non-coding RNAs (lncRNAs) are non-coding RNAs with more than 200 nucleotides in length. They act as competing endogenous RNAs (ceRNAs) to regulate post-transcriptional gene stability and modulate protein-protein, protein-DNA, and protein-RNA interactions to regulate various biological processes. Emerging evidence suggests that lncRNAs play essential roles in human cancers, including BC. In this review, we focus on the roles and mechanisms of lncRNAs in BC progression, metastasis, and treatment resistance, and discuss their potential value as therapeutic targets. Specifically, we summarize how lncRNAs are involved in the initiation and progression of BC, as well as their roles in metastasis and the development of therapeutic resistance. We also recapitulate the potential of lncRNAs as diagnostic biomarkers and discuss their potential use in personalized medicine. Finally, we provide lncRNA-based strategies to promote the prognosis of breast cancer patients in clinical settings, including the development of novel lncRNA-targeted therapies.
Collapse
Affiliation(s)
- Yun Wang
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Na Bu
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-fei Luan
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian-qian Song
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ba-Fang Ma
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Wenhui Hao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jing-jing Yan
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Wang
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-ling Zheng
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yasen Maimaitiyiming
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
- Women’s Hospital, Institute of Genetics, and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
25
|
Abu-Alghayth MH, Khan FR, Belali TM, Abalkhail A, Alshaghdali K, Nassar SA, Almoammar NE, Almasoudi HH, Hessien KBG, Aldossari MS, Binshaya AS. The emerging role of noncoding RNAs in the PI3K/AKT/mTOR signalling pathway in breast cancer. Pathol Res Pract 2024; 255:155180. [PMID: 38330621 DOI: 10.1016/j.prp.2024.155180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/10/2024]
Abstract
Breast cancer persists as a major problem for the world's healthcare, thus it is essential to fully understand the complex molecular processes that cause its growth and development. ncRNAs had been discovered to serve critical roles in a variety of cellular functions, including the regulation of signalling pathways. Within different pathways, the AKT/PI3K/mTOR signalling cascade has received a lot of interest because of its role in cancer. A complex interaction between ncRNAs, notably miRNAs, lncRNAs, and circRNAs, and the AKT/PI3K/mTOR signalling pathway exerts both oncogenic and tumor-suppressive activities by targeting critical components of the pathway directly or indirectly. Through miRNA-mediated post-transcriptional regulation, lncRNA-guided chromatin remodelling, and circRNA sequestration, ncRNAs modulate the activity of PI3K, AKT, and mTOR, influencing cell proliferation, survival, and metastasis. Furthermore, ncRNAs can serve as promising biomarkers for breast cancer prognosis, diagnosis, and treatment response, as their dysregulation is commonly observed in breast cancer patients. Harnessing the potential of ncRNAs as therapeutic targets or tools for restoring pathway homeostasis holds promise for innovative treatment strategies in breast cancer. Understanding the intricate regulatory networks orchestrated by ncRNAs in this context may pave the way for novel diagnostic approaches, therapeutic interventions, and a deeper comprehension of breast cancer's molecular landscape, ultimately improving patient outcomes. This abstract underscores the emerging significance of ncRNAs in the AKT/PI3K/mTOR signaling pathway in breast cancer.
Collapse
Affiliation(s)
- Mohammed H Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, P.O. Box 255, 67714, Saudi Arabia
| | - Farhan R Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Tareg M Belali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, P.O. Box 255, 67714, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Qassim, Saudi Arabia
| | - Khalid Alshaghdali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, P.O Box 2440, Saudi Arabia
| | - Somia A Nassar
- Department of Medical Laboratory Science, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Department of Parasitology & Animal Diseases, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt
| | - Nasser Eissa Almoammar
- Department of Medical Laboratory Science, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Hassan H Almasoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Khater Balatone G Hessien
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | | | - Abdulkarim S Binshaya
- Department of Medical Laboratory Science, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| |
Collapse
|
26
|
Qiu C, Xiang YK, Da XB, Zhang HL, Kong XY, Hou NZ, Zhang C, Tian FZ, Yang YL. Phospholipase A2 enzymes PLA2G2A and PLA2G12B as potential diagnostic and prognostic biomarkers in cholangiocarcinoma. World J Gastrointest Surg 2024; 16:289-306. [PMID: 38463362 PMCID: PMC10921223 DOI: 10.4240/wjgs.v16.i2.289] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/19/2023] [Accepted: 01/15/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Phospholipase A2 (PLA2) enzymes are pivotal in various biological processes, such as lipid mediator production, membrane remodeling, bioenergetics, and maintaining the body surface barrier. Notably, these enzymes play a significant role in the development of diverse tumors. AIM To systematically and comprehensively explore the expression of the PLA2 family genes and their potential implications in cholangiocarcinoma (CCA). METHODS We conducted an analysis of five CCA datasets from The Cancer Genome Atlas and the Gene Expression Omnibus. The study identified differentially expressed genes between tumor tissues and adjacent normal tissues, with a focus on PLA2G2A and PLA2G12B. Gene Set Enrichment Analysis was utilized to pinpoint associated pathways. Moreover, relevant hub genes and microRNAs for PLA2G2A and PLA2G12B were predicted, and their correlation with the prognosis of CCA was evaluated. RESULTS PLA2G2A and PLA2G12B were discerned as differentially expressed in CCA, manifesting significant variations in expression levels in urine and serum between CCA patients and healthy individuals. Elevated expression of PLA2G2A was correlated with poorer overall survival in CCA patients. Additionally, the study delineated pathways and miRNAs associated with these genes. CONCLUSION Our findings suggest that PLA2G2A and PLA2G12B may serve as novel potential diagnostic and prognostic markers for CCA. The increased levels of these genes in biological fluids could be employed as non-invasive markers for CCA, and their expression levels are indicative of prognosis, underscoring their potential utility in clinical settings.
Collapse
Affiliation(s)
- Chen Qiu
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yu-Kai Xiang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xuan-Bo Da
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| | - Hong-Lei Zhang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xiang-Yu Kong
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| | - Nian-Zong Hou
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| | - Cheng Zhang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| | - Fu-Zhou Tian
- General Surgery Center, Chengdu Military General Hospital, Chengdu 610083, Sichuan Province, China
| | - Yu-Long Yang
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
27
|
Wu H, Jiao Y, Guo X, Wu Z, Lv Q. METTL14/miR-29c-3p axis drives aerobic glycolysis to promote triple-negative breast cancer progression though TRIM9-mediated PKM2 ubiquitination. J Cell Mol Med 2024; 28:e18112. [PMID: 38263865 PMCID: PMC10844685 DOI: 10.1111/jcmm.18112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/05/2023] [Accepted: 11/22/2023] [Indexed: 01/25/2024] Open
Abstract
The energy metabolic rearrangement of triple-negative breast cancer (TNBC) from oxidative phosphorylation to aerobic glycolysis is a significant biological feature and can promote the malignant progression. However, there is little knowledge about the functional mechanisms of methyltransferase-like protein 14 (METTL14) mediated contributes to TNBC malignant progression. Our study found that METTL14 expression was significantly upregulated in TNBC tissues and cell lines. Silencing METTL14 significantly inhibited TNBC cell growth and invasion in vitro, as well as suppressed tumour growth. Mechanically, METTL14 was first found to activate miR-29c-3p through m6A and regulate tripartite motif containing 9 (TRIM9) to promote ubiquitination of pyruvate kinase isoform M2 (PKM2) and lead to its transition from tetramer to dimer, resulting in glucose metabolic reprogramming from oxidative phosphorylation to aerobic glycolysis to promote the progress of TNBC. Taken together, these findings reveal important roles of METTL14 in TNBC tumorigenesis and energy metabolism, which might represent a novel potential therapeutic target for TNBC.
