1
|
He Y, Lu J, Du Y, Zhao L, Gong L, Wu P, Shu Q, Peng H, Wang X. Investigation of PANoptosis pathway in age-related macular degeneration triggered by Aβ1-40. Sci Rep 2025; 15:13514. [PMID: 40251333 PMCID: PMC12008305 DOI: 10.1038/s41598-025-98174-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/09/2025] [Indexed: 04/20/2025] Open
Abstract
Our study aimed to identify PANoptosis in Aβ1-40-induced AMD, both in vivo and in vitro, and to determine if AIM2-PANoptosome mediates this process. We used transcriptomics to explore the signaling pathways and target genes linked to PANoptosis within a mouse model of AMD triggered by Aβ1-40. Optical coherence tomography (OCT), hematoxylin and eosin (H&E) staining, and electroretinography (ERG) were employed to assess retinal damage in terms of morphology and function. Morphological changes in ARPE-19 cells were observed using optical microscopy and scanning electron microscopy. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of cytokines in cell supernatants, mouse orbital serum, and human plasma to evaluate the severity of inflammation. CO-immunoprecipitation(CoIP) and molecular docking were performed to assess the impact and expression of proteins associated with the AIM2-PANoptosome. Quantitative polymerase chain reaction (qPCR), Western blot (WB), immunofluorescence, and apoptosis detection kits were used to evaluate the expression levels of genes and proteins related to PANoptosis-like cell death. Our results showed that the Aβ1-40-induced AMD model had increased expression of apoptosis, necroptosis, and pyroptosis pathways, and AIM2-PANoptosome components. CoIP and docking confirmed increased AIM2, ZBP1, and PYRIN levels under Aβ1-40 treatment. WB and immunofluorescence showed upregulation of PANoptosis-related proteins. Inhibitors reduced Aβ-induced protein expression. ELISA showed increased inflammatory cytokines. Apoptosis assays and microscopy revealed Aβ1-40-induced ARPE-19 cell loss and morphological changes. In conclusion, the Aβ1-40-induced AMD model displayed PANoptosis-like cell death, offering insights into disease pathogenesis.
Collapse
Affiliation(s)
- Yuxia He
- Department of Ophthalmology, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Guiyang Aier Eye Hospital, Guiyang, Guizhou Province, China
| | - Jing Lu
- Department of Ophthalmology, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yong Du
- Department of Ophthalmology, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Long Zhao
- Department of Ophthalmology, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lili Gong
- Guiyang Aier Eye Hospital, Guiyang, Guizhou Province, China
| | - Ping Wu
- Department of Ophthalmology, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qinxin Shu
- Department of Ophthalmology, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hui Peng
- Department of Ophthalmology, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Xing Wang
- Department of Ophthalmology, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
2
|
Markitantova Y, Simirskii V. Retinal Pigment Epithelium Under Oxidative Stress: Chaperoning Autophagy and Beyond. Int J Mol Sci 2025; 26:1193. [PMID: 39940964 PMCID: PMC11818496 DOI: 10.3390/ijms26031193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
The structural and functional integrity of the retinal pigment epithelium (RPE) plays a key role in the normal functioning of the visual system. RPE cells are characterized by an efficient system of photoreceptor outer segment phagocytosis, high metabolic activity, and risk of oxidative damage. RPE dysfunction is a common pathological feature in various retinal diseases. Dysregulation of RPE cell proteostasis and redox homeostasis is accompanied by increased reactive oxygen species generation during the impairment of phagocytosis, lysosomal and mitochondrial failure, and an accumulation of waste lipidic and protein aggregates. They are the inducers of RPE dysfunction and can trigger specific pathways of cell death. Autophagy serves as important mechanism in the endogenous defense system, controlling RPE homeostasis and survival under normal conditions and cellular responses under stress conditions through the degradation of intracellular components. Impairment of the autophagy process itself can result in cell death. In this review, we summarize the classical types of oxidative stress-induced autophagy in the RPE with an emphasis on autophagy mediated by molecular chaperones. Heat shock proteins, which represent hubs connecting the life supporting pathways of RPE cells, play a special role in these mechanisms. Regulation of oxidative stress-counteracting autophagy is an essential strategy for protecting the RPE against pathological damage when preventing retinal degenerative disease progression.
