1
|
Choi BY, Ye YM. Role of Platelet-Activating Factor in the Pathogenesis of Chronic Spontaneous Urticaria. Int J Mol Sci 2024; 25:12143. [PMID: 39596211 PMCID: PMC11594505 DOI: 10.3390/ijms252212143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Chronic spontaneous urticaria (CSU) is a debilitating condition characterized by mast cell activation. Platelet-activating factor (PAF) is produced by various immune cells, including mast cells, basophils, lymphocytes, and eosinophils, which play crucial roles in CSU pathogenesis. It induces mast cell degranulation, increases vascular permeability, and promotes the chemotaxis of inflammatory cells. These effects result in the release of inflammatory mediators, the development of edema, and the persistence of inflammation, which are key features of CSU. Notably, elevated PAF levels have been linked to heightened disease activity and resistance to antihistamine treatment in CSU patients. Despite these findings, the precise role of PAF in CSU pathogenesis remains unclear. Rupatadine, an antihistamine, and heat shock protein 10, a natural anti-inflammatory peptide that selectively inhibits PAF-induced mast cell degranulation, have demonstrated anti-PAF activity. Furthermore, with the molecular structure of the PAF receptor now identified, several experimental PAF receptor antagonists have been synthesized. However, there remains a significant need for the development of therapeutic options targeting PAF in CSU management.
Collapse
Affiliation(s)
| | - Young-Min Ye
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
2
|
Pružinská K, Chrastina M, Khademnematolahi S, Vyletelová V, Gajdošová L, Pastvová L, Dráfi F, Poništ S, Pašková Ľ, Kucharská J, Sumbalová Z, Muchová J, Martiniaková S, Bauerová K. Astaxanthin, Compared to Other Carotenoids, Increases the Efficacy of Methotrexate in Rat Adjuvant Arthritis. Int J Mol Sci 2024; 25:8710. [PMID: 39201397 PMCID: PMC11354740 DOI: 10.3390/ijms25168710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
This in vivo study performed in rat adjuvant arthritis aims to advance the understanding of astaxanthin's therapeutic properties for the possible treatment of rheumatoid arthritis (RA) in monotherapy and along with the standard RA treatment, methotrexate (MTX), in combination therapy. The main goal was to elucidate astaxanthin's full therapeutic potential, evaluate its dose dependency, and compare its effects in monotherapy with other carotenoids such as β-carotene and β-cryptoxanthin (KXAN). Moreover, potential differences in therapeutic activity caused by using different sources of astaxanthin, synthetic (ASYN) versus isolated from Blakeslea trispora (ASTAP), were evaluated using one-way ANOVA (Tukey-Kramer post hoc test). KXAN was the most effective in reducing plasma MMP-9 levels in monotherapy, significantly better than MTX, and in reducing hind paw swelling. The differences in the action of ASTAP and ASYN have been observed across various biometric, anti-inflammatory, and antioxidative parameters. In combined therapy with MTX, the ASYN + MTX combination proved to be better. These findings, especially the significant anti-arthritic effect of KXAN and ASYN + MTX, could be the basis for further preclinical studies.
Collapse
Affiliation(s)
- Katarína Pružinská
- Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Malá Hora 10701/4A, 036 01 Martin, Slovakia;
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia; (M.C.); (S.K.); (F.D.); (S.P.)
| | - Martin Chrastina
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia; (M.C.); (S.K.); (F.D.); (S.P.)
| | - Sasan Khademnematolahi
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia; (M.C.); (S.K.); (F.D.); (S.P.)
- Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Veronika Vyletelová
- Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (V.V.); (Ľ.P.)
| | - Lívia Gajdošová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia; (L.G.); (L.P.); (Z.S.); (J.M.)
| | - Lucia Pastvová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia; (L.G.); (L.P.); (Z.S.); (J.M.)
| | - František Dráfi
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia; (M.C.); (S.K.); (F.D.); (S.P.)
| | - Silvester Poništ
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia; (M.C.); (S.K.); (F.D.); (S.P.)
| | - Ľudmila Pašková
- Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (V.V.); (Ľ.P.)
| | - Jarmila Kucharská
- Pharmacobiochemical Laboratory of Third Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava, Špitálska 24, 813 72 Bratislava, Slovakia;
| | - Zuzana Sumbalová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia; (L.G.); (L.P.); (Z.S.); (J.M.)
| | - Jana Muchová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia; (L.G.); (L.P.); (Z.S.); (J.M.)
| | - Silvia Martiniaková
- Department of Food Technology, Institute of Food Science and Nutrition, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia;
| | - Katarína Bauerová
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS, 841 04 Bratislava, Slovakia; (M.C.); (S.K.); (F.D.); (S.P.)
| |
Collapse
|
3
|
Wahid HH, Anahar FN, Isahak NH, Mohd Zoharodzi J, Mohammad Khoiri SNL, Mohamad Zainal NH, Kamarudin N, Ismail H, Mustafa Mahmud MIA. Role of Platelet Activating Factor as a Mediator of Inflammatory Diseases and Preterm Delivery. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:862-878. [PMID: 38403163 DOI: 10.1016/j.ajpath.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 02/27/2024]
Abstract
Nearly 70% of preterm deliveries occur spontaneously, and the clinical pathways involved include preterm labor and preterm premature rupture of membranes. Prediction of preterm delivery is considered crucial due to the significant effects of preterm birth on health and the economy at both the personal and community levels. Although similar inflammatory processes occur in both term and preterm delivery, the premature activation of these processes or exaggerated inflammatory response triggered by infection or sterile factors leads to preterm delivery. Platelet activating factor (PAF) is a phosphoglycerylether lipid mediator of inflammation that is implicated in infections, cancers, and various chronic diseases and disorders including cardiovascular, renal, cerebrovascular, and central nervous system diseases. In gestational tissues, PAF mediates the inflammatory pathways that stimulate the effector mechanisms of labor, including myometrial contraction, cervical dilation, and fetal membrane rupture. Women with preterm labor and preterm premature rupture of membranes have increased levels of PAF in their amniotic fluid. In mice, the intrauterine or intraperitoneal administration of carbamyl PAF activates inflammation in gestational tissues, thereby eliciting preterm delivery. This review summarizes recent research on PAF as an important inflammatory mediator in preterm delivery and in other inflammatory disorders, highlighting its potential value for prediction, intervention, and prevention of these diseases.
Collapse
Affiliation(s)
- Hanan H Wahid
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia.
| | - Fatin N Anahar
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Nurul H Isahak
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Juwairiyah Mohd Zoharodzi
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Siti N L Mohammad Khoiri
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Nurul H Mohamad Zainal
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University of Putra Malaysia, Selangor, Malaysia
| | - Norhidayah Kamarudin
- Department of Pathology, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Hamizah Ismail
- Department of Obstetrics & Gynaecology, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Mohammed I A Mustafa Mahmud
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| |
Collapse
|
4
|
Vermonden P, Martin M, Glowacka K, Neefs I, Ecker J, Höring M, Liebisch G, Debier C, Feron O, Larondelle Y. Phospholipase PLA2G7 is complementary to GPX4 in mitigating punicic-acid-induced ferroptosis in prostate cancer cells. iScience 2024; 27:109774. [PMID: 38711443 PMCID: PMC11070704 DOI: 10.1016/j.isci.2024.109774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/08/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
Ferroptosis is a cell death pathway that can be promoted by peroxidizable polyunsaturated fatty acids in cancer cells. Here, we investigated the mechanisms underlying the toxicity of punicic acid (PunA), an isomer of conjugated linolenic acids (CLnAs) bearing three conjugated double bonds highly prone to peroxidation, on prostate cancer (PCa) cells. PunA induced ferroptosis in PCa cells and triggered massive lipidome remodeling, more strongly in PC3 androgen-negative cells than in androgen-positive cells. The greater sensitivity of androgen-negative cells to PunA was associated with lower expression of glutathione peroxidase 4 (GPX4). We then identified the phospholipase PLA2G7 as a PunA-induced ferroptosis suppressor in PCa cells. Overexpressing PLA2G7 decreased lipid peroxidation levels, suggesting that PLA2G7 hydrolyzes hydroperoxide-containing phospholipids, thus preventing ferroptosis. Importantly, overexpressing both PLA2G7 and GPX4 strongly prevented PunA-induced ferroptosis in androgen-negative PCa cells. This study shows that PLA2G7 acts complementary to GPX4 to protect PCa cells from CLnA-induced ferroptosis.
Collapse
Affiliation(s)
- Perrine Vermonden
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Manon Martin
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Katarzyna Glowacka
- FATH, Institut de recherche Expérimentale et Clinique, UCLouvain, 1200 Woluwe Saint-Lambert, Belgium
| | - Ineke Neefs
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Josef Ecker
- Functional Lipidomics and Metabolism Research, Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Marcus Höring
- Lipidomics Lab, Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Lipidomics Lab, Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - Cathy Debier
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Olivier Feron
- FATH, Institut de recherche Expérimentale et Clinique, UCLouvain, 1200 Woluwe Saint-Lambert, Belgium
| | - Yvan Larondelle
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
5
|
Xie J, Zhu L, Yang X, Yu F, Fan B, Wu Y, Zhou Z, Lin W, Yang Y. Combination of theoretical analysis and experiments: Exploring the role of PLA2G7 in human cancers, including renal cancer. Heliyon 2024; 10:e27906. [PMID: 38509948 PMCID: PMC10950723 DOI: 10.1016/j.heliyon.2024.e27906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND The pivotal role of phospholipase A2 group VII (PLA2G7) has been identified in specific human cancers, such as prostate cancer, diffuse large B cell lymphoma, and melanoma. Given PLA2G7's significant involvement in established tumors, exploring its role in other cancers is highly relevant. METHODS In this study, we acquired and analyzed data from The Cancer Genome Atlas database, the UCSC XENA website, and other online platforms including Gene Set Cancer Analysis, cBioPortal, Tumor Immune Estimation Resource, and TISIDB to investigate PLA2G7's role in human cancers, including renal cancer. Furthermore, in vitro experiments, including immunofluorescence, western blotting, and CCK-8 assays, were conducted to elucidate PLA2G7's role in renal cancer. Finally, the relationship between PLA2G7 and various drug sensitivity was explored. RESULTS Our findings demonstrate that PLA2G7 is highly expressed and may serve as a valuable candidate biomarker in pan-cancer. PLA2G7 exhibits distinct alteration frequencies across human cancers and is correlated with tumor mutation burden, tumor microenvironment, DNA stemness score, RNA stemness score, tumorigenesis, tumor immunity, and microsatellite instability in pan-cancer. Immunofluorescence and western blotting revealed a relative high level of PLA2G7 protein in renal cancer cell lines (ACHN and 786-O), predominantly localized in the cytoplasm. Treatment with a PLA2G7 gene inhibitor (darapladib) significantly decreased the viability of ACHN and 786-O cell lines. Additionally, we observed an association between PLA2G7 mRNA levels and various drug sensitivity. CONCLUSIONS Our study suggests that PLA2G7 has the potential to serve as a valuable biomarker and therapeutic target for cancer, particularly in the context of renal cancer.
Collapse
Affiliation(s)
- Jun Xie
- Department of Nephrology, Center for Regeneration and Aging Medicine, The Fourth Affiliated Hospital, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Li Zhu
- Department of Nephrology, Center for Regeneration and Aging Medicine, The Fourth Affiliated Hospital, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Xutao Yang
- Department of Nephrology, Center for Regeneration and Aging Medicine, The Fourth Affiliated Hospital, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Fengfei Yu
- Department of Nephrology, Center for Regeneration and Aging Medicine, The Fourth Affiliated Hospital, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Bingfu Fan
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Yibo Wu
- Department of Orthopedics, Xixi Hospital of Hangzhou, Hangzhou, China
| | - Zonglang Zhou
- Department of Respiratory and Critical Care Medicine, Center for Respiratory Medicine, The Fourth Affiliated Hospital, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Weiqiang Lin
- Department of Nephrology, Center for Regeneration and Aging Medicine, The Fourth Affiliated Hospital, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Yi Yang
- Department of Nephrology, Center for Regeneration and Aging Medicine, The Fourth Affiliated Hospital, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| |
Collapse
|
6
|
Carter MC, Park J, Vadas P, Worm M. Extrinsic and Intrinsic Modulators of Anaphylaxis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1998-2006. [PMID: 37230384 DOI: 10.1016/j.jaip.2023.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
The severity of anaphylaxis is determined by many factors. The allergenic source as well as the age of the affected individual and the route of allergen exposure encompass the major contributors of the clinical outcome. Moreover, the severity can be modulated further by intrinsic and extrinsic factors. Among these, the genetic predisposition, certain comorbidities such as uncontrolled asthma, and hormonal fluctuations have been proposed as intrinsic and antihypertensive medications or physical activity as extrinsic factors. Recent advances have highlighted immunologic pathways that may exacerbate the response to allergens through receptors on mast cells, basophils, platelets, and other granulocytes. Atopy, platelet-activating factor acetylhydrolase deficiency, hereditary alpha tryptasemia, and clonal mast cell disorders are examples associated with genetic alterations that may predispose to severe anaphylaxis. Identifying risk factors that lower the threshold of reactivity or increase the severity of multisystem reactions is important in the management of this patient population.
