1
|
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, Jia W, Ren H, Feng W, Chen Y. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev 2024; 124:8307-8472. [PMID: 38924776 DOI: 10.1021/acs.chemrev.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
2
|
Ren H, Xiang S, Liu A, Wang Q, Zhou N, Hu Z. A noval noninvasive targeted therapy for osteosarcoma: the combination of LIFU and ultrasound-magnetic-mediated SPIO/TP53/PLGA nanobubble. Front Bioeng Biotechnol 2024; 12:1418903. [PMID: 39007051 PMCID: PMC11239426 DOI: 10.3389/fbioe.2024.1418903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Purpose Osteosarcoma (OS) is the most common type of primary malignant bone tumor. Transducing a functional TP53 gene can effectively inhibit OS cell activity. Poly lactic acid-glycolic acid (PLGA) nanobubbles (NBs) mediated by focused ultrasound (US) can introduce exogenous genes into target cells in animal models, but this technique relies on the passive free diffusion of agents across the body. The inclusion of superparamagnetic iron oxide (SPIO) in microbubbles allows for magnetic-based tissue localization. A low-intensity-focused ultrasound (LIFU) instrument was developed at our institute, and different intensities of LIFU can either disrupt the NBs (RLI-LIFU) or exert cytocidal effects on the target tissues (RHI-LIFU). Based on these data, we performed US-magnetic-mediated TP53-NB destruction and investigated its ability to inhibit OS growth when combined with LIFU both in vitro and in vivo. Methods Several SPIO/TP53/PLGA (STP) NB variants were prepared and characterized. For the in vitro experiments, HOS and MG63 cells were randomly assigned into five treatment groups. Cell proliferation and the expression of TP53 were detected by CCK8, qRT-PCR and Western blotting, respectively. In vivo, tumor-bearing nude mice were randomly assigned into seven treatment groups. The iron distribution of Perls' Prussian blue-stained tissue sections was determined by optical microscopy. TUNEL-DAPI was performed to examine apoptosis. TP53 expression was detected by qRT-PCR and immunohistochemistry. Results SPIO/TP53/PLGA NBs with a particle size of approximately 200 nm were prepared successfully. For in vitro experiments, ultrasound-targeted transfection of TP53 overexpression in OS cells and efficient inhibition of OS proliferation have been demonstrated. Furthermore, in a tumor-bearing nude mouse model, RLI-LIFU-magnetic-mediated SPIO/TP53/PLGA NBs increased the transfection efficiency of the TP53 plasmid, resulting in apoptosis. Adding RHI-LIFU to the treatment regimen significantly increased the apoptosis of OS cells in vivo. Conclusion Combining LIFU and US-magnetic-mediated SPIO/TP53/PLGA NB destruction is potentially a novel noninvasive and targeted therapy for OS.
Collapse
Affiliation(s)
- Honglei Ren
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Orthopedic Surgery, ChongQing Red Cross Hospital (People's Hospital of JiangBei District), Chongqing, China
| | - Shanlin Xiang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Aiguo Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Qian Wang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Nian Zhou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhenming Hu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Orthopedic Surgery, The University-Town Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Uzieliene I, Kalvaityte U, Bernotiene E, Mobasheri A. Non-viral Gene Therapy for Osteoarthritis. Front Bioeng Biotechnol 2021; 8:618399. [PMID: 33520968 PMCID: PMC7838585 DOI: 10.3389/fbioe.2020.618399] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022] Open
Abstract
Strategies for delivering nucleic acids into damaged and diseased tissues have been divided into two major areas: viral and non-viral gene therapy. In this mini-review article we discuss the application of gene therapy for the treatment of osteoarthritis (OA), one of the most common forms of arthritis. We focus primarily on non-viral gene therapy and cell therapy. We briefly discuss the advantages and disadvantages of viral and non-viral gene therapy and review the nucleic acid transfer systems that have been used for gene delivery into articular chondrocytes in cartilage from the synovial joint. Although viral gene delivery has been more popular due to its reported efficiency, significant effort has gone into enhancing the transfection efficiency of non-viral delivery, making non-viral approaches promising tools for further application in basic, translational and clinical studies on OA. Non-viral gene delivery technologies have the potential to transform the future development of disease-modifying therapeutics for OA and related osteoarticular disorders. However, further research is needed to optimize transfection efficiency, longevity and duration of gene expression.
Collapse
Affiliation(s)
- Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Ursule Kalvaityte
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.,Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.,Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, Netherlands.,Centre for Sport, Exercise and Osteoarthritis Versus Arthritis, Queen's Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
4
|
Batabyal S, Gajjeraman S, Bhattacharya S, Wright W, Mohanty S. Nano-enhanced Optical Gene Delivery to Retinal Degenerated Mice. Curr Gene Ther 2020; 19:318-329. [PMID: 31625475 DOI: 10.2174/1566523219666191017114044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/19/2019] [Accepted: 09/19/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND The efficient and targeted delivery of genes and other impermeable therapeutic molecules into retinal cells is of immense importance for the therapy of various visual disorders. Traditional methods for gene delivery require viral transfection, or chemical methods that suffer from one or many drawbacks, such as low efficiency, lack of spatially targeted delivery, and can generally have deleterious effects, such as unexpected inflammatory responses and immunological reactions. METHODS We aim to develop a continuous wave near-infrared laser-based Nano-enhanced Optical Delivery (NOD) method for spatially controlled delivery of ambient-light-activatable Muti-Characteristic opsin-encoding genes into retina in-vivo and ex-vivo. In this method, the optical field enhancement by gold nanorods is utilized to transiently permeabilize cell membrane, enabling delivery of exogenous impermeable molecules to nanorod-binding cells in laser-irradiated regions. RESULTS AND DISCUSSION With viral or other non-viral (e.g. electroporation, lipofection) methods, gene is delivered everywhere, causing uncontrolled expression over the whole retina. This will cause complications in the functioning of non-degenerated areas of the retina. In the NOD method, the contrast in temperature rise in laser-irradiated nanorod-attached cells at nano-hotspots is significant enough to allow site-specific delivery of large genes. The in-vitro and in-vivo results using NOD, clearly demonstrate in-vivo gene delivery and functional cellular expression in targeted retinal regions without compromising the structural integrity of the eye or causing immune response. CONCLUSION The successful delivery and expression of MCO in the targeted retina after in-vivo NOD in the mice models of retinal degeneration opens a new vista for re-photosensitizing retina with geographic atrophies, such as in dry age-related macular degeneration.
Collapse
Affiliation(s)
- Subrata Batabyal
- Nanoscope Technologies LLC, 1312 Brown Trail, Bedford, TX, 76022, United States
| | | | | | - Weldon Wright
- Nanoscope Technologies LLC, 1312 Brown Trail, Bedford, TX, 76022, United States
| | - Samarendra Mohanty
- Nanoscope Technologies LLC, 1312 Brown Trail, Bedford, TX, 76022, United States
| |
Collapse
|
5
|
Wang W, Naolou T, Ma N, Deng Z, Xu X, Mansfeld U, Wischke C, Gossen M, Neffe AT, Lendlein A. Polydepsipeptide Block-Stabilized Polyplexes for Efficient Transfection of Primary Human Cells. Biomacromolecules 2017; 18:3819-3833. [PMID: 28954190 DOI: 10.1021/acs.biomac.7b01034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The rational design of a polyplex gene carrier aims to balance maximal effectiveness of nucleic acid transfection into cells with minimal adverse effects. Depsipeptide blocks with an Mn ∼ 5 kDa exhibiting strong physical interactions were conjugated with PEI moieties (2.5 or 10 kDa) to di- and triblock copolymers. Upon nanoparticle formation and complexation with DNA, the resulting polyplexes (sizes typically 60-150 nm) showed remarkable stability compared to PEI-only or lipoplex and facilitated efficient gene delivery. Intracellular trafficking was visualized by observing fluorescence-labeled pDNA and highlighted the effective cytoplasmic uptake of polyplexes and release of DNA to the perinuclear space. Specifically, a triblock copolymer with a middle depsipeptide block and two 10 kDa PEI swallowtail structures mediated the highest levels of transgenic VEGF secretion in mesenchymal stem cells with low cytotoxicity. These nanocarriers form the basis for a delivery platform technology, especially for gene transfer to primary human cells.