Collapse
Affiliation(s)
- Yuliya Markitantova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | | |
Collapse
|
3
|
Choi JA, Seo BR, Koh JY, Yoon YH. Protective effect of zinc against A2E-induced toxicity in ARPE-19 cells: Possible involvement of lysosomal acidification. Heliyon 2024; 10:e39100. [PMID: 39524844 PMCID: PMC11550603 DOI: 10.1016/j.heliyon.2024.e39100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
A key pathogenic mechanism of dry age-related macular degeneration (AMD) is lysosomal dysfunction in retinal pigment epithelium (RPE) cells, which results in the accumulation of lipofuscins such as A2E (N-retinylidene-N-retinylethanolamine) that further compromises lysosomal function. This vicious cycle leads to cell death and poor visual acuity. Here, we established an in vitro model of AMD by treating a human RPE cell line (ARPE-19) with A2E and examined whether raising zinc levels confers protective effects against lysosomal dysfunction and cytotoxicity. MTT assay showed that A2E induced apoptosis in ARPE-19 cells. pHrodo™ Red fluorescence staining showed that lysosomal pH increased in A2E-treated ARPE-19 cells. Treatment with a zinc ionophore (clioquinol) reduced A2E accumulation, restored lysosomal pH to the acidic range, and reduced A2E-induced cell death, all of which were reversed by the addition of a zinc chelator (TPEN). Consistent with the in vitro results, subretinal injections of A2E in mouse eyes resulted in the death of RPE cells as well as lysosomal dysfunction, all of which were reversed by co-treatment with clioquinol. Our results suggest that restoring the levels of intracellular zinc, especially in lysosomes, would be helpful in mitigating A2E-induced cytotoxic changes including lysosomal dysfunction in RPE cells in the pathogenesis of AMD.
Collapse
Affiliation(s)
- Jeong A. Choi
- Neural Injury Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Bo-Ra Seo
- Neural Injury Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jae-Young Koh
- Neural Injury Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Young Hee Yoon
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
4
|
Park SW, Lee HJ, Kim J, Kim TY, Seo YR, Kim GI, Cho S, Kim MJ. Protective Effects of Purple Corn ( Zea mays L.) Byproduct Extract on Blue Light-Induced Retinal Damage in A2E-Accumulated ARPE-19 Cells. Prev Nutr Food Sci 2024; 29:376-383. [PMID: 39371508 PMCID: PMC11450283 DOI: 10.3746/pnf.2024.29.3.376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 10/08/2024] Open
Abstract
This study investigated the antioxidative characteristics of Zea mays L. purple corn cob and husk extract (PCHE) and its potential protective effects against blue light (BL)-induced damage in N-retinylidene-N-retinylethanolamine (A2E)-accumulated ARPE-19 retinal pigment epithelial cells. PCHE had a 2,2-diphenyl-1-picrylhydrazyl radical-scavenging capacity and Trolox equivalent antioxidant capacity of 1.28±0.43 mM Trolox equivalents (TE)/g and 2,545.41±34.13 mM TE/g, respectively. Total content of anthocyanins, polyphenols, and flavonoids in the PCHE was 11.13±0.10 mg cyanidin-3-glucoside equivalents/100 g, 227.90±7.38 mg gallic acid equivalents/g, and 117.75±2.46 mg catechin equivalents/g, respectively. PCHE suppressed the accumulation of A2E and the photooxidation caused by BL in a dose-dependent manner. After initial treatment with 25 µM/mL A2E and BL, ARPE-19 cells showed increased cell viability following additional treatment with 15 µg/mL PCHE while the expression of the p62 sequestosome 1 decreased, whereas that of heme oxygenase-1 protein increased compared with that in cells without PCHE treatment. This suggests that PCHE may slow the autophagy induced by BL exposure in A2E-accumulated retinal cells and protect them against oxidative stress.