Collapse
Affiliation(s)
- Melody C Carter
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Jane Park
- Division of Clinical Immunology and Allergy, Department of Medicine, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Peter Vadas
- Division of Clinical Immunology and Allergy, Department of Medicine, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Margitta Worm
- Division of Allergy and Immunology, Department of Dermatology, Venerology and Allergy, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
7
|
Antonopoulou S, Demopoulos CA. Protective Effect of Olive Oil Microconstituents in Atherosclerosis: Emphasis on PAF Implicated Atherosclerosis Theory. Biomolecules 2023; 13:700. [PMID: 37189447 PMCID: PMC10135796 DOI: 10.3390/biom13040700] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Atherosclerosis is a progressive vascular multifactorial process. The mechanisms underlining the initiating event of atheromatous plaque formation are inflammation and oxidation. Among the modifiable risk factors for cardiovascular diseases, diet and especially the Mediterranean diet (MedDiet), has been widely recognized as one of the healthiest dietary patterns. Olive oil (OO), the main source of the fatty components of the MedDiet is superior to the other "Mono-unsaturated fatty acids containing oils" due to the existence of specific microconstituents. In this review, the effects of OO microconstituents in atherosclerosis, based on data from in vitro and in vivo studies with special attention on their inhibitory activity against PAF (Platelet-Activating Factor) actions, are presented and critically discussed. In conclusion, we propose that the anti-atherogenic effect of OO is attributed to the synergistic action of its microconstituents, mainly polar lipids that act as PAF inhibitors, specific polyphenols and α-tocopherol that also exert anti-PAF activity. This beneficial effect, also mediated through anti-PAF action, can occur from microconstituents extracted from olive pomace, a toxic by-product of the OO production process that constitutes a significant ecological problem. Daily intake of moderate amounts of OO consumed in the context of a balanced diet is significant for healthy adults.
Collapse
Affiliation(s)
- Smaragdi Antonopoulou
- Laboratory of Biology, Biochemistry and Microbiology, Department of Nutrition-Dietetics, School of Health Sciences and Education, Harokopio University, 17676 Athens, Greece
| | - Constantinos A. Demopoulos
- Laboratory of Biochemistry, Faculty of Chemistry, National & Kapodistrian University of Athens, 15784 Athens, Greece;
| |
Collapse
|
8
|
Zuliani G, Marsillach J, Trentini A, Rosta V, Cervellati C. Lipoprotein-Associated Phospholipase A2 Activity as Potential Biomarker of Vascular Dementia. Antioxidants (Basel) 2023; 12:597. [PMID: 36978845 PMCID: PMC10045550 DOI: 10.3390/antiox12030597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
A wealth of evidence suggests that Lipoprotein-associated phospholipase A2 (Lp-PLA2) plays a relevant role in atherogenesis and inflammation, which in turn are associated with the risk of developing dementia. The aim of this study was to evaluate whether serum Lp-PLA2 activity might be an early and/or late biomarker for different forms of dementia. Serum Lp-PLA2 activity was assessed in older patients with mild cognitive impairment (MCI, n = 166; median clinical follow-up = 29 months), Late-Onset Alzheimer's disease (LOAD, n = 176), vascular dementia (VAD, n = 43), dementia characterized by an overlap between LOAD and VAD (AD-VAD MIXED dementia) (n = 136), other dementia subtypes (n = 45), and cognitively normal controls (n = 151). We found a significant trend towards higher levels of Lp-PLA2 activity in VAD compared with the other groups (ANOVA, p = 0.028). Similarly, Lp-PLA2 activity was greater in MCI converting to VAD compared with those that did not or did convert to the other types of dementia (ANOVA, p = 0.011). After adjusting for potential confounders, high levels of Lp-PLA2 activity were associated with the diagnosis of VAD (O.R. = 2.38, 95% C.I. = 1.06-5.10), but not with other types of dementia. Our data suggest that increased serum Lp-PLA2 activity may represent a potential biomarker for the diagnosis of VAD.
Collapse
Affiliation(s)
- Giovanni Zuliani
- Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Judit Marsillach
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 NE Roosevelt Way, Seattle, WA 98105, USA
| | - Alessandro Trentini
- Department of Environmental and Prevention Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Valentina Rosta
- Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Carlo Cervellati
- Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
9
|
Lokhov PG, Balashova EE, Trifonova OP, Maslov DL, Grigoriev AI, Ponomarenko EA, Archakov AI. Mass Spectrometric Blood Metabogram: Acquisition, Characterization, and Prospects for Application. Int J Mol Sci 2023; 24:ijms24021736. [PMID: 36675249 PMCID: PMC9861083 DOI: 10.3390/ijms24021736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
In metabolomics, many metabolites are measured simultaneously in a single run. Such analytical performance opens up prospects for clinical laboratory diagnostics. In this work, a mass spectrometric metabogram was developed as a simplified and clinically applicable way of measuring the blood plasma metabolome. To develop the metabogram, blood plasma samples from healthy male volunteers (n = 48) of approximately the same age, direct infusion mass spectrometry (DIMS) of the low molecular fraction of samples, and principal component analysis (PCA) of the mass spectra were used. The seven components of the metabogram defined by PCA, which cover ~70% of blood plasma metabolome variability, were characterized using a metabolite set enrichment analysis (MSEA) and clinical test results of participating volunteers. It has been established that the components of the metabogram are functionally related groups of the blood metabolome associated with regulation, lipid-carbohydrate, and lipid-amine blood components, eicosanoids, lipid intake into the organism, and liver function thereby providing a lot of clinically relevant information. Therefore, metabogram provides the possibility to apply the metabolomics performance in the clinic. The features of the metabogram are also discussed in comparison with the thin-layer chromatography and with the analysis of blood metabolome by liquid chromatography combined with mass spectrometry.
Collapse
Affiliation(s)
- Petr G. Lokhov
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia
- Correspondence:
| | - Elena E. Balashova
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia
| | - Oxana P. Trifonova
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia
| | - Dmitry L. Maslov
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia
| | - Anatoly I. Grigoriev
- Institute of Biomedical Problems, Russian Federation State Scientific Research Center, Russian Academy of Sciences, 123007 Moscow, Russia
| | - Elena A. Ponomarenko
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia
| | - Alexander I. Archakov
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia
| |
Collapse
|
10
|
PLA2G7/PAF-AH as Potential Negative Regulator of the Wnt Signaling Pathway Mediates Protective Effects in BRCA1 Mutant Breast Cancer. Int J Mol Sci 2023; 24:ijms24010882. [PMID: 36614323 PMCID: PMC9821466 DOI: 10.3390/ijms24010882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Past studies have confirmed that aberrant activation of the Wnt/β-catenin signaling is associated with tumorigenesis and metastasis in breast cancer, while the role of platelet-activating factor acetylhydrolase (PLA2G7/PAF-AH) in this signaling pathway remains unclear. In this study, we analyze the functional impact of PAF-AH on BRCA1 mutant breast cancer and explore its relationship to the Wnt signaling pathway. By performing immunohistochemistry, PAF-AH expression and β-catenin expression were examined in both BRCA1 WT and BRCA1 mutant breast cancer specimens. The BRCA1 mutant breast cancer cell line HCC1937 was used for in vitro experiments to assess the impact of PAF-AH on cellular functions. The intracellular distribution of β-catenin depending on PLA2G7/PAF-AH expression was investigated by immunocytochemistry. Significantly higher nuclear expression levels of PAF-AH were found in BRCA1 mutant tissue specimens than in BRCA1 WT samples. Cell viability, proliferation, and the motility rate of HCC1937 were significantly enhanced after PLA2G7 silencing, which indicated a protective role of PAF-AH in breast cancer. Nuclear PAF-AH expressed correlatedly with membranous β-catenin. PLA2G7 silencing provoked the β-catenin translocation from the membrane to the nucleus and activated Wnt signaling downstream genes. Our data showed a protective effect of high PAF-AH expression in BRCA1 mutant breast cancer. PAF-AH may achieve its protective effect by negatively regulating the Wnt pathway. In conclusion, our research sheds new light on the regulatory pathways in BRCA1 mutant breast cancer.
Collapse
|
11
|
Pantazi D, Tellis C, Tselepis AD. Oxidized phospholipids and lipoprotein-associated phospholipase A 2 (Lp-PLA 2 ) in atherosclerotic cardiovascular disease: An update. Biofactors 2022; 48:1257-1270. [PMID: 36192834 DOI: 10.1002/biof.1890] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/06/2022] [Indexed: 12/24/2022]
Abstract
Inflammation and oxidative stress conditions lead to a variety of oxidative modifications of lipoprotein phospholipids implicated in the occurrence and development of atherosclerotic lesions. Lipoprotein-associated phospholipase A2 (Lp-PLA2 ) is established as an independent risk biomarker of atherosclerosis-related cardiovascular disease (ASCVD) and mediates vascular inflammation through the regulation of lipid metabolism in the blood and in atherosclerotic lesions. Lp-PLA2 is associated with low- and high-density lipoproteins and Lipoprotein (a) in human plasma and specifically hydrolyzes oxidized phospholipids involved in oxidative stress modification. Several oxidized phospholipids (OxPLs) subspecies can be detoxified through enzymatic degradation by Lp-PLA2 activation, forming lysophospholipids and oxidized non-esterified fatty acids (OxNEFAs). Lysophospholipids promote the expression of adhesion molecules, stimulate cytokines production (TNF-α, IL-6), and attract macrophages to the arterial intima. The present review article discusses new data on the functional roles of OxPLs and Lp-PLA2 associated with lipoproteins.
Collapse
Affiliation(s)
- Despoina Pantazi
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Constantinos Tellis
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Alexandros D Tselepis
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| |
Collapse
|
12
|
Antonopoulou S, Petsini F, Detopoulou M, Theoharides TC, Demopoulos CA. Is there an interplay between the SARS-CoV-2 spike protein and Platelet-Activating factor? Biofactors 2022; 48:1271-1283. [PMID: 35852257 PMCID: PMC9349578 DOI: 10.1002/biof.1877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022]
Abstract
Previous publications have reported a potent effect of COVID-19 on platelet function and that the Spike protein enhances washed human platelet aggregation induced by various agonists. This study aims to evaluate whether mRNA vaccination for COVID-19 affects human platelet-rich plasma (hPRP) aggregation response, whether a recombinant Spike protein modulates PAF-induced aggregation in hPRP and in washed rabbit platelets (WRP), and to investigate the effect of recombinant Spike protein on the PAF production in the U-937 cell line. Our results showed that PRP from vaccinated individuals exhibited ex vivo lower EC50 values in response to PAF, ADP, and collagen. Platelet incubation with the Spike protein alone did not induce aggregation either in hPRP or in WRP, but resulted in augmentation of in vitro PAF-induced aggregation in hPRP from non-vaccinated individuals and in WRP. When PRP from vaccinated individuals was incubated with the Spike protein and PAF was subsequently added, elimination of the secondary wave of the biphasic aggregation curve was recorded compared with the aggregation induced by PAF alone. Collagen-induced in vitro aggregation was dose-dependently reduced when platelets were pre-incubated with the Spike protein in all tested aggregation experiments. Stimulation of U-937 by the Spike protein induced an increase in intracellular PAF production accompanied by elevation of the activities of all three PAF biosynthetic enzymes. In conclusion, since the Spike protein appears to modulate PAF production and activity, the use of compounds that act as PAF inhibitors, could be considered at least in mild cases of patients infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Smaragdi Antonopoulou
- Laboratory of Biology, Biochemistry and Microbiology, Department of Nutrition‐Dietetics, School of Health Sciences and EducationHarokopio UniversityAthensGreece
| | - Filio Petsini
- Laboratory of Biology, Biochemistry and Microbiology, Department of Nutrition‐Dietetics, School of Health Sciences and EducationHarokopio UniversityAthensGreece
| | - Maria Detopoulou
- Laboratory of Biology, Biochemistry and Microbiology, Department of Nutrition‐Dietetics, School of Health Sciences and EducationHarokopio UniversityAthensGreece
| | - Theoharis C. Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of ImmunologyTufts University School of MedicineBostonMassachusettsUnited States
- School of Graduate Biomedical SciencesTufts University School of MedicineBostonMassachusettsUnited States
- Department of Internal MedicineTufts University School of Medicine and Tufts Medical CenterBostonMassachusettsUnited States
| | | |
Collapse
|
13
|
Abrahams C, Woudberg NJ, Lecour S. Anthracycline-induced cardiotoxicity: targeting high-density lipoproteins to limit the damage? Lipids Health Dis 2022; 21:85. [PMID: 36050733 PMCID: PMC9434835 DOI: 10.1186/s12944-022-01694-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/02/2022] [Indexed: 12/30/2022] Open
Abstract
Doxorubicin (DOX) is an anthracycline antibiotic frequently used against a wide range of cancers, including breast cancer. Although the drug is effective as a treatment against cancer, many patients develop heart failure (HF) months to years following their last treatment with DOX. The challenge in preventing DOX-induced cardiotoxicity is that symptoms present after damage has already occurred in the myocardium. Therefore, early biomarkers to assess DOX-induced cardiotoxicity are urgently needed. A better understanding of the mechanisms involved in the toxicity is important as this may facilitate the development of novel early biomarkers or therapeutic approaches. In this review, we discuss the role of high-density lipoprotein (HDL) particles and its components as possible key players in the early development of DOX-induced cardiotoxicity. HDL particles exist in different subclasses which vary in composition and biological functionality. Multiple cardiovascular risk factors are associated with a change in HDL subclasses, resulting in modifications of their composition and physiological functions. There is growing evidence in the literature suggesting that cancer affects HDL subclasses and that healthy HDL particles enriched with sphingosine-1-phosphate (S1P) and apolipoprotein A1 (ApoA1) protect against DOX-induced cardiotoxicity. Here, we therefore discuss associations and relationships between HDL, DOX and cancer and discuss whether assessing HDL subclass/composition/function may be considered as a possible early biomarker to detect DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Carmelita Abrahams
- Cardioprotection Group, Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, 7935, South Africa
| | - Nicholas J Woudberg
- Cardioprotection Group, Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, 7935, South Africa
| | - Sandrine Lecour
- Cardioprotection Group, Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, 7935, South Africa.