Collapse
Affiliation(s)
- Hao Wu
- Division of Breast Surgery, Department of General SurgeryWest China Hospital, Sichuan UniversityChengduChina
- Breast Center, West China HospitalSichuan UniversityChengduChina
| | - Yile Jiao
- Division of Breast Surgery, Department of General SurgeryWest China Hospital, Sichuan UniversityChengduChina
- Breast Center, West China HospitalSichuan UniversityChengduChina
| | - Xinyi Guo
- Division of Breast Surgery, Department of General SurgeryWest China Hospital, Sichuan UniversityChengduChina
- Breast Center, West China HospitalSichuan UniversityChengduChina
| | - Zhenru Wu
- Laboratory of Pathology, West China HospitalSichuan UniversityChengduChina
| | - Qing Lv
- Division of Breast Surgery, Department of General SurgeryWest China Hospital, Sichuan UniversityChengduChina
- Breast Center, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
28
|
Hüttmann N, Li Y, Poolsup S, Zaripov E, D’Mello R, Susevski V, Minic Z, Berezovski MV. Surface Proteome of Extracellular Vesicles and Correlation Analysis Reveal Breast Cancer Biomarkers. Cancers (Basel) 2024; 16:520. [PMID: 38339272 PMCID: PMC10854524 DOI: 10.3390/cancers16030520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Breast cancer (BC) is the second most frequently diagnosed cancer and accounts for approximately 25% of new cancer cases in Canadian women. Using biomarkers as a less-invasive BC diagnostic method is currently under investigation but is not ready for practical application in clinical settings. During the last decade, extracellular vesicles (EVs) have emerged as a promising source of biomarkers because they contain cancer-derived proteins, RNAs, and metabolites. In this study, EV proteins from small EVs (sEVs) and medium EVs (mEVs) were isolated from BC MDA-MB-231 and MCF7 and non-cancerous breast epithelial MCF10A cell lines and then analyzed by two approaches: global proteomic analysis and enrichment of EV surface proteins by Sulfo-NHS-SS-Biotin labeling. From the first approach, proteomic profiling identified 2459 proteins, which were subjected to comparative analysis and correlation network analysis. Twelve potential biomarker proteins were identified based on cell line-specific expression and filtered by their predicted co-localization with known EV marker proteins, CD63, CD9, and CD81. This approach resulted in the identification of 11 proteins, four of which were further investigated by Western blot analysis. The presence of transmembrane serine protease matriptase (ST14), claudin-3 (CLDN3), and integrin alpha-7 (ITGA7) in each cell line was validated by Western blot, revealing that ST14 and CLDN3 may be further explored as potential EV biomarkers for BC. The surface labeling approach enriched proteins that were not identified using the first approach. Ten potential BC biomarkers (Glutathione S-transferase P1 (GSTP1), Elongation factor 2 (EEF2), DEAD/H box RNA helicase (DDX10), progesterone receptor (PGR), Ras-related C3 botulinum toxin substrate 2 (RAC2), Disintegrin and metalloproteinase domain-containing protein 10 (ADAM10), Aconitase 2 (ACO2), UTP20 small subunit processome component (UTP20), NEDD4 binding protein 2 (N4BP2), Programmed cell death 6 (PDCD6)) were selected from surface proteins commonly identified from MDA-MB-231 and MCF7, but not identified in MCF10A EVs. In total, 846 surface proteins were identified from the second approach, of which 11 were already known as BC markers. This study supports the proposition that Evs are a rich source of known and novel biomarkers that may be used for non-invasive detection of BC. Furthermore, the presented datasets could be further explored for the identification of potential biomarkers in BC.
Collapse
Affiliation(s)
- Nico Hüttmann
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (N.H.); (Y.L.); (S.P.); (E.Z.); (R.D.); (V.S.)
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Yingxi Li
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (N.H.); (Y.L.); (S.P.); (E.Z.); (R.D.); (V.S.)
| | - Suttinee Poolsup
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (N.H.); (Y.L.); (S.P.); (E.Z.); (R.D.); (V.S.)
| | - Emil Zaripov
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (N.H.); (Y.L.); (S.P.); (E.Z.); (R.D.); (V.S.)
| | - Rochelle D’Mello
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (N.H.); (Y.L.); (S.P.); (E.Z.); (R.D.); (V.S.)
| | - Vanessa Susevski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (N.H.); (Y.L.); (S.P.); (E.Z.); (R.D.); (V.S.)
| | - Zoran Minic
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Maxim V. Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (N.H.); (Y.L.); (S.P.); (E.Z.); (R.D.); (V.S.)
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| |
Collapse
|
29
|
Yang H, He C, Feng Y, Jin J. Exosome‑delivered miR‑486‑3p inhibits the progression of osteosarcoma via sponging CircKEAP1/MARCH1 axis components. Oncol Lett 2024; 27:24. [PMID: 38058466 PMCID: PMC10696630 DOI: 10.3892/ol.2023.14157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 09/26/2023] [Indexed: 12/08/2023] Open
Abstract
Accumulating evidence shows that the disruption of competing endogenous RNA (ceRNA) networks plays a significant role in osteosarcoma (OS) initiation and progression. However, the specific roles and functions of the ceRNAs in OS remain unclear. First, differentially expressed microRNAs (DEMs) were identified by mining the E-MTAB-1136 and GSE28423 datasets. MiRWalk website was used to predict the target gene of miRNA. OS-associated circular RNA (circRNA) expression profiles were downloaded from the published microarray databases. Gene expression levels were assessed through reverse transcription-quantitative PCR and western blotting. The biological effects of circKEAP1, microRNA (miR)-486-3p and membrane-associated RINGCH finger protein 1 (MARCH1) in OS cells were investigated using Cell Counting Kit-8, Transwell, colony formation and wound healing assays. miR-486-3p was aberrantly downregulated in OS tissues and cell lines and was packed with exosomes. miR-486-3p overexpression was shown to inhibit OS cell progression and promoted cell cycle arrest in vitro. In addition, MARCH1 was identified as a direct downstream molecule of miR-486-3p in OS cells. circKEAP1 was found to be upregulated in OS tissues and cells. circKEAP1 was found to have binding sites with miR-486-3p. Mechanistically, circKEAP1 positively regulated MARCH1 expression by sponging miR-486-3p. Exosomal miR-486-3p inhibited the progression of OS by sponging the circKEAP1/MARCH1 axis. These findings may provide a promising treatment approach for OS.
Collapse
Affiliation(s)
- Huidong Yang
- Department of Orthopedics, Wuhan Asia General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430022, P.R. China
- Department of Orthopedics, Wuhan University of Science and Technology School of Medicine, Wuhan, Hubei 430022, P.R. China
| | - Cheng He
- Department of Orthopedics, The 908th Hospital of Joint Logistics Support Forces of Chinese PLA, Nanchang, Jiangxi 330002, P.R. China
| | - Yi Feng
- Department of Orthopedics, Wuhan Asia General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jie Jin
- Department of Orthopedics, Wuhan Asia General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
30
|
Xie W, Xu H, Cheng Y, Lin X, Zeng J, Sun Y. Calcium-sensing Receptor, a Potential Biomarker Revealed by Large-scale Public Databases and Experimental Verification in Metastatic Breast Cancer. Technol Cancer Res Treat 2024; 23:15330338241254219. [PMID: 38780484 PMCID: PMC11119385 DOI: 10.1177/15330338241254219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
INTRODUCTION Breast cancer (BC) is a common cancer characterized by a high molecular heterogeneity. Therefore, understanding its biological properties and developing effective treatments for patients with different molecular features is imperative. Calcium-sensing receptor (CaSR) has been implicated in several regulatory functions in various types of human cancers. However, its underlying pathological mechanism in BC progression remains elusive. METHODS We utilized The Cancer Genome Atlas and Gene Expression Omnibus databases to explore the function of CaSR in the metastasis of BC. Gene ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis, and Gene Set Enrichment Analysis of biological processes and cell signaling pathways revealed that CaSR could be activated or inhibited. Importantly, quantitative reverse transcriptase-polymerase chain reaction and western blotting were used to verify the gene expression of the CaSR. Wound healing and transwell assays were conducted to assess the effect of CaSR on the migration of BC cells. RESULTS We demonstrated that CaSR expression in metastatic BC was higher than that in non-metastatic BC. It is the first time that database information has been used to reveal the biological process and molecular mechanism of CaSR in BC. Moreover, the CaSR expression in normal breast epithelial cells was notably less compared to that in BC cells. The activation of CaSR by Cinacalcet (a CaSR agonist) significantly enhanced the migration of BC cells, whereas NPS-2143 (a CaSR antagonist) treatment dramatically inhibited these effects. CONCLUSION AND FUTURE PERSPECTIVE Bioinformatics techniques and experiments demonstrated the involvement of CaSR in BC metastasis. Our findings shed new light on the receptor therapy and molecular pathogenesis of BC, and emphasize the crucial function of CaSR, facilitating the metastasis of BC.