Collapse
Affiliation(s)
- Weiwei Wang
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
| | - Toufik Naolou
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
| | - Nan Ma
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , 14195 Berlin, Germany
| | - Zijun Deng
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , 14195 Berlin, Germany
| | - Xun Xu
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , 14195 Berlin, Germany
| | - Ulrich Mansfeld
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
| | - Christian Wischke
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
| | - Manfred Gossen
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
| | - Axel T Neffe
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany.,Institute of Chemistry, University of Potsdam , 14476 Potsdam, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , 14195 Berlin, Germany.,Institute of Chemistry, University of Potsdam , 14476 Potsdam, Germany
| |
Collapse
|
6
|
An ultra-effective method of generating extramultipotent cells from human fibroblasts by ultrasound. Biomaterials 2017; 143:65-78. [DOI: 10.1016/j.biomaterials.2017.07.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/24/2017] [Indexed: 12/21/2022]
|
7
|
Song Z, Wang Z, Shen J, Xu S, Hu Z. Nerve growth factor delivery by ultrasound-mediated nanobubble destruction as a treatment for acute spinal cord injury in rats. Int J Nanomedicine 2017; 12:1717-1729. [PMID: 28280337 PMCID: PMC5340249 DOI: 10.2147/ijn.s128848] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Spinal cord injuries (SCIs) can cause severe disability or death. Treatment options include surgical intervention, drug therapy, and stem cell transplantation. However, the efficacy of these methods for functional recovery remains unsatisfactory. Purpose This study was conducted to explore the effect of ultrasound (US)-mediated destruction of poly(lactic-co-glycolic acid) (PLGA) nanobubbles (NBs) expressing nerve growth factor (NGF) (NGF/PLGA NBs) on nerve regeneration in rats following SCI. Materials and methods Adult male Sprague Dawley rats were randomly divided into four treatment groups after Allen hit models of SCI were established. The groups were normal saline (NS) group, NGF and NBs group, NGF and US group, and NGF/PLGA NBs and US group. Histological changes after SCI were observed by hematoxylin and eosin staining. Neuron viability was determined by Nissl staining. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling staining was used to examine cell apoptosis. NGF gene and protein expressions were detected by quantitative reverse transcription polymerase chain reaction and Western blotting. Green fluorescent protein expression in the spinal cord was examined using an inverted fluorescence microscope. The recovery of neural function was determined using the Basso, Beattie, and Bresnahan test. Results NGF therapy using US-mediated NGF/PLGA NBs destruction significantly increased NGF expression, attenuated histological injury, decreased neuron loss, inhibited neuronal apoptosis in injured spinal cords, and increased BBB scores in rats with SCI. Conclusion US-mediated NGF/PLGA NBs destruction effectively transfects the NGF gene into target tissues and has a significant effect on the injured spinal cord. The combination of US irradiation and gene therapy through NGF/PLGA NBs holds great promise for the future of nanomedicine and the development of noninvasive treatment options for SCI and other diseases.
Collapse
Affiliation(s)
- Zhaojun Song
- Department of Orthopedics, The First Affiliated Hospital
| | - Zhigang Wang
- Institution of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jieliang Shen
- Department of Orthopedics, The First Affiliated Hospital
| | - Shengxi Xu
- Department of Orthopedics, The First Affiliated Hospital
| | - Zhenming Hu
- Department of Orthopedics, The First Affiliated Hospital
| |
Collapse
|
8
|
Negishi Y, Endo-Takahashi Y, Maruyama K. Gene delivery systems by the combination of lipid bubbles and ultrasound. Drug Discov Ther 2016; 10:248-255. [PMID: 27795481 DOI: 10.5582/ddt.2016.01063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gene therapy is promising for the treatment of many diseases including cancers and genetic diseases. From the viewpoint of safety, ultrasound (US)-mediated gene delivery with nano/ microbubbles was recently developed as a novel non-viral vector system. US-mediated gene delivery using nano/microbubbles are able to produce transient changes in the permeability of the cell membrane after US-induced cavitation while reducing cellular damage and enables the tissue-specific or the site-specific intracellular delivery of gene both in vitro and in vivo. We have recently developed novel lipid nanobubbles (Lipid Bubbles). These nanobubbles can also be used to enhance the efficacy of the US-mediated genes (plasmid DNA, siRNA, and miRNA etc.) delivery. In this review, we describe US-mediated delivery systems combined with nano/microbubbles and discuss their feasibility as non-viral vector systems.
Collapse
Affiliation(s)
- Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | | | | |
Collapse
|
9
|
Liu Y, Yan J, Santangelo PJ, Prausnitz MR. DNA uptake, intracellular trafficking and gene transfection after ultrasound exposure. J Control Release 2016; 234:1-9. [PMID: 27165808 DOI: 10.1016/j.jconrel.2016.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/26/2016] [Accepted: 05/06/2016] [Indexed: 11/17/2022]
Abstract
Ultrasound has been studied as a promising tool for intracellular gene delivery. In this work, we studied gene transfection of a human prostate cancer cell line exposed to megahertz pulsed ultrasound in the presence of contrast agent and assessed the efficiency of fluorescently labelled DNA delivery into cell nuclei, which is necessary for gene transfection. At the sonication conditions studied, ~30% of cells showed DNA uptake 30min after sonication, but that fraction decreased over time to ~10% of cells after 24h. Most cells containing DNA had DNA in their nuclei, but the amount varied significantly. Transfection efficiency peaked at ~10% at 8h post sonication. Among those cells containing DNA, ~30% of DNA was localized in the cell nuclei, ~30% was in autophagosomes/autophagolysosomes and the remainder was "free" in the cytoplasm 30min after sonication. At later times up to 24h, ~30% of DNA continued to be found in the nuclei and most or all of the rest of the DNA was in autophagosomes/autophagolysosomes. These results demonstrate that ultrasound can deliver DNA into cell nuclei shortly after sonication and that the rest of the DNA can be cleared by autophagosomes/autophagolysosomes.
Collapse
Affiliation(s)
- Ying Liu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA
| | - Jing Yan
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA; Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
10
|
Hersey JS, LaManna CM, Lusic H, Grinstaff MW. Stimuli responsive charge-switchable lipids: Capture and release of nucleic acids. Chem Phys Lipids 2016; 196:52-60. [PMID: 26896839 DOI: 10.1016/j.chemphyslip.2016.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 01/12/2023]
Abstract
Stimuli responsive lipids, which enable control over the formation, transformation, and disruption of supramolecular assemblies, are of interest for biosensing, diagnostics, drug delivery, and basic transmembrane protein studies. In particular, spatiotemporal control over a supramolecular structure can be achieved using light activated compounds to induce significant supramolecular rearrangements. As such, a family of cationic lipids are described which undergo a permanent switch in charge upon exposure to 365 nm ultraviolet (UV) light to enable the capture of negatively charged nucleic acids within the self-assembled supramolecular structure of the lipids and subsequent release of these macromolecules upon exposure to UV light and disruption of the assemblies. The lipids are composed of either two different tripeptide head groups, Lysine-Glycine-Glycine (KGG) and Glycine-Glycine-Glycine (GGG) and three different hydrocarbon chain lengths (C6, C10, or C14) terminated by a UV light responsive 1-(2-nitrophenyl)ethanol (NPE) protected carboxylic acid. The photolysis of the NPE protected lipid is measured as a function of time, and the resulting changes in net molecular charge are observed using zeta potential analysis for each head group and chain length combination. A proof of concept study for the capture and release of both linear DNA (calf thymus) and siRNA is presented using an ethidium bromide quenching assay where a balance between binding affinity and supramolecular stability are found to be the key to optimal nucleic acid capture and release.