| |
Collapse
|
14
|
Zhou JF, Xiong Y, Kang X, Pan Z, Zhu Q, Goldbrunner R, Stavrinou L, Lin S, Hu W, Zheng F, Stavrinou P. Application of stem cells and exosomes in the treatment of intracerebral hemorrhage: an update. Stem Cell Res Ther 2022; 13:281. [PMID: 35765072 PMCID: PMC9241288 DOI: 10.1186/s13287-022-02965-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/19/2022] [Indexed: 12/14/2022] Open
Abstract
Non-traumatic intracerebral hemorrhage is a highly destructive intracranial disease with high mortality and morbidity rates. The main risk factors for cerebral hemorrhage include hypertension, amyloidosis, vasculitis, drug abuse, coagulation dysfunction, and genetic factors. Clinically, surviving patients with intracerebral hemorrhage exhibit different degrees of neurological deficits after discharge. In recent years, with the development of regenerative medicine, an increasing number of researchers have begun to pay attention to stem cell and exosome therapy as a new method for the treatment of intracerebral hemorrhage, owing to their intrinsic potential in neuroprotection and neurorestoration. Many animal studies have shown that stem cells can directly or indirectly participate in the treatment of intracerebral hemorrhage through regeneration, differentiation, or secretion. However, considering the uncertainty of its safety and efficacy, clinical studies are still lacking. This article reviews the treatment of intracerebral hemorrhage using stem cells and exosomes from both preclinical and clinical studies and summarizes the possible mechanisms of stem cell therapy. This review aims to provide a reference for future research and new strategies for clinical treatment.
Collapse
Affiliation(s)
- Jian-Feng Zhou
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Yu Xiong
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Xiaodong Kang
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Zhigang Pan
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Qiangbin Zhu
- Department of Neurosurgery, Hui'an County Hospital of Fujian Province, Quanzhou, Fujian, China
| | - Roland Goldbrunner
- Department of Neurosurgery, Faculty of Medicine and University Hospital, Center for Neurosurgery, University of Cologne, Cologne, Germany
| | - Lampis Stavrinou
- 2nd Department of Neurosurgery, Athens Medical School, "Attikon" University Hospital, National and Kapodistrian University, Athens, Greece
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China. .,Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.
| | - Weipeng Hu
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China.
| | - Feng Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China.
| | - Pantelis Stavrinou
- Department of Neurosurgery, Faculty of Medicine and University Hospital, Center for Neurosurgery, University of Cologne, Cologne, Germany.,Neurosurgery, Metropolitan Hospital, Athens, Greece
| |
Collapse
|
15
|
Associations of genetic variants of lysophosphatidylcholine metabolic enzymes with levels of serum lipids. Pediatr Res 2022; 91:1595-1599. [PMID: 33935285 DOI: 10.1038/s41390-021-01549-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/27/2021] [Accepted: 04/08/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Metabolic disturbance of lysophosphatidylcholine (LPC) is related with dyslipidemia. Therefore, eight single-nucleotide polymorphisms (SNPs) were selected from LPC metabolic enzymes to study their associations with obesity and serum levels of lipids. METHODS A total of 3305 children were recruited from four independent studies. Eight SNPs of LPC metabolic enzymes were selected and genotyped with the matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). The multivariable linear regression model was applied to detect the associations of eight SNPs with obesity-related phenotypes and levels of lipids in each study. Meta-analyses were used to combine the results of four studies. RESULTS Only SNP rs4420638 of APOC-1 gene was associated with serum lipids even after Bonferroni correction. The rs4420638 was positively associated with TC (β = 0.15, P = 8.59 × 10-9) and low-density-lipoprotein-cholesterol (LDL-C, β = 0.16, P = 9.98 × 10-14) individually. CONCLUSION The study firstly revealed the association between APOC-1/rs4420638 and levels of serum lipids in Chinese children, providing evidence for susceptible gene variants of dyslipidemia.
Collapse
|
16
|
Liu Q, Yu Y, Xi R, Li J, Lai R, Wang T, Fan Y, Zhang Z, Xu H, Ju J. Association Between Lipoprotein(a) and Calcific Aortic Valve Disease: A Systematic Review and Meta-Analysis. Front Cardiovasc Med 2022; 9:877140. [PMID: 35548407 PMCID: PMC9082602 DOI: 10.3389/fcvm.2022.877140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/28/2022] [Indexed: 01/03/2023] Open
Abstract
Background Preliminary studies indicated that enhanced plasma levels of lipoprotein(a) [lp(a)] might link with the risk of calcific aortic valve disease (CAVD), but the clinical association between them remained inconclusive. This systematic review and meta-analysis were aimed to determine this association. Methods We comprehensively searched PubMed, Embase, Web of Science, and Scopus databases for studies reporting the incidence of CAVD and their plasma lp(a) concentrations. Pooled risk ratio (RR) and 95% confidence interval (95% CI) were calculated to evaluate the effect of lp(a) on CAVD using the random-effects model. Subgroup analyses by study types, countries, and the level of adjustment were also conducted. Funnel plots, Egger's test and Begg's test were conducted to evaluate the publication bias. Results Eight eligible studies with 52,931 participants were included in this systematic review and meta-analysis. Of these, four were cohort studies and four were case-control studies. Five studies were rated as high quality, three as moderate quality. The pooled results showed that plasma lp(a) levels ≥50 mg/dL were associated with a 1.76-fold increased risk of CAVD (RR, 1.76; 95% CI, 1.47–2.11), but lp(a) levels ≥30 mg/dL were not observed to be significantly related with CAVD (RR, 1.28; 95% CI, 0.98–1.68). We performed subgroup analyses by study type, the RRs of cohort studies revealed lp(a) levels ≥50 mg/dL and lp(a) levels ≥30 mg/dL have positive association with CAVD (RR, 1.70; 95% CI, 1.39–2.07; RR 1.38; 95% CI, 1.19–1.61). Conclusion High plasma lp(a) levels (≥50 mg/dL) are significantly associated with increased risk of CAVD.
Collapse
Affiliation(s)
- Qiyu Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yanqiao Yu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Ruixi Xi
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingen Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Runmin Lai
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongxin Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yixuan Fan
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zihao Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Hao Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Hao Xu
| | - Jianqing Ju
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Jianqing Ju
| |
Collapse
|
17
|
Platelets, a Key Cell in Inflammation and Atherosclerosis Progression. Cells 2022; 11:cells11061014. [PMID: 35326465 PMCID: PMC8947573 DOI: 10.3390/cells11061014] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 12/21/2022] Open
Abstract
Platelets play important roles in thrombosis-dependent obstructive cardiovascular diseases. In addition, it has now become evident that platelets also participate in the earliest stages of atherosclerosis, including the genesis of the atherosclerotic lesion. Moreover, while the link between platelet activity and hemostasis has been well established, the role of platelets as modulators of inflammation has only recently been recognized. Thus, through their secretory activities, platelets can chemically attract a diverse repertoire of cells to inflammatory foci. Although monocytes and lymphocytes act as key cells in the progression of an inflammatory event and play a central role in plaque formation and progression, there is also evidence that platelets can traverse the endothelium, and therefore be a direct mediator in the progression of atherosclerotic plaque. This review provides an overview of platelet interactions and regulation in atherosclerosis.
Collapse
|
18
|
Spadaro O, Youm Y, Shchukina I, Ryu S, Sidorov S, Ravussin A, Nguyen K, Aladyeva E, Predeus AN, Smith SR, Ravussin E, Galban C, Artyomov MN, Dixit VD. Caloric restriction in humans reveals immunometabolic regulators of health span. Science 2022; 375:671-677. [PMID: 35143297 PMCID: PMC10061495 DOI: 10.1126/science.abg7292] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The extension of life span driven by 40% caloric restriction (CR) in rodents causes trade-offs in growth, reproduction, and immune defense that make it difficult to identify therapeutically relevant CR-mimetic targets. We report that about 14% CR for 2 years in healthy humans improved thymopoiesis and was correlated with mobilization of intrathymic ectopic lipid. CR-induced transcriptional reprogramming in adipose tissue implicated pathways regulating mitochondrial bioenergetics, anti-inflammatory responses, and longevity. Expression of the gene Pla2g7 encoding platelet activating factor acetyl hydrolase (PLA2G7) is inhibited in humans undergoing CR. Deletion of Pla2g7 in mice showed decreased thymic lipoatrophy, protection against age-related inflammation, lowered NLRP3 inflammasome activation, and improved metabolic health. Therefore, the reduction of PLA2G7 may mediate the immunometabolic effects of CR and could potentially be harnessed to lower inflammation and extend the health span.
Collapse
Affiliation(s)
- O Spadaro
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Y Youm
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - I Shchukina
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - S Ryu
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - S Sidorov
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - A Ravussin
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - K Nguyen
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - E Aladyeva
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - A N Predeus
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - S R Smith
- Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, FL, USA
| | - E Ravussin
- Pennington Biomedical Research Center, LSU, Baton Rouge, LA, USA
| | - C Galban
- Department of Radiology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - M N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - V D Dixit
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and Systems Metabolism, Yale School of Medicine, New Haven, CT, USA
- Yale Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
19
|
Lane JR, Tata M, Briles DE, Orihuela CJ. A Jack of All Trades: The Role of Pneumococcal Surface Protein A in the Pathogenesis of Streptococcus pneumoniae. Front Cell Infect Microbiol 2022; 12:826264. [PMID: 35186799 PMCID: PMC8847780 DOI: 10.3389/fcimb.2022.826264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Streptococcus pneumoniae (Spn), or the pneumococcus, is a Gram-positive bacterium that colonizes the upper airway. Spn is an opportunistic pathogen capable of life-threatening disease should it become established in the lungs, gain access to the bloodstream, or disseminate to vital organs including the central nervous system. Spn is encapsulated, allowing it to avoid phagocytosis, and current preventative measures against infection include polyvalent vaccines composed of capsular polysaccharide corresponding to its most prevalent serotypes. The pneumococcus also has a plethora of surface components that allow the bacteria to adhere to host cells, facilitate the evasion of the immune system, and obtain vital nutrients; one family of these are the choline-binding proteins (CBPs). Pneumococcal surface protein A (PspA) is one of the most abundant CBPs and confers protection against the host by inhibiting recognition by C-reactive protein and neutralizing the antimicrobial peptide lactoferricin. Recently our group has identified two new roles for PspA: binding to dying host cells via host-cell bound glyceraldehyde 3-phosphate dehydrogenase and co-opting of host lactate dehydrogenase to enhance lactate availability. These properties have been shown to influence Spn localization and enhance virulence in the lower airway, respectively. Herein, we review the impact of CBPs, and in particular PspA, on pneumococcal pathogenesis. We discuss the potential and limitations of using PspA as a conserved vaccine antigen in a conjugate vaccine formulation. PspA is a vital component of the pneumococcal virulence arsenal - therefore, understanding the molecular aspects of this protein is essential in understanding pneumococcal pathogenesis and utilizing PspA as a target for treating or preventing pneumococcal pneumonia.