Collapse
Affiliation(s)
- Se Won Park
- Interdisciplinary Program in Senior Human Ecology, Changwon National University, Gyeongnam 51140, Korea
| | - Hui Jeong Lee
- Interdisciplinary Program in Senior Human Ecology, Changwon National University, Gyeongnam 51140, Korea
| | - Jimi Kim
- Interdisciplinary Program in Senior Human Ecology, Changwon National University, Gyeongnam 51140, Korea
- Department of Food and Nutrition, Changwon National University, Gyeongnam 51140, Korea
| | | | | | | | - Sungeun Cho
- Department of Poultry Science, Auburn University, Auburn, AL 36832, USA
| | - Mi Jeong Kim
- Interdisciplinary Program in Senior Human Ecology, Changwon National University, Gyeongnam 51140, Korea
- Department of Food and Nutrition, Changwon National University, Gyeongnam 51140, Korea
| |
Collapse
|
5
|
Wang L, Tian Y, Li L, Cai M, Zhou X, Su W, Hua X, Yuan X. Temporary alleviation of MAPK by arbutin alleviates oxidative damage in the retina and ARPE-19 cells. Heliyon 2024; 10:e32887. [PMID: 38988586 PMCID: PMC11234033 DOI: 10.1016/j.heliyon.2024.e32887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
Dry age-related macular degeneration (AMD) is one of the main diseases that causes blindness in humans, and the number of cases is increasing yearly. However, effective treatments are unavailable, and arbutin (ARB) has been reported to have antioxidant, anti-inflammatory, and anti-aging effects in other age-related diseases. However, whether ARB can be used to treat dry AMD remains unknown. To explore the therapeutic potential and molecular mechanism of arbutin in the treatment of dry AMD. MTT assays, reactive oxygen species (ROS) production assays, flow cytometry assays, qPCR and western blotting were used to assess the impact of ARB on human RPECs induced by H2O2. A transcriptome sequencing assay was used to further explore how ARB acts on human RPECs treated with H2O2. Hematoxylin and eosin (H&E) staining and total antioxidant capacity (T-AOC) assays were used to observe the impact of ARB on mouse retina induced by sodium iodate. ARB counteracted the H2O2-induced reduction in human RPECs viability, ARB reversed H2O2-induced cellular ROS production by increasing the expression of antioxidant-related genes and proteins, ARB also reversed H2O2-induced cell apoptosis by altering the expression of apoptosis-related genes and proteins. Transcriptome sequencing and western blotting showed that ARB reduced ERK1/2 and P-38 phosphorylation to prevent H2O2-induced oxidation damage. The in vivo experiments demonstrated that ARB protected against retinal morphology injury in mice, increased serum T-AOC levels and increased antioxidant oxidase gene expression levels in the mouse retina induced by sodium iodate. We concluded that ARB reversed the H2O2-induced decrease in human RPECs viability through the inhibition of ROS production and apoptosis. The ERK1/2 and P38 MAPK signaling pathways may mediate this process. ARB maintained retinal morphology, increased serum T-AOC level and improved the expression of antioxidant oxidase genes in mice.
Collapse
Affiliation(s)
- Ling Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, China
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, 300020, China
| | - Ye Tian
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, China
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, 300020, China
| | - Liangpin Li
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, China
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, 300020, China
| | - Maoyu Cai
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, China
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, 300020, China
| | - Xueyan Zhou
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Wangming Su
- Department of Ophthalmology, Second Hospital of Longyan City, Longyan, 364000, Fujian Province, China
| | - Xia Hua
- Aier Eye Institute, Changsha, 410015, China
- Tianjin Aier Eye Hospital, Tianjin, 300190, China
| | - Xiaoyong Yuan
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, China
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, 300020, China
| |
Collapse
|
6
|
Zhang Z, Liang F, Chang J, Shan X, Yin Z, Wang L, Li S. Autophagy in dry AMD: A promising therapeutic strategy for retinal pigment epithelial cell damage. Exp Eye Res 2024; 242:109889. [PMID: 38593971 DOI: 10.1016/j.exer.2024.109889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024]
Abstract
Dry age-related macular degeneration (AMD) is a prevalent clinical condition that leads to permanent damage to central vision and poses a significant threat to patients' visual health. Although the pathogenesis of dry AMD remains unclear, there is consensus on the role of retinal pigment epithelium (RPE) damage. Oxidative stress and chronic inflammation are major contributors to RPE cell damage, and the NOD-like receptor thermoprotein structural domain-associated protein 3 (NLRP3) inflammasome mediates the inflammatory response leading to apoptosis in RPE cells. Furthermore, lipofuscin accumulation results in oxidative stress, NLRP3 activation, and the development of vitelliform lesions, a hallmark of dry AMD, all of which may contribute to RPE dysfunction. The process of autophagy, involving the encapsulation, recognition, and transport of accumulated proteins and dead cells to the lysosome for degradation, is recognized as a significant pathway for cellular self-protection and homeostasis maintenance. Recently, RPE cell autophagy has been discovered to be closely linked to the development of macular degeneration, positioning autophagy as a cutting-edge research area in the realm of dry AMD. In this review, we present an overview of how lipofuscin, oxidative stress, and the NLRP3 inflammasome damage the RPE through their respective causal mechanisms. We summarized the connection between autophagy, oxidative stress, and NLRP3 inflammatory cytokines. Our findings suggest that targeting autophagy improves RPE function and sustains visual health, offering new perspectives for understanding the pathogenesis and clinical management of dry AMD.
