1
|
Aguilar-Ancori EG, Marin-Carrasco M, Campo-Pfuyo LI, Muñiz-Duran JG, Espinoza-Culupú A. Identification of pandemic ST147, ESBL-type β-lactamases, carbapenemases, and virulence factors in Klebsiella pneumoniae isolated from southern Peru. Sci Rep 2025; 15:14870. [PMID: 40295561 PMCID: PMC12037762 DOI: 10.1038/s41598-025-97464-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 04/04/2025] [Indexed: 04/30/2025] Open
Abstract
Multidrug-resistant Klebsiella pneumoniae (MDR K. pneumoniae) is a significant pathogen associated with nosocomial infections, often leading to high morbidity and mortality. This resistance is largely due to the efficient horizontal transfer of mobile genetic elements such as plasmids, which carry resistance genes and virulence factors. These elements contribute to the production of extended-spectrum β-lactamases (ESBL) and carbapenemases, which further complicates treatment. Despite the high prevalence of MDR K. pneumoniae in Peruvian hospitals, the genomic characterization of these strains remains limited. This study investigated the phenotypic and molecular identification of extended-spectrum β-lactamases (ESBLs), carbapenemases, and virulence factors in 91 MDR K. pneumoniae strains collected from three hospitals between 2022 and 2023. Phenotypic detection of ESBLs was performed using the Jarlier method, while carbapenemases were identified via double-disk synergy testing with boronic acid, EDTA, and Carba NP test. The positive isolates were further analyzed for resistance genes (blaCTX-M, blaTEM, blaSHV, blaKPC, blaNDM, blaIMP, and blaVIM). Four isolates were subjected to whole-genome sequencing (WGS) for further characterization. All multidrug-resistant K. pneumoniae strains (100%) were ESBL-positive, with 14.3% producing carbapenemases, primarily KPC-type and metallo-β-lactamases (MBLs). The virulence factor analyses revealed that only 7.7% exhibited hypermucoviscosity. Protease activity was detected in 19.8% of the strains, and lipase activity in 1.1%. Regarding biofilm formation, 85.7% of the strains showed moderate adherence. Molecular analysis identified ESBL (blaCTX-M, 78%; blaTEM, 71.4%; blaSHV, 82.4%) and carbapenemase genes (blaKPC 7.7%, blaNDM 4.4%). Genomic analysis revealed various antimicrobial resistance mechanisms, including porin-coding gene mutations, aminoglycoside resistance linked to fluoroquinolone resistance, and multidrug efflux pump regulators. Sequence typing has identified high-risk clones (ST147, ST629, and ST37) associated with hospital outbreaks globally. These findings underscore the considerable concern of MDR and hypervirulent K. pneumoniae in Peruvian hospitals. These findings emphasize the pressing need for sustained genomic surveillance, enhanced infection control measures, and strategies to address the expanding problem of MDR K. pneumoniae.
Collapse
Affiliation(s)
- Elsa Gladys Aguilar-Ancori
- Faculty of Biological Sciences, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru.
- University Institute of Tropical Diseases and Biomedicine of Cusco, UNSAAC, Cusco, Peru.
| | - Marishani Marin-Carrasco
- Faculty of Biological Sciences, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
- University Institute of Tropical Diseases and Biomedicine of Cusco, UNSAAC, Cusco, Peru
| | | | | | - Abraham Espinoza-Culupú
- Molecular Microbiology and Biotechnology Laboratory, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima, Peru
| |
Collapse
|
2
|
Rosenberg M, Park S, Umerov S, Ivask A. Experimental evolution of Escherichia coli on semi-dry silver, copper, stainless steel, and glass surfaces. Microbiol Spectr 2025; 13:e0217324. [PMID: 39948723 PMCID: PMC11960088 DOI: 10.1128/spectrum.02173-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/23/2024] [Indexed: 04/03/2025] Open
Abstract
To study bacterial adaptation to antimicrobial metal surfaces in application-relevant conditions, Escherichia coli was exposed to copper and silver surfaces for 30 exposure cycles in low-organic dry or high-organic humid conditions. The evolved populations demonstrated increased metal surface tolerance without concurrent increase in minimal biocidal concentration (MBC) and minimal inhibitory concentration (MIC) values of respective metal ions or selected antibiotics. Mutation analysis did not detect increased mutation accumulation nor mutations in cop, cus, cue, sil, pco, or general efflux genes known to actively maintain copper/silver homeostasis. Instead, during cyclic exposure, mutations in genes related to cellular barrier functions and sulfur metabolism were enriched, potentially suggesting that reducing bioavailability and passively restricting uptake of the toxic metals rather than active efflux is selected for on copper and silver surfaces. The changes detected in the evolved populations did not indicate an increased risk of antibiotic cross-resistance as a result of copper or silver surface exposure. However, rapid emergence of mutations in silS activated the cryptic sil efflux locus during silver ion challenge in liquid MBC assay with the evolved populations. The silS mutants showed no benefit on copper and silver surfaces but demonstrated decreased sensitivity to ampicillin and ciprofloxacin, as well as copper and silver ions in liquid tests, indicating that efflux might be specific to granting heavy metal tolerance in liquid but not surface exposure format. Our findings highlight the critical importance of appropriate exposure conditions not only in efficacy testing but also in risk assessment of antimicrobial surface applications. IMPORTANCE This study examines the evolutionary adaptations of Escherichia coli after semi-dry exposure to copper and silver surfaces, leading to an increase in surface tolerance but no increase in mutation accumulation or substantially enhanced metal ion tolerance in standard tests. Notably, enriched mutations indicate a shift toward more energy-passive mechanisms of metal tolerance. Additionally, while enhanced silver efflux was rapidly selected for in a single round of silver exposure in liquid tests and substantially increased copper and silver ion tolerance in conventional test formats, the causal mutations did not improve viability on silver and copper surfaces, underscoring the different fitness scenarios of tolerance mechanisms dependent on exposure conditions. These findings emphasize the need for appropriate exposure conditions in evaluating of both efficacy and the potential risks of using antimicrobial surfaces, as the results from conventional liquid-based tests may not apply in solid contexts.
Collapse
Affiliation(s)
- Merilin Rosenberg
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Sandra Park
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Sigrit Umerov
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Angela Ivask
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| |
Collapse
|
3
|
Chauhan R, Patel H, Bhardwaj B, Suryawanshi V, Rawat S. Copper induced augmentation of antibiotic resistance in Acinetobacter baumannii MCC 3114. Biometals 2025; 38:485-504. [PMID: 39708209 DOI: 10.1007/s10534-024-00657-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
Increasing antibiotic resistance among the common nosocomial pathogen i.e. Acinetobacter baumannii poses life threat to the health care workers as well as to the society. The dissemination of antibiotic resistance in this pathogen at an alarming rate could be not only due to the overuse of antibiotics but also due to the stress caused by exposure of bacterium to several environmental contaminants in their niches. In the present study, effect of copper stress on augmentation in the antibiotic resistance of A. baumannii MCC 3114 against three clinically used antibiotics was investigated along with the phenotypic and genotypic alterations in the cell. It induced 8, 44 and 22-fold increase in resistance against colistin, ciprofloxacin and levofloxacin, respectively. Moreover, the biofilm formation of adapted culture was significantly enhanced due to a dense EPS around the cell (as revealed by SEM images). The structural changes in EPS were demonstrated by FTIR spectroscopy. The adequate growth of adapted MCC 3114 despite increased level of ROS indicates its persistence in copper and ROS stress. The physiological alterations in cell viz., increased efflux pump activity and decreased membrane permeability was observed. Molecular analysis revealed increased expression of efflux pump related genes, oxidative stress genes, integron and antibiotic resistance genes. In sum, our study revealed that the exposure of the critical pathogen, A. baunmannii to copper in hospital settings and environmental reservoirs can impose adaptive pressure which may lead to genotypic as well phenotypic changes in cell resulting into the augmentation of antibiotic resistance.
Collapse
Affiliation(s)
- Ravi Chauhan
- Microbiology Lab, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - Hardi Patel
- Microbiology Lab, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - Bhavna Bhardwaj
- Microbiology Lab, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - Vijay Suryawanshi
- Microbiology Lab, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - Seema Rawat
- Microbiology Lab, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India.
| |
Collapse
|
4
|
Jeon MS, Jeong S, Yang SK, Jung KW, Gong G, Ahn JH, Seo MJ, Lim S, Jung JH. Eco-friendly decolorization of synthetic dyes using radiation-induced whole cell biocatalyst with enhanced copper resistance. ENVIRONMENTAL RESEARCH 2025; 269:120891. [PMID: 39862958 DOI: 10.1016/j.envres.2025.120891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Toxic and carcinogenic compounds, such as synthetic dyes and polyphenols, were widely employed and released as pollutants in a variety of industries, including textiles, food, and cosmetics. Biological oxidation process that used oxidizing enzymes to breakdown pollutant compounds were environmentally favorable. However, due to the cell toxicity of metal ions supplements used for the biosynthesis of oxidizing enzymes like laccase, their efficient application for biological degradation is limited. In this study, we aimed to boost laccase activity by introducing high copper resistance into whole-cell biocatalysts through irradiation-based accelerated evolution. Bacillus velezensis MBLB0692, a laccase producing bacterium, was employed as model strain that exhibited severe sensitivity under 10 mM copper. The selected Cu-resistant mutants not only overcame growth inhibition, but also increased laccase activity by 2.6-fold. The qRT-PCR analysis confirmed that mutants showed significant change in gene expressions related to laccase generation and copper-related functions. Furthermore, dye decolorization assays showed that mutants degrade synthetic dyes more efficiently under high copper conditions. The varying decolorization efficiencies across dyes were attributed to differences in dye structure and the potential influence of copper on enzyme activity. Collectively, these findings emphasize the interaction between copper concentration and laccase activity, and present implications for environmental bioremediation.
Collapse
Affiliation(s)
- Min Seo Jeon
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea; Division of Polar Life Science, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Soyoung Jeong
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea; Department of Food and Animal Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seul-Ki Yang
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea; Graduate school of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Kwang-Woo Jung
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Gyeongtaek Gong
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Jung Ho Ahn
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Myung-Ji Seo
- Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon, 22012, Republic of Korea; Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea; Research Center for Bio Materials & Process Development, Incheon National University, Incheon, 22012, Republic of Korea
| | - Sangyong Lim
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea; Department of Radiation Science and Technology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Jong-Hyun Jung
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea.
| |
Collapse
|
5
|
Nayeri N, Górecki K, Lindkvist-Petersson K, Gourdon P, Li P. Isolation and crystallization of copper resistance protein B (CopB) from Acinetobacter baumannii. Protein Expr Purif 2025; 227:106635. [PMID: 39608619 DOI: 10.1016/j.pep.2024.106635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Acinetobacter baumannii (A. baumannii) is an opportunistic, Gram-negative human pathogen, which is predominantly found in hospital patients. Its antimicrobial resistance is escalating, leading to less efficient treatments, and an increasing interest in identifying new therapeutic drugs. Metals as antimicrobials are vital in healthcare and agriculture, and copper-containing surfaces are known to reduce microbial counts, also in clinical settings. Indeed, copper (Cu) is an essential element required for survival in all organisms from bacteria to humans, but nevertheless elevated levels are highly toxic for cells. Through different regulatory mechanisms, cells maintain Cu homeostasis, and ion channels and transporters are critical in this process. Precise understanding of such ion transport requires insight into the protein structures of the involved proteins, which will also provide information important for applied sciences. Considering the medical significance of A. baumannii and the possibility to exploit Cu to handle such infections, channels and transporters represent appealing targets. Here we approached the putative outer membrane CopB (Copper resistance protein B) from A. baumannii that is postulated to conduct Cu, with characterization of its structure and function as well as to enable rational drug-design. To this end, we demonstrate in this work procedures to produce purified sample and to recover diffracting protein crystals of CopB. The protein was overproduced in E. coli and membrane extracted in a range of detergents. The solubilized protein was subjected to crystallization, which yielded hits that scatter X-rays to low resolution. Our findings have the potential to pave the way for subsequent drug discovery.
Collapse
Affiliation(s)
- Niloofar Nayeri
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, SE-22100, Lund, Sweden
| | - Kamil Górecki
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, SE-22100, Lund, Sweden
| | - Karin Lindkvist-Petersson
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, SE-22100, Lund, Sweden
| | - Pontus Gourdon
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, SE-22100, Lund, Sweden; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Ping Li
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, SE-22100, Lund, Sweden.
| |
Collapse
|
6
|
Chen W, Xu J, Wang S, Chen Z, Dong S. Key drivers of heavy metal bioavailability in river sediments and microbial community responses under long-term high-concentration pollution. ENVIRONMENTAL RESEARCH 2025; 265:120375. [PMID: 39608434 DOI: 10.1016/j.envres.2024.120375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/20/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024]
Abstract
Given the urgent need for effective environmental management of metal-polluted ecosystems, understanding the drivers of heavy metal bioavailability and microbial adaptation is crucial. The Dongdagou River, a major pollution source to the upper Yellow River, presents significant risks to regional water quality and biodiversity. This study investigates heavy metal bioavailability and its drivers, alongside microbial community responses, in 39 surface sediment samples from the river. The results revealed severe contamination, particularly with cadmium (Cd). Statistical analysis revealed that effective sulfur (ES) plays a crucial role in driving bioavailability. High-throughput sequencing indicated that bacterial communities were primarily dominated by Proteobacteria, with increased microbial diversity observed downstream. Functional predictions highlighted the prevalence of chemoheterotrophy and nitrogen cycling processes, alongside a significant presence of metal-resistance genes and enzymes, such as Cu-Zn superoxide dismutase and metal-efflux transporters. These adaptations imply that microbial communities are developing mechanisms of resilience in response to prolonged heavy metal exposure. These findings offer valuable insights for formulating targeted remediation strategies in environments affected by heavy metal pollution.