Collapse
Affiliation(s)
| | | | | | - Carlos J. Orihuela
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
20
|
Ravindran R, PK PK, Kumar S, Roy S, Gowthaman SA, Rajkumar J. Computational Study Reveals PARP1 and P2Y1 Receptors as Prospective Targets of Withaferin-A for Cardiovascular Diseases. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180819666211228103102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Cardiovascular Diseases (CVDs) remain the leading cause of death worldwide, which urges for effective strategies of prevention and treatment. Withaferin-A (WFA), the key metabolite identified in Withania somnifera, has been known for its cardioprotective properties. Although it has been traditionally employed to treat cardiovascular ailments for several decades, its exact mechanism of action still remains unexplained
Objective:
The current study modelled and scored the interactions of WFA with nine prospective protein-targets associated with cardiovascular diseases through molecular docking and DSX-scoring.
Methods:
Molecular docking was carried out using Autodock and DSX-scoring was carried out using DSX standalone software. WFA was observed to favorably interact with six targets before DSX-based rescoring, but only with Poly (ADP-Ribose) Polymerase-1 and P2Y Purinoceptor-1 after DSX-based rescoring. The spatial orientation, physicochemical properties and structural features of Withaferin-A were compared with that of these approved drugs by pharmacophore modeling and hierarchical clustering
Results:
The results of molecular docking, DSX-based rescoring and complete pharmacophore modeling together revealed that PARP1 and P2Y1 receptor could be prospective targets of WFA for the treatment of CVD.
Conclusion:
Simulation using GROMACS has revealed that WFA forms a more stable complex with PARP1 and will be useful in developing the broad-spectrum drugs against cardiovascular diseases. Further computational studies through machine learning and network pharmacology methods can be carried out to improve Withaferin-A compound features by incorporating additional functional groups necessary for molecular recognition of the target genes in network responsible for cardiovascular diseases.
Collapse
Affiliation(s)
- Rekha Ravindran
- Department of Biotechnology, Rajalakshmi Engineering College, Rajalakshmi Nagar, Thandalam, Chennai-602105, Tamil Nadu, India
| | - Praveen Kumar PK
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur Tk – 602117, Tamil Nadu, India
| | - Sriram Kumar
- Department of Biotechnology, Rajalakshmi Engineering College, Rajalakshmi Nagar, Thandalam, Chennai-602105, Tamil Nadu, India
| | - Sujata Roy
- Department of Biotechnology, Rajalakshmi Engineering College, Rajalakshmi Nagar, Thandalam, Chennai-602105, Tamil Nadu, India
| | - Sakthi Abirami Gowthaman
- Department of Biotechnology, Rajalakshmi Engineering College, Rajalakshmi Nagar, Thandalam, Chennai-602105, Tamil Nadu, India
| | - Johanna Rajkumar
- Department of Biotechnology, Rajalakshmi Engineering College, Rajalakshmi Nagar, Thandalam, Chennai-602105, Tamil Nadu, India
| |
Collapse
|
21
|
Ramasubramanian R, Kalhan R, Jacobs DR, Washko GR, Hou L, Gross MD, Guan W, Thyagarajan B. Gene expression of oxidative stress markers and lung function: A CARDIA lung study. Mol Genet Genomic Med 2021; 9:e1832. [PMID: 34800009 PMCID: PMC8683624 DOI: 10.1002/mgg3.1832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/14/2021] [Accepted: 09/14/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Circulating markers of oxidative stress have been associated with lower lung function. Our objective was to study the association of gene expression levels of oxidative stress pathway genes (ALOX12, ALOX15, ARG2, GSTT1, LPO, MPO, NDUFB3, PLA2G7, and SOD3) and lung function forced expiratory volume in one second (FEV1 ), forced vital capacity (FVC) in Coronary Artery Risk Development in Young Adults study. METHODS Lung function was measured using spirometry and the Nanostring platform was used to estimate gene expression levels. Linear regression models were used to study association of lung function measured at year 30, 10-year decline in lung function and gene expression after adjustment for center, smoking, and BMI, measured at year 25. RESULTS The 10-year decline of FEV1 was faster in highest NDUFB3 quartile compared to the lowest (difference = -2.09%; p = 0.001) after adjustment for multiple comparisons. The 10-year decline in FEV1 and FVC was nominally slower in highest versus lowest quartile of PLA2G7 (difference = 1.14%; p = 0.02, and difference = 1.06%; p = 0.005, respectively). The other genes in the study were not associated with FEV1 or FVC. CONCLUSION Higher gene expression levels in oxidative stress pathway genes are associated with faster 10-year FEV1 decline.
Collapse
Affiliation(s)
- Ramya Ramasubramanian
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, Minnesota, USA
| | - Ravi Kalhan
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - David R Jacobs
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, Minnesota, USA
| | - George R Washko
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Applied Chest Imaging Laboratory, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Myron D Gross
- Department of Pathology and Laboratory Medicine, University of Minnesota School of Medicine, Minneapolis, Minnesota, USA
| | - Weihua Guan
- Department of Biostatistics, University of Minnesota School of Public Health, Minneapolis, Minnesota, USA
| | - Bharat Thyagarajan
- Department of Pathology and Laboratory Medicine, University of Minnesota School of Medicine, Minneapolis, Minnesota, USA
| |
Collapse
|
22
|
Jin R, Baumgart T. Asymmetric desorption of lipid oxidation products induces membrane bending. SOFT MATTER 2021; 17:7506-7515. [PMID: 34338699 PMCID: PMC8425771 DOI: 10.1039/d1sm00652e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lipid oxidation, detected in metabolic processes, is induced in excess when the cellular membrane suffers extra oxidative stress. Lipid oxidation can compromise biomembrane function in part through perturbations of lipid packing, membrane permeability, and morphology. Two major types of oxidation products, one with a partially truncated lipid tail with a hydrophilic group at the tail-end, and secondly, a lysolipid (with one of the chains completely truncated) can disturb the membrane bilayer packing significantly. However, they also have an increased tendency to desorb from the membrane. In this study we investigated desorption kinetics of two characteristic lipid oxidation products (PAzePC and 18 : 1 LysoPC) from a model membrane system, and we evaluated the consequences of this process on membrane shape transitions. Using a microfluidic chamber coupled with micropipette aspiration, we observed the incorporation of the two lipids into the membrane of a giant unilamellar vesicle (GUV) and further determined their desorption rates, association rates and flip-flop rates. For both lipids, the desorption is on the time scale of seconds, one to two orders of magnitude faster than their flipping rates. Dilution of the outer solution of the GUVs allowed asymmetric desorption of these two lipids from the GUVs. This process induced lipid number asymmetry and charge asymmetry, specifically for PAzePC containing GUVs, and caused membrane tubulation. Our results indicate that the desorption of lipid oxidation products can alter the local structure of biomembranes and result in morphological changes that may relate to membrane function.
Collapse
Affiliation(s)
- Rui Jin
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | | |
Collapse
|
23
|
Batsika CS, Gerogiannopoulou ADD, Mantzourani C, Vasilakaki S, Kokotos G. The design and discovery of phospholipase A 2 inhibitors for the treatment of inflammatory diseases. Expert Opin Drug Discov 2021; 16:1287-1305. [PMID: 34143707 DOI: 10.1080/17460441.2021.1942835] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AREAS COVERED This review article summarizes the most important synthetic PLA2 inhibitors developed to target each one of the four major types of human PLA2 (cytosolic cPLA2, calcium-independent iPLA2, secreted sPLA2, and lipoprotein-associated Lp-PLA2), discussing their in vitro and in vivo activities as well as their recent applications and therapeutic properties. Recent findings on the role of PLA2 in the pathobiology of COVID-19 are also discussed. EXPERT OPINION Although a number of PLA2 inhibitors have entered clinical trials, none has reached the market yet. Lipoprotein-associated PLA2 is now considered a biomarker of vascular inflammation rather than a therapeutic target for inhibitors like darapladib. Inhibitors of cytosolic PLA2 may find topical applications for diseases like atopic dermatitis and psoriasis. Inhibitors of secreted PLA2, varespladib and varespladib methyl, are under investigation for repositioning in snakebite envenoming. A deeper understanding of PLA2 enzymes is needed for the development of novel selective inhibitors. Lipidomic technologies combined with medicinal chemistry approaches may be useful tools toward this goal.
Collapse
Affiliation(s)
| | | | - Christiana Mantzourani
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Greece
| | - Sofia Vasilakaki
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Greece
| | - George Kokotos
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Greece
| |
Collapse
|
24
|
Platelet-Activating Factor Acetylhydrolase Expression in BRCA1 Mutant Ovarian Cancer as a Protective Factor and Potential Negative Regulator of the Wnt Signaling Pathway. Biomedicines 2021; 9:biomedicines9070706. [PMID: 34206491 PMCID: PMC8301368 DOI: 10.3390/biomedicines9070706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022] Open
Abstract
Aberrantly activated Wnt/β-catenin signaling pathway, as well as platelet-activating factor (PAF), contribute to cancer progression and metastasis of many cancer entities. Nonetheless, the role of the degradation enzyme named platelet-activating factor acetylhydrolase (PLA2G7/PAF-AH) in ovarian cancer etiology is still unclear. This study investigated the functional impact of platelet-activating factor acetylhydrolase on BRCA1 mutant ovarian cancer biology and its crosstalk with the Wnt signaling pathway. PAF-AH, pGSK3β, and β-catenin expressions were analyzed in 156 ovarian cancer specimens by immunohistochemistry. PAF-AH expression was investigated in ovarian cancer tissue, serum of BRCA1-mutated patients, and in vitro in four ovarian cancer cell lines. Functional assays were performed after PLA2G7 silencing. The association of PAF-AH and β-catenin was examined by immunocytochemistry. In an established ovarian carcinoma collective, we identified PAF-AH as an independent positive prognostic factor for overall survival (median 59.9 vs. 27.4 months; p = 0.016). PAF-AH correlated strongly with the Wnt signaling proteins pGSK3β (Y216; nuclear: cc = 0.494, p < 0.001; cytoplasmic: cc = 0.488, p < 0.001) and β-catenin (nuclear: cc = 0.267, p = 0.001; cytoplasmic: cc = 0.291, p < 0.001). In particular, high levels of PAF-AH were found in tumor tissue and in the serum of BRCA1 mutation carriers. By in vitro expression analysis, a relevant gene and protein expression of PLA2G7/PAF-AH was detected exclusively in the BRCA1-negative ovarian cancer cell line UWB1.289 (p < 0.05). Functional assays showed enhanced viability, proliferation, and motility of UWB1.289 cells when PLA2G7/PAF-AH was downregulated, which underlines its protective character. Interestingly, by siRNA knockdown of PLA2G7/PAF-AH, the immunocytochemistry staining pattern of β-catenin changed from a predominantly membranous expression to a nuclear one, suggesting a negative regulatory role of PAF-AH on the Wnt/β-catenin pathway. Our data provide evidence that PAF-AH is a positive prognostic factor with functional impact, which seems particularly relevant in BRCA1 mutant ovarian cancer. For the first time, we show that its protective character may be mediated by a negative regulation of the Wnt/β-catenin pathway. Further studies need to specify this effect. Potential use of PAF-AH as a biomarker for predicting the disease risk of BRCA1 mutation carriers and for the prognosis of patients with BRCA1-negative ovarian cancer should be explored.