Collapse
Affiliation(s)
- Joseph S Hersey
- Boston University, Biomedical Engineering Department, Boston, MA 02215, USA
| | - Caroline M LaManna
- Boston University, Biomedical Engineering Department, Boston, MA 02215, USA
| | - Hrvoje Lusic
- Boston University, Chemistry Department, Boston, MA 02215, USA
| | - Mark W Grinstaff
- Boston University, Biomedical Engineering Department, Boston, MA 02215, USA; Boston University, Chemistry Department, Boston, MA 02215, USA.
| |
Collapse
|
11
|
Song KM, Choi MJ, Kwon MH, Ghatak K, Park SH, Ryu DS, Ryu JK, Suh JK. Optimizing in vivo gene transfer into mouse corpus cavernosum by use of surface electroporation. Korean J Urol 2015; 56:197-204. [PMID: 25763123 PMCID: PMC4355430 DOI: 10.4111/kju.2015.56.3.197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/08/2015] [Indexed: 11/22/2022] Open
Abstract
Purpose Electroporation is known to enhance the efficiency of gene transfer through a transient increase in cell membrane permeability. The aim of this study was to determine the optimal conditions for in vivo electroporation-mediated gene delivery into mouse corpus cavernosum. Materials and Methods Diabetes was induced in C57BL/6 mice by intraperitoneal injections of streptozotocin. After intracavernous injection of pCMV-Luc (100 µg/40 µL), different electroporation settings (5-50 V, 8-16 pulses with a duration of 40-100 ms) were applied to the penis to establish the optimal conditions for electroporation. Gene expression was evaluated by luciferase assay. We also assessed the undesired consequences of electroporation by visual inspection and hematoxylin-eosin staining of penile tissue. Results Electroporation profoundly induced gene expression in the corpus cavernosum tissue of normal mice in a voltage-dependent manner. We observed electrical burn scars in the penis of normal mice who received electroporation with eight 40-ms pulses at a voltage of 50 V and sixteen 40-ms pulses, eight 100-ms pulses, and sixteen 100-ms pulses at a voltage of 30 V. No detectable burn scars were noted in normal mice stimulated with eight 40-ms pulses at a voltage of 30 V. Electroporation also significantly induced gene expression in diabetic mice stimulated with 40-ms pulse at a voltage of 30 V without injury to the penis. Conclusions We have established the optimal electroporation conditions for maximizing gene transfer into the corpus cavernosum of mice while avoiding damage to the erectile tissue. The electroporation-mediated gene delivery technique will be a valuable tool for gene therapy in the field of erectile dysfunction.
Collapse
Affiliation(s)
- Kang-Moon Song
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - Min Ji Choi
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - Mi-Hye Kwon
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - Kalyan Ghatak
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - Soo-Hwan Park
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - Dong-Soo Ryu
- Department of Urology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Ji-Kan Ryu
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| | - Jun-Kyu Suh
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon, Korea
| |
Collapse
|
12
|
Salem ML, Gadalla KKE, Fielding BC, Thorne SH. Gene Therapy and Virus-Based Cancer Vaccines. CANCER IMMUNOLOGY 2015:131-150. [DOI: 10.1007/978-3-662-44946-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
13
|
Velazquez MA, Kues WA, Niemann H. Biomedical applications of ovarian transvaginal ultrasonography in cattle. Anim Biotechnol 2014; 25:266-93. [PMID: 24813220 DOI: 10.1080/10495398.2013.870075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ovarian transvaginal ultrasonography (OTU) has been used world-wide for commercial ovum pick-up programs for in vitro embryo production in elite herds, providing an excellent model for the elucidation of factors controlling bovine oocyte developmental competence. Noninvasive sampling and treatment of ovarian structures is easily accomplished with bovine OTU techniques providing a promising system for in vivo delivery of transgenes directly into the ovary. The current review summarizes existing bovine OTU models and provides prospective applications of bovine OTU to undertake research in reproductive topics of biomedical relevance, with special emphasis on the development of in vivo gene transfer strategies.
Collapse
Affiliation(s)
- Miguel A Velazquez
- a Centre for Biological Sciences , University of Southampton, Southampton General Hospital , Southampton , United Kingdom
| | | | | |
Collapse
|
14
|
Abstract
The key impediment to the successful application of gene therapy in clinics is not the paucity of therapeutic genes. It is rather the lack of nontoxic and efficient strategies to transfer therapeutic genes into target cells. Over the past few decades, considerable progress has been made in gene transfer technologies, and thus far, three different delivery systems have been developed with merits and demerits characterizing each system. Viral and chemical methods of gene transfer utilize specialized carrier to overcome membrane barrier and facilitate gene transfer into cells. Physical methods, on the other hand, utilize various forms of mechanical forces to enforce gene entry into cells. Starting in 1980s, physical methods have been introduced as alternatives to viral and chemical methods to overcome various extra- and intracellular barriers that limit the amount of DNA reaching the intended cells. Accumulating evidence suggests that it is quite feasible to directly translocate genes into cytoplasm or even nuclei of target cells by means of mechanical force, bypassing endocytosis, a common pathway for viral and nonviral vectors. Indeed, several methods have been developed, and the majority of them share the same underlying mechanism of gene transfer, i.e., physically created transient pores in cell membrane through which genes get into cells. Here, we provide an overview of the current status and future research directions in the field of physical methods of gene transfer.
Collapse
|
15
|
Omata D, Negishi Y, Suzuki R, Oda Y, Endo-Takahashi Y, Maruyama K. Nonviral gene delivery systems by the combination of bubble liposomes and ultrasound. ADVANCES IN GENETICS 2014; 89:25-48. [PMID: 25620007 DOI: 10.1016/bs.adgen.2014.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The combination of therapeutic ultrasound (US) and nano/microbubbles is an important system for establishing a novel and noninvasive gene delivery system. Genes are delivered more efficiently using this system compared with a conventional nonviral vector system such as the lipofection method, resulting in higher gene expression. This higher efficiency is due to the gene being delivered into the cytosol and bypassing the endocytosis pathway. Many in vivo studies have demonstrated US-mediated gene delivery with nano/microbubbles, and several gene therapy feasibility studies for various diseases have been reported. In addition, nano/microbubbles can deliver genes site specifically by the control of US exposure site. In the present review, we summarize the gene delivery systems by the combination of nano/microbubbles and US, describe their properties, and assess applications and challenges of US theranostics.
Collapse
Affiliation(s)
- Daiki Omata
- Department of Drug and Gene Delivery Research, Faculty of Pharma-Sciences, Teikyo University, Itabashi, Tokyo, Japan
| | - Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Ryo Suzuki
- Department of Drug and Gene Delivery Research, Faculty of Pharma-Sciences, Teikyo University, Itabashi, Tokyo, Japan
| | - Yusuke Oda
- Department of Drug and Gene Delivery Research, Faculty of Pharma-Sciences, Teikyo University, Itabashi, Tokyo, Japan
| | - Yoko Endo-Takahashi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Kazuo Maruyama
- Department of Drug and Gene Delivery Research, Faculty of Pharma-Sciences, Teikyo University, Itabashi, Tokyo, Japan
| |
Collapse
|
16
|
Tomizawa M, Shinozaki F, Motoyoshi Y, Sugiyama T, Yamamoto S, Sueishi M. Dual gene expression in embryoid bodies derived from human induced pluripotent stem cells using episomal vectors. Tissue Eng Part A 2014; 20:3154-3162. [PMID: 24980753 PMCID: PMC4259172 DOI: 10.1089/ten.tea.2014.0132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 05/20/2014] [Indexed: 01/16/2023] Open
Abstract
Transcription factors are essential for the differentiation of human induced pluripotent stem cells (iPS) into specialized cell types. Embryoid body (EB) formation promotes the differentiation of iPS cells. We sought to establish an efficient method of transfection and rotary culture to generate EBs that stably express two genes. The pMetLuc2-Reporter vector was transfected using FuGENE HD (FuGENE), Lipofectamine LTX (LTX), X-tremeGENE, or TransIT-2020 transfection reagents. The media was analyzed using a Metridia luciferase (MetLuc) assay. Transfections were performed on cells adherent to plates/dishes (adherent method) or suspended in the media (suspension method). The 201B7 cells transfected with episomal vectors were selected using G418 (200 μg/mL) or hygromycin B (300 μg/mL). Rotary culture was performed at 2.5 or 9.9 rpm. Efficiency of EB formation was compared among plates and dishes. Cell density was compared at 1.6×10(3),×10(4), and×10(5) cells/mL. The suspended method of transfection using the FuGENE HD reagent was the most efficient. The expression of pEBMulti/Met-Hyg was detected 11 days posttransfection. Double transformants were selected 6 days posttransfection with pEBNK/EGFP-Neo and pEBNK/Cherry-Hyg. Both EGFP and CherryPicker were expressed in all of the surviving cells. EBs were formed most efficiently from cells cultured at a density of 1.6×10(5) cells/mL in six-well plates or 6 cm dishes. The selected cells formed EBs. FuGENE-mediated transfection of plasmids using the suspension method was effective in transforming iPS cells. Furthermore, the episomal vectors enabled us to perform a stable double transfection of EB-forming iPS cells.