Collapse
Affiliation(s)
- Weijie Chen
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China; Guangdong Engineering &Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, MEE, Guangzhou, 510535, China
| | - Jun Xu
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shengli Wang
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Zhaoming Chen
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Suhang Dong
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
7
|
Tasnim Y, Stanley C, Rahman MK, Awosile B. bla SED-1 beta-lactamase-producing Citrobacter sedlakii isolated from horses and genomic comparison with human-derived isolates. J Appl Microbiol 2024; 135:lxae278. [PMID: 39462133 DOI: 10.1093/jambio/lxae278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 10/29/2024]
Abstract
AIMS We aim to detect beta-lactamase-producing Citrobacter sedlakii from horses and compare the genomic characteristics with isolates from humans. METHODS AND RESULT We characterized phenotypically and genotypically nine C. sedlakii isolates from the feces of horses and then compared them to human-derived isolates using whole genome sequencing and phylogenomic methods. Seven isolates (7/9) were ampicillin-resistant, while at least one isolate was resistant to ceftriaxone, gentamicin, meropenem, and streptomycin. All nine isolates were carriers of the chromosomal-mediated blaSED-1 beta-lactamase gene, which confers resistance to ampicillin. One isolate was positive for the mcr-9 gene that confers resistance to colistin, and another isolate had the aac(6')-lid gene that confers resistance to aminoglycosides. Seven isolates (7/9) were carriers of genes that confer metal resistance to copper, silver, and arsenic. Phylogenetically, two horse-derived isolates clustered together with two human-derived isolates from the NDARO database. CONCLUSION The results from our study provide insight into the antimicrobial susceptibility of C. sedlakii in horses, which was previously lacking, and the specific beta-lactamase gene mediating resistance.
Collapse
Affiliation(s)
- Yamima Tasnim
- Texas Tech University School of Veterinary Medicine, Amarillo, TX 79106, United States
| | - Charlotte Stanley
- Texas Tech University School of Veterinary Medicine, Amarillo, TX 79106, United States
| | - Md Kaisar Rahman
- Texas Tech University School of Veterinary Medicine, Amarillo, TX 79106, United States
| | - Babafela Awosile
- Texas Tech University School of Veterinary Medicine, Amarillo, TX 79106, United States
| |
Collapse
|
8
|
Fu Y, Li J, Wang J, Wang E, Fang X. Development of a two component system based biosensor with high sensitivity for the detection of copper ions. Commun Biol 2024; 7:1407. [PMID: 39472725 PMCID: PMC11522558 DOI: 10.1038/s42003-024-07112-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Recent advancements in bacterial two-component systems (TCS) have spurred research into TCS-based biosensors, notably for their signal amplification and broad input responsiveness. The CusRS system in Escherichia coli (E. coli), comprising cusS and cusR genes, is a copper-sensing module in E. coli. However, due to insufficient sensing performance, CusRS-based biosensors often cannot meet practical requirements. To address this issue, we made improvements and innovation from several aspects. CusR and CusS expression were adjusted to enhance the Cu(II) biosensor's performance. A copy-number inducible plasmid was used for signal amplification, while removing copper detox genes cueO and cusCFBA improved sensitivity and lowered detection limits. Ultimately, in the optimized biosensor of Cu26, the fold-change (I/I0) increased from 1.5-fold to 18-fold at 1 μM, rising to 100-fold after optimizing the cell culture procedure. The biosensor's high fluorescence enabled rapid, instrument-free detection and an improved analysis strategy reduced the detection limit to 0.01 μM, surpassing traditional methods.
Collapse
Affiliation(s)
- Yu Fu
- School of Chemistry, Northeast Normal University, Changchun, Jilin, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiajia Li
- School of Chemistry, Northeast Normal University, Changchun, Jilin, China
| | - Jin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, China
- Department of Chemistry and Physics, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaona Fang
- School of Chemistry, Northeast Normal University, Changchun, Jilin, China.
| |
Collapse
|
9
|
Yap PSX, Yeo LF, Teh CSJ, Dhanoa A, Phipps ME. Plasmid-Mediated Co-Occurrence of mcr-1.1 in Extended-Spectrum β-Lactamase (ESBL)-Producing Escherichia coli Isolated From the Indigenous Seminomadic Community in Malaysia. Transbound Emerg Dis 2024; 2024:9223696. [PMID: 40303148 PMCID: PMC12017022 DOI: 10.1155/2024/9223696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/07/2024] [Accepted: 08/24/2024] [Indexed: 05/02/2025]
Abstract
The growing prevalence of commensal antibiotic resistant Escherichia coli poses a significant concern for the global spread of antibiotic resistance. Stool samples (n = 35) from a seminomadic indigenous community in Malaysia, the Jehai, were screened for multidrug-resistant bacteria, specifically the extended-spectrum β-lactamase (ESBL) producers. Subsequently, whole-genome sequencing was used to provide genomic insights into eight ESBL-producing E. coli that colonised eight individuals. The ESBL E. coli isolates carry resistance genes from various antibiotic classes such as the β-lactams (bla TEM, bla CTX-M-15 and bla CTX-M-55), quinolones (gyrA, qnrS and qnrS1) and aminoglycosides (aph(3')-Ia, aph(6)-Id and aac(3)-IId). Three concerning convergence of ESBL, colistin and metal resistance determinants, with three plasmids from H-type lineage harbouring bla CTX-M and mcr-1.1 genes were identified. Using the Oxford Nanopore Technology (ONT) Native Barcoding Kit (SQK-NBD114.24) in conjunction with the R10.4.1 flow cell, which achieved an average read accuracy (Q > 10) of 99.84%, we further characterised the mcr-1.1-bearing plasmids, ranging in size from 25 to 28 kb, from three strains of E. coli. This report represents the first whole genome analysis of multidrug-resistant bacteria, specifically those resistant to colistin, found within the indigenous population in Malaysia. It strongly indicates that the pertinent issue of colistin resistance in the country is far more significant than previously estimated.
Collapse
Affiliation(s)
- Polly Soo Xi Yap
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Subang Jaya, Selangor, Malaysia
| | - Li-Fang Yeo
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Subang Jaya, Selangor, Malaysia
- Cancer Research Malaysia, Sime Darby Medical Centre Subang Jaya, 2nd Floor, Outpatient Centre, Subang Jaya 47500, Selangor, Malaysia
| | - Cindy Shuan Ju Teh
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya 50603, Kuala Lumpur, Malaysia
| | - Amreeta Dhanoa
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Subang Jaya, Selangor, Malaysia
| | - Maude Elvira Phipps
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
10
|
Burgardt NI, Melian NA, González Flecha FL. Copper resistance in the cold: Genome analysis and characterisation of a P IB-1 ATPase in Bizionia argentinensis. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13278. [PMID: 38943264 PMCID: PMC11213822 DOI: 10.1111/1758-2229.13278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/19/2024] [Indexed: 07/01/2024]
Abstract
Copper homeostasis is a fundamental process in organisms, characterised by unique pathways that have evolved to meet specific needs while preserving core resistance mechanisms. While these systems are well-documented in model bacteria, information on copper resistance in species adapted to cold environments is scarce. This study investigates the potential genes related to copper homeostasis in the genome of Bizionia argentinensis (JUB59-T), a psychrotolerant bacterium isolated from Antarctic seawater. We identified several genes encoding proteins analogous to those crucial for copper homeostasis, including three sequences of copper-transport P1B-type ATPases. One of these, referred to as BaCopA1, was chosen for cloning and expression in Saccharomyces cerevisiae. BaCopA1 was successfully integrated into yeast membranes and subsequently extracted with detergent. The purified BaCopA1 demonstrated the ability to catalyse ATP hydrolysis at low temperatures. Structural models of various BaCopA1 conformations were generated and compared with mesophilic and thermophilic homologous structures. The significant conservation of critical residues and structural similarity among these proteins suggest a shared reaction mechanism for copper transport. This study is the first to report a psychrotolerant P1B-ATPase that has been expressed and purified in a functional form.
Collapse
Affiliation(s)
- Noelia I. Burgardt
- Laboratorio de Biofísica Molecular, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica BiológicasUniversidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina
- Present address:
Departamento de Ciencia y TecnologíaUniversidad Nacional de QuilmesBernalArgentina
| | - Noelia A. Melian
- Laboratorio de Biofísica Molecular, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica BiológicasUniversidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina
| | - F. Luis González Flecha
- Laboratorio de Biofísica Molecular, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica BiológicasUniversidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina
| |
Collapse
|
11
|
Dauvergne E, Lacquemant C, Mullié C. Antibacterial Activity of Brass against Antibiotic-Resistant Bacteria following Repeated Exposure to Hydrogen Peroxide/Peracetic Acid and Quaternary Ammonium Compounds. Microorganisms 2024; 12:1393. [PMID: 39065161 PMCID: PMC11279221 DOI: 10.3390/microorganisms12071393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Copper-containing materials are attracting attention as self-disinfecting surfaces, suitable for helping healthcare settings in reducing healthcare-associated infections. However, the impact of repeated exposure to disinfectants frequently used in biocleaning protocols on their antibacterial activity remains insufficiently characterized. This study aimed at evaluating the antibacterial efficiency of copper (positive control), a brass alloy (AB+®) and stainless steel (negative control) after repeated exposure to a quaternary ammonium compound and/or a mix of peracetic acid/hydrogen peroxide routinely used in healthcare settings. A panel of six antibiotic-resistant strains (clinical isolates) was selected for this assessment. After a short (5 min) exposure time, the copper and brass materials retained significantly better antibacterial efficiencies than stainless steel, regardless of the bacterial strain or disinfectant treatment considered. Moreover, post treatment with both disinfectant products, copper-containing materials still reached similar levels of antibacterial efficiency to those obtained before treatment. Antibiotic resistance mechanisms such as efflux pump overexpression did not impair the antibacterial efficiency of copper-containing materials, nor did the presence of one or several genes related to copper homeostasis/resistance. In light of these results, surfaces made out of copper and brass remain interesting tools in the fight against the dissemination of antibiotic-resistant strains that might cause healthcare-associated infections.
Collapse
Affiliation(s)
- Emilie Dauvergne
- Laboratoire AGIR—UR UPJV 4294, UFR de Pharmacie, Université de Picardie Jules Verne, 80037 Amiens, France
- FAVI SA, 80490 Hallencourt, France;
| | | | - Catherine Mullié
- Laboratoire AGIR—UR UPJV 4294, UFR de Pharmacie, Université de Picardie Jules Verne, 80037 Amiens, France
| |
Collapse
|
12
|
Correa Velez KE, Alam M, Baalousha MA, Norman RS. Wildfire Ashes from the Wildland-Urban Interface Alter Vibrio vulnificus Growth and Gene Expression. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8169-8181. [PMID: 38690750 DOI: 10.1021/acs.est.3c08658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Climate change-induced stressors are contributing to the emergence of infectious diseases, including those caused by marine bacterial pathogens such as Vibrio spp. These stressors alter Vibrio temporal and geographical distribution, resulting in increased spread, exposure, and infection rates, thus facilitating greater Vibrio-human interactions. Concurrently, wildfires are increasing in size, severity, frequency, and spread in the built environment due to climate change, resulting in the emission of contaminants of emerging concern. This study aimed to understand the potential effects of urban interface wildfire ashes on Vibrio vulnificus (V. vulnificus) growth and gene expression using transcriptomic approaches. V. vulnificus was exposed to structural and vegetation ashes and analyzed to identify differentially expressed genes using the HTSeq-DESeq2 strategy. Exposure to wildfire ash altered V. vulnificus growth and gene expression, depending on the trace metal composition of the ash. The high Fe content of the vegetation ash enhanced bacterial growth, while the high Cu, As, and Cr content of the structural ash suppressed growth. Additionally, the overall pattern of upregulated genes and pathways suggests increased virulence potential due to the selection of metal- and antibiotic-resistant strains. Therefore, mixed fire ashes transported and deposited into coastal zones may lead to the selection of environmental reservoirs of Vibrio strains with enhanced antibiotic resistance profiles, increasing public health risk.