Collapse
|
25
|
Dabral D, van den Bogaart G. The Roles of Phospholipase A 2 in Phagocytes. Front Cell Dev Biol 2021; 9:673502. [PMID: 34179001 PMCID: PMC8222813 DOI: 10.3389/fcell.2021.673502] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
Phagocytic cells, such as macrophages, neutrophils, and dendritic cells, ingest particles larger than about 0.5 μM and thereby clear microbial pathogens and malignant cells from the body. These phagocytic cargoes are proteolytically degraded within the lumen of phagosomes, and peptides derived from them are presented on Major Histocompatibility Complexes (MHC) for the activation of T cells. Mammalian PLA2 isozymes belong to a large family of enzymes that cleave phospholipids at the second position of the glycerol backbone, releasing a free fatty acid and a lysolipid moiety. In human macrophages, at least 15 different PLA2 forms are expressed, and expression of many of these is dependent on pathogenic stimulation. Intriguing questions are why so many PLA2 forms are expressed in macrophages, and what are the functional consequences of their altered gene expression after encountering pathogenic stimuli. In this review, we discuss the evidence of the differential roles of different forms of PLA2 in phagocytic immune cells. These roles include: lipid signaling for immune cell activation, initial phagocytic particle uptake, microbial action for the killing and degradation of ingested microbes, and the repair of membranes induced by oxygen radicals. We also discuss the roles of PLA2 in the subsequent digestion of ingested phagocytic cargoes for antigen presentation to T cells.
Collapse
Affiliation(s)
- Deepti Dabral
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Geert van den Bogaart
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
26
|
Detopoulou M, Ntzouvani A, Petsini F, Gavriil L, Fragopoulou E, Antonopoulou S. Consumption of Enriched Yogurt with PAF Inhibitors from Olive Pomace Affects the Major Enzymes of PAF Metabolism: A Randomized, Double Blind, Three Arm Trial. Biomolecules 2021; 11:biom11060801. [PMID: 34071485 PMCID: PMC8227157 DOI: 10.3390/biom11060801] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 01/02/2023] Open
Abstract
Platelet-activating factor (PAF), a proinflammatory lipid mediator, plays a crucial role in the formation of the atherosclerotic plaque. Therefore, the inhibition of endothelium inflammation by nutraceuticals, such as PAF inhibitors, is a promising alternative for preventing cardiovascular diseases. The aim of the present study was to evaluate the impact of a new functional yogurt enriched with PAF inhibitors of natural origin from olive oil by-products on PAF metabolism. Ninety-two apparently healthy, but mainly overweight volunteers (35-65 years) were randomly allocated into three groups by block-randomization. The activities of PAF's biosynthetic and catabolic enzymes were measured, specifically two isoforms of acetyl-CoA:lyso-PAF acetyltransferase (LPCATs), cytidine 5'-diphospho-choline:1-alkyl-2-acetyl-sn-glycerol cholinephosphotransferase (PAF-CPT) and two isoforms of platelet activating factor acetylhydrolase in leucocytes (PAF-AH) and plasma (lipoprotein associated phospholipase-A2, LpPLA2). The intake of the enriched yogurt resulted in reduced PAF-CPT and LpPLA2 activities. No difference was observed in the activities of the two isoforms of lyso PAF-AT. In conclusion, intake of yogurt enriched in PAF inhibitors could favorably modulate PAF biosynthetic and catabolic pathways.
Collapse
|
27
|
Ahmed LA, Mohamed AF, Abd El-Haleim EA, El-Tanbouly DM. Boosting Akt Pathway by Rupatadine Modulates Th17/Tregs Balance for Attenuation of Isoproterenol-Induced Heart Failure in Rats. Front Pharmacol 2021; 12:651150. [PMID: 33995066 PMCID: PMC8121023 DOI: 10.3389/fphar.2021.651150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/11/2021] [Indexed: 01/11/2023] Open
Abstract
Disruption of Th17/Tregs homeostasis plays a crucial role in governing the immune response during myocardial fibrosis and its progression to heart failure. The present study aimed to assess for the first time the possible protection afforded by rupatadine against isoproterenol-induced heart failure in rats. It also explored the role of PI3k/Akt as a possible mechanistic pathway, through which rupatadine could modulate Th17/Tregs balance to display its effect. Isoproterenol (85 and 170 mg/kg/day) was injected subcutaneously for 2 successive days, respectively and rupatadine (4 mg/kg/day) was then given orally for 14 days with or without wortmannin (PI3K/Akt inhibitor). Rupatadine succeeded to completely ameliorate isoproterenol-induced cardiac dysfunction as demonstrated by improvements of electrocardiographic and echocardiographic measurements. Moreover, rupatadine prevented the marked elevation of PAF and oxidative stress in addition to Th17 promoting cytokines (IL-6, IL-23, and TGF-β). Accordingly, rupatadine prevented Th17 stimulation or expansion as indicated by increased Foxp3/RORγt ratio and decreased production of its pro-inflammatory cytokine (IL-17). Rupatadine treatment mitigated isoproterenol-induced activation of STAT-3 signaling and the imbalance in p-Akt/total Akt ratio affording marked decrease in atrogin-1 and apoptotic biomarkers. Finally, this therapy was effective in averting cardiac troponin loss and reverting the histological alterations as assessed by myocardial fibrosis and hypertrophy grading. Contrariwise, co-administration of wortmannin mostly attenuated the protective effects of rupatadine affording more or less similar results to that of isoproterenol-untreated rats. In conclusion, rupatadine could be an effective therapy against the development of isoproterenol-induced heart failure where PI3K/Akt pathway seems to play a crucial role in its protective effect.
Collapse
Affiliation(s)
- Lamiaa A Ahmed
- Department of Pharmacology & Toxicology, Cairo University, Cairo, Egypt
| | - Ahmed F Mohamed
- Department of Pharmacology & Toxicology, Cairo University, Cairo, Egypt
| | | | | |
Collapse
|
28
|
Inflammatory Biomarkers for Cardiovascular Risk Stratification in Familial Hypercholesterolemia. Rev Physiol Biochem Pharmacol 2020; 177:25-52. [PMID: 32691159 DOI: 10.1007/112_2020_26] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Familial hypercholesterolemia (FH) is a frequent autosomal genetic disease characterized by elevated concentrations of low-density lipoprotein cholesterol (LDL) from birth with increased risk of premature atherosclerotic complications. Accumulating evidence has shown enhanced inflammation in patients with FH. In vessels, the deposition of modified cholesterol lipoproteins triggers local inflammation. Then, inflammation facilitates fatty streak formation by activating the endothelium to produce chemokines and adhesion molecules. This process eventually results in the uptake of vascular oxidized LDL (OxLDL) by scavenger receptors in monocyte-derived macrophages and formation of foam cells. Further leukocyte recruitment into the sub-endothelial space leads to plaque progression and activation of smooth muscle cells proliferation. Several inflammatory biomarkers have been reported in this setting which can be directly synthetized by activated inflammatory/vascular cells or can be indirectly produced by organs other than vessels, e.g., liver. Of note, inflammation is boosted in FH patients. Inflammatory biomarkers might improve the risk stratification for coronary heart disease and predict atherosclerotic events in FH patients. This review aims at summarizing the current knowledge about the role of inflammation in FH and the potential application of inflammatory biomarkers for cardiovascular risk estimation in these patients.
Collapse
|
29
|
Rodríguez-López ML, Martínez-Magaña JJ, Cabrera-Mendoza B, Genis-Mendoza AD, García-Dolores F, López-Armenta M, Flores G, Vázquez-Roque RA, Nicolini H. Exploratory analysis of genetic variants influencing molecular traits in cerebral cortex of suicide completers. Am J Med Genet B Neuropsychiatr Genet 2020; 183:26-37. [PMID: 31418530 DOI: 10.1002/ajmg.b.32752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/13/2019] [Accepted: 07/09/2019] [Indexed: 12/28/2022]
Abstract
Genetic factors have been implicated in suicidal behavior. It has been suggested that one of the roles of genetic factors in suicide could be represented by the effect of genetic variants on gene expression regulation. Alteration in the expression of genes participating in multiple biological systems in the suicidal brain has been demonstrated, so it is imperative to identify genetic variants that could influence gene expression or its regulatory mechanisms. In this study, we integrated DNA methylation, gene expression, and genotype data from the prefrontal cortex of suicides to identify genetic variants that could be factors in the regulation of gene expression, generally called quantitative trait locus (xQTLs). We identify 6,224 methylation quantitative trait loci and 2,239 expression quantitative trait loci (eQTLs) in the prefrontal cortex of suicide completers. The xQTLs identified influence the expression of genes involved in neurodevelopment and cell organization. Two of the eQTLs identified (rs8065311 and rs1019238) were previously associated with cannabis dependence, highlighting a candidate genetic variant for the increased suicide risk in subjects with substance use disorders. Our findings suggest that genetic variants may regulate gene expression in the prefrontal cortex of suicides through the modulation of promoter and enhancer activity, and to a lesser extent, binding transcription factors.
Collapse
Affiliation(s)
- Mariana L Rodríguez-López
- Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| | - José J Martínez-Magaña
- Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| | - Brenda Cabrera-Mendoza
- Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| | - Alma D Genis-Mendoza
- Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico.,Psychiatric Care Services, Child Psychiatric Hospital Dr. Juan N Navarro, CDMX, Mexico
| | | | | | - Gonzalo Flores
- Neuropsychiatry Laboratory, Institute of Physiology, Meritorious Autonomous University of Puebla, Puebla, Mexico
| | - Rubén A Vázquez-Roque
- Neuropsychiatry Laboratory, Institute of Physiology, Meritorious Autonomous University of Puebla, Puebla, Mexico
| | - Humberto Nicolini
- Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico.,Carracci Medical Group, CDMX, Mexico
| |
Collapse
|
30
|
Forty Years Since the Structural Elucidation of Platelet-Activating Factor (PAF): Historical, Current, and Future Research Perspectives. Molecules 2019; 24:molecules24234414. [PMID: 31816871 PMCID: PMC6930554 DOI: 10.3390/molecules24234414] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
In the late 1960s, Barbaro and Zvaifler described a substance that caused antigen induced histamine release from rabbit platelets producing antibodies in passive cutaneous anaphylaxis. Henson described a ‘soluble factor’ released from leukocytes that induced vasoactive amine release in platelets. Later observations by Siraganuan and Osler observed the existence of a diluted substance that had the capacity to cause platelet activation. In 1972, the term platelet-activating factor (PAF) was coined by Benveniste, Henson, and Cochrane. The structure of PAF was later elucidated by Demopoulos, Pinckard, and Hanahan in 1979. These studies introduced the research world to PAF, which is now recognised as a potent phospholipid mediator. Since its introduction to the literature, research on PAF has grown due to interest in its vital cell signalling functions and more sinisterly its role as a pro-inflammatory molecule in several chronic diseases including cardiovascular disease and cancer. As it is forty years since the structural elucidation of PAF, the aim of this review is to provide a historical account of the discovery of PAF and to provide a general overview of current and future perspectives on PAF research in physiology and pathophysiology.
Collapse
|
31
|
Zhuo S, Yuan C. Association with lipids or detergents is essential for preservation of the active structure of lipoprotein-associated phospholipase A 2. Chem Phys Lipids 2019; 225:104814. [PMID: 31493387 DOI: 10.1016/j.chemphyslip.2019.104814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/16/2019] [Accepted: 08/23/2019] [Indexed: 11/28/2022]
Abstract
Recombinant lipoprotein-associated phospholipase A2 (rLp-PLA2) expressed in HEK293 cells has a propensity to form oligomers in the absence of detergents. Dilution of rLp-PLA2 in the absence of detergents results in irreversible inactivation of the enzyme. The monomeric rLp-PLA2 may expose its hydrophobic interfacial binding region or substrate binding compartment to water and that may cause structural collapsing of the enzyme. Formation of self-aggregate, complex with binding partners or association with detergent micelles is to block the access of aqueous solvent to the hydrophobic substrate binding site and therefore prevents the structural collapsing. Dilution inactivation of the enzyme can be prevented in the presence of LDL or HDL suggesting that Lp-PLA2 association with lipoprotein particles (LDL and HDL) is necessary for Lp-PLA2 to maintain its enzymatic activity in human plasma. Formation of higher affinity complex gave better protection of rLp-PLA2 structure and activity. The method can be harnessed to detect the interaction between rLp-PLA2 and components of lipoprotein particles. Apo(a), ApoB 100 and ApoA1 were found to protect the enzyme from inactivation at roughly the similar level (˜80 ± 5%) comparing to human serum albumin control (˜40%). One mg/ml pig brain phospholipid showed 100% protection under the same conditions.