Collapse
Affiliation(s)
- Wanlin Xie
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Huimin Xu
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yangyang Cheng
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin Lin
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jingya Zeng
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yihua Sun
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
31
|
Chen MN, Fang ZX, Wu Z, Bai JW, Li RH, Wen XF, Zhang GJ, Liu J. Notch3 restricts metastasis of breast cancers through regulation of the JAK/STAT5A signaling pathway. BMC Cancer 2023; 23:1257. [PMID: 38124049 PMCID: PMC10734157 DOI: 10.1186/s12885-023-11746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
PURPOSE To explore the potential role of signal transducer and activator of transcription 5A (STAT5A) in the metastasis of breast cancer, and its mechanism of regulation underlying. METHODS AND RESULTS TCGA datasets were used to evaluate the expression of STAT5A in normal and different cancerous tissues through TIMER2.0, indicating that STAT5A level was decreased in breast cancer tissues compared with normal ones. Gene Set Enrichment Analysis predicted that STAT5A was associated with the activation of immune cells and cell cycle process. We further demonstrated that the infiltration of immune cells was positively associated with STAT5A level. Influorescence staining revealed the expression and distribution of F-actin was regulated by STAT5A, while colony formation assay, wound healing and transwell assays predicted the inhibitory role of STAT5A in the colony formation, migratory and invasive abilities in breast cancer cells. In addition, overexpression of the Notch3 intracellular domain (N3ICD), the active form of Notch3, resulted in the increased expression of STAT5A. Conversely, silencing of Notch3 expression by siNotch3 decreased STAT5A expression, supporting that STAT5A expression is positively associated with Notch3 in human breast cancer cell lines and breast cancer tissues. Mechanistically, chromatin immunoprecipitation showed that Notch3 was directly bound to the STAT5A promoter and induced the expression of STAT5A. Moreover, overexpressing STAT5A partially reversed the enhanced mobility of breast cancer cells following Notch3 silencing. Low expression of Notch3 and STAT5A predicted poorer prognosis of patients with breast cancer. CONCLUSION The present study demonstrates that Notch3 inhibits metastasis in breast cancer through inducing transcriptionally STAT5A, which was associated with tumor-infiltrating immune cells, providing a novel strategy to treat breast cancer.
Collapse
Affiliation(s)
- Min-Na Chen
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Ze-Xuan Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Zheng Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Jing-Wen Bai
- Department of Medical Oncology/Xiamen Key Laboratory for Endocrine-Related Cancer Precision Medicine, Xiamen University Medical School, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Rong-Hui Li
- Department of Medical Oncology/Xiamen Key Laboratory for Endocrine-Related Cancer Precision Medicine, Xiamen University Medical School, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Xiao-Fen Wen
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Guo-Jun Zhang
- Xiamen Key Laboratory for Endocrine-Related Cancer Precision Medicine/Department of Breast and Thyroid Surgery, Xiamen University Medical School, Xiang'an Hospital of Xiamen University, Xiamen, China.
| | - Jing Liu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, China.
| |
Collapse
|
32
|
Gelman IH. Metastasis suppressor genes in clinical practice: are they druggable? Cancer Metastasis Rev 2023; 42:1169-1188. [PMID: 37749308 PMCID: PMC11629483 DOI: 10.1007/s10555-023-10135-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/01/2023] [Indexed: 09/27/2023]
Abstract
Since the identification of NM23 (now called NME1) as the first metastasis suppressor gene (MSG), a small number of other gene products and non-coding RNAs have been identified that suppress specific parameters of the metastatic cascade, yet which have little or no ability to regulate primary tumor initiation or maintenance. MSG can regulate various pathways or cell biological functions such as those controlling mitogen-activated protein kinase pathway mediators, cell-cell and cell-extracellular matrix protein adhesion, cytoskeletal architecture, G-protein-coupled receptors, apoptosis, and transcriptional complexes. One defining facet of this gene class is that their expression is typically downregulated, not mutated, in metastasis, such that any effective therapeutic intervention would involve their re-expression. This review will address the therapeutic targeting of MSG, once thought to be a daunting task only facilitated by ectopically re-expressing MSG in metastatic cells in vivo. Examples will be cited of attempts to identify actionable oncogenic pathways that might suppress the formation or progression of metastases through the re-expression of specific metastasis suppressors.
Collapse
Affiliation(s)
- Irwin H Gelman
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| |
Collapse
|
33
|
Psathas II, Birbas K, Bonatsos G, Trantas R, Mahaira LG, Kaklamanos I. Investigation of the Use of Circulating Long Non-coding RNA HOXA Transcript at the Distal Tip (LncRNA HOTTIP) as a Biomarker in Breast Cancer. Cureus 2023; 15:e50019. [PMID: 38186456 PMCID: PMC10767482 DOI: 10.7759/cureus.50019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
The critical need for new diagnostic and prognostic methods is highlighted by the fact that breast cancer continues to be the top cause of cancer-related deaths globally. Due to the dysregulation of long non-coding RNAs (lncRNAs) in numerous malignancies, they have become potential biomarkers in cancer. Recent research has focused on the lncRNA HOTTIP (HOXA transcript at the distal tip), which has a function in breast cancer metastasis and carcinogenesis. Until recently, HOTTIP had only been measured in cancer tissues and specimens. The aim of this study is to assess the amounts of the lncRNA HOTTIP in the blood serum of 46 breast cancer patients using real-time PCR analysis and identify the relationships between HOTTIP expression and several known clinical and pathological factors, including tumor grade, stage, lymph node involvement, hormone receptor status, and cell proliferation. The results of the study confirmed a positive relation of HOTTIP expression and breast cancer aggressiveness and metastatic behavior. The analysis results showed elevated HOTTIP values in stage III and T3/T4 tumors with multifocal characteristics and in lymph node involvement. Our findings raise the possibility of HOTTIP serving as a future prognostic biomarker for breast cancer patients.