Collapse
Affiliation(s)
- Karlen Enid Correa Velez
- Department of Environmental Health Sciences, University of South Carolina, 921 Assembly St., Suite 401, Columbia, South Carolina 29208, United States
- NIEHS Center for Oceans and Human Health and Climate Change Interactions, University of South Carolina, 921 Assembly St., Suite 401, Columbia, South Carolina 29208, United States
| | - Mahbub Alam
- Department of Environmental Health Sciences, University of South Carolina, 921 Assembly St., Suite 401, Columbia, South Carolina 29208, United States
- Center for Environmental Nanoscience and Risk, University of South Carolina, 921 Assembly St., Suite 401, Columbia, South Carolina 29208, United States
| | - Mohammed A Baalousha
- Department of Environmental Health Sciences, University of South Carolina, 921 Assembly St., Suite 401, Columbia, South Carolina 29208, United States
- Center for Environmental Nanoscience and Risk, University of South Carolina, 921 Assembly St., Suite 401, Columbia, South Carolina 29208, United States
| | - R Sean Norman
- Department of Environmental Health Sciences, University of South Carolina, 921 Assembly St., Suite 401, Columbia, South Carolina 29208, United States
- NIEHS Center for Oceans and Human Health and Climate Change Interactions, University of South Carolina, 921 Assembly St., Suite 401, Columbia, South Carolina 29208, United States
| |
Collapse
|
13
|
Jin T, Ren J, Bai B, Wu W, Cao Y, Meng J, Zhang L. Effects of Klebsiella michiganensis LDS17 on Codonopsis pilosula growth, rhizosphere soil enzyme activities, and microflora, and genome-wide analysis of plant growth-promoting genes. Microbiol Spectr 2024; 12:e0405623. [PMID: 38563743 PMCID: PMC11064500 DOI: 10.1128/spectrum.04056-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Codonopsis pilosula is a perennial herbaceous liana with medicinal value. It is critical to promote Codonopsis pilosula growth through effective and sustainable methods, and the use of plant growth-promoting bacteria (PGPB) is a promising candidate. In this study, we isolated a PGPB, Klebsiella michiganensis LDS17, that produced a highly active 1-aminocyclopropane-1-carboxylate deaminase from the Codonopsis pilosula rhizosphere. The strain exhibited multiple plant growth-promoting properties. The antagonistic activity of strain LDS17 against eight phytopathogenic fungi was investigated, and the results showed that strain LDS17 had obvious antagonistic effects on Rhizoctonia solani, Colletotrichum camelliae, Cytospora chrysosperma, and Phomopsis macrospore with growth inhibition rates of 54.22%, 49.41%, 48.89%, and 41.11%, respectively. Inoculation of strain LDS17 not only significantly increased the growth of Codonopsis pilosula seedlings but also increased the invertase and urease activities, the number of culturable bacteria, actinomycetes, and fungi, as well as the functional diversity of microbial communities in the rhizosphere soil of the seedlings. Heavy metal (HM) resistance tests showed that LDS17 is resistant to copper, zinc, and nickel. Whole-genome analysis of strain LDS17 revealed the genes involved in IAA production, siderophore synthesis, nitrogen fixation, P solubilization, and HM resistance. We further identified a gene (koyR) encoding a plant-responsive LuxR solo in the LDS17 genome. Klebsiella michiganensis LDS17 may therefore be useful in microbial fertilizers for Codonopsis pilosula. The identification of genes related to plant growth and HM resistance provides an important foundation for future analyses of the molecular mechanisms underlying the plant growth promotion and HM resistance of LDS17. IMPORTANCE We comprehensively evaluated the plant growth-promoting characteristics and heavy metal (HM) resistance ability of the LDS17 strain, as well as the effects of strain LDS17 inoculation on the Codonopsis pilosula seedling growth and the soil qualities in the Codonopsis pilosula rhizosphere. We conducted whole-genome analysis and identified lots of genes and gene clusters contributing to plant-beneficial functions and HM resistance, which is critical for further elucidating the plant growth-promoting mechanism of strain LDS17 and expanding its application in the development of plant growth-promoting agents used in the environment under HM stress.
Collapse
Affiliation(s)
- Tingting Jin
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Jiahong Ren
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Bianxia Bai
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Wei Wu
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Yongqing Cao
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Jing Meng
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Lihui Zhang
- Department of Life Sciences, Changzhi University, Changzhi, China
| |
Collapse
|
14
|
Ramnarine SDB, Ali O, Jayaraman J, Ramsubhag A. Early transcriptional changes of heavy metal resistance and multiple efflux genes in Xanthomonas campestris pv. campestris under copper and heavy metal ion stress. BMC Microbiol 2024; 24:81. [PMID: 38461228 PMCID: PMC10924375 DOI: 10.1186/s12866-024-03206-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/28/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Copper-induced gene expression in Xanthomonas campestris pv. campestris (Xcc) is typically evaluated using targeted approaches involving qPCR. The global response to copper stress in Xcc and resistance to metal induced damage is not well understood. However, homologs of heavy metal efflux genes from the related Stenotrophomonas genus are found in Xanthomonas which suggests that metal related efflux may also be present. METHODS AND RESULTS Gene expression in Xcc strain BrA1 exposed to 0.8 mM CuSO4.5H2O for 15 minutes was captured using RNA-seq analysis. Changes in expression was noted for genes related to general stress responses and oxidoreductases, biofilm formation, protein folding chaperones, heat-shock proteins, membrane lipid profile, multiple drug and efflux (MDR) transporters, and DNA repair were documented. At this timepoint only the cohL (copper homeostasis/tolerance) gene was upregulated as well as a chromosomal czcCBA efflux operon. An additional screen up to 4 hrs using qPCR was conducted using a wider range of heavy metals. Target genes included a cop-containing heavy metal resistance island and putative metal efflux genes. Several efflux pumps, including a copper resistance associated homolog from S. maltophilia, were upregulated under toxic copper stress. However, these pumps were also upregulated in response to other toxic heavy metals. Additionally, the temporal expression of the coh and cop operons was also observed, demonstrating co-expression of tolerance responses and later activation of part of the cop operon. CONCLUSIONS Overall, initial transcriptional responses focused on combating oxidative stress, mitigating protein damage and potentially increasing resistance to heavy metals and other biocides. A putative copper responsive efflux gene and others which might play a role in broader heavy metal resistance were also identified. Furthermore, the expression patterns of the cop operon in conjunction with other copper responsive genes allowed for a better understanding of the fate of copper ions in Xanthomonas. This work provides useful evidence for further evaluating MDR and other efflux pumps in metal-specific homeostasis and tolerance phenotypes in the Xanthomonas genus. Furthermore, non-canonical copper tolerance and resistance efflux pumps were potentially identified. These findings have implications for interpreting MIC differences among strains with homologous copLAB resistance genes, understanding survival under copper stress, and resistance in disease management.
Collapse
Affiliation(s)
- Stephen D B Ramnarine
- Department of Life Sciences, Faculty of Science and Technology, The University of The West Indies, St. Augustine campus, St. Augustine, Trinidad and Tobago, W. I
| | - Omar Ali
- Department of Life Sciences, Faculty of Science and Technology, The University of The West Indies, St. Augustine campus, St. Augustine, Trinidad and Tobago, W. I
| | - Jayaraj Jayaraman
- Department of Life Sciences, Faculty of Science and Technology, The University of The West Indies, St. Augustine campus, St. Augustine, Trinidad and Tobago, W. I
| | - Adesh Ramsubhag
- Department of Life Sciences, Faculty of Science and Technology, The University of The West Indies, St. Augustine campus, St. Augustine, Trinidad and Tobago, W. I.
| |
Collapse
|
15
|
Huang WS, Lee YJ, Wang L, Chen HH, Chao YJ, Cheng V, Liaw SJ. Copper affects virulence and diverse phenotypes of uropathogenic Proteus mirabilis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024:S1684-1182(24)00044-6. [PMID: 38453541 DOI: 10.1016/j.jmii.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/18/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Copper plays a role in urinary tract infection (UTI) and urinary copper content is increased during Proteus mirabilis UTI. We therefore investigated the effect of copper on uropathogenic P. mirabilis and the underlying mechanisms, focusing on the virulence associated aspects. METHODS Mouse colonization, swarming/swimming assays, measurement of cell length, flagellin level and urease activity, adhesion/invasion assay, biofilm formation, killing by macrophages, oxidative stress susceptibility, OMPs analysis, determination of MICs and persister cell formation, RT-PCR and transcriptional reporter assay were performed. RESULTS We found that copper-supplemented mice were more resistant to be colonized in the urinary tract, together with decreased swarming/swimming, ureases activity, expression of type VI secretion system and adhesion/invasion to urothelial cells and increased killing by macrophages of P. mirabilis at a sublethal copper level. However, bacterial biofilm formation and resistance to oxidative stress were enhanced under the same copper level. Of note, the presence of copper led to increased ciprofloxacin MIC and more persister cell formation against ampicillin. In addition, the presence of copper altered the outer membrane protein profile and triggered expression of RcsB response regulator. For the first time, we unveiled the pleiotropic effects of copper on uropathogenic P. mirabilis, especially for induction of bacterial two-component signaling system regulating fitness and virulence. CONCLUSION The finding of copper-mediated virulence and fitness reinforced the importance of copper for prevention and therapeutic interventions against P. mirabilis infections. As such, this study could facilitate the copper-based strategies against UTI by P. mirabilis.
Collapse
Affiliation(s)
- Wei-Syuan Huang
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Yuan-Ju Lee
- Department of Urology, National Taiwan University Hospital, and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Lu Wang
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Hsuan-Hsuan Chen
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Yueh-Jung Chao
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Vivien Cheng
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Shwu-Jen Liaw
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
16
|
Vital VG, Silva MR, Santos VT, Lobo FG, Xander P, Zauli RC, Moraes CB, Freitas-Junior LH, Barbosa CG, Pellosi DS, Silva RAG, Paganotti A, Vasconcellos SP. Micro-Addition of Silver to Copper: One Small Step in Composition, a Change for a Giant Leap in Biocidal Activity. MATERIALS (BASEL, SWITZERLAND) 2024; 17:917. [PMID: 38399167 PMCID: PMC10890504 DOI: 10.3390/ma17040917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
The use of copper as an antimicrobial agent has a long history and has gained renewed interest in the context of the COVID-19 pandemic. In this study, the authors investigated the antimicrobial properties of an alloy composed of copper with a small percentage of silver (Cu-0.03% wt.Ag). The alloy was tested against various pathogens, including Escherichia coli, Staphylococcus aureus, Candida albicans, Pseudomonas aeruginosa, and the H1N1 virus, using contact exposure tests. Results showed that the alloy was capable of inactivating these pathogens in two hours or less, indicating its strong antimicrobial activity. Electrochemical measurements were also performed, revealing that the small addition of silver to copper promoted a higher resistance to corrosion and shifted the formation of copper ions to higher potentials. This shift led to a slow but continuous release of Cu2+ ions, which have high biocidal activity. These findings show that the addition of small amounts of silver to copper can enhance its biocidal properties and improve its effectiveness as an antimicrobial material.
Collapse
Affiliation(s)
- Vitor G. Vital
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas—ICAQF, Universidade Federal de São Paulo—UNIFESP, Diadema 09913-030, Brazil (P.X.); (R.C.Z.)
| | - Márcio R. Silva
- Department of Research and Development, Termomecanica São Paulo S.A., São Bernardo do Campo 09612-000, Brazil
| | - Vinicius T. Santos
- Department of Research and Development, Termomecanica São Paulo S.A., São Bernardo do Campo 09612-000, Brazil
| | - Flávia G. Lobo
- Department of Research and Development, Termomecanica São Paulo S.A., São Bernardo do Campo 09612-000, Brazil
| | - Patrícia Xander
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas—ICAQF, Universidade Federal de São Paulo—UNIFESP, Diadema 09913-030, Brazil (P.X.); (R.C.Z.)
| | - Rogéria C. Zauli
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas—ICAQF, Universidade Federal de São Paulo—UNIFESP, Diadema 09913-030, Brazil (P.X.); (R.C.Z.)
| | - Carolina B. Moraes
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, Brazil
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Lucio H. Freitas-Junior
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Cecíla G. Barbosa
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Diogo S. Pellosi
- Instituto de Química, Universidade Federal do Paraná, Curitiba 81531-980, Brazil
| | - Ricardo A. G. Silva
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas—ICAQF, Universidade Federal de São Paulo—UNIFESP, Diadema 09913-030, Brazil (P.X.); (R.C.Z.)
| | - André Paganotti
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas—ICAQF, Universidade Federal de São Paulo—UNIFESP, Diadema 09913-030, Brazil (P.X.); (R.C.Z.)
| | - Suzan P. Vasconcellos
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas—ICAQF, Universidade Federal de São Paulo—UNIFESP, Diadema 09913-030, Brazil (P.X.); (R.C.Z.)
| |
Collapse
|
17
|
Tan Y, Zhao K, Yang S, Chen S, Li C, Han X, Li J, Hu K, Liu S, Ma M, Yu X, Zou L. Insights into antibiotic and heavy metal resistance interactions in Escherichia coli isolated from livestock manure and fertilized soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119935. [PMID: 38154221 DOI: 10.1016/j.jenvman.2023.119935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/12/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
Heavy metal and antibiotic-resistant bacteria from livestock feces are ecological and public health problems. However, the distribution and relationships of antibiotic resistance genes (ARGs), heavy metal resistance genes (HMRGs), and virulence factors (VFs) and their transmission mechanisms remain unclear. Therefore, we investigated the resistance of Escherichia coli, the prevalence of its ARGs, HMRGs, and VFs, and their transmission mechanisms in livestock fresh feces (FF), composted feces (CF), and fertilized soil (FS). In total, 99.54% (n = 221) and 91.44% (n = 203) of E. coli were resistant to at least one antibiotic and one heavy metal, respectively. Additionally, 72.52% (n = 161) were multi-drug resistant (MDR), of which Cu-resistant E. coli accounted for 72.67% (117/161). More than 99.34% (88/89) of E. coli carried multidrug ARGs, VFs, and the Cu resistance genes cueO and cusABCRFS. The Cu resistance genes cueO and cusABCRFS were mainly located on chromosomes, and cueO and cusF were positively associated with HMRGs, ARGs, and VFs. The Cu resistance genes pcoABCDRS were located on the plasmid pLKYL-P02 flanked by ARGs in PF18C from FF group and on chromosomes flanked by HMRGs in SAXZ1-1 from FS group. These results improved our understanding of bacterial multidrug and heavy metal resistance in the environment.