Collapse
Affiliation(s)
- Zhao Zhang
- Tianjin University of Chinese Medicine, Tianjin, 300193, China; The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center of Traditional Chinese Medicine and Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Fengming Liang
- The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center of Traditional Chinese Medicine and Acupuncture and Moxibustion, Tianjin, 300193, China.
| | - Jun Chang
- Tianjin University of Chinese Medicine, Tianjin, 300193, China; The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center of Traditional Chinese Medicine and Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Xiaoqian Shan
- Tianjin University of Chinese Medicine, Tianjin, 300193, China; The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center of Traditional Chinese Medicine and Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Zhixian Yin
- Hebei University of Technology, School of Electronics and Information Engineering, Tianjin, 300401, China
| | - Li Wang
- The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center of Traditional Chinese Medicine and Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Shujiao Li
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, 100040, China
| |
Collapse
|
7
|
Iliescu DA, Ghita AC, Ilie LA, Voiculescu SE, Geamanu A, Ghita AM. Non-Neovascular Age-Related Macular Degeneration Assessment: Focus on Optical Coherence Tomography Biomarkers. Diagnostics (Basel) 2024; 14:764. [PMID: 38611677 PMCID: PMC11011935 DOI: 10.3390/diagnostics14070764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
The imagistic evaluation of non-neovascular age-related macular degeneration (AMD) is crucial for diagnosis, monitoring progression, and guiding management of the disease. Dry AMD, characterized primarily by the presence of drusen and retinal pigment epithelium atrophy, requires detailed visualization of the retinal structure to assess its severity and progression. Several imaging modalities are pivotal in the evaluation of non-neovascular AMD, including optical coherence tomography, fundus autofluorescence, or color fundus photography. In the context of emerging therapies for geographic atrophy, like pegcetacoplan, it is critical to establish the baseline status of the disease, monitor the development and expansion of geographic atrophy, and to evaluate the retina's response to potential treatments in clinical trials. The present review, while initially providing a comprehensive description of the pathophysiology involved in AMD, aims to offer an overview of the imaging modalities employed in the evaluation of non-neovascular AMD. Special emphasis is placed on the assessment of progression biomarkers as discerned through optical coherence tomography. As the landscape of AMD treatment continues to evolve, advanced imaging techniques will remain at the forefront, enabling clinicians to offer the most effective and tailored treatments to their patients.
Collapse
Affiliation(s)
- Daniela Adriana Iliescu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Bld., 050474 Bucharest, Romania; (S.E.V.); (A.M.G.)
- Ocularcare Ophthalmology Clinic, 128 Ion Mihalache Bld., 012244 Bucharest, Romania; (A.C.G.); (L.A.I.)
| | - Ana Cristina Ghita
- Ocularcare Ophthalmology Clinic, 128 Ion Mihalache Bld., 012244 Bucharest, Romania; (A.C.G.); (L.A.I.)
| | - Larisa Adriana Ilie
- Ocularcare Ophthalmology Clinic, 128 Ion Mihalache Bld., 012244 Bucharest, Romania; (A.C.G.); (L.A.I.)
| | - Suzana Elena Voiculescu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Bld., 050474 Bucharest, Romania; (S.E.V.); (A.M.G.)
| | - Aida Geamanu
- Ophthalmology Department, Bucharest University Emergency Hospital, 169 Independence Street, 050098 Bucharest, Romania;
| | - Aurelian Mihai Ghita
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Bld., 050474 Bucharest, Romania; (S.E.V.); (A.M.G.)
- Ocularcare Ophthalmology Clinic, 128 Ion Mihalache Bld., 012244 Bucharest, Romania; (A.C.G.); (L.A.I.)
- Ophthalmology Department, Bucharest University Emergency Hospital, 169 Independence Street, 050098 Bucharest, Romania;
| |
Collapse
|
8
|
Gurubaran IS, Watala C, Kostanek J, Szczepanska J, Pawlowska E, Kaarniranta K, Blasiak J. PGC-1α regulates the interplay between oxidative stress, senescence and autophagy in the ageing retina important in age-related macular degeneration. J Cell Mol Med 2024; 28:e18051. [PMID: 38571282 PMCID: PMC10992479 DOI: 10.1111/jcmm.18051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/25/2023] [Accepted: 11/09/2023] [Indexed: 04/05/2024] Open
Abstract
We previously showed that mice with knockout in the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A) gene encoding the PGC-1α protein, and nuclear factor erythroid 2 like 2 (NFE2L2) gene, exhibited some features of the age-related macular degeneration (AMD) phenotype. To further explore the mechanism behind the involvement of PGC-1α in AMD pathogenesis we used young (3-month) and old (12-month) mice with knockout in the PPARGC1A gene and age-matched wild-type (WT) animals. An immunohistochemical analysis showed age-dependent different expression of markers of oxidative stress defence, senescence and autophagy in the retinal pigment epithelium of KO animals as compared with their WT counterparts. Multivariate inference testing showed that senescence and autophagy proteins had the greatest impact on the discrimination between KO and WT 3-month animals, but proteins of antioxidant defence also contributed to that discrimination. A bioinformatic analysis showed that PGC-1α might coordinate the interplay between genes encoding proteins involved in antioxidant defence, senescence and autophagy in the ageing retina. These data support importance of PGC-1α in AMD pathogenesis and confirm the utility of mice with PGC-1α knockout as an animal model to study AMD pathogenesis.