Collapse
Affiliation(s)
- Minoru Tomizawa
- Department of Gastroenterology, National Hospital Organization, Shimoshizu Hospital, Yotsukaido City, Japan
| | - Fuminobu Shinozaki
- Department of Radiology, National Hospital Organization, Shimoshizu Hospital, Yotsukaido City, Japan
| | - Yasufumi Motoyoshi
- Department of Neurology, National Hospital Organization, Shimoshizu Hospital, Yotsukaido City, Japan
| | - Takao Sugiyama
- Department of Rheumatology, National Hospital Organization, Shimoshizu Hospital, Yotsukaido City, Japan
| | - Shigenori Yamamoto
- Department of Pediatrics, National Hospital Organization, Shimoshizu Hospital, Yotsukaido City, Japan
| | - Makoto Sueishi
- Department of Rheumatology, National Hospital Organization, Shimoshizu Hospital, Yotsukaido City, Japan
| |
Collapse
|
17
|
Wei Z, Zheng S, Wang R, Bu X, Ma H, Wu Y, Zhu L, Hu Z, Liang Z, Li Z. A flexible microneedle array as low-voltage electroporation electrodes for in vivo DNA and siRNA delivery. LAB ON A CHIP 2014; 14:4093-4102. [PMID: 25182174 DOI: 10.1039/c4lc00800f] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In vivo electroporation is an appealing method to deliver nucleic acid into living tissues, but the clinical application of such a method was limited due to severe tissue damage and poor coverage of the tissue surface. Here we present the validation of a novel flexible microneedle array electrode (MNAE) chip, in which the microneedle array and the flexible substrate are integrated together to simultaneously facilitate low-voltage electroporation and accomplish good coverage of the tissue surface. The efficient delivery of both DNA and siRNA was demonstrated on mice. Upon penetrating the high-resistance stratum corneum, the electroporation voltage was reduced to about 35 V, which was generally recognized safe for humans. Also, a pathological analysis of the microneedle-electroporated tissues was carried out to thoroughly assess the skin damage, which is an important consideration in pre-clinical studies of electroporation devices. This MNAE constitutes a novel way of in vivo delivery of siRNA and DNA to certain tissues or organs with satisfactory efficiency and good adaptation to the tissue surface profile as well as minimum tissue damage, thus avoiding the disadvantages of existing electroporation methods.
Collapse
Affiliation(s)
- Zewen Wei
- National Center for Nanoscience and Technology, Beijing 100190, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wei Z, Li X, Zhao D, Yan H, Hu Z, Liang Z, Li Z. Flow-Through Cell Electroporation Microchip Integrating Dielectrophoretic Viable Cell Sorting. Anal Chem 2014; 86:10215-22. [DOI: 10.1021/ac502294e] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zewen Wei
- National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xueming Li
- National
Key Laboratory of Science and Technology on Micro/Nano Fabrication,
Institute of Microelectronics, Peking University, Beijing 100871, China
- Department
of Microelectronics, Delft University of Technology, Delft 2628CT, The Netherlands
| | - Deyao Zhao
- Institute
of Molecular Medicine, Peking University, Beijing 100871, China
| | - Hao Yan
- National
Key Laboratory of Science and Technology on Micro/Nano Fabrication,
Institute of Microelectronics, Peking University, Beijing 100871, China
| | - Zhiyuan Hu
- National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zicai Liang
- Institute
of Molecular Medicine, Peking University, Beijing 100871, China
| | - Zhihong Li
- National
Key Laboratory of Science and Technology on Micro/Nano Fabrication,
Institute of Microelectronics, Peking University, Beijing 100871, China
| |
Collapse
|
19
|
Cobo C, Makosch K, Jung R, Kohlmann K, Knopf K. Enhanced Aeromonas salmonicida bacterin uptake and side effects caused by low frequency sonophoresis in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2014; 36:444-452. [PMID: 24378683 DOI: 10.1016/j.fsi.2013.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 12/12/2013] [Accepted: 12/18/2013] [Indexed: 06/03/2023]
Abstract
Low frequency sonophoresis (LFS) has been recognized as one of the most advanced technologies in transdermal delivery of substances, due to the modification of the stratum corneum lipid bilayer, in focal skin applications in mammals. Based on these findings, LFS has been suggested as a potential technology to be used for enhancement in immersion fish vaccination. In contrast to mammals where LFS is applied to discrete regions of the skin, in fish the whole individual needs to be exposed for practical purposes. The current study evaluated the impact of LFS at 37 kHz on the uptake of an Aeromonas salmonicida bacterin and side effects of the treatment in rainbow trout. Quantitative real time PCR (qPCR) and immunohistochemistry were used to examine the bacterin uptake into skin and gill tissue. Side effects were assessed by behavioural examination, histology and blood serum analysis. The sonication intensity of 171 mW/cm² was enough for increasing skin permeability, but caused heavy erratic swimming and gill haemorrhages. Sonication intensities as low as 105 mW/cm² did not modify skin permeability and enhanced the bacterin uptake into the gill tissue by factor 15 compared to conventional immersion. Following sonication, the gill permeability for the bacterin decreased after 20 min and 120 min by factor 3 and 2, respectively. However, during sonication, erratic swimming of the fish raised some concerns. Further reduction of the sonication intensity to 57 mW/cm² did not induce erratic swimming, and the bacterin uptake into the gill tissue was still increased by factor 3. In addition, a decreasing albumin-globulin ratio in the serum of the rainbow trout within 40 min revealed that LFS leads to an inflammatory response. Consequently, based on both increased bacterin uptake and the inflammatory response, low intensity LFS has the potential to enhance vaccine immunity without significant side effects.
Collapse
Affiliation(s)
- Cristóbal Cobo
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany; Faculty of Agriculture and Horticulture, Humboldt University of Berlin, Invaliden Str. 42, 10115 Berlin, Germany.
| | - Katarzyna Makosch
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
| | - Rainer Jung
- BANDELIN Electronic GmbH & Co. KG, Heinrichstraße 3-4, 12207 Berlin, Germany
| | - Klaus Kohlmann
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
| | - Klaus Knopf
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
| |
Collapse
|
20
|
Luo K, He B, Wu Y, Shen Y, Gu Z. Functional and biodegradable dendritic macromolecules with controlled architectures as nontoxic and efficient nanoscale gene vectors. Biotechnol Adv 2014; 32:818-30. [PMID: 24389086 DOI: 10.1016/j.biotechadv.2013.12.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 12/13/2013] [Accepted: 12/15/2013] [Indexed: 12/28/2022]
Abstract
Gene therapy has provided great potential to revolutionize the treatment of many diseases. This therapy is strongly relied on whether a delivery vector efficiently and safely directs the therapeutic genes into the target tissue/cells. Nonviral gene delivery vectors have been emerging as a realistic alternative to the use of viral analogs with the potential of a clinically relevant output. Dendritic polymers were employed as nonviral vectors due to their branched and layered architectures, globular shape and multivalent groups on their surface, showing promise in gene delivery. In the present review, we try to bring out the recent trend of studies on functional and biodegradable dendritic polymers as nontoxic and efficient gene delivery vectors. By regulating dendritic polymer design and preparation, together with recent progress in the design of biodegradable polymers, it is possible to precisely manipulate their architectures, molecular weight and chemical composition, resulting in predictable tuning of their biocompatibility as well as gene transfection activities. The multifunctional and biodegradable dendritic polymers possessing the desirable characteristics are expected to overcome extra- and intracellular obstacles, and as efficient and nontoxic gene delivery vectors to move into the clinical arena.
Collapse
Affiliation(s)
- Kui Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China; Center for Bionanoengineering, Zhejiang University, Hangzhou 310027, China.
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
21
|
Tomizawa M, Shinozaki F, Motoyoshi Y, Sugiyama T, Yamamoto S, Sueishi M. Sonoporation: Gene transfer using ultrasound. World J Methodol 2013; 3:39-44. [PMID: 25237622 PMCID: PMC4145571 DOI: 10.5662/wjm.v3.i4.39] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/04/2013] [Accepted: 12/12/2013] [Indexed: 02/06/2023] Open
Abstract
Genes can be transferred using viral or non-viral vectors. Non-viral methods that use plasmid DNA and short interference RNA (siRNA) have advantages, such as low immunogenicity and low likelihood of genomic integration in the host, when compared to viral methods. Non-viral methods have potential merit, but their gene transfer efficiency is not satisfactory. Therefore, new methods should be developed. Low-frequency ultrasound irradiation causes mechanical perturbation of the cell membrane, allowing the uptake of large molecules in the vicinity of the cavitation bubbles. The collapse of these bubbles generates small transient holes in the cell membrane and induces transient membrane permeabilization. This formation of small pores in the cell membrane using ultrasound allows the transfer of DNA/RNA into the cell. This phenomenon is known as sonoporation and is a gene delivery method that shows great promise as a potential new approach in gene therapy. Microbubbles lower the threshold of cavity formation. Complexes of therapeutic genes and microbubbles improve the transfer efficiency of genes. Diagnostic ultrasound is potentially a suitable sonoporator because it allows the real-time monitoring of irradiated fields.