Collapse
Affiliation(s)
- Ioannis I Psathas
- Surgical Oncology, General Oncological Hospital of Kifissia "Agioi Anargyroi", Athens, GRC
| | - Konstantinos Birbas
- Surgery, General Oncological Hospital of Kifissia "Agioi Anargiri" / National and Kapodistrian University of Athens, Athens, GRC
| | - Gerasimos Bonatsos
- Surgery, General Oncological Hospital of Kifissia "Agioi Anargiri" / National and Kapodistrian University of Athens, Athens, GRC
| | - Romanos Trantas
- Nursing School, National and Kapodistrian University of Athens, Athens, GRC
| | - Louisa G Mahaira
- Genetics, "Saint Savvas" General Anti-Cancer and Oncological Hospital of Athens, Athens, GRC
| | - Ioannis Kaklamanos
- Surgical Oncology, National and Kapodistrian University of Athens, Athens, GRC
| |
Collapse
|
34
|
Tanabe S, Boonstra E, Hong T, Quader S, Ono R, Cabral H, Aoyagi K, Yokozaki H, Perkins EJ, Sasaki H. Molecular Networks of Platinum Drugs and Their Interaction with microRNAs in Cancer. Genes (Basel) 2023; 14:2073. [PMID: 38003016 PMCID: PMC10671144 DOI: 10.3390/genes14112073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
The precise mechanism of resistance to anti-cancer drugs such as platinum drugs is not fully revealed. To reveal the mechanism of drug resistance, the molecular networks of anti-cancer drugs such as cisplatin, carboplatin, oxaliplatin, and arsenic trioxide were analyzed in several types of cancers. Since diffuse-type stomach adenocarcinoma, which has epithelial-mesenchymal transition (EMT)-like characteristics, is more malignant than intestinal-type stomach adenocarcinoma, the gene expression and molecular networks in diffuse- and intestinal-type stomach adenocarcinomas were analyzed. Analysis of carboplatin revealed the causal network in diffuse large B-cell lymphoma. The upstream regulators of the molecular networks of cisplatin-treated lung adenocarcinoma included the anti-cancer drug trichostatin A (TSA), a histone deacetylase inhibitor. The upstream regulator analysis of cisplatin revealed an increase in FAS, BTG2, SESN1, and CDKN1A, and the involvement of the tumor microenvironment pathway. The molecular networks were predicted to interact with several microRNAs, which may contribute to the identification of new drug targets for drug-resistant cancer. Analysis of oxaliplatin, a platinum drug, revealed that the SPINK1 pancreatic cancer pathway is inactivated in ischemic cardiomyopathy. The study showed the importance of the molecular networks of anti-cancer drugs and tumor microenvironment in the treatment of cancer resistant to anti-cancer drugs.
Collapse
Affiliation(s)
- Shihori Tanabe
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki 210-9501, Japan
| | - Eger Boonstra
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-0033, Japan (T.H.); (H.C.)
| | - Taehun Hong
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-0033, Japan (T.H.); (H.C.)
| | - Sabina Quader
- Innovation Centre of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki 210-0821, Japan;
| | - Ryuichi Ono
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki 210-9501, Japan;
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-0033, Japan (T.H.); (H.C.)
| | - Kazuhiko Aoyagi
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo 104-0045, Japan;
| | - Hiroshi Yokozaki
- Department of Pathology, Kobe University of Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Edward J. Perkins
- US Army Engineer Research and Development Center, Vicksburg, MS 39180, USA;
| | - Hiroki Sasaki
- Department of Translational Oncology, National Cancer Center Research Institute, Tokyo 104-0045, Japan;
| |
Collapse
|
35
|
Xiao Y, Hu Y, Liu S. Non-coding RNAs: a promising target for early metastasis intervention. Chin Med J (Engl) 2023; 136:2538-2550. [PMID: 37442775 PMCID: PMC10617820 DOI: 10.1097/cm9.0000000000002619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Indexed: 07/15/2023] Open
Abstract
ABSTRACT Metastases account for the overwhelming majority of cancer-associated deaths. The dissemination of cancer cells from the primary tumor to distant organs involves a complex process known as the invasion-metastasis cascade. The underlying biological mechanisms of metastasis, however, remain largely elusive. Recently, the discovery and characterization of non-coding RNAs (ncRNAs) have revealed the diversity of their regulatory roles, especially as key contributors throughout the metastatic cascade. Here, we review recent progress in how three major types of ncRNAs (microRNAs, long non-coding RNAs, and circular RNAs) are involved in the multistep procedure of metastasis. We further examine interactions among the three ncRNAs as well as current progress in their regulatory mechanisms. We also propose the prevention of metastasis in the early stages of cancer progression and discuss current translational studies using ncRNAs as targets for metastasis diagnosis and treatments. These studies provide insights into developing more effective strategies to target metastatic relapse.
Collapse
Affiliation(s)
- Yi Xiao
- Department of Stomatology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yijun Hu
- Clinical Research Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Shanrong Liu
- Department of Laboratory Diagnostics, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
36
|
Petri BJ, Piell KM, Wilt AE, Howser AD, Winkler L, Whitworth MR, Valdes BL, Lehman NL, Clem BF, Klinge CM. MicroRNA regulation of the serine synthesis pathway in endocrine-resistant breast cancer cells. Endocr Relat Cancer 2023; 30:e230148. [PMID: 37650685 PMCID: PMC10546957 DOI: 10.1530/erc-23-0148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
Despite the successful combination of therapies improving survival of estrogen receptor α (ER+) breast cancer patients with metastatic disease, mechanisms for acquired endocrine resistance remain to be fully elucidated. The RNA binding protein HNRNPA2B1 (A2B1), a reader of N(6)-methyladenosine (m6A) in transcribed RNA, is upregulated in endocrine-resistant, ER+ LCC9 and LY2 cells compared to parental MCF-7 endocrine-sensitive luminal A breast cancer cells. The miRNA-seq transcriptome of MCF-7 cells overexpressing A2B1 identified the serine metabolic processes pathway. Increased expression of two key enzymes in the serine synthesis pathway (SSP), phosphoserine aminotransferase 1 (PSAT1) and phosphoglycerate dehydrogenase (PHGDH), correlates with poor outcomes in ER+ breast patients who received tamoxifen (TAM). We reported that PSAT1 and PHGDH were higher in LCC9 and LY2 cells compared to MCF-7 cells and their knockdown enhanced TAM sensitivity in these-resistant cells. Here we demonstrate that stable, modest overexpression of A2B1 in MCF-7 cells increased PSAT1 and PHGDH and endocrine resistance. We identified four miRNAs downregulated in MCF-7-A2B1 cells that directly target the PSAT1 3'UTR (miR-145-5p and miR-424-5p), and the PHGDH 3'UTR (miR-34b-5p and miR-876-5p) in dual luciferase assays. Lower expression of miR-145-5p and miR-424-5p in LCC9 and ZR-75-1-4-OHT cells correlated with increased PSAT1 and lower expression of miR-34b-5p and miR-876-5p in LCC9 and ZR-75-1-4-OHT cells correlated with increased PHGDH. Transient transfection of these miRNAs restored endocrine-therapy sensitivity in LCC9 and ZR-75-1-4-OHT cells. Overall, our data suggest a role for decreased A2B1-regulated miRNAs in endocrine resistance and upregulation of the SSP to promote tumor progression in ER+ breast cancer.
Collapse
Affiliation(s)
- Belinda J. Petri
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
| | - Kellianne M. Piell
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
| | - Ali E. Wilt
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
| | - Alexa D. Howser
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
| | - Laura Winkler
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
| | - Mattie R. Whitworth
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
| | - Bailey L. Valdes
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
| | - Norman L. Lehman
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
- Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, 40202, USA
- The Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Brian F. Clem
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
- The Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Carolyn M. Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
- The Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS)
| |
Collapse
|
37
|
Lambrechts Y, Garg AD, Floris G, Punie K, Neven P, Nevelsteen I, Govaerts J, Richard F, Laenen A, Desmedt C, Wildiers H, Hatse S. Circulating biomarkers at diagnosis correlate with distant metastases of early luminal-like breast cancer. Genes Immun 2023; 24:270-279. [PMID: 37759086 PMCID: PMC10575765 DOI: 10.1038/s41435-023-00220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
There is an urgent need for new and better biomarker modalities to estimate the risk of recurrence within the luminal-like breast cancer (BC) population. Molecular diagnostic tests used in the clinic lack accuracy in identifying patients with early luminal BC who are likely to develop metastases. This study provides proof of concept that various liquid biopsy read-outs could serve as valuable candidates to build a multi-modal biomarker model distinguishing, already at diagnosis, between early metastasizing and non-metastasizing patients. All these blood biomarkers (chemokines, microRNAs, leukemia inhibitory factor, osteopontin, and serum-induced functional myeloid signaling responses) can be measured in baseline plasma/serum samples and could be added to the existing prognostic factors to improve risk stratification and more patient-tailored treatment in early luminal BC.