Collapse
Affiliation(s)
- Shaoqiu Zhuo
- Diazyme Laboratories, Inc., 12889 Gregg Ct., Poway, CA, 92064, United States.
| | - Chong Yuan
- Diazyme Laboratories, Inc., 12889 Gregg Ct., Poway, CA, 92064, United States
| |
Collapse
|
32
|
Muñoz-Cano RM, Casas-Saucedo R, Valero Santiago A, Bobolea I, Ribó P, Mullol J. Platelet-Activating Factor (PAF) in Allergic Rhinitis: Clinical and Therapeutic Implications. J Clin Med 2019; 8:jcm8091338. [PMID: 31470575 PMCID: PMC6780525 DOI: 10.3390/jcm8091338] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 11/16/2022] Open
Abstract
Platelet-activating factor (PAF) is a lipid mediator involved in several allergic reactions. It is released from multiple cells of the immune system, such as eosinophils, neutrophils, and mast cells, and also exerts its effect on most of them upon specific binding to its receptor, becoming a pleiotropic mediator. PAF is considered a potential relevant mediator in allergic rhinitis, with a key role in nasal congestion and rhinorrhoea due to its effect on vascular permeability. Interestingly, despite its potential relevance as a therapeutic target, no specific PAF inhibitors have been studied in humans. However, rupatadine, a second-generation antihistamine with dual antihistamine and anti-PAF effects has shown promising results by both blocking nasal symptoms and inhibiting mast cell activation induced by PAF, in comparison to antihistamine receptor drugs. In conclusion, the inhibition of PAF may be an interesting approach in the treatment of allergic rhinitis as part of a global strategy directed at blocking as many relevant inflammatory mediators as possible.
Collapse
Affiliation(s)
- Rosa M Muñoz-Cano
- Allergy Section, Pheumology & Allergy Department, Hospital Clinic, Barcelona, 08036 Catalonia, Spain.
- Clinical & Experimental Respiratory Immunoallergy, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, 08036 Catalonia, Spain.
- ARADyAL, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Rocio Casas-Saucedo
- Allergy Section, Pheumology & Allergy Department, Hospital Clinic, Barcelona, 08036 Catalonia, Spain
- Clinical & Experimental Respiratory Immunoallergy, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, 08036 Catalonia, Spain
- ARADyAL, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Antonio Valero Santiago
- Allergy Section, Pheumology & Allergy Department, Hospital Clinic, Barcelona, 08036 Catalonia, Spain
- Clinical & Experimental Respiratory Immunoallergy, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, 08036 Catalonia, Spain
- CIBER of Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Irina Bobolea
- Allergy Section, Pheumology & Allergy Department, Hospital Clinic, Barcelona, 08036 Catalonia, Spain
- Clinical & Experimental Respiratory Immunoallergy, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, 08036 Catalonia, Spain
- CIBER of Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Paula Ribó
- Allergy Section, Pheumology & Allergy Department, Hospital Clinic, Barcelona, 08036 Catalonia, Spain
- Clinical & Experimental Respiratory Immunoallergy, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, 08036 Catalonia, Spain
- CIBER of Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Joaquim Mullol
- Clinical & Experimental Respiratory Immunoallergy, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, 08036 Catalonia, Spain
- CIBER of Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Rhinology Unit & Smell Clinic, ENT Department, Hospital Clinic, Barcelona, 08036 Catalonia, Spain
| |
Collapse
|
33
|
Ulambayar B, Yang EM, Cha HY, Shin YS, Park HS, Ye YM. Increased platelet activating factor levels in chronic spontaneous urticaria predicts refractoriness to antihistamine treatment: an observational study. Clin Transl Allergy 2019; 9:33. [PMID: 31346408 PMCID: PMC6636088 DOI: 10.1186/s13601-019-0275-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/28/2019] [Indexed: 11/10/2022] Open
Abstract
Background Platelet activating factor (PAF) is an endogenous, active phospholipid released from inflammatory cells, platelets, and endothelial cells, and is involved in the regulation of immune responses. Degradation of PAF by PAF acetylhydrolase (PAF-AH) has been shown to be associated with anaphylaxis, asthma, and peanut allergy. The purpose of this study was to investigate relationships among clinical parameters, including urticaria severity and treatment responsiveness, and PAF and PAF-AH levels in sera from patients with chronic spontaneous urticaria (CSU). Methods Serum PAF and PAF-AH levels were measured by enzyme-linked immunosorbent assay in 283 CSU patients and 111 age- and sex-matched, healthy normal controls (NCs). Urticaria severity was evaluated by urticaria activity score over 7 days (UAS7). Within 3 months after measuring PAF levels, patients whose urticaria was not controlled by antihistamine treatment were classified as histamine receptor 1 antagonist (H1RA) non-responders. Results Serum PAF levels were significantly higher in CSU patients than in NCs (median 4368.9 vs. 3256.4 pg/ml, p = 0.015), while serum PAF-AH levels were significantly lower in CSU patients (105.6 vs. 125.7 ng/ml, p = 0.001). H1RA non-responders had higher levels of PAF in their sera than H1RA responders. A generalized linear model revealed that a higher UAS7 score (odds ratio 1.023, p = 0.024) and a PAF level ≥ 5000 pg/ml (1.409, p < 0.001) were significant predictors of a poor response to H1RA treatment. Conclusions Compared with NCs, CSU patients, particularly those with H1RA refractoriness, showed significant increases in serum PAF levels and decreases in PAF-AH. Therapies modulating PAF and PAF-AH levels could be effective in patients with CSU refractory to antihistamines.
Collapse
Affiliation(s)
- Bastsetseg Ulambayar
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, 443-721 Korea
| | - Eun-Mi Yang
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, 443-721 Korea
| | - Hyun-Young Cha
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, 443-721 Korea
| | - Yoo-Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, 443-721 Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, 443-721 Korea
| | - Young-Min Ye
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, 443-721 Korea
| |
Collapse
|
34
|
Rivas-Urbina A, Rull A, Ordóñez-Llanos J, Sánchez-Quesada JL. Electronegative LDL: An Active Player in Atherogenesis or a By- Product of Atherosclerosis? Curr Med Chem 2019; 26:1665-1679. [PMID: 29600751 DOI: 10.2174/0929867325666180330093953] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 11/12/2017] [Accepted: 12/11/2017] [Indexed: 12/16/2022]
Abstract
Low-density lipoproteins (LDLs) are the major plasma carriers of cholesterol. However, LDL particles must undergo various molecular modifications to promote the development of atherosclerotic lesions. Modified LDL can be generated by different mechanisms, but as a common trait, show an increased electronegative charge of the LDL particle. A subfraction of LDL with increased electronegative charge (LDL(-)), which can be isolated from blood, exhibits several pro-atherogenic characteristics. LDL(-) is heterogeneous, due to its multiple origins but is strongly related to the development of atherosclerosis. Nevertheless, the implication of LDL(-) in a broad array of pathologic conditions is complex and in some cases anti-atherogenic LDL(-) properties have been reported. In fact, several molecular modifications generating LDL(-) have been widely studied, but it remains unknown as to whether these different mechanisms are specific or common to different pathological disorders. In this review, we attempt to address these issues examining the most recent findings on the biology of LDL(-) and discussing the relationship between this LDL subfraction and the development of different diseases with increased cardiovascular risk. Finally, the review highlights the importance of minor apolipoproteins associated with LDL(-) which would play a crucial role in the different properties displayed by these modified LDL particles.
Collapse
Affiliation(s)
- Andrea Rivas-Urbina
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain.,Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, Cerdanyola, Spain
| | - Anna Rull
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain.,Hospital Universitari Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain
| | - Jordi Ordóñez-Llanos
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain.,Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, Cerdanyola, Spain
| | - José Luis Sánchez-Quesada
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain.,CIBERDEM. Institute of Health Carlos III, Madrid 28029, Spain
| |
Collapse
|
35
|
Nikolaou A, Kokotou MG, Vasilakaki S, Kokotos G. Small-molecule inhibitors as potential therapeutics and as tools to understand the role of phospholipases A 2. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:941-956. [PMID: 30905350 PMCID: PMC7106526 DOI: 10.1016/j.bbalip.2018.08.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/10/2018] [Accepted: 08/16/2018] [Indexed: 11/20/2022]
Abstract
Phospholipase A2 (PLA2) enzymes are involved in various inflammatory pathological conditions including arthritis, cardiovascular and autoimmune diseases. The regulation of their catalytic activity is of high importance and a great effort has been devoted in developing synthetic inhibitors. We summarize the most important small-molecule synthetic PLA2 inhibitors developed to target each one of the four major types of human PLA2 (cytosolic cPLA2, calcium-independent iPLA2, secreted sPLA2, and lipoprotein-associated LpPLA2). We discuss recent applications of inhibitors to understand the role of each PLA2 type and their therapeutic potential. Potent and selective PLA2 inhibitors have been developed. Although some of them have been evaluated in clinical trials, none reached the market yet. Apart from their importance as potential medicinal agents, PLA2 inhibitors are excellent tools to unveil the role that each PLA2 type plays in cells and in vivo. Modern medicinal chemistry approaches are expected to generate improved PLA2 inhibitors as new agents to treat inflammatory diseases.
Collapse
Affiliation(s)
- Aikaterini Nikolaou
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - Maroula G Kokotou
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - Sofia Vasilakaki
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - George Kokotos
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece.
| |
Collapse
|
36
|
Huang F, Wang K, Shen J. Lipoprotein-associated phospholipase A2: The story continues. Med Res Rev 2019; 40:79-134. [PMID: 31140638 PMCID: PMC6973114 DOI: 10.1002/med.21597] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/20/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022]
Abstract
Inflammation is thought to play an important role in the pathogenesis of vascular diseases. Lipoprotein-associated phospholipase A2 (Lp-PLA2) mediates vascular inflammation through the regulation of lipid metabolism in blood, thus, it has been extensively investigated to identify its role in vascular inflammation-related diseases, mainly atherosclerosis. Although darapladib, the most advanced Lp-PLA2 inhibitor, failed to meet the primary endpoints of two large phase III trials in atherosclerosis patients cotreated with standard medical care, the research on Lp-PLA2 has not been terminated. Novel pathogenic, epidemiologic, genetic, and crystallographic studies regarding Lp-PLA2 have been reported recently, while novel inhibitors were identified through a fragment-based lead discovery strategy. More strikingly, recent clinical and preclinical studies revealed that Lp-PLA2 inhibition showed promising therapeutic effects in diabetic macular edema and Alzheimer's disease. In this review, we not only summarized the knowledge of Lp-PLA2 established in the past decades but also emphasized new findings in recent years. We hope this review could be valuable for helping researchers acquire a much deeper insight into the nature of Lp-PLA2, identify more potent and selective Lp-PLA2 inhibitors, and discover the potential indications of Lp-PLA2 inhibitors.
Collapse
Affiliation(s)
- Fubao Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Kai Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
| | - Jianhua Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
37
|
Consumption of plant extract supplement reduces platelet activating factor-induced platelet aggregation and increases platelet activating factor catabolism: a randomised, double-blind and placebo-controlled trial. Br J Nutr 2019; 121:982-991. [PMID: 30940217 DOI: 10.1017/s0007114519000308] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Platelet-activating factor (PAF) is a potent mediator of inflammation that plays a crucial role in atherosclerosis. The purpose of this study was to evaluate the effect of a dietary supplement containing mainly plant extracts on PAF actions and metabolism in healthy volunteers. A double-blind, placebo-controlled, 8 weeks' duration study was performed. Healthy volunteers were randomly allocated into the supplement or the placebo group and fifty-eight of them completed the study. The supplement contained plant extracts (Aloe gel, grape juice, Polygonum cuspidatum) and vitamins. The activities of PAF metabolic enzymes: the two isoforms of acetyl-CoA:lyso-PAF acetyltransferase, cytidine 5'-diphospho-choline:1-alkyl-2-acetyl-sn-glycerol cholinephosphotransferase (PAF-cholinephosphotransferase) and platelet-activating factor-acetylhydrolase (PAF-AH) in leucocytes and lipoprotein associated phospholipase-A2 in plasma were measured along with several markers of endothelial function. Platelet aggregation against PAF, ADP and thrombin receptor activating peptide was measured in human platelet-rich plasma by light transmission aggregometry. No difference was observed on soluble vascular cell adhesion molecule-1, sP-selectin and IL-6 levels at the beginning or during the study period between the two groups. Concerning PAF metabolism enzymes' activity, no difference was observed at baseline between the groups. PAF-AH activity was only increased in the supplement group at 4 and 8 weeks compared with baseline levels. In addition, supplement consumption led to lower platelet sensitivity against PAF and ADP compared with baseline levels. However, a trial effect was only observed when platelets were stimulated by PAF. In conclusion, supplementation with plant extracts and vitamins ameliorates platelet aggregation primarily against PAF and secondarily against ADP and affects PAF catabolism by enhancing PAF-acetylhydrolase activity in healthy subjects.
Collapse
|
38
|
Xing JC, He YJ, Li P, Zhu YR, Lou XW, Gu C, Qiu H. Relationship between Lp-PLA2 and Child-Pugh classification in patients with hepatitis B cirrhosis. Shijie Huaren Xiaohua Zazhi 2019; 27:160-166. [DOI: 10.11569/wcjd.v27.i3.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the association between serum lipoprotein related phospholipase A2 (Lp-PLA2) level and Child-Pugh classification in patients with hepatitis B cirrhosis.