Collapse
Affiliation(s)
- Yulan Tan
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Ke Zhao
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Shengzhi Yang
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
| | - Chun Li
- Sichuan Province Center for Animal Disease Prevention and Control, Chengdu, Sichuan, China.
| | - Xinfeng Han
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
| | - Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
| | - Menggen Ma
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Xiumei Yu
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Likou Zou
- College of Resource, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
18
|
Salam LB. Diverse hydrocarbon degradation genes, heavy metal resistome, and microbiome of a fluorene-enriched animal-charcoal polluted soil. Folia Microbiol (Praha) 2024; 69:59-80. [PMID: 37450270 DOI: 10.1007/s12223-023-01077-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Environmental compartments polluted with animal charcoal from the skin and hide cottage industries are rich in toxic heavy metals and diverse hydrocarbon classes, some of which are carcinogenic, mutagenic, and genotoxic, and thus require a bio-based eco-benign decommission strategies. A shotgun metagenomic approach was used to decipher the microbiome, hydrocarbon degradation genes, and heavy metal resistome of a microbial consortium (FN8) from an animal-charcoal polluted site enriched with fluorene. Structurally, the FN8 microbial consortium consists of 26 phyla, 53 classes, 119 orders, 245 families, 620 genera, and 1021 species. The dominant phylum, class, order, family, genus, and species in the consortium are Proteobacteria (51.37%), Gammaproteobacteria (39.01%), Bacillales (18.09%), Microbulbiferaceae (11.65%), Microbulbifer (12.21%), and Microbulbifer sp. A4B17 (19.65%), respectively. The microbial consortium degraded 57.56% (28.78 mg/L) and 87.14% (43.57 mg/L) of the initial fluorene concentration in 14 and 21 days. Functional annotation of the protein sequences (ORFs) of the FN8 metagenome using the KEGG GhostKOALA, KofamKOALA, NCBI's conserved domain database, and BacMet revealed the detection of hydrocarbon degradation genes for benzoate, aminobenzoate, polycyclic aromatic hydrocarbons (PAHs), chlorocyclohexane/chlorobenzene, chloroalkane/chloroalkene, toluene, xylene, styrene, naphthalene, nitrotoluene, and several others. The annotation also revealed putative genes for the transport, uptake, efflux, and regulation of heavy metals such as arsenic, cadmium, chromium, mercury, nickel, copper, zinc, and several others. Findings from this study have established that members of the FN8 consortium are well-adapted and imbued with requisite gene sets and could be a potential bioresource for on-site depuration of animal charcoal polluted sites.
Collapse
Affiliation(s)
- Lateef Babatunde Salam
- Department of Biological Sciences, Microbiology unit, Elizade University, Ilara-Mokin, Ondo State, Nigeria.
| |
Collapse
|
19
|
Shi Y, Ma L, Zhou M, He Z, Zhao Y, Hong J, Zou X, Zhang L, Shu L. Copper stress shapes the dynamic behavior of amoebae and their associated bacteria. THE ISME JOURNAL 2024; 18:wrae100. [PMID: 38848278 PMCID: PMC11197307 DOI: 10.1093/ismejo/wrae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/15/2024] [Accepted: 06/06/2024] [Indexed: 06/09/2024]
Abstract
Amoeba-bacteria interactions are prevalent in both natural ecosystems and engineered environments. Amoebae, as essential consumers, hold significant ecological importance within ecosystems. Besides, they can establish stable symbiotic associations with bacteria. Copper plays a critical role in amoeba predation by either killing or restricting the growth of ingested bacteria in phagosomes. However, certain symbiotic bacteria have evolved mechanisms to persist within the phagosomal vacuole, evading antimicrobial defenses. Despite these insights, the impact of copper on the symbiotic relationships between amoebae and bacteria remains poorly understood. In this study, we investigated the effects of copper stress on amoebae and their symbiotic relationships with bacteria. Our findings revealed that elevated copper concentration adversely affected amoeba growth and altered cellular fate. Symbiont type significantly influenced the responses of the symbiotic relationships to copper stress. Beneficial symbionts maintained stability under copper stress, but parasitic symbionts exhibited enhanced colonization of amoebae. Furthermore, copper stress favored the transition of symbiotic relationships between amoebae and beneficial symbionts toward the host's benefit. Conversely, the pathogenic effects of parasitic symbionts on hosts were exacerbated under copper stress. This study sheds light on the intricate response mechanisms of soil amoebae and amoeba-bacteria symbiotic systems to copper stress, providing new insights into symbiotic dynamics under abiotic factors. Additionally, the results underscore the potential risks of copper accumulation in the environment for pathogen transmission and biosafety.
Collapse
Affiliation(s)
- Yijing Shi
- SCNU Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Lu Ma
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Min Zhou
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanchen Zhao
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Junyue Hong
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinyue Zou
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Lin Zhang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Longfei Shu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
20
|
García-Laviña CX, Morel MA, García-Gabarrot G, Castro-Sowinski S. Phenotypic and resistome analysis of antibiotic and heavy metal resistance in the Antarctic bacterium Pseudomonas sp. AU10. Braz J Microbiol 2023; 54:2903-2913. [PMID: 37783937 PMCID: PMC10689667 DOI: 10.1007/s42770-023-01135-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023] Open
Abstract
Resistance to antibiotics and heavy metals in Antarctic bacteria has been investigated due to anthropogenic impact on the continent. However, there is still much to learn about the genetic determinants of resistance in native bacteria. In this study, we investigated antibiotic, heavy metal, and metalloid resistance in Pseudomonas sp. AU10, isolated from King George Island (Antarctica), and analyzed its genome to look for all the associated genetic determinants (resistome). We found that AU10 displayed resistance to Cr(VI), Cu(II), Mn(II), Fe(II), and As(V), and produced an exopolysaccharide with high Cr(VI)-biosorption capacity. Additionaly, the strain showed resistance to aminopenicillins, cefotaxime, aztreonam, azithromycin, and intermediate resistance to chloramphenicol. Regarding the resistome, we did not find resistance genes in AU10's natural plasmid or in a prophage context. Only a copper resistance cluster indicated possible horizontal acquisition. The mechanisms of resistance found were mostly efflux systems, several sequestering proteins, and a few enzymes, such as an AmpC β-lactamase or a chromate reductase, which would account for the observed phenotypic profile. In contrast, the presence of a few gene clusters, including the terZABCDE operon for tellurite resistance, did not correlate with the expected phenotype. Despite the observed resistance to multiple antibiotics and heavy metals, the lack of resistance genes within evident mobile genetic elements is suggestive of the preserved nature of AU10's Antarctic habitat. As Pseudomonas species are good bioindicators of human impact in Antarctic environments, we consider that our results could help refine surveillance studies based on monitoring resistances and associated resistomes in these populations.
Collapse
Affiliation(s)
- César X García-Laviña
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - María A Morel
- Laboratorio de Microbiología de Suelos, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
- Laboratorio de Microbiología Molecular, Departamento BIOGEM, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Av. Italia 3318, 11600, Montevideo, Uruguay
| | - Gabriela García-Gabarrot
- Departamento de Laboratorios, Ministerio de Salud Pública, Alfredo Navarro 3051, 11600, Montevideo, Uruguay
| | - Susana Castro-Sowinski
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.
- Laboratorio de Microbiología Molecular, Departamento BIOGEM, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Av. Italia 3318, 11600, Montevideo, Uruguay.
| |
Collapse
|
21
|
Wang H, Zhang S, Zhang J. The copper resistance mechanism in a newly isolated Pseudoxanthomonas spadix ZSY-33. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:484-496. [PMID: 37328952 PMCID: PMC10667631 DOI: 10.1111/1758-2229.13163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/05/2023] [Indexed: 06/18/2023]
Abstract
Resolving the heavy metal resistance mechanisms of microbes is crucial for understanding the bioremediation of the ecological environment. In this study, a multiple heavy metal resistance bacterium, Pseudoxanthomonas spadix ZSY-33 was isolated and characterized. The copper resistance mechanism was revealed by analysis of the physiological traits, copper distribution, and genomic and transcriptomic data of strain ZSY-33 cultured with different concentrations of copper. The growth inhibition assay in basic medium showed that the growth of strain ZSY-33 was inhibited in the presence of 0.5 mM copper. The production of extracellular polymeric substances increased at a lower concentration of copper and decreased at a higher concentration of copper. Integrative analysis of genomic and transcriptomic, the copper resistance mechanism in strain ZSY-33 was elucidated. At a lower concentration of copper, the Cus and Cop systems were responsible for the homeostasis of intracellular copper. As the concentration of copper increased, multiple metabolism pathways, including the metabolism of sulfur, amino acids, and pro-energy were cooperated with the Cus and Cop systems to deal with copper stress. These results indicated a flexible copper resistance mechanism in strain ZSY-33, which may acquire from the long-term interaction with the living environment.
Collapse
Affiliation(s)
- Hongjie Wang
- Hebei Key Laboratory of Close‐to‐Nature Restoration Technology of WetlandsHebei UniversityBaodingPeople's Republic of China
- Institute of Xiong'an New AreaHebei UniversityBaodingPeople's Republic of China
- School of Eco‐EnvironmentHebei UniversityBaodingPeople's Republic of China
- College of Life ScienceHebei UniversityBaodingPeople's Republic of China
| | - Siyao Zhang
- Hebei Key Laboratory of Close‐to‐Nature Restoration Technology of WetlandsHebei UniversityBaodingPeople's Republic of China
- School of Eco‐EnvironmentHebei UniversityBaodingPeople's Republic of China
| | - Jing Zhang
- Hebei Key Laboratory of Close‐to‐Nature Restoration Technology of WetlandsHebei UniversityBaodingPeople's Republic of China
- Institute of Xiong'an New AreaHebei UniversityBaodingPeople's Republic of China
- School of Eco‐EnvironmentHebei UniversityBaodingPeople's Republic of China
- College of Life ScienceHebei UniversityBaodingPeople's Republic of China
| |
Collapse
|
22
|
Conteville LC, Oliveira-Ferreira J, Vicente ACP. Heavy metal resistance in the Yanomami and Tunapuco microbiome. Mem Inst Oswaldo Cruz 2023; 118:e230086. [PMID: 37971084 PMCID: PMC10641926 DOI: 10.1590/0074-02760230086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 10/05/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND The Amazon Region hosts invaluable and unique biodiversity as well as mineral resources. Consequently, large illegal and artisanal gold mining areas exist in indigenous territories. Mercury has been used in gold mining, and some has been released into the environment and atmosphere, primarily affecting indigenous people such as the Yanomami. In addition, other heavy metals have been associated with gold mining and other metal-dispersing activities in the region. OBJECTIVE Investigate the gut microbiome of two semi-isolated groups from the Amazon, focusing on metal resistance. METHODS Metagenomic data from the Yanomami and Tunapuco gut microbiome were assembled into contigs, and their putative proteins were searched against a database of metal resistance proteins. FINDINGS Proteins associated with mercury resistance were exclusive in the Yanomami, while proteins associated with silver resistance were exclusive in the Tunapuco. Both groups share 77 non-redundant metal resistance (MR) proteins, mostly associated with multi-MR and operons with potential resistance to arsenic, nickel, zinc, copper, copper/silver, and cobalt/nickel. Although both groups harbour operons related to copper resistance, only the Tunapuco group had the pco operon. CONCLUSION The Yanomami and Tunapuco gut microbiome shows that these people have been exposed directly or indirectly to distinct scenarios concerning heavy metals.
Collapse
Affiliation(s)
- Liliane Costa Conteville
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genética Molecular de Microrganismos, Rio de Janeiro, RJ, Brasil
- Embrapa Pecuária Sudeste, São Carlos, SP, Brasil
| | - Joseli Oliveira-Ferreira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Imunoparasitologia, Rio de Janeiro, RJ, Brasil
| | - Ana Carolina P Vicente
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genética Molecular de Microrganismos, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
23
|
Xu Z, Zhang T, Hu H, Liu W, Xu P, Tang H. Characterization on nicotine degradation and research on heavy metal resistance of a strain Pseudomonas sp. NBB. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132145. [PMID: 37557045 DOI: 10.1016/j.jhazmat.2023.132145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/05/2023] [Accepted: 07/23/2023] [Indexed: 08/11/2023]
Abstract
The remediation of polluted sites containing multiple contaminants like nicotine and heavy metals poses significant challenges, due to detrimental effects like cell death. In this study, we isolated a new strain Pseudomonas sp. NBB capable of efficiently degrading nicotine even in high level of heavy metals. It degraded nicotine through pyrrolidine pathway and displayed minimum inhibitory concentrations of 2 mM for barium, copper, and lead, and 5 mM for manganese. In the presence of 2 mM Ba2+ or Pb2+, 3 g L-1 nicotine could be completely degraded within 24 h. Moreover, under 0.5 mM Cu2+ or 5 mM Mn2+ stress, 24.13% and 72.56% of nicotine degradation were achieved in 60 h, respectively. Strain NBB tolerances metal stress by various strategies, including morphological changes, up-regulation of macromolecule transporters, cellular response to DNA damage, and down-regulation of ABC transporters. Notably, among the 153 up-regulated genes, cds_821 was identified as manganese exporter (MneA) after gene disruption and recovery experiments. This study presents a novel strain capable of efficiently degrading nicotine and displaying remarkable resistance to heavy metals. The findings of this research provide valuable insights into the potential application of nicotine bioremediation in heavy metal-contaminated areas.
Collapse
Affiliation(s)
- Zhaoyong Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Tingting Zhang
- China Tobacco Henan Industrial Co. Ltd., Zhengzhou 450000, People's Republic of China
| | - Haiyang Hu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Wenzhao Liu
- China Tobacco Henan Industrial Co. Ltd., Zhengzhou 450000, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
24
|
Shopova E, Brankova L, Ivanov S, Urshev Z, Dimitrova L, Dimitrova M, Hristova P, Kizheva Y. Xanthomonas euvesicatoria-Specific Bacteriophage BsXeu269p/3 Reduces the Spread of Bacterial Spot Disease in Pepper Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3348. [PMID: 37836088 PMCID: PMC10574073 DOI: 10.3390/plants12193348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
The present study was focused on the pathosystem pepper plants (Capsicum annuum L.)-phytopathogenic bacterium X. euvesicatoria (wild strain 269p)-bacteriophage BsXeu269p/3 and the possibility of bacteriophage-mediated biocontrol of the disease. Two new model systems were designed for the monitoring of the effect of the phage treatment on the infectious process in vivo. The spread of the bacteriophage and the pathogen was monitored by qPCR. A new pair of primers for phage detection via qPCR was designed, as well as probes for TaqMan qPCR. The epiphytic bacterial population and the potential bacteriolytic effect of BsXeu269p/3 in vivo was observed by SEM. An aerosol-mediated transmission model system demonstrated that treatment with BsXeu269p/3 reduced the amount of X. euvesicatoria on the leaf surface five-fold. The needle-pricking model system showed a significant reduction of the amount of the pathogen in infectious lesions treated with BsXeu269p/3 (av. 59.7%), compared to the untreated control. We found that the phage titer is 10-fold higher in the infection lesions but it was still discoverable even in the absence of the specific host in the leaves. This is the first report of in vivo assessment of the biocontrol potential of locally isolated phages against BS pathogen X. euvesicatoria in Bulgaria.