Collapse
Affiliation(s)
| | - Cezary Watala
- Department of Haemostatic DisordersMedical University of LodzLodzPoland
| | - Joanna Kostanek
- Department of Haemostatic DisordersMedical University of LodzLodzPoland
| | | | | | - Kai Kaarniranta
- Department of OphthalmologyUniversity of Eastern FinlandKuopioFinland
- Department of OphthalmologyKuopio University HospitalKuopioFinland
| | - Janusz Blasiak
- Faculty of Medicine, Collegium MedicumMazovian Academy in PlockPlock09‐402Poland
| |
Collapse
|
9
|
Song Q, Jian W, Zhang Y, Li Q, Zhao Y, Liu R, Zeng Y, Zhang F, Duan J. Puerarin Attenuates Iron Overload-Induced Ferroptosis in Retina through a Nrf2-Mediated Mechanism. Mol Nutr Food Res 2024; 68:e2300123. [PMID: 38196088 DOI: 10.1002/mnfr.202300123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/01/2023] [Indexed: 01/11/2024]
Abstract
SCOPE Age-related increases in retinal iron are involved in the development of retinal degeneration. The recently discovered iron-dependent mechanism of cell death known as ferroptosis has been linked to a wide range of pathologies. However, its role in iron overload-induced retinal degeneration is still uncertain. Puerarin has been associated with retinal protection. The purpose of this research is to determine how puerarin prevents retinal ferroptosis under iron overload conditions. METHODS AND RESULTS Models of iron overload in Kunming mice, 661W cell, and ARPE-19 cell are established. Increased iron deposition significantly worsens retinal pathology, decreases cell viability, and induces ferroptotic changes. Puerarin mitigates iron overload-induced ferroptosis by decreasing excessive iron through the regulation of iron handling proteins and lowering lipid peroxidation through the inhibition of cyclooxygenase 2 expression and activation of the nuclear factor-E2-related factor 2 (Nrf2) signaling pathway and downstream ferroptosis-related proteins (solute carrier family 7 member 11, glutathione peroxidase 4 and heme oxygenase-1). The protective effect of puerarin on ferroptosis is diminished by the Nrf2-specific inhibitor ML385. CONCLUSION These findings suggest targeting ferroptosis may be a novel strategy for the management of retinal degeneration. Puerarin may exert some of its ocular benefits by attenuating ferroptosis.
Collapse
Affiliation(s)
- Qiongtao Song
- Eye School of Chengdu University of TCM, No.37 Twelve Bridge Road, Chengdu, Sichuan, 610075, China
- Ineye Hospital of Chengdu University of TCM, No.8 Xinghui Road, Chengdu, Sichuan, 610084, China
- Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection, No.37 Twelve Bridge Road, Chengdu, Sichuan, 610075, China
- Guangzhou Ineye Vision Health Innovation Institute, No.2 Fenghuang 3rd Road, Guangzhou, Guangdong, 510555, China
| | - Wenyuan Jian
- Eye School of Chengdu University of TCM, No.37 Twelve Bridge Road, Chengdu, Sichuan, 610075, China
- Ineye Hospital of Chengdu University of TCM, No.8 Xinghui Road, Chengdu, Sichuan, 610084, China
- Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection, No.37 Twelve Bridge Road, Chengdu, Sichuan, 610075, China
- Guangzhou Ineye Vision Health Innovation Institute, No.2 Fenghuang 3rd Road, Guangzhou, Guangdong, 510555, China
| | - Yuanyuan Zhang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, No.326 Xinshi South Road, Shijiazhuang, Hebei, 050200, China
| | - Qiang Li
- Eye School of Chengdu University of TCM, No.37 Twelve Bridge Road, Chengdu, Sichuan, 610075, China
- Ineye Hospital of Chengdu University of TCM, No.8 Xinghui Road, Chengdu, Sichuan, 610084, China
- Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection, No.37 Twelve Bridge Road, Chengdu, Sichuan, 610075, China
- Guangzhou Ineye Vision Health Innovation Institute, No.2 Fenghuang 3rd Road, Guangzhou, Guangdong, 510555, China
| | - Ying Zhao
- Eye School of Chengdu University of TCM, No.37 Twelve Bridge Road, Chengdu, Sichuan, 610075, China