Collapse
Affiliation(s)
- Yentl Lambrechts
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, Leuven, Belgium
| | - Abhishek D Garg
- Laboratory of Cell Stress & Immunity (CSI), Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Giuseppe Floris
- Laboratory for Cell and Tissue Translational Research, Department of Imaging and Radiology, KU Leuven - Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Kevin Punie
- Department of General Medical Oncology and Multidisciplinary Breast Center, University Hospitals Leuven, Leuven, Belgium
| | - Patrick Neven
- Department of General Medical Oncology and Multidisciplinary Breast Center, University Hospitals Leuven, Leuven, Belgium
| | - Ines Nevelsteen
- Department of General Medical Oncology and Multidisciplinary Breast Center, University Hospitals Leuven, Leuven, Belgium
| | - Jannes Govaerts
- Laboratory of Cell Stress & Immunity (CSI), Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - François Richard
- Laboratory for Translational Breast Cancer Research (LTBCR), Department of Oncology, KU Leuven, Leuven, Belgium
| | - Annouschka Laenen
- Leuven Biostatistics and Statistical Bioinformatics Center, KU Leuven, Leuven, Belgium
| | - Christine Desmedt
- Laboratory for Translational Breast Cancer Research (LTBCR), Department of Oncology, KU Leuven, Leuven, Belgium
| | - Hans Wildiers
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, Leuven, Belgium
- Department of General Medical Oncology and Multidisciplinary Breast Center, University Hospitals Leuven, Leuven, Belgium
| | - Sigrid Hatse
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
38
|
许 家, 林 龙, 陈 琼, 李 兰. [Hsa-miR-148a-3p promotes malignant behavior of breast cancer cells by downregulating DUSP1]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1515-1524. [PMID: 37814866 PMCID: PMC10563111 DOI: 10.12122/j.issn.1673-4254.2023.09.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVE To investigate the role of Hsa-miR-148a-3p in regulating biological behaviors of breast cancer cells and explore the mechanism. METHODS TCGA database was used to identify the differential miRNAs and mRNAs in breast cancer, and the protein-protein interaction (PPI) network was constructed using String and Cytoscape to screen the top 10 hub genes and construct the miRNA-TOP10hub network. RT-qPCR was used to detect the expressions of Hsa-miR-148a-3p and DUSP1 in breast cancer tissues and cell lines. The effects of Hsa-miR-148a-3p mimic and inhibitor on proliferation, migration, invasion and apoptosis of MCF-7 cells were analyzed, and luciferase reporter gene experiment was performed to verify the binding of Hsa-miR-148a-3p to DUSP1. The effect of Hsa-miR-148a-3p overexpression on breast cancer cell xenograft growth was evaluated in nude mice. Kaplan-Meier survival curve analysis was used to analyze the survival of the tumor-bearing mice, and the expression level of DUSP1 in the xenografts was detected using immunohistochemistry. RESULTS A total of 54 differential miRNAs and 799 differential mRNAs were identified in breast cancer; 3716 target genes were intersected with the differential mRNA, resulting in 150 intersected genes. The top 10 hub genes were downregulated in breast cancer tissues in the PPI network. Double luciferase reporter gene experiment confirmed that Hsa-miR-148a-3p was capable of binding to DUSP1. Hsa-miR-148a-3p was up-regulated and DUSP1 was down-regulated significantly in breast cancer tissues and cells (P<0.01). In breast cancer cells, Hsa-miR-148a-3p mimic strongly promoted cell proliferation, migration and invasion and inhibited cell apoptosis (P<0.01). Hsa-miR-148a-3p overexpression obviously promoted xenograft growth in nude mice (P<0.01), shortened survival time of the mice (P<0.01), and reduced the expression of DUSP1 in the xenografts (P<0.01). CONCLUSION Hsa-miR-148a-3p promotes malignant behavior of breast cancer cells by inhibiting the expression of DUSP1.
Collapse
Affiliation(s)
- 家铭 许
- 海南省中医院,海南 海口 570000Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou 570000, China
| | - 龙 林
- 海南省中医院,海南 海口 570000Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou 570000, China
| | - 琼慧 陈
- 海口市人民医院 肿瘤化疗科,海南 海口 570208Department of Cancer Chemotherapy, Haikou People's Hospital, Haikou 570208, China
| | - 兰 李
- 海南医学院第一附属医院,海南 海口 570102First Affiliated Hospital of Hainan Medical College, Haikou 570102, China
| |
Collapse
|
39
|
Lambrechts Y, Hatse S, Richard F, Boeckx B, Floris G, Desmedt C, Smeets A, Neven P, Lambrechts D, Wildiers H. Differences in the Tumor Molecular and Microenvironmental Landscape between Early (Non-Metastatic) and De Novo Metastatic Primary Luminal Breast Tumors. Cancers (Basel) 2023; 15:4341. [PMID: 37686617 PMCID: PMC10486668 DOI: 10.3390/cancers15174341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/10/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Background: The molecular mechanisms underlying the de novo metastasis of luminal breast cancer (dnMBC) remain largely unknown. Materials and Methods: Newly diagnosed dnMBC patients (grade 2/3, ER+, PR+/-, HER2-), with available core needle biopsy (CNB), collected from the primary tumor, were selected from our clinical-pathological database. Tumors from dnMBC patients were 1:1 pairwise matched (n = 32) to tumors from newly diagnosed patients who had no distant metastases at baseline (eBC group). RNA was extracted from 5 × 10 µm sections of FFPE CNBs. RNA sequencing was performed using the Illumina platform. Differentially expressed genes (DEG)s were assessed using EdgeR; deconvolution was performed using CIBERSORTx to assess immune cell fractions. A paired Wilcoxon test was used to compare dnMBC and eBC groups and corrected for the false discovery rate. Results: Many regulatory DEGs were significantly downregulated in dnMBC compared to eBC. Also, immune-related and hypoxia-related signatures were significantly upregulated. Paired Wilcoxon analysis showed that the CCL17 and neutrophils fraction were significantly upregulated, whereas the memory B-cell fraction was significantly downregulated in the dnMBC group. Conclusions: Primary luminal tumors of dnMBC patients display significant transcriptomic and immunological differences compared to comparable tumors from eBC patients.
Collapse
Affiliation(s)
- Yentl Lambrechts
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Sigrid Hatse
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - François Richard
- Laboratory for Translational Breast Cancer Research (LTBCR), Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Bram Boeckx
- Laboratory of Translational Genetics, Department of Human Genetics, VIB-KU Leuven, 3000 Leuven, Belgium
- VIB Center for Cancer Biology, 3000 Leuven, Belgium
| | - Giuseppe Floris
- Laboratory for Cell and Tissue Translational Research, Department of Imaging and Radiology, KU Leuven, 3000 Leuven, Belgium
- Department of Pathology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Christine Desmedt
- Laboratory for Translational Breast Cancer Research (LTBCR), Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Ann Smeets
- Department of General Medical Oncology, Multidisciplinary Breast Center, University Hospitals Leuven, 3000 Leuven, Belgium
- Department of Surgical Oncology, University Hospitals Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Patrick Neven
- Department of General Medical Oncology, Multidisciplinary Breast Center, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Diether Lambrechts
- Laboratory of Translational Genetics, Department of Human Genetics, VIB-KU Leuven, 3000 Leuven, Belgium
- VIB Center for Cancer Biology, 3000 Leuven, Belgium
| | - Hans Wildiers
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, 3000 Leuven, Belgium
- Department of General Medical Oncology, Multidisciplinary Breast Center, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
40
|
Raji E, Vahedian V, Golshanrad P, Nahavandi R, Behshood P, Soltani N, Gharibi M, Rashidi M, Maroufi NF. The potential therapeutic effects of Galbanic acid on cancer. Pathol Res Pract 2023; 248:154686. [PMID: 37487315 DOI: 10.1016/j.prp.2023.154686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023]
Abstract
Galbanic acid (GBA), as a natural compound has potential anticancer properties. It has been documented that GBA shows promising therapeutic potential against various types of cancer, including breast, lung, colon, liver, and prostate cancer. Several mechanisms involve im anti-tumor effects of GBA include apoptosis induction, cell cycle arrest, inhibition of angiogenesis, suppression of metastasis, and modulation of immune responses. Furthermore, the synergistic effects of GBA along with chemotherapeutic agents led to has enhancing efficiency with reduction in toxicity. Moreover, GBA through antioxidant and anti-inflammatory properties possess indirect anti-tumor effects. In this review, we will summarize the anti-tumor effects of GBA acid along with involve mechanisms.