Collapse
Affiliation(s)
- Minoru Tomizawa
- Minoru Tomizawa, Department of Gastroenterology, National Hospital Organization Shimoshizu Hospital, 934-5 Shikawatashi, Yotsukaido City, Chiba 284-0003, Japan
| | - Fuminobu Shinozaki
- Minoru Tomizawa, Department of Gastroenterology, National Hospital Organization Shimoshizu Hospital, 934-5 Shikawatashi, Yotsukaido City, Chiba 284-0003, Japan
| | - Yasufumi Motoyoshi
- Minoru Tomizawa, Department of Gastroenterology, National Hospital Organization Shimoshizu Hospital, 934-5 Shikawatashi, Yotsukaido City, Chiba 284-0003, Japan
| | - Takao Sugiyama
- Minoru Tomizawa, Department of Gastroenterology, National Hospital Organization Shimoshizu Hospital, 934-5 Shikawatashi, Yotsukaido City, Chiba 284-0003, Japan
| | - Shigenori Yamamoto
- Minoru Tomizawa, Department of Gastroenterology, National Hospital Organization Shimoshizu Hospital, 934-5 Shikawatashi, Yotsukaido City, Chiba 284-0003, Japan
| | - Makoto Sueishi
- Minoru Tomizawa, Department of Gastroenterology, National Hospital Organization Shimoshizu Hospital, 934-5 Shikawatashi, Yotsukaido City, Chiba 284-0003, Japan
| |
Collapse
|
22
|
Luo Y, Liu J, Wang Y, Su J, Wu Y, Hu G, Gao M, Quan F, Zhang Y. PhiC31 integrase-mediated genomic integration and stable gene expression in the mouse mammary gland after gene electrotransfer. J Gene Med 2013; 15:356-65. [PMID: 24288809 DOI: 10.1002/jgm.2723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND PhiC31 integrase is capable of conferring long-term transgene expression in various transfected tissues in vivo. In the present study, we investigated the activity of phiC31 integrase in mouse mammary glands. METHODS The normal mouse mammary epithelial cell line HC11 was transfected with FuGENE® HD Transfection Reagent (Roche Diagnostics, Shanghai, China). Transfection of the mouse mammary gland in vivo was performed by electrotransfer. Transgene expression was detected by western blotting and an enzyme-linked immunosorbent assay. Genomic integration and integration at mpsL1 was confirmed by a nested polymerase chain reaction. RESULTS An optimal electrotransfer protocol for the lactating mouse mammary gland was attained through investigation of different voltages and pulse durations. PhiC31 integrase mediated site-specific transgene integration in HC11 cells and the mouse mammary gland. In addition, the site-specific integration occurred efficiently at the ‘hot spot’ mpsL1. Co-delivery of PhiC31 integrase enhanced and prolonged transgene expression in the mouse mammary gland. CONCLUSIONS The results obtained in the present study show that the use of phiC31 integrase is a feasible and efficient method for high and stable transgene expression in the mouse mammary gland.
Collapse
|
23
|
Goldian I, Traitel T, Goldbart R, Kost J. Low-Frequency Ultrasound Effects on Intracellular Barriers in Nonviral Gene Delivery Processes. Isr J Chem 2013. [DOI: 10.1002/ijch.201300073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
Ditto AJ, Reho JJ, Shah KN, Smolen JA, Holda JH, Ramirez RJ, Yun YH. In vivo gene delivery with L-tyrosine polyphosphate nanoparticles. Mol Pharm 2013; 10:1836-44. [PMID: 23510151 DOI: 10.1021/mp300623a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The concept of gene therapy is promising; however, the perceived risks and side effects associated with this technology have severely dampened the researchers' enthusiasm. Thus, the development of a nonviral gene vector without immunological effects and with high transfection efficiency is necessary. Currently, most nonviral vectors have failed to achieve the in vivo transfection efficiencies of viral vectors due to their toxicity, rapid clearance, and/or inappropriate release rates. Although our previous studies have successfully demonstrated the controlled-release of plasmid DNA (pDNA) polyplexes encapsulated into nanoparticles formulated with l-tyrosine polyphosphate (LTP-pDNA nanoparticles), the in vivo transfection capabilities and immunogenicity of this delivery system have yet to be examined. Thus, we evaluate LTP-pDNA nanoparticles in an in vivo setting via injection into rodent uterine tissue. Our results demonstrate through X-gal staining and immunohistochemistry of uterine tissue that transfection has successfully occurred after a nine-day incubation. In contrast, the results for the control nanoparticles show results similar to those of shams. Furthermore, reverse transcriptase polymerase chain reaction (RT-PCR) from the injected tissues confirms the transfection in vivo. To examine the immunogenicity, the l-tyrosine polyphosphate (LTP) nanoparticles have been evaluated in a mouse model. No significant differences in the activation of the innate immune system are observed. These data provide the first report for the potential use of controlled-release nanoparticles formulated from an amino acid based polymer as an in vivo nonviral vector for gene therapy.
Collapse
Affiliation(s)
- Andrew J Ditto
- Department of Biomedical Engineering, The University of Akron, Olson Research Center, Akron, Ohio 44325-0302, United States
| | | | | | | | | | | | | |
Collapse
|
25
|
Targeting herpetic keratitis by gene therapy. J Ophthalmol 2012; 2012:594869. [PMID: 23326647 PMCID: PMC3541562 DOI: 10.1155/2012/594869] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 11/30/2012] [Indexed: 01/15/2023] Open
Abstract
Ocular gene therapy is rapidly becoming a reality. By November 2012, approximately 28 clinical trials were approved to assess novel gene therapy agents. Viral infections such as herpetic keratitis caused by herpes simplex virus 1 (HSV-1) can cause serious complications that may lead to blindness. Recurrence of the disease is likely and cornea transplantation, therefore, might not be the ideal therapeutic solution. This paper will focus on the current situation of ocular gene therapy research against herpetic keratitis, including the use of viral and nonviral vectors, routes of delivery of therapeutic genes, new techniques, and key research strategies. Whereas the correction of inherited diseases was the initial goal of the field of gene therapy, here we discuss transgene expression, gene replacement, silencing, or clipping. Gene therapy of herpetic keratitis previously reported in the literature is screened emphasizing candidate gene therapy targets. Commonly adopted strategies are discussed to assess the relative advantages of the protective therapy using antiviral drugs and the common gene therapy against long-term HSV-1 ocular infections signs, inflammation and neovascularization. Successful gene therapy can provide innovative physiological and pharmaceutical solutions against herpetic keratitis.
Collapse
|
26
|
Zhang Y, Tachibana R, Okamoto A, Azuma T, Sasaki A, Yoshinaka K, Tei Y, Takagi S, Matsumoto Y. Ultrasound-mediated gene transfection in vitro: effect of ultrasonic parameters on efficiency and cell viability. Int J Hyperthermia 2012; 28:290-9. [PMID: 22621731 DOI: 10.3109/02656736.2012.665568] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ultrasound (US)-mediated gene transfection in the presence of microbubbles is a recently developed and promising non-viral gene delivery method. Optimising the parameters used in ultrasonic transfection is urgently required in order to realise higher transfection efficiencies in clinical settings. This study examined the effect of ultrasound exposure parameters on plasmid DNA transfection in mouse embryonic fibroblast cell lines using perfluorobutane bubbles. Variations in US intensity (0-11 W/cm2), pulse repetition frequency (PRF, 50-50,000 Hz), duty ratio (10 to 50%), exposure time (0-120 s) and microbubble volume concentration (0 to 10%) were tested, and the microbubble volume concentration was also monitored during exposure. Through the experiments, the mechanism of how variations in parameters influence US-mediated gene transfection was discussed, which can provide a basis for future applications of ultrasound mediated transfection.
Collapse
Affiliation(s)
- Yiwei Zhang
- Department of Bioengineering, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Singh R, Husseini GA, Pitt WG. Phase transitions of nanoemulsions using ultrasound: experimental observations. ULTRASONICS SONOCHEMISTRY 2012; 19:1120-5. [PMID: 22444691 PMCID: PMC3329591 DOI: 10.1016/j.ultsonch.2012.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 10/29/2011] [Accepted: 02/13/2012] [Indexed: 05/03/2023]
Abstract
The ultrasound-induced transformation of perfluorocarbon liquids to gases is of interest in the area of drug and gene delivery. In this study, three independent parameters (temperature, size, and perfluorocarbon species) were selected to investigate the effects of 476-kHz and 20-kHz ultrasound on nanoemulsion phase transition. Two levels of each factor (low and high) were considered at each frequency. The acoustic intensities at gas bubble formation and at the onset of inertial cavitation were recorded and subsequently correlated with the acoustic parameters. Experimental data showed that low frequencies are more effective in forming and collapsing a bubble. Additionally, as the size of the emulsion droplet increased, the intensity required for bubble formation decreased. As expected, perfluorohexane emulsions require greater intensity to form cavitating bubbles than perfluoropentane emulsions.