METHODS A total of 269 patients with hepatitis B cirrhosis were selected as a case group, 157 patients with chronic hepatitis B selected as a disease control group, and 120 healthy subjects as a normal control group. Cirrhotic patients were divided into groups A, B, and C according to Child-Pugh classification. The venous blood was collected from each group and serum Lp-PLA2 level was detected by immunoturbidimetry. After propensity score matching (PSM), statistical analysis was performed to compare serum Lp-PLA2 levels between different groups.
RESULTS The level of serum Lp-PLA2 was significantly higher in the liver cirrhosis group C (443.1 ng/mL ± 40.6 ng/mL) than in the liver cirrhosis groups A (208.5 ng/mL ± 84.6 ng/mL) and B (390.5 ng/mL ± 42.3 ng/mL) and the chronic hepatitis B group (154.3 ng/mL ± 54.1 ng/mL) (P < 0.01), in the liver cirrhosis group B than in the liver cirrhosis group A and the chronic hepatitis B group (P < 0.01), and in the liver cirrhosis group A than in the liver chronic hepatitis B group (P < 0.01). Similar results were also found between the chronic hepatitis B group and the healthy control group (119.1 ng/mL ± 19.8 ng/mL) (P < 0.01). The ROC curve showed that when chronic hepatitis B was used as the control group, the area under the ROC curve of liver cirrhosis was 0.852, and the diagnostic threshold was 262.5 ng/mL. When cirrhosis grade A was used as the control group, the area under the ROC curve of cirrhosis grade B was 0.969, and the diagnostic threshold was 311.5 ng/mL. When cirrhosis grade B was used as the control group, the area under the ROC curve of cirrhosis grade C was 0.809, and the diagnostic threshold was 420.5 ng/mL.
CONCLUSION The level of serum Lp-PLA2 increases with the progression of hepatitis B cirrhosis, which is helpful for judging the Child-Pugh classification of patients with hepatitis B cirrhosis. Serum Lp-PLA2 level can be used as a reference index for monitoring the course of hepatitis B cirrhosis.
Collapse
Affiliation(s)
- Ji-Cheng Xing
- Department of Clinical Laboratory, Bayi Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing 210002, Jiangsu Province, China
| | - Yu-Jie He
- Department of Clinical Laboratory, Bayi Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing 210002, Jiangsu Province, China
| | - Ping Li
- Liver Disease Center, Bayi Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing 210002, Jiangsu Province, China
| | - Yue-Rong Zhu
- Department of Clinical Laboratory, Bayi Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing 210002, Jiangsu Province, China
| | - Xiao-Wei Lou
- Department of Clinical Laboratory, Bayi Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing 210002, Jiangsu Province, China
| | - Chang Gu
- Department of Clinical Laboratory, Bayi Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing 210002, Jiangsu Province, China
| | - Hong Qiu
- Department of Clinical Laboratory, Bayi Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing 210002, Jiangsu Province, China
| |
Collapse
|
39
|
New Insights of Biomarkers in IgE and Non-IgE-Mediated Drug Hypersensitivity. CURRENT TREATMENT OPTIONS IN ALLERGY 2019. [DOI: 10.1007/s40521-019-0201-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Lordan R, Tsoupras A, Zabetakis I. The Potential Role of Dietary Platelet-Activating Factor Inhibitors in Cancer Prevention and Treatment. Adv Nutr 2019; 10:148-164. [PMID: 30721934 PMCID: PMC6370273 DOI: 10.1093/advances/nmy090] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/11/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022] Open
Abstract
Cancer is the second leading cause of mortality worldwide. The role of unresolved inflammation in cancer progression and metastasis is well established. Platelet-activating factor (PAF) is a key proinflammatory mediator in the initiation and progression of cancer. Evidence suggests that PAF is integral to suppression of the immune system and promotion of metastasis and tumor growth by altering local angiogenic and cytokine networks. Interactions between PAF and its receptor may have a role in various digestive, skin, and hormone-dependent cancers. Diet plays a critical role in the prevention of cancer and its treatment. Research indicates that the Mediterranean diet may reduce the incidence of several cancers in which dietary PAF inhibitors have a role. Dietary PAF inhibitors such as polar lipids have demonstrated inhibitory effects against the physiological actions of PAF in cancer and other chronic inflammatory conditions in vitro and in vivo. In addition, experimental models of radiotherapy and chemotherapy demonstrate that inhibition of PAF as adjuvant therapy may lead to more favorable outcomes. Although promising, there is limited evidence on the potential benefits of dietary PAF inhibitors on cancer prevention or treatment. Therefore, further extensive research is required to assess the effects of various dietary factors and PAF inhibitors and to elucidate the mechanisms in prevention of cancer progression and metastasis at a molecular level.
Collapse
Affiliation(s)
- Ronan Lordan
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Alexandros Tsoupras
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Ioannis Zabetakis
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| |
Collapse
|
41
|
Distribution of Paraoxonase-1 (PON-1) and Lipoprotein Phospholipase A2 (Lp-PLA2) across Lipoprotein Subclasses in Subjects with Type 2 Diabetes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1752940. [PMID: 30524650 PMCID: PMC6247389 DOI: 10.1155/2018/1752940] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022]
Abstract
Paraoxonase-1 (PON1) and lipoprotein phospholipase A2 (Lp-PLA2) may exert an important protective role by preventing the oxidative transformation of high- and low-density lipoproteins (HDL and LDL, respectively). The activity of both enzymes is influenced by lipidome and proteome of the lipoprotein carriers. T2DM typically presents significant changes in the molecular composition of the lipoprotein subclasses. Thus, it becomes relevant to understand the interaction of PON1 and Lp-PLA2 with the subspecies of HDL, LDL, and other lipoproteins in T2DM. Serum levels of PON1-arylesterase and PON1-lactonase and Lp-PLA2 activities and lipoprotein subclasses were measured in 202 nondiabetic subjects (controls) and 92 T2DM outpatients. Arylesterase, but not lactonase or Lp-PLA2 activities, was inversely associated with TD2M after adjusting for potential confounding factors such as age, sex, smoking, body mass index, hypertension, and lipoprotein subclasses (odds ratio = 3.389, 95% confidence interval 1.069–14.756). Marked difference between controls and T2DM subjects emerged from the analyses of the associations of the three enzyme activities and lipoprotein subclasses. Arylesterase was independently related with large HDL-C and small intermediate-density lipoprotein cholesterol (IDL-C) in controls while, along with lactonase, it was related with small low-density lipoprotein cholesterol LDL-C, all IDL-C subspecies, and very low-density lipoprotein cholesterol (VLDL-C) in T2DM (p < 0.05 for all). Concerning Lp-PLA2, there were significant relationships with small LDL-C, large IDL-C, and VLDL-C only among T2DM subjects. Our study showed that T2DM subjects have lower levels of PON1-arylesterase compared to controls and that T2DM occurrence may coincide with a shift of PON1 and Lp-PLA2 towards the more proatherogenic lipoprotein subclasses. The possibility of a link between the two observed phenomena requires further investigations.
Collapse
|
42
|
Chaithra VH, Jacob SP, Lakshmikanth CL, Sumanth MS, Abhilasha KV, Chen CH, Thyagarajan A, Sahu RP, Travers JB, McIntyre TM, Kemparaju K, Marathe GK. Modulation of inflammatory platelet-activating factor (PAF) receptor by the acyl analogue of PAF. J Lipid Res 2018; 59:2063-2074. [PMID: 30139761 DOI: 10.1194/jlr.m085704] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/20/2018] [Indexed: 11/20/2022] Open
Abstract
Platelet-activating factor (PAF) is a potent inflammatory mediator that exerts its actions via the single PAF receptor (PAF-R). Cells that biosynthesize alkyl-PAF also make abundant amounts of the less potent PAF analogue acyl-PAF, which competes for PAF-R. Both PAF species are degraded by the plasma form of PAF acetylhydrolase (PAF-AH). We examined whether cogenerated acyl-PAF protects alkyl-PAF from systemic degradation by acting as a sacrificial substrate to enhance inflammatory stimulation or as an inhibitor to dampen PAF-R signaling. In ex vivo experiments both PAF species are prothrombotic in isolation, but acyl-PAF reduced the alkyl-PAF-induced stimulation of human platelets that express canonical PAF-R. In Swiss albino mice, alkyl-PAF causes sudden death, but this effect can also be suppressed by simultaneously administering boluses of acyl-PAF. When PAF-AH levels were incrementally elevated, the protective effect of acyl-PAF on alkyl-PAF-induced death was serially decreased. We conclude that, although acyl-PAF in isolation is mildly proinflammatory, in a pathophysiological setting abundant acyl-PAF suppresses the action of alkyl-PAF. These studies provide evidence for a previously unrecognized role for acyl-PAF as an inflammatory set-point modulator that regulates both PAF-R signaling and hydrolysis.
Collapse
Affiliation(s)
| | - Shancy Petsel Jacob
- Department of Studies in Biochemistry University of Mysore, Manasagangothri, Mysuru 570006, India
| | | | - Mosale Seetharam Sumanth
- Department of Studies in Biochemistry University of Mysore, Manasagangothri, Mysuru 570006, India
| | | | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX 77030
| | - Anita Thyagarajan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435
| | - Ravi P Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435
| | - Jeffery Bryant Travers
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435
| | - Thomas M McIntyre
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | - Kempaiah Kemparaju
- Department of Studies in Biochemistry University of Mysore, Manasagangothri, Mysuru 570006, India
| | - Gopal Kedihithlu Marathe
- Department of Studies in Biochemistry University of Mysore, Manasagangothri, Mysuru 570006, India .,and Department of Studies in Molecular Biology, University of Mysore, Manasagangothri, Mysuru 570006, India
| |
Collapse
|
43
|
Mediterranean diet and platelet-activating factor; a systematic review. Clin Biochem 2018; 60:1-10. [PMID: 30142319 DOI: 10.1016/j.clinbiochem.2018.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/16/2018] [Accepted: 08/16/2018] [Indexed: 12/14/2022]
Abstract
Platelet-activating factor (PAF) is a glycerylether lipid and one of the most potent endogenous mediators of inflammation. Through its binding to a well-characterized receptor it initiates a plethora of cellular pro-inflammatory actions participating by this way to the pathology of most chronic diseases, including cardiovascular and renal diseases, CNS decline and cancer. Among the variety of prudent dietary patterns, Mediterranean Diet (MD) is the dietary pattern with the strongest evidence for its ability to prevent the same chronic diseases. In addition, micronutrients and extracts from several components and characteristic food of the MD can favorably modulate PAF's actions and metabolism either directly or indirectly. However, the role of this traditional diet on PAF metabolism and actions has rarely been studied before. This systematic review summarizes, presents and discusses the outcomes of epidemiologic and intervention studies in humans, investigating the relationships between PAF status and MD. Seventeen full-text articles trying to interlink the components of MD and PAF are found and presented. The results are inconsistent due to the variability of the measured indices and methodology followed. However, preliminary results indicate that the characteristic "healthy" components of the MD, especially, cereals, legumes, vegetables, fish and wine can favorably modulate the pro-inflammatory actions of PAF and regulate its metabolism. Larger, well-controlled studies are necessary to elucidate whether the attenuation of PAF actions can mediate the preventive properties of MD against chronic diseases.
Collapse
|
44
|
Tsoupras A, Lordan R, Zabetakis I. Inflammation, not Cholesterol, Is a Cause of Chronic Disease. Nutrients 2018; 10:E604. [PMID: 29757226 PMCID: PMC5986484 DOI: 10.3390/nu10050604] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/03/2018] [Accepted: 05/09/2018] [Indexed: 12/17/2022] Open
Abstract
Since the Seven Countries Study, dietary cholesterol and the levels of serum cholesterol in relation to the development of chronic diseases have been somewhat demonised. However, the principles of the Mediterranean diet and relevant data linked to the examples of people living in the five blue zones demonstrate that the key to longevity and the prevention of chronic disease development is not the reduction of dietary or serum cholesterol but the control of systemic inflammation. In this review, we present all the relevant data that supports the view that it is inflammation induced by several factors, such as platelet-activating factor (PAF), that leads to the onset of cardiovascular diseases (CVD) rather than serum cholesterol. The key to reducing the incidence of CVD is to control the activities of PAF and other inflammatory mediators via diet, exercise, and healthy lifestyle choices. The relevant studies and data supporting these views are discussed in this review.