Collapse
Affiliation(s)
- Elena Shopova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21., 1113 Sofia, Bulgaria; (E.S.); (L.D.)
| | - Liliana Brankova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21., 1113 Sofia, Bulgaria; (E.S.); (L.D.)
| | - Sergei Ivanov
- Centre of Food Biology, 1592 Sofia, Bulgaria;
- Faculty of Biology, Sofia University St. “Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (M.D.); (P.H.)
| | - Zoltan Urshev
- R&D Center, LB Bulgaricum PLC, 14 Malashevska Str., 1225 Sofia, Bulgaria;
| | - Lyudmila Dimitrova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21., 1113 Sofia, Bulgaria; (E.S.); (L.D.)
| | - Melani Dimitrova
- Faculty of Biology, Sofia University St. “Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (M.D.); (P.H.)
| | - Petya Hristova
- Faculty of Biology, Sofia University St. “Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (M.D.); (P.H.)
| | - Yoana Kizheva
- Faculty of Biology, Sofia University St. “Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (M.D.); (P.H.)
| |
Collapse
|
25
|
Rebelo A, Almeida A, Peixe L, Antunes P, Novais C. Unraveling the Role of Metals and Organic Acids in Bacterial Antimicrobial Resistance in the Food Chain. Antibiotics (Basel) 2023; 12:1474. [PMID: 37760770 PMCID: PMC10525130 DOI: 10.3390/antibiotics12091474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
Antimicrobial resistance (AMR) has a significant impact on human, animal, and environmental health, being spread in diverse settings. Antibiotic misuse and overuse in the food chain are widely recognized as primary drivers of antibiotic-resistant bacteria. However, other antimicrobials, such as metals and organic acids, commonly present in agri-food environments (e.g., in feed, biocides, or as long-term pollutants), may also contribute to this global public health problem, although this remains a debatable topic owing to limited data. This review aims to provide insights into the current role of metals (i.e., copper, arsenic, and mercury) and organic acids in the emergence and spread of AMR in the food chain. Based on a thorough literature review, this study adopts a unique integrative approach, analyzing in detail the known antimicrobial mechanisms of metals and organic acids, as well as the molecular adaptive tolerance strategies developed by diverse bacteria to overcome their action. Additionally, the interplay between the tolerance to metals or organic acids and AMR is explored, with particular focus on co-selection events. Through a comprehensive analysis, this review highlights potential silent drivers of AMR within the food chain and the need for further research at molecular and epidemiological levels across different food contexts worldwide.
Collapse
Affiliation(s)
- Andreia Rebelo
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
- ESS, Polytechnic of Porto, 4200-072 Porto, Portugal
| | - Agostinho Almeida
- LAQV/REQUIMTE, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Luísa Peixe
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Patrícia Antunes
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Faculty of Nutrition and Food Sciences (FCNAUP), University of Porto, 4150-180 Porto, Portugal
| | - Carla Novais
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
26
|
Ishihara JI, Mekubo T, Kusaka C, Kondo S, Oiko R, Igarashi K, Aiba H, Ishikawa S, Ogasawara N, Oshima T, Takahashi H. A critical role of the periplasm in copper homeostasis in Gram-negative bacteria. Biosystems 2023; 231:104980. [PMID: 37453610 DOI: 10.1016/j.biosystems.2023.104980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/18/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Copper is essential for life, but is toxic in excess. Copper homeostasis is achieved in the cytoplasm and the periplasm as a unique feature of Gram-negative bacteria. Especially, it has become clear the role of the periplasm and periplasmic proteins regarding whole-cell copper homeostasis. Here, we addressed the role of the periplasm and periplasmic proteins in copper homeostasis using a Systems Biology approach integrating experiments with models. Our analysis shows that most of the copper-bound molecules localize in the periplasm but not cytoplasm, suggesting that Escherichia coli utilizes the periplasm to sense the copper concentration in the medium and sequester copper ions. In particular, a periplasmic multi-copper oxidase CueO and copper-responsive transcriptional factor CusS contribute both to protection against Cu(I) toxicity and to incorporating copper into the periplasmic components/proteins. We propose that Gram-negative bacteria have evolved mechanisms to sense and store copper in the periplasm to expand their living niches.
Collapse
Affiliation(s)
- Jun-Ichi Ishihara
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8673, Japan
| | - Tomohiro Mekubo
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Chikako Kusaka
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Suguru Kondo
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Ryotaro Oiko
- Graduate School of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu City, Toyama, 939-0398, Japan
| | - Kensuke Igarashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohiraku, Sapporo, Hokkaido, 062-8517, Japan
| | - Hirofumi Aiba
- Graduate School of Pharmaceutical Sciences, Nagoya University, Pharmaceutical Sciences Building, Furocho, Chikusa-ku, Aichi, 464-8601, Japan
| | - Shu Ishikawa
- Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku Kobe, 657-8501, Japan
| | - Naotake Ogasawara
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Taku Oshima
- Graduate School of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu City, Toyama, 939-0398, Japan.
| | - Hiroki Takahashi
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8673, Japan; Molecular Chirality Research Center, Chiba University, Chiba, Japan; Plant Molecular Science Center, Chiba University, Chiba, Japan.
| |
Collapse
|
27
|
Danial AW, Dardir FM. Copper biosorption by Bacillus pumilus OQ931870 and Bacillus subtilis OQ931871 isolated from Wadi Nakheil, Red Sea, Egypt. Microb Cell Fact 2023; 22:152. [PMID: 37573310 PMCID: PMC10422821 DOI: 10.1186/s12934-023-02166-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Despite being necessary, copper is a toxic heavy metal that, at high concentrations, harms the life system. The parameters that affect the bioreduction and biosorption of copper are highly copper-resistant bacteria. RESULTS In this work, the ability of the bacterial biomass, isolated from black shale, Wadi Nakheil, Red Sea, Egypt, for Cu2+ attachment, was investigated. Two Cu2+ resistance Bacillus species were isolated; Bacillus pumilus OQ931870 and Bacillus subtilis OQ931871. The most tolerant bacterial isolate to Cu2+ was B. pumilus. Different factors on Cu2+ biosorption were analyzed to estimate the maximum conditions for Cu biosorption. The qmax for Cu2+ by B. pumilus and B. subtilis determined from the Langmuir adsorption isotherm was 11.876 and 19.88 mg. g-1, respectively. According to r2, the biosorption equilibrium isotherms close-fitting with Langmuir and Freundlich model isotherm. Temkin isotherm fitted better to the equilibrium data of B. pumilus and B. subtilis adsorption. Additionally, the Dubinin-Radushkevich (D-R) isotherm suggested that adsorption mechanism of Cu2+ is predominately physisorption. CONCLUSION Therefore, the present work indicated that the biomass of two bacterial strains is an effective adsorbent for Cu2+ removal from aqueous solutions.
Collapse
Affiliation(s)
- Amal William Danial
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt.
| | | |
Collapse
|
28
|
Yu Y, Liu H, Xia H, Chu Z. Double- or Triple-Tiered Protection: Prospects for the Sustainable Application of Copper-Based Antimicrobial Compounds for Another Fourteen Decades. Int J Mol Sci 2023; 24:10893. [PMID: 37446071 DOI: 10.3390/ijms241310893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Copper (Cu)-based antimicrobial compounds (CBACs) have been widely used to control phytopathogens for nearly fourteen decades. Since the first commercialized Bordeaux mixture was introduced, CBACs have been gradually developed from highly to slightly soluble reagents and from inorganic to synthetic organic, with nanomaterials being a recent development. Traditionally, slightly soluble CBACs form a physical film on the surface of plant tissues, separating the micro-organisms from the host, then release divalent or monovalent copper ions (Cu2+ or Cu+) to construct a secondary layer of protection which inhibits the growth of pathogens. Recent progress has demonstrated that the release of a low concentration of Cu2+ may elicit immune responses in plants. This supports a triple-tiered protection role of CBACs: break contact, inhibit microorganisms, and stimulate host immunity. This spatial defense system, which is integrated both inside and outside the plant cell, provides long-lasting and broad-spectrum protection, even against emergent copper-resistant strains. Here, we review recent findings and highlight the perspectives underlying mitigation strategies for the sustainable utilization of CBACs.
Collapse
Affiliation(s)
- Yue Yu
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Haifeng Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Haoran Xia
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhaohui Chu
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
29
|
Ramnarine SDBJ, Jayaraman J, Ramsubhag A. copLAB gene prevalence and diversity among Trinidadian Xanthomonas spp. black-rot lesion isolates with variable copper resistance profiles. PeerJ 2023; 11:e15657. [PMID: 37397015 PMCID: PMC10312155 DOI: 10.7717/peerj.15657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/07/2023] [Indexed: 07/04/2023] Open
Abstract
Background There has been limited exploration of copLAB genotypes and associated copper resistance phenotypes in Xanthomonas spp. in the southern Caribbean region. An earlier study highlighted a variant copLAB gene cluster found in one Trinidadian Xanthomonas campestris pv. campestris (Xcc) strain (BrA1), with <90% similarity to previously reported Xanthomonas copLAB genes. With only one report describing this copper resistance genotype, the current study investigated the distribution of the BrA1 variant copLAB gene cluster and previously reported forms of copper resistance genes in local Xanthomonas spp. Methods Xanthomonas spp. were isolated from black-rot infected lesions on leaf tissue from crucifer crops at intensively farmed sites with high agrochemical usage in Trinidad. The identity of morphologically identified isolates were confirmed using a paired primer PCR based screen and 16s rRNA partial gene sequencing. MGY agar amended with CuSO4.5H2O up to 2.4 mM was used to establish MIC's for confirmed isolates and group strains as sensitive, tolerant, or resistant to copper. Separate primer pairs targeting the BrA1 variant copLAB genes and those predicted to target multiple homologs found in Xanthomonas and Stenotrophomonas spp. were used to screen copper resistant isolates. Select amplicons were sanger sequenced and evolutionary relationships inferred from global reference sequences using a ML approach. Results Only four copper sensitive/tolerant Xanthomonas sp. strains were isolated, with 35 others classed as copper-resistant from a total population of 45 isolates. PCR detection of copLAB genes revealed two PCR negative copper-resistant resistant strains. Variant copLAB genes were only found in Xcc from the original source location of the BrA1 strain, Aranguez. Other copper-resistant strains contained other copLAB homologs that clustered into three distinct clades. These groups were more similar to genes from X. perforans plasmids and Stenotrophomonas spp. chromosomal homologs than reference Xcc sequences. This study highlights the localisation of the BrA1 variant copLAB genes to one agricultural community and the presence of three distinct copLAB gene groupings in Xcc and related Xanthomonas spp. with defined CuSO4.5H2O MIC. Further characterisation of these gene groups and copper resistance gene exchange dynamics on and within leaf tissue between Xcc and other Xanthomonas species are needed as similar gene clusters showed variable copper sensitivity profiles. This work will serve as a baseline for copper resistance gene characterisation in Trinidad and the wider Caribbean region and can be used to boost already lacking resistant phytopathogen management in the region.
Collapse
|
30
|
Kumari K, Rawat V, Shadan A, Sharma PK, Deb S, Singh RP. In-depth genome and pan-genome analysis of a metal-resistant bacterium Pseudomonas parafulva OS-1. Front Microbiol 2023; 14:1140249. [PMID: 37408640 PMCID: PMC10318148 DOI: 10.3389/fmicb.2023.1140249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/29/2023] [Indexed: 07/07/2023] Open
Abstract
A metal-resistant bacterium Pseudomonas parafulva OS-1 was isolated from waste-contaminated soil in Ranchi City, India. The isolated strain OS-1 showed its growth at 25-45°C, pH 5.0-9.0, and in the presence of ZnSO4 (upto 5 mM). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain OS-1 belonged to the genus Pseudomonas and was most closely related to parafulva species. To unravel the genomic features, we sequenced the complete genome of P. parafulva OS-1 using Illumina HiSeq 4,000 sequencing platform. The results of average nucleotide identity (ANI) analysis indicated the closest similarity of OS-1 to P. parafulva PRS09-11288 and P. parafulva DTSP2. The metabolic potential of P. parafulva OS-1 based on Clusters of Othologous Genes (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated a high number of genes related to stress protection, metal resistance, and multiple drug-efflux, etc., which is relatively rare in P. parafulva strains. Compared with other parafulva strains, P. parafulva OS-1 was found to have the unique β-lactam resistance and type VI secretion system (T6SS) gene. Additionally, its genomes encode various CAZymes such as glycoside hydrolases and other genes associated with lignocellulose breakdown, suggesting that strain OS-1 have strong biomass degradation potential. The presence of genomic complexity in the OS-1 genome indicates that horizontal gene transfer (HGT) might happen during evolution. Therefore, genomic and comparative genome analysis of parafulva strains is valuable for further understanding the mechanism of resistance to metal stress and opens a perspective to exploit a newly isolated bacterium for biotechnological applications.