Collapse
Affiliation(s)
- Elahe Raji
- Department of Biology, Shahrekord Branch, Islamic Azad University, Iran
| | - Vahid Vahedian
- Department of Hematology, Transfusion Medicine and Cellular Therapy, Division of Hematology/oncology, Clinical Hospital, Faculty of Medicine, University of Sao Paulo (FMUSP-HC), Sao Paulo, Brazil; Department of Clinical Medicine, Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM/31), Faculty of Medicine, University of Sao Paulo (FMUSP), Sao Paulo, Brazil
| | - Pezhman Golshanrad
- Sharif University of Technology (International Campus) Department of Computer Eng, Iran
| | - Reza Nahavandi
- Department of Biochemical and Pharmaceutical Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran
| | - Parisa Behshood
- Department of Microbiology, Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Iran
| | - Nahal Soltani
- Department of Medical Laboratory Sciences, Faculty of Medicine, Islamic Azad University (IAU), Marand, Iran
| | - Mahdi Gharibi
- Department of pharmacy, Faculty of Pharmacy, University of Ankara, Ankara, Turkey
| | - Mohsen Rashidi
- The Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Nazila Fathi Maroufi
- Department of Human Genetics, McGill University, Montreal, Canada; Victor Philip Dahdaleh Institute of Genomic Medicine at McGill University, Montreal, Canada; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
41
|
Hao H, Wang B, Yang L, Sang Y, Xu W, Liu W, Zhang L, Jiang D. miRNA-186-5p inhibits migration, invasion and proliferation of breast cancer cells by targeting SBEM. Aging (Albany NY) 2023; 15:6993-7007. [PMID: 37477531 PMCID: PMC10415540 DOI: 10.18632/aging.204887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 06/22/2023] [Indexed: 07/22/2023]
Abstract
The paper aimed to investigate the effect of miR186-5p on invasion and migration of breast cancer cells and its molecular mechanism. MicroRNA-186-5p was found to be low expressed in breast cancer and highly expressed in SBEM by bioinformatics analysis. After transfecting MDA-MB-231 cells with miR-186-5p inhibitor NC, miR-186-5p inhibitor, miR-186-5p mimic NC and miR-186-5p mimic, respectively. The migration and invasive ability of breast cancer cells were detected by cell scratch test and Transwell test. Moreover, after adding 740 Y-P to the miR-186-5p mimic NC group and miR-186-5p mimic group cells, SBEM and PI3K pathway-related proteins were detected by Western blotting and proliferation of the cancer cells was evaluated by monoclonal cell experiment. Meanwhile, exogenous miR-186-5p mimic in MDA-MB-231 cells significantly inhibited the expression of SBEM, p-PI3K, p-AKT and their downstream pathways, MMP1, MMP3, MMP9, CyclinD1, PCNA and CyclinB1 proteins and reduced proliferation of breast cancer cells. Furthermore, the expression of SBEM protein in the miR-186-5p mimic + 740Y-P group was significantly lower than the miR-186-5p mimic NC + 740Y-P group after adding 740 Y-P. However, there were no significant changes in the protein's levels associated with PI3K pathway and the cancer cells proliferation. These results suggest that low expression of miR-186-5p in breast cancer results in an abnormally high expression of SBEM, activation of PI3K/AKT signaling pathway, promoting migration and invasion of human breast cancer cells.
Collapse
Affiliation(s)
- Hui Hao
- Department of Medical Oncology, The Forth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Bingsheng Wang
- Department of Medical Oncology, Hebei Cangzhou People’s Hospital, Cangzhou 061001, China
| | - Lin Yang
- Graduate School, Chengde Medical University and Cangzhou People’s Hospital, Cangzhou 061001, China
| | - Yinzhou Sang
- Department of Pathology, Hebei Cangzhou People’s Hospital, Cangzhou 061001, China
| | - Wei Xu
- Department of Medical Oncology, Hebei Cangzhou People’s Hospital, Cangzhou 061001, China
| | - Wei Liu
- Department of Medical Oncology, Hebei Cangzhou People’s Hospital, Cangzhou 061001, China
| | - Lili Zhang
- Department of Medicine, Cangzhou Medical College, Cangzhou 061011, China
| | - Da Jiang
- Department of Medical Oncology, The Forth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| |
Collapse
|
42
|
Li J, Peng S, Zou X, Geng X, Wang T, Zhu W, Xia T. Value of negatively correlated miR-205-5p/ HMGB3 and miR-96-5p/ FOXO1 on the diagnosis of breast cancer and benign breast diseases. CANCER PATHOGENESIS AND THERAPY 2023; 1:159-167. [PMID: 38327836 PMCID: PMC10846318 DOI: 10.1016/j.cpt.2023.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/01/2023] [Accepted: 04/20/2023] [Indexed: 02/09/2024]
Abstract
Background MicroRNA (miRNA) and mRNA levels in matching specimens were used to identify miRNA-mRNA interactions. We aimed to integrate transcriptome, immunophenotype, methylation, mutation, and survival data analyses to examine the profiles of miRNAs and target mRNAs and their associations with breast cancer (BC) diagnosis. Methods Based on the Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA), differentially expressed miRNAs and targeted mRNAs were screened from experimentally verified miRNA-target interaction databases using Pearson's correlation analysis. We used real-time quantitative reverse transcription polymerase chain reaction to verify BC and benign disease samples, and logistic regression analysis was used to establish a diagnostic model based on miRNAs and target mRNAs. Receiver operating characteristic curve analysis was performed to test the ability to recognize the miRNA-mRNA pairs. Next, we investigated the complex interactions between miRNA-mRNA regulatory pairs and phenotypic hallmarks. Results We identified 27 and 359 dysregulated miRNAs and mRNAs, respectively, based on the GEO and TCGA databases. Using Pearson's correlation analysis, 10 negative miRNA-mRNA regulatory pairs were identified after screening both databases, and the related miRNA and target mRNA levels were assessed in 40 BC tissues and 40 benign breast disease tissues. Two key regulatory pairs (miR-205-5p/High mobility group box 3 (HMGB3) and miR-96-5p/Forkhead Box O1 (FOXO1)) were selected to establish the diagnostic model. They also had utility in survival and clinical analyses. Conclusions A diagnostic model including two miRNAs and their respective target mRNAs was established to distinguish between BC and benign breast diseases. These markers play essential roles in BC pathogenesis.
Collapse
Affiliation(s)
- Jiaying Li
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Shuang Peng
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xuan Zou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032 China
| | - Xiangnan Geng
- Department of Clinical Engineering, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tongshan Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wei Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tiansong Xia
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
43
|
Yin L, Chen GL, Xiang Z, Liu YL, Li XY, Bi JW, Wang Q. Current progress in chimeric antigen receptor-modified T cells for the treatment of metastatic breast cancer. Biomed Pharmacother 2023; 162:114648. [PMID: 37023621 DOI: 10.1016/j.biopha.2023.114648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Breast cancer is the leading cancer in women. Around 20-30% breast cancer patients undergo invasion or metastasis after radical surgical resection and eventually die. Number of breast cancer patients show poor sensitivity toward treatments despite the advances in chemotherapy, endocrine therapy, and molecular targeted treatments. Therapeutic resistance and tumor recurrence or metastasis develop with the ongoing treatments. Conducive treatment strategies are thus required. Chimeric antigen receptor (CAR)-modified T-cell therapy has progressed as a part of tumor immunotherapy. However, CAR-T treatment has not been effective in solid tumors because of tumor microenvironment complexity, inhibitory effects of extracellular matrix, and lacking ideal tumor antigens. Herein, the prospects of CAR-T cell therapy for metastatic breast cancer are discussed, and the targets for CAR-T therapy in breast cancer (HER-2, C-MET, MSLN, CEA, MUC1, ROR1, EGFR) at clinical level are reviewed. Moreover, solutions are proposed for the challenges of breast cancer CAR-T therapy regarding off-target effects, heterogeneous antigen expression by tumor cells and immunosuppressive tumor microenvironment. Ideas for improving the therapeutics of CAR-T cell therapy in metastatic breast cancer are suggested.