- Ineye Hospital of Chengdu University of TCM, No.8 Xinghui Road, Chengdu, Sichuan, 610084, China
- Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection, No.37 Twelve Bridge Road, Chengdu, Sichuan, 610075, China
| | - Rong Liu
- Eye School of Chengdu University of TCM, No.37 Twelve Bridge Road, Chengdu, Sichuan, 610075, China
| | - Yan Zeng
- Eye School of Chengdu University of TCM, No.37 Twelve Bridge Road, Chengdu, Sichuan, 610075, China
| | - Fuwen Zhang
- Eye School of Chengdu University of TCM, No.37 Twelve Bridge Road, Chengdu, Sichuan, 610075, China
- Ineye Hospital of Chengdu University of TCM, No.8 Xinghui Road, Chengdu, Sichuan, 610084, China
- Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection, No.37 Twelve Bridge Road, Chengdu, Sichuan, 610075, China
- Guangzhou Ineye Vision Health Innovation Institute, No.2 Fenghuang 3rd Road, Guangzhou, Guangdong, 510555, China
| | - Junguo Duan
- Eye School of Chengdu University of TCM, No.37 Twelve Bridge Road, Chengdu, Sichuan, 610075, China
- Ineye Hospital of Chengdu University of TCM, No.8 Xinghui Road, Chengdu, Sichuan, 610084, China
- Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection, No.37 Twelve Bridge Road, Chengdu, Sichuan, 610075, China
- Guangzhou Ineye Vision Health Innovation Institute, No.2 Fenghuang 3rd Road, Guangzhou, Guangdong, 510555, China
| |
Collapse
|
10
|
Zhao Z, Xie L, Shi J, Liu T, Wang S, Huang J, Wu D, Zhang X. Neuroprotective Effect of Zishen Huoxue Decoction treatment on Vascular Dementia by activating PINK1/Parkin mediated Mitophagy in the Hippocampal CA1 Region. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117172. [PMID: 37709106 DOI: 10.1016/j.jep.2023.117172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zishen Huoxue Decoction (ZSHXD) is a Traditional Chinese Medicine (TCM) prescription for the treatment of vascular dementia (VD). Although the clinical effects of ZSHXD have been demonstrated, the molecular mechanisms underlying the neuroprotective effects of ZSHXD remain unclear. AIM OF THE STUDY To explore whether the neuroprotective effect of Zishen Huoxue Decoction (ZSHXD) treatment is associated with the PINK1/Parkin pathway-mediated mitophagy in hippocampal CA1 region of 2-VO model rats. MATERIALS AND METHODS Seventy-two male SD rats were randomly divided into the sham group, model group, Donepezil (0.45 mg/kg) group, ZSHXD low dose group (8.9 g/kg), ZSHXD medium dose group (17.8 g/kg), and ZSHXD high dose group (35.6 g/kg). Two-vessel occlusion (2-VO) rat model is established to evaluate the therapeutic effect of ZSHXD pretreatment. Hematoxylin-eosin (HE) staining is conducted to detect the morphological changes of neurons and the number of normal neurons in the hippocampal CA1 region. Then, the mitochondrial function and structure were reflected by the mitochondrial membrane potential (MMP) levels and transmission electron microscopy (TEM). Meanwhile, the expression of mitophagy related proteins mediated by PINK1/Parkin was detected by western blot (WB). After that, malondialdehyde (MDA) and superoxide dismutase (SOD) levels were measured by Elisa. At last, the apoptosis-related proteins Caspase-3、Bax、Bcl-2 were measured by WB. RESULTS The results depict that ZSHXD has dose-dependently improved the cognitive function in 2-VO model rats. It has also been showed that ZSHXD can alleviate neuron damage, rescue the mitochondrial structural injury and dysfunction in hippocampal CA1 region. Besides, ZSHXD has increased the activity of SOD and decreased the activity of MDA. In addition, ZSHXD can inhibit apoptosis with Caspase-3, Bax decreasing and Bcl-2 increasing. Specially, the protection of ZSHXD showed in 2-VO model rats is along with the upregulation of PINK1, Parkin and LC3-Ⅱ/Ⅰ, and downregulation of p62 in the hippocampal CA1 region. CONCLUSIONS This study reveals that ZSHXD protects the 2-VO model rats from ischemic injury by activating the PINK1/Parkin-mediated mitophagy in the hippocampal CA1 region.