Collapse
Affiliation(s)
- Kiran Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Vaishnavi Rawat
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Afreen Shadan
- Department of Microbiology, Dr. Shyama Prasad Mukerjee University, Ranchi, India
| | - Parva Kumar Sharma
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Sushanta Deb
- Department of Veterinary Microbiology and Pathology, Washington State University (WSU), Pullman, WA, United States
| | - Rajnish Prakash Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, Jharkhand, India
| |
Collapse
|
31
|
Krzyżanowska DM, Jabłońska M, Kaczyński Z, Czerwicka-Pach M, Macur K, Jafra S. Host-adaptive traits in the plant-colonizing Pseudomonas donghuensis P482 revealed by transcriptomic responses to exudates of tomato and maize. Sci Rep 2023; 13:9445. [PMID: 37296159 PMCID: PMC10256816 DOI: 10.1038/s41598-023-36494-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023] Open
Abstract
Pseudomonads are metabolically flexible and can thrive on different plant hosts. However, the metabolic adaptations required for host promiscuity are unknown. Here, we addressed this knowledge gap by employing RNAseq and comparing transcriptomic responses of Pseudomonas donghuensis P482 to root exudates of two plant hosts: tomato and maize. Our main goal was to identify the differences and the common points between these two responses. Pathways upregulated only by tomato exudates included nitric oxide detoxification, repair of iron-sulfur clusters, respiration through the cyanide-insensitive cytochrome bd, and catabolism of amino and/or fatty acids. The first two indicate the presence of NO donors in the exudates of the test plants. Maize specifically induced the activity of MexE RND-type efflux pump and copper tolerance. Genes associated with motility were induced by maize but repressed by tomato. The shared response to exudates seemed to be affected both by compounds originating from the plants and those from their growth environment: arsenic resistance and bacterioferritin synthesis were upregulated, while sulfur assimilation, sensing of ferric citrate and/or other iron carriers, heme acquisition, and transport of polar amino acids were downregulated. Our results provide directions to explore mechanisms of host adaptation in plant-associated microorganisms.
Collapse
Affiliation(s)
- Dorota M Krzyżanowska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdańsk, ul. A. Abrahama 58, 80-307, Gdańsk, Poland
| | - Magdalena Jabłońska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdańsk, ul. A. Abrahama 58, 80-307, Gdańsk, Poland
| | - Zbigniew Kaczyński
- Laboratory of Structural Biochemistry, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Małgorzata Czerwicka-Pach
- Laboratory of Structural Biochemistry, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Katarzyna Macur
- Laboratory of Mass Spectrometry, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdańsk, ul. A. Abrahama 58, 80-307, Gdańsk, Poland
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdańsk, ul. A. Abrahama 58, 80-307, Gdańsk, Poland.
| |
Collapse
|
32
|
Majhi K, Let M, Halder U, Chitikineni A, Varshney RK, Bandopadhyay R. Copper removal capability and genomic insight into the lifestyle of copper mine inhabiting Micrococcus yunnanensis GKSM13. ENVIRONMENTAL RESEARCH 2023; 223:115431. [PMID: 36754109 DOI: 10.1016/j.envres.2023.115431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Heavy metal pollution in mining areas is a serious environmental concern. The exploration of mine-inhabiting microbes, especially bacteria may use as an effective alternative for the remediation of mining hazards. A highly copper-tolerant strain GKSM13 was isolated from the soil of the Singhbhum copper mining area and characterized for significant copper (Cu) removal potential and tolerance to other heavy metals. The punctate, yellow-colored, coccoid strain GKSM13 was able to tolerate 500 mg L-1 Cu2+. Whole-genome sequencing identified strain GKSM13 as Micrococcus yunnanensis, which has a 2.44 Mb genome with 2176 protein-coding genes. The presence of putative Cu homeostasis genes and other heavy metal transporters/response regulators or transcription factors may responsible for multi-metal resistance. The maximum Cu2+ removal of 89.2% was achieved at a pH of 7.5, a temperature of 35.5 °C, and an initial Cu2+ ion concentration of 31.5 mg L-1. Alteration of the cell surface, deposition of Cu2+ in the bacterial cell, and the involvement of hydroxyl, carboxyl amide, and amine groups in Cu2+ removal were observed using microscopic and spectroscopic analysis. This study is the first to reveal a molecular-based approach for the multi-metal tolerance and copper homeostasis mechanism of M. yunnanensis GKSM13.
Collapse
Affiliation(s)
- Krishnendu Majhi
- Microbiology Section, Department of Botany, The University of Burdwan, Burdwan, West Bengal, 713104, India; Department of Botany, Ananda Chandra College, Jalpaiguri, 735101, India
| | - Moitri Let
- Microbiology Section, Department of Botany, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Urmi Halder
- Microbiology Section, Department of Botany, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Annapurna Chitikineni
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India; State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, 6500, Australia
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India; State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, 6500, Australia
| | - Rajib Bandopadhyay
- Microbiology Section, Department of Botany, The University of Burdwan, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
33
|
Wu M, Wang C, Ke L, Chen D, Qin Y, Han J. Correlation between copper speciation and transport pathway in Caco-2 cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1895-1900. [PMID: 36287610 DOI: 10.1002/jsfa.12292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/11/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Previous studies have demonstrated that, in contrast to the properties of food-derived copper, water-derived copper exerts neurotoxic effects and exhibits different speciation during digestion. The cellular uptake efficiencies of different speciation of copper are distinct. However, it is unclear whether these different speciation share the same transport pathway in intestinal epithelial cells. In the present study, the intracellular accumulation of copper derived from copper ion and copper complex solutions was investigated in Caco-2 cells. RESULTS The cellular accumulation of copper derived from copper ions was higher than that of copper derived from the copper complex. Treatment with carboplatin and Ag+ , which are copper transporter receptor 1 (Ctr1, LC31A1) inhibitors, did not inhibit copper accumulation in Caco-2 cells, but inhibited copper accumulation in HepG2 cells. Zinc ion significantly decreased the intracellular copper content from 114 ± 7 μg g-1 protein to 88 ± 4 μg g-1 protein in the copper ion-treated Caco-2 cells, but not in the copper complex-treated Caco-2 cells (84.6 ± 14 μg g-1 protein versus 87.7 ± 20 μg g-1 protein, P > 0.05). Additionally, copper accumulation in Caco-2 and HepG2 cells significantly differed depending on different solvents (Hanks' balanced salt solution and NaNO3 , P < 0.05). CONCLUSION These results indicate that the intracellular accumulation of copper derived from copper ion and copper complex is mediated by distinct copper transport pathways. Copper speciation may be an important factor that affects copper absorption and toxicity. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min Wu
- Hangzhou Vocational and Technical College, Ecology and Health Institute, Hangzhou, China
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Cong Wang
- Hangzhou Vocational and Technical College, Ecology and Health Institute, Hangzhou, China
| | - Leqin Ke
- Hangzhou Vocational and Technical College, Ecology and Health Institute, Hangzhou, China
| | - Dewen Chen
- Hangzhou Vocational and Technical College, Ecology and Health Institute, Hangzhou, China
| | - Yumei Qin
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jianzhong Han
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
34
|
Babich TL, Grouzdev DS, Sokolova DS, Tourova TP, Poltaraus AB, Nazina TN. Genome analysis of Pollutimonas subterranea gen. nov., sp. nov. and Pollutimonas nitritireducens sp. nov., isolated from nitrate- and radionuclide-contaminated groundwater, and transfer of several Pusillimonas species into three new genera Allopusillimonas, Neopusillimonas, and Mesopusillimonas. Antonie Van Leeuwenhoek 2023; 116:109-127. [PMID: 36244039 DOI: 10.1007/s10482-022-01781-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/28/2022] [Indexed: 02/01/2023]
Abstract
Two facultatively anaerobic, chemoorganoheterotrophic bacterial strains, designated JR1/69-2-13T and JR1/69-3-13T, were isolated from nitrate- and radionuclide-contaminated groundwater (Ozyorsk town, South Urals, Russia). Both strains were found to be motile, Gram-stain negative rod-shaped neutrophilic, psychrotolerant bacteria that grow within the temperature range from 5-10 to 33 °C at 0-3 (0-5)% NaCl (w/v). The major cellular fatty acids were identified as C16:0, C16:1 ω7c, C18:1 ω7c and C17:0 cyclo. The major polar lipids were found to consist of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine, phosphatidylglycerol and unidentified aminophospholipids. The genomic G + C content of strains JR1/69-2-13T and JR1/69-3-13T was determined to be 57.2 and 57.9%, respectively. The 16S rRNA gene sequences of the strains showed high similarity between each other (98.6%) and to members of the genera Pusillimonas (96.8-98.4%) and Candidimonas (97.1-98.0%). The average nucleotide identity and digital DNA-DNA hybridization (dDDH) values among genomes of the new isolates and Pusillimonas and Candidimonas genomes were below 84.5 and 28.8%, respectively, i.e., below the thresholds for species delineation. Based on the phylogenomic, phenotypic and chemotaxonomic characterisation, we propose assignment of strains JR1/69-3-13T (= VKM B-3223T = KCTC 62615T) and JR1/69-2-13T (= VKM B-3222T = KCTC 62614T) to a new genus Pollutimonas as the type strains of two new species, Pollutimonas subterranea gen. nov., sp. nov. and Pollutimonas nitritireducens sp. nov., respectively. As a result of the taxonomic revision of the genus Pusillimonas, three novel genera, Allopusillimonas, Neopusillimonas, and Mesopusillimonas are also proposed; and Candidimonas bauzanensis is reclassified as Pollutimonas bauzanensis comb. nov. Genome analysis of the new isolates suggested molecular mechanisms of their adaptation to an environment highly polluted with nitrate and radionuclides.
Collapse
Affiliation(s)
- Tamara L Babich
- Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow, Russia, 119071
| | - Denis S Grouzdev
- SciBear OU, Tartu mnt 67/1-13b, Kesklinna linnaosa, 10115, Tallinn, Estonia
| | - Diyana S Sokolova
- Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow, Russia, 119071
| | - Tatyana P Tourova
- Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow, Russia, 119071
| | - Andrey B Poltaraus
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32, bld. 1 Vavilova, Moscow, Russia, 119991
| | - Tamara N Nazina
- Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow, Russia, 119071.
| |
Collapse
|
35
|
Ares Á, Sakai S, Sasaki T, Shimamura S, Mitarai S, Nunoura T. Sequestration and efflux largely account for cadmium and copper resistance in the deep-sea Nitratiruptor sp. SB155-2 (phylum Campylobacterota). Environ Microbiol 2022; 24:6144-6163. [PMID: 36284406 PMCID: PMC10092412 DOI: 10.1111/1462-2920.16255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/20/2022] [Indexed: 01/12/2023]
Abstract
In deep-sea hydrothermal vent environments, metal-enriched fluids and sediments abound, making these habitats ideal to study metal resistance in prokaryotes. In this investigation, we employed transcriptomics and shotgun proteomics with scanning transmission electron microscopy and energy-dispersive x-ray spectroscopy (STEM-EDX) to better understand mechanisms of tolerance for cadmium (Cd) and copper (Cu) at stress-inducing concentrations in Nitratiruptor sp. SB155-2 (phylum Campylobacterota). Transcriptomic profiles were remarkably different in the presence of these two metals, displaying 385 (19%) and 629 (31%) differentially transcribed genes (DTG) in the presence of Cd(II) and Cu(II), respectively, while only 7% of differentially transcribed (DT) genes were shared, with genes for non-specific metal transporters and genes involved in oxidative stress-response predominating. Transcriptomic and proteomic analyses confirmed that metal-specific DT pathways under Cu(II) stress, including those involving sulfur, cysteine, and methionine, are likely required for high-affinity efflux systems, while flagella formation and chemotaxis were over-represented under Cd(II) stress. Consistent with these differences, STEM-EDX analysis revealed that polyphosphate-like granules (pPLG), the formation of CdS particles, and the periplasmic space are crucial for Cd(II) sequestration. Overall, this study provides new insights regarding metal-specific adaptations of Campylobacterota to deep-sea hydrothermal vent environments.
Collapse
Affiliation(s)
- Ángela Ares
- Marine Biophysics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Sanae Sakai
- Super-Cutting-Edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| | - Toshio Sasaki
- Imaging section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Shigeru Shimamura
- Super-Cutting-Edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| | - Satoshi Mitarai
- Marine Biophysics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Takuro Nunoura
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| |
Collapse
|
36
|
Deng S, Tu Y, Fu L, Liu J, Jia L. A label-free biosensor for selective detection of Gram-negative bacteria based on the oxidase-like activity of cupric oxide nanoparticles. Mikrochim Acta 2022; 189:471. [DOI: 10.1007/s00604-022-05571-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/03/2022] [Indexed: 11/27/2022]
|
37
|
Wand ME, Sutton JM. Efflux-mediated tolerance to cationic biocides, a cause for concern? MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36748532 DOI: 10.1099/mic.0.001263] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
AbstractWith an increase in the number of isolates resistant to multiple antibiotics, infection control has become increasingly important to help combat the spread of multi-drug-resistant pathogens. An important component of this is through the use of disinfectants and antiseptics (biocides). Antibiotic resistance has been well studied in bacteria, but little is known about potential biocide resistance genes and there have been few reported outbreaks in hospitals resulting from a breakdown in biocide effectiveness. Development of increased tolerance to biocides has been thought to be more difficult due to the mode of action of biocides which affect multiple cellular targets compared with antibiotics. Very few genes which contribute towards increased biocide tolerance have been identified. However, the majority of those that have are components or regulators of different efflux pumps or genes which modulate membrane function/modification. This review will examine the role of efflux in increased tolerance towards biocides, focusing on cationic biocides and heavy metals against Gram-negative bacteria. As many efflux pumps which are upregulated by biocide presence also contribute towards an antimicrobial resistance phenotype, the role of these efflux pumps in cross-resistance to both other biocides and antibiotics will be explored.