Collapse
Affiliation(s)
- Li Yin
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China; Shandong University of Traditional Chinese Medicine, 250355 Jinan, China
| | - Gui-Lai Chen
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China
| | - Zhuo Xiang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China
| | - Yu-Lin Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China
| | - Xing-Yu Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, China
| | - Jing-Wang Bi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China.
| | - Qiang Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, China.
| |
Collapse
|
44
|
Zhong C, Li J, Liu S, Li W, Zhang Q, Zhao J, Xiong M, Bao Y, Yao Y. Nanoblock-mediated selective oncolytic polypeptide therapy for triple-negative breast cancer. Theranostics 2023; 13:2800-2810. [PMID: 37284456 PMCID: PMC10240820 DOI: 10.7150/thno.81834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/25/2023] [Indexed: 06/08/2023] Open
Abstract
Rationale: Broad-spectrum oncolytic peptides (Olps) constitute potential therapeutic options for treating heterogeneous triple-negative breast cancer (TNBC); however, their clinical application is limited owing to high toxicity. Methods: A nanoblock-mediated strategy was developed to induce selective anticancer activity of synthetic Olps. A synthetic Olp, C12-PButLG-CA, was conjugated to the hydrophobic or hydrophilic terminal of a poly(ethylene oxide)-b-poly(propylene oxide) nanoparticle or a hydrophilic poly(ethylene oxide) polymer. A nanoblocker, that can significantly reduce the toxicity of Olp, was screened out through hemolytic assay, and then Olps were conjugated to the nanoblock via a tumor acidity-cleavable bond to obtain the selective RNolp ((mPEO-PPO-CDM)2-Olp). The tumor acidity responsive membranolytic activity, in vivo toxicity and anti-tumor efficacy of RNolp were determined. Results: We found that the conjugation of Olps to the hydrophobic core of a nanoparticle but not the hydrophilic terminal or a hydrophilic polymer restricts their motion and drastically reduces their hemolytic activity. We then covalently conjugated Olps to such a nanoblock via a cleavable bond that can be hydrolyzed in the acidic tumor environment, yielding a selective RNolp molecule. At physiological pH (pH 7.4), RNolp remained stable with the Olps shielded by nanoblocks and exhibited low membranolytic activity. At the acidic tumor environment (pH 6.8), Olps could be released from the nanoparticles via the hydrolysis of the tumor acidity-cleavable bonds and exerted membranolytic activity against TNBC cells. RNolp is well tolerated in mice and demonstrated high antitumor efficacy in orthotopic and metastatic mouse models of TNBC. Conclusion: We developed a simple nanoblock-mediated strategy to induce a selective cancer therapy of Olps for TNBC.
Collapse
Affiliation(s)
- Cuiyu Zhong
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Jie Li
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China
| | - Suiping Liu
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, China
| | - Weirong Li
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qiang Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Junpeng Zhao
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Menghua Xiong
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China
| | - Yan Bao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, China
| | - Yandan Yao
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei 516621, China
| |
Collapse
|
45
|
Lü J, Zhao Q, Guo Y, Li D, Xie H, Liu C, Hu X, Liu S, Hou Z, Wei X, Zheng D, Pestell RG, Yu Z. Regulation of ERα-dependent breast cancer metastasis by a miR-29a signaling. J Exp Clin Cancer Res 2023; 42:93. [PMID: 37081505 PMCID: PMC10116798 DOI: 10.1186/s13046-023-02665-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/07/2023] [Indexed: 04/22/2023] Open
Abstract
Malignant breast cancer (BC) remains incurable mainly due to the cancer cell metastasis, which is mostly related to the status of Estrogen receptor alpha (ERα). However, our understanding of the mechanisms through which ERα regulates cancer cell metastasis remains limited. Here we identified a miR-29a-PTEN-AKT axis as a downstream signaling pathway of ERα governing breast cancer progression and metastasis. Two estrogen response element (ERE) half sites were identified in the promoter and enhancer regions of miR-29a, which mediated transcriptional regulation of miR-29a by ERα. Low level of miR-29a showed association with reduced metastasis and better survival in ERα+ luminal subtype of BC. In contrast, high level of miR-29a was detected in ERα- triple negative breast cancer (TNBC) in association with distant metastasis and poor survival. miR-29a overexpression in BC tumors increased the number of circulating tumor cells and promoted lung metastasis in mice. Targeted knockdown of miR-29a in TNBC cells in vitro or administration of a nanotechnology-based anti-miR-29a delivery in TNBC tumor-bearing mice in vivo suppressed cellular invasion, EMT and lung metastasis. PTEN was identified as a direct target of miR-29a, inducing EMT and metastasis via AKT signaling. A small molecular inhibitor of AKT attenuated miR-29a-induced EMT. These findings demonstrate a novel mechanism responsible for ERα-regulated breast cancer metastasis, and reveal the combination of ERα status and miR-29a levels as a new risk indicator in BC.
Collapse
Affiliation(s)
- Jinhui Lü
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Qian Zhao
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Yuefan Guo
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Danni Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Heying Xie
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
- Jinzhou Medical University, Liaoning, China
| | - Cuicui Liu
- Fudan University Shanghai Cancer Center, Shanghai Cancer Hospital, Shanghai, 201321, China
| | - Xin Hu
- Fudan University Shanghai Cancer Center, Shanghai Cancer Hospital, Shanghai, 201321, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center, Shanghai Cancer Hospital, Shanghai, 201321, China
| | - Zhaoyuan Hou
- Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xunbin Wei
- Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Deyou Zheng
- Departments of Genetics, Neurology, and Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10462, USA
| | - Richard G Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, and Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
- The Wistar Cancer Center, Philadelphia, PA, 19107, USA
| | - Zuoren Yu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| |
Collapse
|
46
|
Cheng J, Zhang K, Qu C, Peng J, Yang L. Non-Coding RNAs Derived from Extracellular Vesicles Promote Pre-Metastatic Niche Formation and Tumor Distant Metastasis. Cancers (Basel) 2023; 15:cancers15072158. [PMID: 37046819 PMCID: PMC10093357 DOI: 10.3390/cancers15072158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Metastasis is a critical stage of tumor progression, a crucial challenge of clinical therapy, and a major cause of tumor patient death. Numerous studies have confirmed that distant tumor metastasis is dependent on the formation of pre-metastatic niche (PMN). Recent studies have shown that extracellular vesicles (EVs) play an important role in PMN formation. The non-coding RNAs (ncRNAs) derived from EVs mediate PMN formation and tumor-distant metastasis by promoting an inflammatory environment, inhibiting anti-tumor immune response, inducing angiogenesis and permeability, and by microenvironmental reprogramming. Given the stability and high abundance of ncRNAs carried by EVs in body fluids, they have great potential for application in tumor diagnosis as well as targeted interventions. This review focuses on the mechanism of ncRNAs derived from EVs promoting tumor PMN formation and distant metastasis to provide a theoretical reference for strategies to control tumor metastasis.