Collapse
Affiliation(s)
- Ram Singh
- Chemical Engineering Department, Brigham Young University, Provo, UT, USA
| | - Ghaleb A. Husseini
- Chemical Engineering Department, American University of Sharjah, Sharjah, UAE
| | - William G. Pitt
- Chemical Engineering Department, Brigham Young University, Provo, UT, USA
- Corresponding Author: Dr. William G. Pitt, Chemical Engineering Department, Brigham Young University, Provo, UT 84602 USA, 801-422-2589 office, 801-422-0151 FAX,
| |
Collapse
|
28
|
Eigeldinger-Berthou S, Buntschu P, Flück M, Frobert A, Ferrié C, Carrel TP, Tevaearai HT, Kadner A. Electric pulses augment reporter gene expression in the beating heart. J Gene Med 2012; 14:191-203. [PMID: 22262642 DOI: 10.1002/jgm.2603] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Gene therapy of the heart has been attempted in a number of clinical trials with the injection of naked DNA, although quantitative information on myocellular transfection rates is not available. The present study aimed to quantify the efficacy of electropulsing protocols that differ in pulse duration and number to stimulate transfection of cardiomyocytes and to determine the impact on myocardial integrity. METHODS Reporter plasmid for constitutive expression of green fluorescent protein (GFP) was injected into the left ventricle of beating hearts of adult, male Lewis rats. Four electrotransfer protocols consisting of repeated long pulses (8 × 20 ms), trains of short pulses (eight trains of either 60 or 80 × 100 µs) or their combination were compared with control procedures concerning the degree of GFP expression and the effect on infiltration, fibrosis and apoptosis. RESULTS All tested protocols produced GFP expression at the site of plasmid injection. Continuous pulses were most effective and increased the number of GFP-positive cardiomyocytes by more than 300-fold compared to plasmid injection alone (p < 0.05). Concomitantly, the incidence of macrophage infiltration, fibrosis and cell death was increased. Trains of short pulses reduced macrophage infiltration and fibrosis by four- and two-fold, respectively, although they were 20-fold less efficient in stimulating cardiomyocyte transfection. GFP expression co-related to delivered electric energy, infiltration and fibrosis, although not apoptosis. CONCLUSIONS The data imply that electropulsing of the myocardium promotes the overexpression of exogenous protein in mature cardiomyocytes in relation to an injury component. Fractionation of pulses is indicated as a option for sophisticated gene therapeutic approaches to the heart.
Collapse
Affiliation(s)
- Sylvie Eigeldinger-Berthou
- Department of Cardiovascular Surgery, Inselspital, Berne University Hospital and University of Berne, Berne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Recombinant adeno-associated virus: clinical application and development as a gene-therapy vector. Ther Deliv 2012; 3:835-56. [DOI: 10.4155/tde.12.63] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gene therapy is gaining momentum as a method of treating human disease. Initially conceived as a strategy to complement defective genes in monogenic disorders, the scope of gene therapy has expanded to encompass a variety of applications. Likewise, the molecular tools for gene delivery have evolved and diversified to meet these various therapeutic needs. Recombinant adeno-associated virus (rAAV) has made significant strides toward clinical application with an excellent safety profile and successes in several clinical trials. This review covers the basic biology of rAAV as a gene therapy vector as well as its advantages compared with other methods of gene delivery. The status of clinical trials utilizing rAAV is also discussed in detail. In conclusion, methods of engineering the vector to overcome challenges identified from these trials are covered, with emphasis on modification of the viral capsid to increase the tissue/cell-specific targeting and transduction efficiency.
Collapse
|
30
|
Makarevich P, Tsokolaeva Z, Shevelev A, Rybalkin I, Shevchenko E, Beloglazova I, Vlasik T, Tkachuk V, Parfyonova Y. Combined transfer of human VEGF165 and HGF genes renders potent angiogenic effect in ischemic skeletal muscle. PLoS One 2012; 7:e38776. [PMID: 22719942 PMCID: PMC3374822 DOI: 10.1371/journal.pone.0038776] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/11/2012] [Indexed: 12/17/2022] Open
Abstract
Increased interest in development of combined gene therapy emerges from results of recent clinical trials that indicate good safety yet unexpected low efficacy of "single-gene" administration. Multiple studies showed that vascular endothelial growth factor 165 aminoacid form (VEGF165) and hepatocyte growth factor (HGF) can be used for induction of angiogenesis in ischemic myocardium and skeletal muscle. Gene transfer system composed of a novel cytomegalovirus-based (CMV) plasmid vector and codon-optimized human VEGF165 and HGF genes combined with intramuscular low-voltage electroporation was developed and tested in vitro and in vivo. Studies in HEK293T cell culture, murine skeletal muscle explants and ELISA of tissue homogenates showed efficacy of constructed plasmids. Functional activity of angiogenic proteins secreted by HEK293T after transfection by induction of tube formation in human umbilical vein endothelial cell (HUVEC) culture. HUVEC cells were used for in vitro experiments to assay the putative signaling pathways to be responsible for combined administration effect one of which could be the ERK1/2 pathway. In vivo tests of VEGF165 and HGF genes co-transfer were conceived in mouse model of hind limb ischemia. Intramuscular administration of plasmid encoding either VEGF165 or HGF gene resulted in increased perfusion compared to empty vector administration. Mice injected with a mixture of two plasmids (VEGF165+HGF) showed significant increase in perfusion compared to single plasmid injection. These findings were supported by increased CD31+ capillary and SMA+ vessel density in animals that received combined VEGF165 and HGF gene therapy compared to single gene therapy. Results of the study suggest that co-transfer of VEGF and HGF genes renders a robust angiogenic effect in ischemic skeletal muscle and may present interest as a potential therapeutic combination for treatment of ischemic disorders.
Collapse
Affiliation(s)
- Pavel Makarevich
- Institute of Experimental Cardiology, Russian Cardiology Research and Production Complex, Moscow, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Li Y, Wang J, Grebogi C, Foote M, Liu F. A syringe-focused ultrasound device for simultaneous injection of DNA and gene transfer. J Gene Med 2012; 14:54-61. [DOI: 10.1002/jgm.1633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology; Xi'an Jiaotong University; Xi'an; China
| | - Celso Grebogi
- Institute for Complex Systems and Mathematical Biology, SUPA, King's College; University of Aberdeen; Aberdeen; UK
| | - Michael Foote
- Division of Molecular Pharmaceutics; University of North Carolina, School of Pharmacy; Chapel Hill; NC; USA
| | - Feng Liu
- Division of Molecular Pharmaceutics; University of North Carolina, School of Pharmacy; Chapel Hill; NC; USA
| |
Collapse
|
32
|
Botezatu L, Sievers S, Gama-Norton L, Schucht R, Hauser H, Wirth D. Genetic aspects of cell line development from a synthetic biology perspective. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2012; 127:251-284. [PMID: 22068842 DOI: 10.1007/10_2011_117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Animal cells can be regarded as factories for the production of relevant proteins. The advances described in this chapter towards the development of cell lines with higher productivity capacities, certain metabolic and proliferation properties, reduced apoptosis and other features must be regarded in an integrative perspective. The systematic application of systems biology approaches in combination with a synthetic arsenal for targeted modification of endogenous networks are proposed to lead towards the achievement of a predictable and technologically advanced cell system with high biotechnological impact.
Collapse
Affiliation(s)
- L Botezatu
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Zhang XX, McIntosh TJ, Grinstaff MW. Functional lipids and lipoplexes for improved gene delivery. Biochimie 2012; 94:42-58. [PMID: 21621581 PMCID: PMC3771368 DOI: 10.1016/j.biochi.2011.05.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/06/2011] [Indexed: 12/17/2022]
Abstract
Cationic lipids are the most common non-viral vectors used in gene delivery with a few currently being investigated in clinical trials. However, like most other synthetic vectors, these vectors suffer from low transfection efficiencies. Among the various approaches to address this challenge, functional lipids (i.e., lipids responding to a stimuli) offer a myriad of opportunities for basic studies of nucleic acid-lipid interactions and for in vitro and in vivo delivery of nucleic acid for a specific biological/medical application. This manuscript reviews recent advances in pH, redox, and charge-reversal sensitive lipids.