Collapse
Affiliation(s)
- Ziting Zhao
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Le Xie
- Hunan Hospital of Integrated Traditional Chinese and Western Medicine, Changsha, 410006, Hunan Province, China
| | - Jiayi Shi
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410218, Hunan Province, China
| | - Tonghe Liu
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410218, Hunan Province, China
| | - Shiliang Wang
- Hunan Hospital of Integrated Traditional Chinese and Western Medicine, Changsha, 410006, Hunan Province, China
| | - Jianhua Huang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410006, Hunan Province, China
| | - Dahua Wu
- Hunan Hospital of Integrated Traditional Chinese and Western Medicine, Changsha, 410006, Hunan Province, China.
| | - Xiuli Zhang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410218, Hunan Province, China.
| |
Collapse
|
11
|
Luo R, Li L, Han Q, Fu J, Xiao F. HAGLR, stabilized by m6A modification, triggers PTEN-Akt signaling cascade-mediated RPE cell pyroptosis via sponging miR-106b-5p. J Biochem Mol Toxicol 2024; 38:e23596. [PMID: 38088496 DOI: 10.1002/jbt.23596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/12/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024]
Abstract
Consistent hyperglycaemia on retinal microvascular tissues is recognized as a vital inducer of diabetic retinopathy (DR) pathogenesis. In view of the essential functionality of long noncoding RNAs (lncRNAs) in multiple human diseases, we aim to figure out the exact role and underlying mechanisms of lncRNA HOXD Cluster Antisense RNA 1 (HAGLR) in DR pathogenesis. Serum specimens from patients with proliferative DR and healthy volunteers were collected for measuring HAGLR levels. Human primary retinal pigment epithelium (HRPE) cells kept in high glucose (HG) condition were applied to simulating hyperglycaemia of DR pathology in vitro. Cell proliferation, apoptosis, either pyroptosis was assess using Cell Counting Kit-8 TUNEL, flow cytometry, and enzyme-linked immunoassay assays. Bioinformatics analysis was subjected to examine the interaction between HAGLR and N6-methyladenosine (m6A)-bind protein IGF2BP2, as determined using RNA immunoprecipitation and RNA pull-down. Luciferase reporter assay was performed to assess the HAGLR-miR-106b-5p-PTEN axis. Levels of pyroptosis-associated biomarkers were detected using western blotting. Aberrantly overexpressed HAGLR was uncovered in the serum samples of DR patients and HG-induced HRPE cells, of which knockdown attenuated HG-induced cytotoxic impacts on cell apoptosis and pyroptosis. Whereas, reinforced HAGLR further aggravated these effects. IGF2BP2 positively regulated HAGLR in a m6A-dependent manner. HAGLR served as a sponge for miR-106b-5p to upregulate PTEN, thereby activating Akt signaling cascade. Rescue assays demonstrated that PTEN overexpression abolished the inhibition of silenced HAGLR on pyroptosis in HRPE cells. HAGLR, epigenetically modified by IGF2BP2 in an m6A-dependent manner, functioned as a sponge for miR-106b-5p, thereby activating PTEN/Akt signaling cascade to accelerate DR pathology.
Collapse
Affiliation(s)
- Rong Luo
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Lan Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Qingluan Han
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Jingsong Fu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Fan Xiao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
12
|
Wang H, Wang C, Yao Y, Duan J, Liang Y, Shang Q. Analysis of long noncoding RNAs in the aqueous humor of wet age-related macular degeneration. Exp Eye Res 2023; 234:109576. [PMID: 37490994 DOI: 10.1016/j.exer.2023.109576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/25/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023]
Abstract
Wet age-related macular degeneration (wAMD) is the main cause of irreversible blindness in the elderly, and its pathogenesis is still not fully understood. Long non-coding RNAs (lncRNAs) participated in the pathogenesis of a number of neovascular diseases, but their role in wAMD is less known. In order to reveal the potential role of lncRNAs in wAMD, we used high-throughput sequencing to assess lncRNAs and mRNAs expression profile in the aqueous humor of patients with wAMD and of patients with age-related cataract as control. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to identify the potential biological functions and signaling pathways of RNA. A coding-non-coding gene co-expression (CNC) network was constructed to identify the interaction of lncRNAs and mRNAs. Quantitative PCR was used to validate the expression of selected lncRNAs. We identified 1071 differentially expressed lncRNAs and 3658 differentially expressed mRNAs in patients with wAMD compared to controls. GO and KEGG analyses suggested that differentially expressed lncRNAs-coexpressed mRNAs were mainly enriched in Rab GTPase binding, GTPase activation, RAS signaling pathway and autophagy. The top 100 differentially expressed genes were selected to build the CNC network, which could be connected by 416 edges. LncRNAs are differentially expressed in the aqueous humor of patients with wAMD and they are involved in several pathogenetic pathways. These dysregulated lncRNAs and their target genes could represent promising therapeutic targets in wAMD.