Collapse
Affiliation(s)
- Alexandros Tsoupras
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
| | - Ronan Lordan
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
| | - Ioannis Zabetakis
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland.
| |
Collapse
|
45
|
Peck MJ, Sanders EB, Scherer G, Lüdicke F, Weitkunat R. Review of biomarkers to assess the effects of switching from cigarettes to modified risk tobacco products. Biomarkers 2018; 23:213-244. [PMID: 29297706 DOI: 10.1080/1354750x.2017.1419284] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Context: One approach to reducing the harm caused by cigarette smoking, at both individual and population level, is to develop, assess and commercialize modified risk alternatives that adult smokers can switch to. Studies to demonstrate the exposure and risk reduction potential of such products generally involve the measuring of biomarkers, of both exposure and effect, sampled in various biological matrices.Objective: In this review, we detail the pros and cons for using several biomarkers as indicators of effects of changing from conventional cigarettes to modified risk products.Materials and methods: English language publications between 2008 and 2017 were retrieved from PubMed using the same search criteria for each of the 25 assessed biomarkers. Nine exclusion criteria were applied to exclude non-relevant publications.Results: A total of 8876 articles were retrieved (of which 7476 were excluded according to the exclusion criteria). The literature indicates that not all assessed biomarkers return to baseline levels following smoking cessation during the study periods but that nine had potential for use in medium to long-term studies.Discussion and conclusion: In clinical studies, it is important to choose biomarkers that show the biological effect of cessation within the duration of the study.
Collapse
Affiliation(s)
| | | | | | - Frank Lüdicke
- Research & Development, Philip Morris International, Neuchâtel, Switzerland
| | - Rolf Weitkunat
- Research & Development, Philip Morris International, Neuchâtel, Switzerland
| |
Collapse
|
46
|
|
47
|
Huiban M, Coello C, Wu K, Xu Y, Lewis Y, Brown AP, Buraglio M, Guan C, Shabbir S, Fong R, Passchier J, Rabiner EA, Lockhart A. Investigation of the Brain Biodistribution of the Lipoprotein-Associated Phospholipase A 2 (Lp-PLA 2) Inhibitor [ 18F]GSK2647544 in Healthy Male Subjects. Mol Imaging Biol 2017; 19:153-161. [PMID: 27402093 PMCID: PMC5209404 DOI: 10.1007/s11307-016-0982-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Purpose GSK2647544 is a potent and specific inhibitor of lipoprotein-associated phospholipase A2 (Lp-PLA2), which was in development as a potential treatment for Alzheimer’s disease (AD). In order to refine therapeutic dose predictions and confirm brain penetration, a radiolabelled form of the inhibitor, [18F]GSK2647544, was manufactured for use in a positron emission tomography (PET) biodistribution study. Procedures [18F]GSK2647544 was produced using a novel, copper iodide (Cu(I)) mediated, [18F]trifluoromethylation methodology. Healthy male subjects (n = 4, age range 34–42) received an oral dose of unlabelled GSK2647544 (100 mg) and after 2 h an intravenous (iv) injection of [18F]GSK2647544 (average injected activity and mass were 106 ± 47 MBq and 179 ± 55 μg, respectively) followed by dynamic PET scans for 120 min. Defined regions of interest (ROI) throughout the brain were used to obtain regional time-activity curves (TACs) and compartmental modelling analysis used to estimate the primary outcome measure, whole brain volume of distribution (VT). Secondary PK and safety endpoints were also recorded. Results PET dynamic data were successfully obtained from all four subjects and there were no clinically significant variations of the safety endpoints. Inspection of the TACs indicated a relatively homogenous uptake of [18F]GSK2647544 across all the ROIs examined. The mean whole brain VT was 0.56 (95 % CI, 0.41–0.72). Secondary PK parameters, Cmax (geometric mean) and Tmax (median), were 354 ng/ml and 1.4 h, respectively. Metabolism of GSK2647544 was relatively consistent across subjects, with 20–40 % of the parent compound [18F]GSK2647544 present after 120 min. Conclusions The study provides evidence that GSK2647544 is able to cross the blood brain barrier in healthy male subjects leading to a measurable brain exposure. The administered doses of GSK2647544 were well tolerated. Exploratory modelling suggested that a twice-daily dose of 102 mg, at steady state, would provide ~80 % trough inhibition of brain Lp-PLA2 activity. Trial Registration Clintrials.gov: NCT01924858. Electronic supplementary material The online version of this article (doi:10.1007/s11307-016-0982-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mickael Huiban
- Imanova Limited, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Christopher Coello
- Imanova Limited, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Kai Wu
- WuXi Clinical Development Service, 19th Floor, Building A, FuXing Plaza, 388 Ma Dang Road, Shanghai, 200025, China
| | - Yanmei Xu
- GlaxoSmithKline, Neurosciences, 917 Halei Road, Zhangjiang Hi-tech Park, Pudong, Shanghai, 201203, China
| | - Yvonne Lewis
- Imanova Limited, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Andrew P Brown
- AstraZeneca UK Limited, Melbourn Science Park, Royston, Herts, SG8 6HB, UK
| | - Mauro Buraglio
- GlaxoSmithKline, Neurosciences, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Chenbing Guan
- GlaxoSmithKline, Neurosciences, 917 Halei Road, Zhangjiang Hi-tech Park, Pudong, Shanghai, 201203, China
| | - Shaila Shabbir
- GlaxoSmithKline, Neurosciences, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Regan Fong
- UCB Biosciences Inc, PO Box 110167, Research Triangle Park, NC, 27709, USA
| | - Jan Passchier
- Imanova Limited, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Eugenii A Rabiner
- Imanova Limited, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Andrew Lockhart
- GlaxoSmithKline, Neurosciences, Clinical Unit Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0GG, UK.
| |
Collapse
|
48
|
Schliefsteiner C, Hirschmugl B, Kopp S, Curcic S, Bernhart EM, Marsche G, Lang U, Desoye G, Wadsack C. Maternal Gestational Diabetes Mellitus increases placental and foetal lipoprotein-associated Phospholipase A2 which might exert protective functions against oxidative stress. Sci Rep 2017; 7:12628. [PMID: 28974763 PMCID: PMC5626711 DOI: 10.1038/s41598-017-13051-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 09/18/2017] [Indexed: 12/13/2022] Open
Abstract
Increased Lipoprotein associated phospholipase A2 (LpPLA2) has been associated with inflammatory pathologies, including Type 2 Diabetes. Studies on LpPLA2 and Gestational Diabetes Mellitus (GDM) are rare, and have focused mostly on maternal outcome. In the present study, we investigated whether LpPLA2 activity on foetal lipoproteins is altered by maternal GDM and/or obesity (a major risk factor for GDM), thereby contributing to changes in lipoprotein functionality. We identified HDL as the major carrier of LpPLA2 activity in the foetus, which is in contrast to adults. We observed marked expression of LpPLA2 in placental macrophages (Hofbauer cells; HBCs) and found that LpPLA2 activity in these cells was increased by insulin, leptin, and pro-inflammatory cytokines. These regulators were also increased in plasma of children born from GDM pregnancies. Our results suggest that insulin, leptin, and pro-inflammatory cytokines are positive regulators of LpPLA2 activity in the foeto-placental unit. Of particular interest, functional assays using a specific LpPLA2 inhibitor suggest that high-density lipoprotein (HDL)-associated LpPLA2 exerts anti-oxidative, athero-protective functions on placental endothelium and foetus. Our results therefore raise the possibility that foetal HDL-associated LpPLA2 might act as an anti-inflammatory enzyme improving vascular barrier function.
Collapse
Affiliation(s)
| | - Birgit Hirschmugl
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Susanne Kopp
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Sanja Curcic
- Department of Clinical and Experimental Pharmacology, Medical University of Graz, Graz, Austria
| | - Eva Maria Bernhart
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Gunther Marsche
- Department of Clinical and Experimental Pharmacology, Medical University of Graz, Graz, Austria
| | - Uwe Lang
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Gernot Desoye
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Christian Wadsack
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
49
|
Muñoz-Cano R, Pascal M, Araujo G, Goikoetxea MJ, Valero AL, Picado C, Bartra J. Mechanisms, Cofactors, and Augmenting Factors Involved in Anaphylaxis. Front Immunol 2017; 8:1193. [PMID: 29018449 PMCID: PMC5623009 DOI: 10.3389/fimmu.2017.01193] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/08/2017] [Indexed: 01/12/2023] Open
Abstract
Anaphylaxis is an acute and life-threatening systemic reaction. Many triggers have been described, including food, drug, and hymenoptera allergens, which are the most frequently involved. The mechanisms described in anaphylactic reactions are complex and implicate a diversity of pathways. Some of these mechanisms may be key to the development of the anaphylactic reaction, while others may only modify its severity. Although specific IgE, mast cells, and basophils are considered the principal players in anaphylaxis, alternative mechanisms have been proposed in non-IgE anaphylactic reactions. Neutrophils, macrophages, as well as basophils, have been involved, as have IgG-dependent, complement and contact system activation. A range of cationic substances can induce antibody-independent mast cells activation through MRGPRX2 receptor. Cofactors and augmenting factors may explain why, in some patients, food allergen exposure can cause anaphylaxis, while in other clinical scenario it can be tolerated or elicits a mild reaction. With the influence of these factors, food allergic reactions may be induced at lower doses of allergen and/or become more severe. Exercise, alcohol, estrogens, and some drugs such as Non-steroidal anti-inflammatory drugs, angiotensin-converting enzyme inhibitors, β-blockers, and lipid-lowering drugs are the main factors described, though their mechanisms and signaling pathways are poorly understood.
Collapse
Affiliation(s)
- Rosa Muñoz-Cano
- Unitat d'Allergia, Servei de Pneumologia, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mariona Pascal
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Servei d'Immunologia, Centre de Diagnòstic Biomèdic (CDB), Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | - Giovanna Araujo
- Unitat d'Allergia, Servei de Pneumologia, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - M J Goikoetxea
- Allergy and Immunology Department, Universidad de Navarra, Navarra, Spain
| | - Antonio L Valero
- Unitat d'Allergia, Servei de Pneumologia, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Cesar Picado
- Unitat d'Allergia, Servei de Pneumologia, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Joan Bartra
- Unitat d'Allergia, Servei de Pneumologia, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
50
|
Escribese MM, Rosace D, Chivato T, Fernández TD, Corbí AL, Barber D. Alternative Anaphylactic Routes: The Potential Role of Macrophages. Front Immunol 2017; 8:515. [PMID: 28533777 PMCID: PMC5421149 DOI: 10.3389/fimmu.2017.00515] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/18/2017] [Indexed: 01/07/2023] Open
Abstract
Anaphylaxis is an acute, life-threatening, multisystem syndrome resulting from the sudden release of mediators from effector cells. There are two potential pathways for anaphylaxis. The first one, IgE-dependent anaphylaxis, is induced by antigen (Ag) cross-linking of Ag-specific IgE bound to the high-affinity IgE receptor (FcεRI) on mast cells and basophils. The second one, IgG-dependent anaphylaxis is induced by Ag cross-linking of Ag-specific IgG bound to IgG receptors (FcγRI, FcγRIIA, FcγRIIB, FcγRIIC, and FcγRIIIA) on macrophages, neutrophils, and basophils. Macrophages exhibit a huge functional plasticity and are capable of exerting their scavenging, bactericidal, and regulatory functions under a wide variety of tissue conditions. Herein, we will review their potential role in the triggering and development of anaphylaxis. Thereby, macrophages, among other immune cells, play a role in both anaphylactic pathways (1) by responding to anaphylactic mediators secreted by mast cells after specific IgE cross-linking or (2) by acting as effector cells in the anaphylactic response mediated by IgG. In this review, we will go over the cellular and molecular mechanisms that take place in the above-mentioned anaphylactic pathways and will discuss the clinical implications in human allergic reactions.
Collapse
Affiliation(s)
- María M Escribese
- Faculty of Medicine, IMMA Applied Molecular Medicine Institute, CEU San Pablo University, Madrid, Spain.,Faculty of Medicine, Basic Medical Sciences Department, CEU San Pablo University, Madrid, Spain
| | - Domenico Rosace
- Faculty of Medicine, IMMA Applied Molecular Medicine Institute, CEU San Pablo University, Madrid, Spain
| | - Tomas Chivato
- Faculty of Medicine, Basic Medical Sciences Department, CEU San Pablo University, Madrid, Spain
| | - Tahia D Fernández
- Allergy Unit, Málaga Regional University Hospital-IBIMA, Málaga University, Málaga, Spain
| | - Angel L Corbí
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Domingo Barber
- Faculty of Medicine, IMMA Applied Molecular Medicine Institute, CEU San Pablo University, Madrid, Spain
| |
Collapse
|