Collapse
Affiliation(s)
- Xiao-Xiang Zhang
- Department of Chemistry, Boston University, Boston MA 02215, USA
| | - Thomas J. McIntosh
- Department of Cell Biology, Duke University Medical Center, Durham NC 27710, USA
| | - Mark W. Grinstaff
- Department of Biomedical Engineering, Boston University, Boston MA 02215, USA
- Department of Chemistry, Boston University, Boston MA 02215, USA
| |
Collapse
|
34
|
Rácz Z, Kaucsár T, Hamar P. The huge world of small RNAs: regulating networks of microRNAs (review). ACTA ACUST UNITED AC 2011; 98:243-51. [PMID: 21893463 DOI: 10.1556/aphysiol.98.2011.3.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
MicroRNAs (miRNAs) are a recently discovered class of small, non-coding RNAs which do not code proteins. MiRNAs regulate gene expression by inhibiting protein translation from the messenger RNA. MiRNAs may function in networks, forming a complex relationship with diseases. Furthermore, specific miRNAs have significant correlation with diseases of divergent origin. After identification of disease-associated miRNAs, their tissue expression could be altered in a beneficial way by inhibiting or mimicking their effects. Thus, modifying the expression of miRNAs is a potential future gene-therapeutic tool to influence post-transcriptional regulation of multiple genes in a single therapy. In this review we introduce the biogenesis, mechanism of action and future aspects of miRNAs. Research on the post-transcriptional regulation of gene expression by miRNA may reshape our understanding of diseases and consequently may bring new diagnostic markers and therapeutic agents. Therapeutic use of miRNAs is already under clinical investigation in RNA interference trials.
Collapse
Affiliation(s)
- Zs Rácz
- Semmelweis University Institute of Pathophysiology, Faculty of Medicine, Budapest, Hungary
| | | | | |
Collapse
|
35
|
Sun S, Wong JTY, Zhang TY. Atomistic simulations of electroporation in water preembedded membranes. J Phys Chem B 2011; 115:13355-9. [PMID: 21962234 DOI: 10.1021/jp206607j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Atomistic simulations of electroporation were conducted on water/membrane/water systems, in which the membranes initially contained randomly distributed water molecules that might be introduced by acoustic treatment. The simulation results indicate that the critical strength of an applied electric field to induce electroporation is greatly reduced due to the initially embedded water molecules in the membranes. A lower applied electric field will significantly enhance the viability of cells in electroporation.
Collapse
Affiliation(s)
- Sheng Sun
- Bioengineering Graduate Program, The Hong Kong University of Science and Technology, Hong Kong, China SAR
| | | | | |
Collapse
|
36
|
Walther W, Schlag PM, Stein U. Local Gene Delivery for Therapy of Solid Tumors. DRUG DELIVERY IN ONCOLOGY 2011:1391-1413. [DOI: 10.1002/9783527634057.ch43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
37
|
Zolochevska O, Xia X, Williams BJ, Ramsay A, Li S, Figueiredo ML. Sonoporation delivery of interleukin-27 gene therapy efficiently reduces prostate tumor cell growth in vivo. Hum Gene Ther 2011; 22:1537-50. [PMID: 21801027 DOI: 10.1089/hum.2011.076] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have examined the potential of a novel cytokine, interleukin-27 (IL-27), for gene therapy of prostate cancer. IL-27 is the most recently characterized member of the family of heterodimeric IL-12-related cytokines and has shown promise in halting tumor growth and mediating tumor regression in several cancer models. In the present study, we examined the efficacy of a new mode of gene delivery to prostate tumors: low-frequency ultrasound irradiation or "sonoporation." We also examined the potential of IL-27 gene delivery by sonoporation to treat and reduce the growth of prostate cancer in vivo. We used three models of immune-competent prostate adenocarcinoma and characterized the tumor-growth reduction, gene-profile expression, and effector cellular profiles. Our results suggest that IL-27 can be effective in reducing tumor growth and can help enhance accumulation of effector cells in prostate tumors in vivo. These results are promising, because they are potentially relevant to developing novel therapies that can be translated by using the novel and effective sonoporation gene-therapy delivery strategy.
Collapse
Affiliation(s)
- Olga Zolochevska
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | | | |
Collapse
|
38
|
Pipette tip with integrated electrodes for gene electrotransfer of cells in suspension: a feasibility study in CHO cells. Radiol Oncol 2011; 45:204-8. [PMID: 22933957 PMCID: PMC3423743 DOI: 10.2478/v10019-011-0025-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 06/22/2011] [Indexed: 01/28/2023] Open
Abstract
Background Gene electrotransfer is a non-viral gene delivery method that requires successful electroporation for DNA delivery into the cells. Changing the direction of the electric field during the pulse application improves the efficacy of gene delivery. In our study, we tested a pipette tip with integrated electrodes that enables changing the direction of the electric field for electroporation of cell suspension for gene electrotransfer. Materials and methods A new pipette tip consists of four cylindrical rod electrodes that allow the application of electric pulses in different electric field directions. The experiments were performed on cell suspension of CHO cells in phosphate buffer. Plasmid DNA encoding for green fluorescent protein (GFP) was used and the efficiency of gene electrotransfer was determined by counting cells expressing GFP 24 h after the experiment. Results Experimental results showed that the percentage of cells expressing GFP increased when the electric field orientation was changed during the application. The GFP expression was almost two times higher when the pulses were applied in orthogonal directions in comparison with single direction, while cell viability was not significantly affected. Conclusions We can conclude that results obtained with the described pipette tip are comparable to previously published results on gene electrotransfer using similar electrode geometry and electric pulse parameters. The tested pipette tip, however, allows work with small volumes/samples and requires less cell manipulation.
Collapse
|
39
|
Rapoport N, Nam KH, Gupta R, Gao Z, Mohan P, Payne A, Todd N, Liu X, Kim T, Shea J, Scaife C, Parker DL, Jeong EK, Kennedy AM. Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions. J Control Release 2011; 153:4-15. [PMID: 21277919 PMCID: PMC3133819 DOI: 10.1016/j.jconrel.2011.01.022] [Citation(s) in RCA: 307] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/13/2011] [Accepted: 01/19/2011] [Indexed: 01/08/2023]
Abstract
Perfluorocarbon nanoemulsions can deliver lipophilic therapeutic agents to solid tumors and simultaneously provide for monitoring nanocarrier biodistribution via ultrasonography and/or (19)F MRI. In the first generation of block copolymer stabilized perfluorocarbon nanoemulsions, perfluoropentane (PFP) was used as the droplet forming compound. Although manifesting excellent therapeutic and ultrasound imaging properties, PFP nanoemulsions were unstable at storage, difficult to handle, and underwent hard to control phenomenon of irreversible droplet-to-bubble transition upon injection. To solve the above problems, perfluoro-15-crown-5-ether (PFCE) was used as a core forming compound in the second generation of block copolymer stabilized perfluorocarbon nanoemulsions. PFCE nanodroplets manifest both ultrasound and fluorine ((19)F) MR contrast properties, which allows using multimodal imaging and (19)F MR spectroscopy for monitoring nanodroplet pharmacokinetics and biodistribution. In the present paper, acoustic, imaging, and therapeutic properties of unloaded and paclitaxel (PTX) loaded PFCE nanoemulsions are reported. As manifested by the (19)F MR spectroscopy, PFCE nanodroplets are long circulating, with about 50% of the injected dose remaining in circulation 2h after the systemic injection. Sonication with 1-MHz therapeutic ultrasound triggered reversible droplet-to-bubble transition in PFCE nanoemulsions. Microbubbles formed by acoustic vaporization of nanodroplets underwent stable cavitation. The nanodroplet size (200nm to 350nm depending on a type of the shell and conditions of emulsification) as well as long residence in circulation favored their passive accumulation in tumor tissue that was confirmed by ultrasonography. In the breast and pancreatic cancer animal models, ultrasound-mediated therapy with paclitaxel-loaded PFCE nanoemulsions showed excellent therapeutic properties characterized by tumor regression and suppression of metastasis. Anticipated mechanisms of the observed effects are discussed.