Collapse
Affiliation(s)
- Matthew E Wand
- Technology Development Group, UK Health Security Agency, Research and Evaluation, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - J Mark Sutton
- Technology Development Group, UK Health Security Agency, Research and Evaluation, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| |
Collapse
|
38
|
Kugler A, Brigmon RL, Friedman A, Coutelot FM, Polson SW, Seaman JC, Simpson W. Bioremediation of copper in sediments from a constructed wetland ex situ with the novel bacterium Cupriavidus basilensis SRS. Sci Rep 2022; 12:17615. [PMID: 36271237 PMCID: PMC9587019 DOI: 10.1038/s41598-022-20930-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 09/21/2022] [Indexed: 01/21/2023] Open
Abstract
The H-02 constructed wetland was designed to remove metals (primarily copper and zinc) to treat building process water and storm water runoff from multiple sources associated with the Tritium Facility at the DOE-Savannah River Site, Aiken, SC. The concentration of Cu and Zn in the sediments has increased over the lifetime of the wetland and is a concern. A bioremediation option was investigated at the laboratory scale utilizing a newly isolated bacterium of the copper metabolizing genus Cupriavidus isolated from Tim's Branch Creek, a second-order stream that eventually serves as a tributary to the Savannah River, contaminated with uranium and other metals including copper, nickel, and mercury. Cupriavidus basilensis SRS is a rod-shaped, gram-negative bacterium which has been shown to have predatory tendencies. The isolate displayed resistance to the antibiotics ofloxacin, tetracycline, ciprofloxacin, select fungi, as well as Cu2+ and Zn2+. Subsequent ribosomal sequencing demonstrated a 100% confidence for placement in the genus Cupriavidus and a 99.014% match to the C. basilensis type strain. When H-02 wetland samples were inoculated with Cupriavidus basilensis SRS samples showed significant (p < 0.05) decrease in Cu2+ concentrations and variability in Zn2+ concentrations. Over the 72-h incubation there were no significant changes in the inoculate densities (106-108 cells/ML) indicating Cupriavidus basilensis SRS resiliency in this environment. This research expands our understanding of the Cupriavidus genus and demonstrates the potential for Cupriavidus basilensis SRS to bioremediate sites impacted with heavy metals, most notably copper.
Collapse
Affiliation(s)
- Alex Kugler
- grid.451247.10000 0004 0367 4086Savannah River National Laboratory, Bldg. 999W, Aiken, SC USA
| | - Robin L. Brigmon
- grid.451247.10000 0004 0367 4086Savannah River National Laboratory, Bldg. 999W, Aiken, SC USA
| | - Abby Friedman
- grid.451247.10000 0004 0367 4086Savannah River National Laboratory, Bldg. 999W, Aiken, SC USA
| | - Fanny M. Coutelot
- grid.26090.3d0000 0001 0665 0280Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC USA
| | - Shawn W. Polson
- grid.33489.350000 0001 0454 4791Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE USA
| | - John C. Seaman
- grid.213876.90000 0004 1936 738XUniversity of Georgia Savannah River Ecology Laboratory, Aiken, SC USA
| | - Waltena Simpson
- grid.263782.a0000 0004 1936 8892Department of Biological Sciences, South Carolina State University, Orangeburg, SC USA
| |
Collapse
|
39
|
Mei W, Liu X, Jia X, Jin L, Xin S, Sun X, Zhang J, Zhang B, Chen Y, Che J, Ma W, Ye L. A Cuproptosis-Related Gene Model For Predicting the Prognosis of Clear Cell Renal Cell Carcinoma. Front Genet 2022; 13:905518. [PMID: 36092880 PMCID: PMC9450221 DOI: 10.3389/fgene.2022.905518] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/24/2022] [Indexed: 12/24/2022] Open
Abstract
Despite advances in its treatment, patients diagnosed with clear cell renal cell carcinoma (ccRCC) have a poor prognosis. The mechanism of cuproptosis has been found to differ from other mechanisms that regulate cell death, including apoptosis, iron poisoning, pyrophosphate poisoning, and necrosis. Cuproptosis is an essential component in the regulation of a wide variety of biological processes, such as cell wall remodeling and oxidative stress responses. However, cuproptosis-related genes’ expression in ccRCC patients and their association with the patient’s prognosis remain ambiguous. Evaluation of The Cancer Genome Atlas (TCGA) identified 11 genes associated with cuproptosis that were differently expressed in ccRCC and nearby nontumor tissue. To construct a multigene prognostic model, the prognostic value of 11 genes was assessed and quantified. A signature was constructed by least absolute shrinkage and selection operator (LASSO) Cox regression analysis, and this signature was used to separate ccRCC patients into different risk clusters, with low-risk patients having a much better prognosis. This five-gene signature, when combined with patients’ clinical characteristics, might serve as one independent predictor of overall survival (OS) in ccRCC patients. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that cuproptosis-related genes were enriched in patients with ccRCC. Then, quantitative real-time PCR (qPCR) was employed to verify these genes’ expression. Generally, research has indicated that cuproptosis-related genes are important in tumor immunity and can predict OS of ccRCC patients.
Collapse
Affiliation(s)
- Wangli Mei
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiang Liu
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Urology, Shanghai Putuo District People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xuyang Jia
- Department of Metabolic Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liang Jin
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiyong Xin
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xianchao Sun
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiaxin Zhang
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bihui Zhang
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yilai Chen
- Department of Urology, Karamay People’s Hospital, Xinjiang, China
| | - Jianping Che
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weiguo Ma
- Department of Urology, Tongxin People’s Hospital, Ningxia, China
- *Correspondence: Lin Ye, ; Weiguo Ma,
| | - Lin Ye
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Lin Ye, ; Weiguo Ma,
| |
Collapse
|
40
|
Wu P, Rane NR, Xing C, Patil SM, Roh HS, Jeon BH, Li X. Integrative chemical and omics analyses reveal copper biosorption and tolerance mechanisms of Bacillus cereus strain T6. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129002. [PMID: 35490635 DOI: 10.1016/j.jhazmat.2022.129002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
A comprehensive understanding of the cellular response of microbes to metal stress is necessary for the rational development of microbe-based biosorbents for metal removal. The present study investigated the copper (Cu) sorption and resistance mechanism of Bacillus cereus strain T6, a newly isolated Cu-resistant bacterium, by integrative analyses of physiochemistry, genomics, transcriptomics, and metabolomics. The growth inhibition assay and biosorption determination showed that this bacterium exhibited high tolerance to Cu, with a minimum inhibitory concentration of 4.0 mM, and accumulated Cu by both extracellular adsorption and intracellular binding. SEM microscopic images and FTIR spectra showed significant cellular surface changes at the high Cu level but not at low, and the involvement of surface functional groups in the biosorption of Cu, respectively. Transcriptomic and untargeted metabolomic analyses detected 362 differentially expressed genes and 60 significantly altered metabolites, respectively. Integrative omics analyses revealed that Cu exposure dramatically induced a broad spectrum of genes involved in Cu transport and iron homeostasis, and suppressed the denitrification pathway, leading to significant accumulation of metabolites for metal transporter synthesis, membrane remolding, and antioxidant activities. The results presented here provide a new perspective on the intricate regulatory network of Cu homeostasis in bacteria.
Collapse
Affiliation(s)
- Ping Wu
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Niraj R Rane
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Chao Xing
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Swapnil M Patil
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyun-Seog Roh
- Department of Environmental Engineering, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon 26493, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Xiaofang Li
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China.
| |
Collapse
|
41
|
Ge Q, Zhu X, Cobine PA, De La Fuente L. The Copper-Binding Protein CutC Is Involved in Copper Homeostasis and Affects Virulence in the Xylem-Limited Pathogen Xylella fastidiosa. PHYTOPATHOLOGY 2022; 112:1620-1629. [PMID: 35196066 DOI: 10.1094/phyto-11-21-0488-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Copper (Cu) is an essential element that can be toxic if homeostasis is disrupted. Xylella fastidiosa, a xylem-limited plant pathogenic bacterium that causes disease in many economically important crops worldwide, has been exposed to Cu stress caused by wide application of Cu-containing antimicrobials used to control other diseases. However, X. fastidiosa Cu homeostasis mechanisms are still poorly understood. The potentially Cu-related protein CutC, which is involved in Cu tolerance in Escherichia coli and humans, has not been analyzed functionally in plant pathogenic bacteria. We demonstrate that recombinantly expressed X. fastidiosa CutC binds Cu and deletion of cutC gene (PD0586) in X. fastidiosa showed increased sensitivity to Cu-shock compared with wild type (WT) strain TemeculaL. When infecting plants in the greenhouse, cutC mutant showed decreased disease incidence and severity compared with WT but adding Cu exaggerated severity. Interestingly, the inoculation of cutC mutant caused reduced symptoms in the acropetal regions of plants. We hypothesize that X. fastidiosa cutC is involved in Cu homeostasis by binding Cu in cells, leading to Cu detoxification, which is crucial to withstand Cu-shock stress. Unveiling the role of cutC gene in X. fastidiosa facilitates further understanding of Cu homeostasis in bacterial pathogens.
Collapse
Affiliation(s)
- Qing Ge
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, U.S.A
| | - Xinyu Zhu
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, U.S.A
| | - Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, U.S.A
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, U.S.A
| |
Collapse
|
42
|
Winogradskyella luteola sp.nov., Erythrobacter ani sp. nov., and Erythrobacter crassostrea sp.nov., isolated from the hemolymph of the Pacific Oyster Crassostrea gigas. Arch Microbiol 2022; 204:488. [PMID: 35835967 PMCID: PMC9283347 DOI: 10.1007/s00203-022-03099-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/24/2022] [Indexed: 11/09/2022]
Abstract
Three new bacterial strains, WHY3T, WH131T, and WH158T, were isolated and described from the hemolymph of the Pacific oyster Crassostrea gigas utilizing polyphasic taxonomic techniques. The 16S rRNA gene sequence analysis revealed that strain WHY3T was a member of the genus Winogradskyella, whereas strains WHI31T and WH158T were members of the genus Erythrobacter. According to the polygenomic study the three strains formed individual lineages with strong bootstrap support. The comparison of dDDH-and ANI values, percentage of conserved proteins (POCP), and average amino acid identity (AAl) between the three strains and their relatives established that the three strains represented two separate genera. Menaquinone-6 was reported as the major respiratory quinone in strain WHY3T and Ubiquinone-10 for strains WH131T and WH158T, respectively. The major cellular fatty acids for strain WHY3T were C15:0, anteiso-C15:1 ω7c, iso-C15:0, C16:1ω7c. The major cellular fatty acids for strains WH131T and WH158T were C14:02-OH and t18:1ω12 for WH131T and C17:0, and C18:1ω7c for strain WH158T. Positive Sudan Black B staining Indicated the presence of polyhydroxyalkanoic acid granules for strains WH131T and WH158T but not for strain WHY3T. The DNA G + C contents of strains WHY3T, WH131T and WH158T were 34.4, 59.7 and 56.6%, respectively. Gene clusters predicted some important genes involved in the bioremediation process. Due to the accomplishment of polyphasic taxonomy, we propose three novel species Winogradskyella luteola sp.nov. (type strain WHY3T = DSM 111804T = NCCB 100833T), Erythrobacter ani sp.nov. (WH131T = DSM 112099T = NCCB 100824T) and Erythrobacter crassostrea sp.nov. (WH158T = DSM 112102T = NCCB 100877T).
Collapse
|
43
|
Li P, Nayeri N, Górecki K, Becares ER, Wang K, Mahato DR, Andersson M, Abeyrathna SS, Lindkvist‐Petersson K, Meloni G, Missel JW, Gourdon P. PcoB is a defense outer membrane protein that facilitates cellular uptake of copper. Protein Sci 2022; 31:e4364. [PMID: 35762724 PMCID: PMC9210255 DOI: 10.1002/pro.4364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/03/2022] [Accepted: 05/27/2022] [Indexed: 01/17/2023]
Abstract
Copper (Cu) is one of the most abundant trace metals in all organisms, involved in a plethora of cellular processes. Yet elevated concentrations of the element are harmful, and interestingly prokaryotes are more sensitive for environmental Cu stress than humans. Various transport systems are present to maintain intracellular Cu homeostasis, including the prokaryotic plasmid-encoded multiprotein pco operon, which is generally assigned as a defense mechanism against elevated Cu concentrations. Here we structurally and functionally characterize the outer membrane component of the Pco system, PcoB, recovering a 2.0 Å structure, revealing a classical β-barrel architecture. Unexpectedly, we identify a large opening on the extracellular side, linked to a considerably electronegative funnel that becomes narrower towards the periplasm, defining an ion-conducting pathway as also supported by metal binding quantification via inductively coupled plasma mass spectrometry and molecular dynamics (MD) simulations. However, the structure is partially obstructed towards the periplasmic side, and yet flux is permitted in the presence of a Cu gradient as shown by functional characterization in vitro. Complementary in vivo experiments demonstrate that isolated PcoB confers increased sensitivity towards Cu. Aggregated, our findings indicate that PcoB serves to permit Cu import. Thus, it is possible the Pco system physiologically accumulates Cu in the periplasm as a part of an unorthodox defense mechanism against metal stress. These results point to a previously unrecognized principle of maintaining Cu homeostasis and may as such also assist in the understanding and in efforts towards combatting bacterial infections of Pco-harboring pathogens.