Collapse
Affiliation(s)
- Jin Cheng
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410078, China
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha 410078, China
| | - Kun Zhang
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410078, China
| | - Chunhui Qu
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410078, China
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha 410078, China
| | - Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410078, China
- Department of Pathology, Xiangya Changde Hospital, Changde 415000, China
| | - Lifang Yang
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410078, China
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha 410078, China
| |
Collapse
|
47
|
Rossi M, Seidita I, Vannuccini S, Prisinzano M, Donati C, Petraglia F. Epigenetics, endometriosis and sex steroid receptors: An update on the epigenetic regulatory mechanisms of estrogen and progesterone receptors in patients with endometriosis. VITAMINS AND HORMONES 2023; 122:171-191. [PMID: 36863793 DOI: 10.1016/bs.vh.2023.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Endometriosis is a benign gynecological disease affecting ∼10% of reproductive-aged women and is defined as the presence of endometrial glands and stroma outside the uterine cavity. Endometriosis can cause a variety of health problems, from pelvic discomfort to catamenial pneumothorax, but it's mainly linked with severe and chronic pelvic pain, dysmenorrhea, and deep dyspareunia, as well as reproductive issues. The pathogenesis of endometriosis involves an endocrine dysfunction, with estrogen dependency and progesterone resistance, and inflammatory mechanism activation, together with impaired cell proliferation and neuroangiogenesis. The present chapter aims to discuss the main epigenetic mechanisms related to estrogen receptors (ERs) and progesterone receptors (PRs) in patients with endometriosis. There are numerous epigenetic mechanisms participating in endometriosis, regulating the expression of the genes encoding these receptors both indirectly, through the regulation of transcription factors, and directly, through DNA methylation, histone modifications, micro RNAs and long noncoding RNAs. This represents an open field of investigation, which may lead to important clinical implications such as the development of epigenetic drugs for the treatment of endometriosis and the identification of specific and early biomarkers for the disease.
Collapse
Affiliation(s)
- Margherita Rossi
- Obstetrics and Gynecology, and Molecular Biology, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Careggi University Hospital, Florence, Italy
| | - Isabelle Seidita
- Obstetrics and Gynecology, and Molecular Biology, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Careggi University Hospital, Florence, Italy
| | - Silvia Vannuccini
- Obstetrics and Gynecology, and Molecular Biology, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Careggi University Hospital, Florence, Italy
| | - Matteo Prisinzano
- Obstetrics and Gynecology, and Molecular Biology, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Careggi University Hospital, Florence, Italy
| | - Chiara Donati
- Obstetrics and Gynecology, and Molecular Biology, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Careggi University Hospital, Florence, Italy
| | - Felice Petraglia
- Obstetrics and Gynecology, and Molecular Biology, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Careggi University Hospital, Florence, Italy.
| |
Collapse
|
48
|
Wu H, Jiao Y, Zhou C, Guo X, Wu Z, Lv Q. miR-140-3p/usp36 axis mediates ubiquitination to regulate PKM2 and suppressed the malignant biological behavior of breast cancer through Warburg effect. Cell Cycle 2023; 22:680-692. [PMID: 36305548 PMCID: PMC9980702 DOI: 10.1080/15384101.2022.2139554] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/03/2022] Open
Abstract
Breast cancer is a phenomenon in which breast epithelial cells proliferate out of control under the action of various carcinogenic factors. However, the role of USP36 in breast cancer is unknown. We analyzed the expression of USP36 in breast cancer and its association with poor prognosis in breast cancer patients. The effect of USP36 on malignant biological behavior of breast cancer was verified by cell functional experiments. The upstream regulatory mechanism of USP36 was analyzed by Western blot and quantitative RT-qPCR. The influence of USP36 on the Warburg effect of breast cancer was analyzed by detecting the metabolism of cellular energy substances. We found that USP36 is highly expressed in breast tumor tissues and breast cancer cell lines. High expression of USP36 predicts poor prognosis in patients with breast cancer. Effectively reducing the expression of USP36 can significantly inhibit the proliferation, invasion and migration of breast cancer cells, and promote the apoptosis of breast cancer cells. Meanwhile, inhibiting the expression of USP36 can significantly inhibit the production of ATP, lactate, pyruvate and glucose uptake in breast cancer cells. miR-140-3p is an upstream regulator of USP36, which can partially reverse the regulatory effect of USP36 on breast cancer cells. Importantly, USP36 regulates the expression of PKM2 through ubiquitination, which plays a role in regulating the Warburg effect. We confirmed that miR-140-3p regulates the expression of USP36, which mediates ubiquitination and regulates the expression of PKM2, and regulates the malignant biological behavior of breast cancer through the energy metabolism process.
Collapse
Affiliation(s)
- Hao Wu
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yile Jiao
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Zhou
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyi Guo
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenru Wu
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Lv
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
49
|
Qian Z, Chen L, Liu J, Jiang Y, Zhang Y. The emerging role of PPAR-alpha in breast cancer. Biomed Pharmacother 2023; 161:114420. [PMID: 36812713 DOI: 10.1016/j.biopha.2023.114420] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Breast cancer has been confirmed to have lipid disorders in the tumour microenvironment. Peroxisome proliferator-activated receptor alpha (PPARα) is a ligand-activated transcriptional factor that belongs to the family of nuclear receptors. PPARα regulates the expression of genes involved in fatty acid homeostasis and is a major regulator of lipid metabolism. Because of its effects on lipid metabolism, an increasing number of studies have investigated the relationship of PPARα with breast cancer. PPARα has been shown to impact the cell cycle and apoptosis in normal cells and tumoral cells through regulating genes of the lipogenic pathway, fatty acid oxidation, fatty acid activation, and uptake of exogenous fatty acids. Besides, PPARα is involved in the regulation of the tumour microenvironment (anti-inflammation and inhibition of angiogenesis) by modulating different signal pathways such as NF-κB and PI3K/AKT/mTOR. Some synthetic PPARα ligands are used in adjuvant therapy for breast cancer. PPARα agonists are reported to reduce the side effects of chemotherapy and endocrine therapy. In addition, PPARα agonists enhance the curative effects of targeted therapy and radiation therapy. Interestingly, with the emerging role of immunotherapy, attention has been focused on the tumour microenvironment. The dual functions of PPARα agonists in immunotherapy need further research. This review aims to consolidate the operations of PPARα in lipid-related and other ways, as well as discuss the current and potential applications of PPARα agonists in tackling breast cancer.
Collapse
Affiliation(s)
- Zhiwen Qian
- Department of Oncology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China.
| | - Lingyan Chen
- Department of Oncology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China.
| | - Jiayu Liu
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China.
| | - Ying Jiang
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China.
| | - Yan Zhang
- Department of Oncology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China; Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China.
| |
Collapse
|
50
|
Shiau JP, Chuang YT, Yen CY, Chang FR, Yang KH, Hou MF, Tang JY, Chang HW. Modulation of AKT Pathway-Targeting miRNAs for Cancer Cell Treatment with Natural Products. Int J Mol Sci 2023; 24:ijms24043688. [PMID: 36835100 PMCID: PMC9961959 DOI: 10.3390/ijms24043688] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Many miRNAs are known to target the AKT serine-threonine kinase (AKT) pathway, which is critical for the regulation of several cell functions in cancer cell development. Many natural products exhibiting anticancer effects have been reported, but their connections to the AKT pathway (AKT and its effectors) and miRNAs have rarely been investigated. This review aimed to demarcate the relationship between miRNAs and the AKT pathway during the regulation of cancer cell functions by natural products. Identifying the connections between miRNAs and the AKT pathway and between miRNAs and natural products made it possible to establish an miRNA/AKT/natural product axis to facilitate a better understanding of their anticancer mechanisms. Moreover, the miRNA database (miRDB) was used to retrieve more AKT pathway-related target candidates for miRNAs. By evaluating the reported facts, the cell functions of these database-generated candidates were connected to natural products. Therefore, this review provides a comprehensive overview of the natural product/miRNA/AKT pathway in the modulation of cancer cell development.
Collapse
Affiliation(s)
- Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Kun-Han Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (J.-Y.T.); (H.-W.C.); Tel.: +88-67-3121101 (ext. 8105) (J.-Y.T.); +88-67-3121101 (ext. 2691) (H.-W.C.)
| | - Hsueh-Wei Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (J.-Y.T.); (H.-W.C.); Tel.: +88-67-3121101 (ext. 8105) (J.-Y.T.); +88-67-3121101 (ext. 2691) (H.-W.C.)
| |
Collapse
|