Collapse
Affiliation(s)
- Natalya Rapoport
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Goepfert C, Gazdhar A, Frey FJ, Frey BM. Effect of electroporation-mediated diphtheria toxin A expression on PSA positive human prostate xenograft tumors in SCID mice. Prostate 2011; 71:872-80. [PMID: 21456069 DOI: 10.1002/pros.21303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 10/05/2010] [Indexed: 12/20/2022]
Abstract
BACKGROUND Current therapies to treat prostate cancer are often limited. Since it has been shown that very low concentrations of diphtheria toxin A (DT-A) result in abrogation of protein synthesis and apoptosis of cells, DT-A might serve as an efficient killer in cancer gene therapy. For this purpose we investigated in a quantitative manner using a stereological approach the apoptotic effect of DT-A in androgen receptor (AR) and prostate specific antigen (PSA) expressing cells after tumor formation in both flanks of SCID mice. METHODS First, DT-A plasmid transfection was evaluated, using the lipid formulation DMRIE-C in C4-2 prostate cancer xenografts. After detection of an overall high rate of apoptosis by DMRIE-C alone, plasmid delivery was performed in a second study by electroporation. Finally this method was used to specifically target the AR and PSA expressing cell line C4-2 using pDT-A driven by a prostate specific promoter and enhancer (PSE/PSA). PC-3 cells, being AR and PSA negative, served as controls. RESULTS The experiments revealed evidence of a reduced growth rate of AR and PSA expressing C4-2 cells in vitro and in vivo compared to the AR and PSA negative prostate cancer cell line PC-3. The electroporation technology favored the response compared to DMRIE-C. CONCLUSION These results suggest that the local delivery of DT-A plasmid by electroporation might present a favorable factor to treat prostate cancer.
Collapse
Affiliation(s)
- Christine Goepfert
- Department of Nephrology and Hypertension, University of Berne, Berne, Switzerland
| | | | | | | |
Collapse
|
41
|
|
42
|
Zhang C, Wang QT, Liu H, Zhang ZZ, Huang WL. Advancement and prospects of tumor gene therapy. CHINESE JOURNAL OF CANCER 2011; 30:182-8. [PMID: 21352695 PMCID: PMC4013314 DOI: 10.5732/cjc.010.10074] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 03/15/2010] [Accepted: 04/15/2010] [Indexed: 12/17/2022]
Abstract
Gene therapy is one of the most attractive fields in tumor therapy. In past decades, significant progress has been achieved. Various approaches, such as viral and non-viral vectors and physical methods, have been developed to make gene delivery safer and more efficient. Several therapeutic strategies have evolved, including gene-based (tumor suppressor genes, suicide genes, antiangiogenic genes, cytokine and oxidative stress-based genes) and RNA-based (antisense oligonucleotides and RNA interference) approaches. In addition, immune response-based strategies (dendritic cell- and T cell-based therapy) are also under investigation in tumor gene therapy. This review highlights the progress and recent developments in gene delivery systems, therapeutic strategies, and possible clinical directions for gene therapy.
Collapse
Affiliation(s)
- Chao Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China;
| | - Qing-Tao Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China;
| | - He Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China;
| | - Zhen-Zhu Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China;
| | - Wen-Lin Huang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China;
- State Key Laboratory of Oncology in South China, Guangzhou, Guangdong 510060, P. R. China;
- Research Department, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P. R. China
| |
Collapse
|
43
|
Abstract
Since their first clinical trial 20 years ago, retroviral (gretroviral and lentiviral) vectors have now been used in more than 350 gene-therapy studies. Retroviral vectors are particularly suited for gene-correction of cells due to long-term and stable expression of the transferred transgene(s), and also because little effort is required for their cloning and production. Several monogenic inherited diseases, mostly immunodeficiencies, can now be successfully treated. The occurrence of insertional mutagenesis in some studies allowed extensive analysis of integration profiles of retroviral vectors, as well as the design of lentiviral vectors with increased safety properties. These new-generation vectors will enable us to continue the successful story of gene therapy, and treat more patients and even more complex diseases.
Collapse
Affiliation(s)
- Patrick Maier
- Department of Radiation Oncology, University Medical Centre Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | | | | |
Collapse
|
44
|
Kimelman-Bleich N, Pelled G, Zilberman Y, Kallai I, Mizrahi O, Tawackoli W, Gazit Z, Gazit D. Targeted gene-and-host progenitor cell therapy for nonunion bone fracture repair. Mol Ther 2010; 19:53-9. [PMID: 20859259 DOI: 10.1038/mt.2010.190] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nonunion fractures present a challenge to orthopedics with no optimal solution. In-vivo DNA electroporation is a gene-delivery technique that can potentially accelerate regenerative processes. We hypothesized that in vivo electroporation of an osteogenic gene in a nonunion radius bone defect site would induce fracture repair. Nonunion fracture was created in the radii of C3H/HeN mice, into which a collagen sponge was placed. To allow for recruitment of host progenitor cells (HPCs) into the implanted sponge, the mice were housed for 10 days before electroporation. Mice were electroporated with either bone morphogenetic protein 9 (BMP-9) plasmid, Luciferase plasmid or injected with BMP-9 plasmid but not electroporated. In vivo bioluminescent imaging indicated that gene expression was localized to the defect site. Microcomputed tomography (µCT) and histological analysis of murine radii electroporated with BMP-9 demonstrated bone formation bridging the bone gap, whereas in the control groups the defect remained unbridged. Population of the implanted collagen sponge by HPCs transfected with the injected plasmid following electroporation was noted. Our data indicate that regeneration of nonunion bone defect can be attained by performing in vivo electroporation with an osteogenic gene combined with recruitment of HPCs. This gene therapy approach may pave the way for regeneration of other skeletal tissues.
Collapse
Affiliation(s)
- Nadav Kimelman-Bleich
- Skeletal Biotech Laboratory, Hebrew University-Hadassah Medical Center, Faculty of Dental Medicine, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Ocular gene therapy is becoming a well-established field. Viral gene therapies for the treatment of Leber's congentinal amaurosis (LCA) are in clinical trials, and many other gene therapy approaches are being rapidly developed for application to diverse ophthalmic pathologies. Of late, development of non-viral gene therapies has been an area of intense focus and one technology, polymer-compacted DNA nanoparticles, is especially promising. However, development of pharmaceutically and clinically viable therapeutics depends not only on having an effective and safe vector but also on a practical treatment strategy. Inherited retinal pathologies are caused by mutations in over 220 genes, some of which contain over 200 individual disease-causing mutations, which are individually very rare. This review will focus on both the progress and future of nanoparticles and also on what will be required to make them relevant ocular pharmaceutics.
Collapse
Affiliation(s)
- Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center
| | - Muna I. Naash
- Department of Cell Biology, University of Oklahoma Health Sciences Center
| |
Collapse
|
46
|
Exploiting ultrasound-mediated effects in delivering targeted, site-specific cancer therapy. Cancer Lett 2010; 296:133-43. [PMID: 20598800 DOI: 10.1016/j.canlet.2010.06.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 06/02/2010] [Accepted: 06/07/2010] [Indexed: 11/22/2022]
Abstract
Although the concept of employing ultrasound for the treatment of cancer is not a new one, virtually all existing ultrasound-based clinical cancer treatments are based on hyperthermic ablation. This review seeks to highlight the potential offered by more subtle ultrasound-triggered phenomena such as sonoporation in delivering novel targeted cancer treatment modalities.
Collapse
|
47
|
Suzuki R, Oda Y, Utoguchi N, Maruyama K. Progress in the development of ultrasound-mediated gene delivery systems utilizing nano- and microbubbles. J Control Release 2010; 149:36-41. [PMID: 20470839 DOI: 10.1016/j.jconrel.2010.05.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 04/28/2010] [Accepted: 05/06/2010] [Indexed: 12/11/2022]
Abstract
Recently, ultrasound-mediated gene delivery with nano- and microbubbles was developed as a novel non-viral vector system. In this gene delivery system, microstreams and microjets, which are induced by disruption of nano/microbubbles exposed to ultrasound, are used as the driving force to transfer genes into cells by opening transient pores in the cell membrane. This system can directly deliver plasmid DNA and siRNA into cytosol without endocytosis pathway. Therefore, these genes are able to escape from degradation in lysosome and result in enhancing the efficiency of gene expression. In addition, it is expected that ultrasound-mediated gene delivery using nano/microbubbles would be a system to establish non-invasive and tissue specific gene expression because ultrasound can transdermally expose to target tissues and organs. This review focuses on the current ultrasound-mediated gene delivery system using nano/microbubbles. We discuss about the feasibility of this gene delivery system as novel non-viral vector system.
Collapse
Affiliation(s)
- Ryo Suzuki
- Department of Biopharmaceutics, School of Pharmaceutical Sciences, Teikyo University, 1091-1 Suwarashi, Midori-ku, Sagamihara, Kanagawa 252-5195, Japan
| | | | | | | |
Collapse
|