Collapse
Affiliation(s)
- Ping Li
- Department of Experimental Medical ScienceLund UniversityLundSweden
| | - Niloofar Nayeri
- Department of Experimental Medical ScienceLund UniversityLundSweden
| | - Kamil Górecki
- Department of Experimental Medical ScienceLund UniversityLundSweden
| | - Eva Ramos Becares
- Department of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Kaituo Wang
- Department of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark
| | | | | | - Sameera S. Abeyrathna
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTexasUSA
| | | | - Gabriele Meloni
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTexasUSA
| | | | - Pontus Gourdon
- Department of Experimental Medical ScienceLund UniversityLundSweden
- Department of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
44
|
Khan M, Kamran M, Kadi RH, Hassan MM, Elhakem A, Sakit ALHaithloul HA, Soliman MH, Mumtaz MZ, Ashraf M, Shamim S. Harnessing the Potential of Bacillus altitudinis MT422188 for Copper Bioremediation. Front Microbiol 2022; 13:878000. [PMID: 35663894 PMCID: PMC9161743 DOI: 10.3389/fmicb.2022.878000] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/05/2022] [Indexed: 12/08/2022] Open
Abstract
The contamination of heavy metals is a cause of environmental concern across the globe, as their increasing levels can pose a significant risk to our natural ecosystems and public health. The present study was aimed to evaluate the ability of a copper (Cu)-resistant bacterium, characterized as Bacillus altitudinis MT422188, to remove Cu from contaminated industrial wastewater. Optimum growth was observed at 37°C, pH 7, and 1 mm phosphate, respectively. Effective concentration 50 (EC50), minimum inhibitory concentration (MIC), and cross-heavy metal resistance pattern were observed at 5.56 mm, 20 mm, and Ni > Zn > Cr > Pb > Ag > Hg, respectively. Biosorption of Cu by live and dead bacterial cells in its presence and inhibitors 1 and 2 (DNP and DCCD) was suggestive of an ATP-independent efflux system. B. altitudinis MT422188 was also able to remove 73 mg/l and 82 mg/l of Cu at 4th and 8th day intervals from wastewater, respectively. The presence of Cu resulted in increased GR (0.004 ± 0.002 Ug−1FW), SOD (0.160 ± 0.005 Ug−1FW), and POX (0.061 ± 0.004 Ug−1FW) activity. Positive motility (swimming, swarming, twitching) and chemotactic behavior demonstrated Cu as a chemoattractant for the cells. Metallothionein (MT) expression in the presence of Cu was also observed by SDS-PAGE. Adsorption isotherm and pseudo-kinetic-order studies suggested Cu biosorption to follow Freundlich isotherm as well as second-order kinetic model, respectively. Thermodynamic parameters such as Gibbs free energy (∆G°), change in enthalpy (∆H° = 10.431 kJ/mol), and entropy (∆S° = 0.0006 kJ/mol/K) depicted the biosorption process to a feasible, endothermic reaction. Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Energy-Dispersive X-Ray Spectroscopy (EDX) analyses revealed the physiochemical and morphological changes in the bacterial cell after biosorption, indicating interaction of Cu ions with its functional groups. Therefore, these features suggest the potentially effective role of B. altitudinis MT422188 in Cu bioremediation.
Collapse
Affiliation(s)
- Maryam Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Kamran
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Roqayah H. Kadi
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohamed M. Hassan
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
- *Correspondence: Mohamed M. Hassan,
| | - Abeer Elhakem
- Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Mona H. Soliman
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
- Biology Department, Faculty of Science, Taibah University, Al-Sharm, Yanbu El-Bahr, Saudi Arabia
| | - Muhammad Zahid Mumtaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Saba Shamim
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
- Saba Shamim,
| |
Collapse
|
45
|
Metagenomic insights into the microbial community structure and resistomes of a tropical agricultural soil persistently inundated with pesticide and animal manure use. Folia Microbiol (Praha) 2022; 67:707-719. [PMID: 35415828 DOI: 10.1007/s12223-022-00970-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/05/2022] [Indexed: 11/04/2022]
Abstract
Persistent use of pesticides and animal manure in agricultural soils inadvertently introduced heavy metals and antibiotic/antibiotic resistance genes (ARGs) into the soil with deleterious consequences. The microbiome and heavy metal and antibiotic resistome of a pesticide and animal manure inundated agricultural soil (SL6) obtained from a vegetable farm at Otte, Eiyenkorin, Kwara State, Nigeria, was deciphered via shotgun metagenomics and functional annotation of putative ORFs (open reading frames). Structural metagenomics of SL6 microbiome revealed 29 phyla, 49 classes, 94 orders, 183 families, 366 genera, 424 species, and 260 strains with the preponderance of the phyla Proteobacteria (40%) and Actinobacteria (36%), classes Actinobacteria (36%), Alphaproteobacteria (18%), and Gammaproteobacteria (17%), and genera Kocuria (16%), Sphingobacterium (11%), and Brevundimonas (10%), respectively. Heavy metal resistance genes annotation conducted using Biocide and Metal Resistance Gene Database (BacMet) revealed the detection of genes responsible for the uptake, transport, detoxification, efflux, and regulation of copper, cadmium, zinc, nickel, chromium, cobalt, selenium, tungsten, mercury, and several others. ARG annotation using the Antibiotic Resistance Gene-annotation (ARG-ANNOT) revealed ARGs for 11 antibiotic classes with the preponderance of β-lactamases, mobilized colistin resistance determinant (mcr-1), macrolide-lincosamide-streptogramin (MLS), glycopeptide, and aminoglycoside resistance genes, among others. The persistent use of pesticide and animal manure is strongly believed to play a major role in the proliferation of heavy metal and antibiotic resistance genes in the soil. This study revealed that agricultural soils inundated with pesticide and animal manure use are potential hotspots for ARG spread and may accentuate the spread of multidrug resistant clinical pathogens.
Collapse
|
46
|
Korai MB, Shar GA, Soomro GA, Korai MA, Mirbahar MA, Samad A, Shar NA. An inimitable and ecological pleasant technique for the assessment of trace amount of copper (II) in tangible samples with new complexing reagent. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
47
|
Hemdan B, Garlapati VK, Sharma S, Bhadra S, Maddirala S, K M V, Motru V, Goswami P, Sevda S, Aminabhavi TM. Bioelectrochemical systems-based metal recovery: Resource, conservation and recycling of metallic industrial effluents. ENVIRONMENTAL RESEARCH 2022; 204:112346. [PMID: 34742708 DOI: 10.1016/j.envres.2021.112346] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Metals represent a large proportion of industrial effluents, which due to their high hazardous nature and toxicity are responsible to create environmental pollution that can pose significant threat to the global flora and fauna. Strict ecological rules compromise sustainable recovery of metals from industrial effluents by replacing unsustainable and energy-consuming physical and chemical techniques. Innovative technologies based on the bioelectrochemical systems (BES) are a rapidly developing research field with proven encouraging outcomes for many industrial commodities, considering the worthy options for recovering metals from industrial effluents. BES technology platform has redox capabilities with small energy-intensive processes. The positive stigma of BES in metals recovery is addressed in this review by demonstrating the significance of BES over the current physical and chemical techniques. The mechanisms of action of BES towards metal recovery have been postulated with the schematic representation. Operational limitations in BES-based metal recovery such as biocathode and metal toxicity are deeply discussed based on the available literature results. Eventually, a progressive inspection towards a BES-based metal recovery platform with possibilities of integration with other modern technologies is foreseen to meet the real-time challenges of viable industrial commercialization.
Collapse
Affiliation(s)
- Bahaa Hemdan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India; Water Pollution Research Department, Environmental Research Division, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt
| | - Vijay Kumar Garlapati
- Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology (JUIT), Waknaghat, Himachal Pradesh, 173234, India
| | - Swati Sharma
- Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology (JUIT), Waknaghat, Himachal Pradesh, 173234, India
| | - Sudipa Bhadra
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, India
| | - Shivani Maddirala
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, India
| | - Varsha K M
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, India
| | - Vineela Motru
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, India
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Surajbhan Sevda
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, India.
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, India.
| |
Collapse
|
48
|
You X, Li H, Pan B, You M, Sun W. Interactions between antibiotics and heavy metals determine their combined toxicity to Synechocystis sp. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127707. [PMID: 34798547 DOI: 10.1016/j.jhazmat.2021.127707] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Co-pollution of antibiotics and metals is prevailing in aquatic environments. However, risks of coexisted antibiotics and metals on aquatic organisms is unclear. This study investigated the combined toxicity of antibiotics and metals towards Synechocystis sp. PCC 6803, a cyanobacterium. We found that the joint toxicity of antibiotics and metals is dependent on their interplays. The complexation between chlortetracycline (CTC) and copper/cadmium (Cu(II)/Cd(II)) resulted in their antagonistic toxicity. Contrarily, an additive toxicity was found between florfenicol (FLO) and Cu(II)/Cd(II) due to lack of interactions between them. CTC facilitated the intracellular uptake of Cu(II) and Cd(II) by increasing the membrane permeability. However, FLO had no obvious effects on the internalization of metals in Synechocystis sp. Proteomic analysis revealed that the photosynthetic proteins was down-regulated by CTC and FLO, and ribosome was the primary target of FLO. These results were verified by parallel reaction monitoring (PRM). Cu(II) induced the up-regulation of iron-sulfur assembly, while Cd(II) disturbed the cyclic electron transport in Synechocystis sp. The co-exposure of CTC and metals markedly alleviated the dysregulation of proteins, while the co-exposure of FLO and metals down-regulated biological functions such as ATP synthesis, photosynthesis, and carbon fixation of Synechocystis sp., compared with their individuals. This supports their joint toxicity effects. Our findings provide better understanding of combined toxicity between multiple pollutants in aquatic environments.
Collapse
Affiliation(s)
- Xiuqi You
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; College of Environmental Sciences and Engineering, Peking University, Ministry of Education, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Ministry of Education, Beijing 100871, China
| | - Haibo Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; College of Environmental Sciences and Engineering, Peking University, Ministry of Education, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Ministry of Education, Beijing 100871, China
| | - Baozhu Pan
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi, China
| | - Mingtao You
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; College of Environmental Sciences and Engineering, Peking University, Ministry of Education, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Ministry of Education, Beijing 100871, China
| | - Weiling Sun
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; College of Environmental Sciences and Engineering, Peking University, Ministry of Education, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
49
|
Virieux-Petit M, Hammer-Dedet F, Aujoulat F, Jumas-Bilak E, Romano-Bertrand S. From Copper Tolerance to Resistance in Pseudomonas aeruginosa towards Patho-Adaptation and Hospital Success. Genes (Basel) 2022; 13:genes13020301. [PMID: 35205346 PMCID: PMC8872213 DOI: 10.3390/genes13020301] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
The hospital environment constitutes a reservoir of opportunistic pathogens responsible for healthcare-associated infections (HCAI) such as Pseudomonas aeruginosa (Pa). Pa persistence within technological niches, the increasing emergence of epidemic high-risk clones in HCAI, the epidemiological link between plumbing strains and clinical strains, make it a major nosocomial pathogen. Therefore, understanding the mechanisms of Pa adaptation to hospital water systems would be useful in preventing HCAI. This review deciphers how copper resistance contributes to Pa adaptation and persistence in a hospital environment, especially within copper water systems, and ultimately to its success as a causative agent of HCAI. Numerous factors are involved in copper homeostasis in Pa, among which active efflux conferring copper tolerance, and copper-binding proteins regulating the copper compartmentalization between periplasm and cytoplasm. The functional harmony of copper homeostasis is regulated by several transcriptional regulators. The genomic island GI-7 appeared as especially responsible for the copper resistance in Pa. Mechanisms of copper and antibiotic cross-resistance and co-resistance are also identified, with potential co-regulation processes between them. Finally, copper resistance of Pa confers selective advantages in colonizing and persisting in hospital environments but also appears as an asset at the host/pathogen interface that helps in HCAI occurrence.
Collapse
Affiliation(s)
- Maxine Virieux-Petit
- HydroSciences Montpellier, IRD, CNRS, Montpellier University, 34093 Montpellier, France; (M.V.-P.); (F.H.-D.); (F.A.); (E.J.-B.)
| | - Florence Hammer-Dedet
- HydroSciences Montpellier, IRD, CNRS, Montpellier University, 34093 Montpellier, France; (M.V.-P.); (F.H.-D.); (F.A.); (E.J.-B.)
| | - Fabien Aujoulat
- HydroSciences Montpellier, IRD, CNRS, Montpellier University, 34093 Montpellier, France; (M.V.-P.); (F.H.-D.); (F.A.); (E.J.-B.)
| | - Estelle Jumas-Bilak
- HydroSciences Montpellier, IRD, CNRS, Montpellier University, 34093 Montpellier, France; (M.V.-P.); (F.H.-D.); (F.A.); (E.J.-B.)
- Hospital Hygiene and Infection Control Team, University Hospital of Montpellier, 34093 Montpellier, France
| | - Sara Romano-Bertrand
- HydroSciences Montpellier, IRD, CNRS, Montpellier University, 34093 Montpellier, France; (M.V.-P.); (F.H.-D.); (F.A.); (E.J.-B.)
- Hospital Hygiene and Infection Control Team, University Hospital of Montpellier, 34093 Montpellier, France
- UMR 5151 HSM, Equipe Pathogènes Hydriques Santé et Environnements, U.F.R. des Sciences Pharmaceutiques et Biologiques, Université Montpellier, 15, Avenue Charles Flahault, BP 14491, CEDEX 5, 34093 Montpellier, France
- Correspondence: ; Tel.: +33-4-11-75-94-30
| |
Collapse
|
50
|
Genome analysis of Pseudomonas sp. 14A reveals metabolic capabilities to support epiphytic behavior. World J Microbiol Biotechnol 2022; 38:49. [DOI: 10.1007/s11274-022-03238-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/19/2022] [Indexed: 11/26/2022]
|