Collapse
Affiliation(s)
- Hanying Wang
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China; Department of Ophthalmology, Hebei Eye Hospital, Xingtai, 054000, Hebei, China
| | - Caixia Wang
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Yimin Yao
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jialiang Duan
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Yuchen Liang
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Qingli Shang
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
13
|
Koller A, Brunner SM, Preishuber-Pflügl J, Mayr D, Ladek AM, Runge C, Reitsamer HA, Trost A. Inhibition of CysLTR1 reduces the levels of aggregated proteins in retinal pigment epithelial cells. Sci Rep 2023; 13:13239. [PMID: 37580467 PMCID: PMC10425468 DOI: 10.1038/s41598-023-40248-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023] Open
Abstract
The endosomal-lysosomal system (ELS), which carries out cellular processes such as cellular waste degradation via autophagy, is essential for cell homeostasis. ELS inefficiency leads to augmented levels of damaged organelles and intracellular deposits. Consequently, the modulation of autophagic flux has been recognized as target to remove damaging cell waste. Recently, we showed that cysteinyl leukotriene receptor 1 (CysLTR1) antagonist application increases the autophagic flux in the retinal pigment epithelial cell line ARPE-19. Consequently, we investigated the effect of CysLTR1 inhibition-driven autophagy induction on aggregated proteins in ARPE-19 cells using flow cytometry analysis. A subset of ARPE-19 cells expressed CysLTR1 on the surface (SE+); these cells showed increased levels of autophagosomes, late endosomes/lysosomes, aggregated proteins, and autophagy as well as decreased reactive oxygen species (ROS) formation. Furthermore, CysLTR1 inhibition for 24 h using the antagonist zafirlukast decreased the quantities of autophagosomes, late endosomes/lysosomes, aggregated proteins and ROS in CysLTR1 SE- and SE+ cells. We concluded that high levels of plasma membrane-localized CysLTR1 indicate an increased amount of aggregated protein, which raises the rate of autophagic flux. Furthermore, CysLTR1 antagonist application potentially mimics the physiological conditions observed in CysLTR1 SE+ cells and can be considered as strategy to dampen cellular aging.
Collapse
Affiliation(s)
- Andreas Koller
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Muellner Hauptstrasse 48, 5020, Salzburg, Austria.
| | - Susanne Maria Brunner
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Muellner Hauptstrasse 48, 5020, Salzburg, Austria
| | - Julia Preishuber-Pflügl
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Muellner Hauptstrasse 48, 5020, Salzburg, Austria
| | - Daniela Mayr
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Muellner Hauptstrasse 48, 5020, Salzburg, Austria
| | - Anja-Maria Ladek
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Muellner Hauptstrasse 48, 5020, Salzburg, Austria
| | - Christian Runge
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Muellner Hauptstrasse 48, 5020, Salzburg, Austria
| | - Herbert Anton Reitsamer
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Muellner Hauptstrasse 48, 5020, Salzburg, Austria
| | - Andrea Trost
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Muellner Hauptstrasse 48, 5020, Salzburg, Austria
| |
Collapse
|
14
|
Nita M, Grzybowski A. Antioxidative Role of Heterophagy, Autophagy, and Mitophagy in the Retina and Their Association with the Age-Related Macular Degeneration (AMD) Etiopathogenesis. Antioxidants (Basel) 2023; 12:1368. [PMID: 37507908 PMCID: PMC10376332 DOI: 10.3390/antiox12071368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Age-related macular degeneration (AMD), an oxidative stress-linked neurodegenerative disease, leads to irreversible damage of the central retina and severe visual impairment. Advanced age and the long-standing influence of oxidative stress and oxidative cellular damage play crucial roles in AMD etiopathogenesis. Many authors emphasize the role of heterophagy, autophagy, and mitophagy in maintaining homeostasis in the retina. Relevantly modifying the activity of both macroautophagy and mitophagy pathways represents one of the new therapeutic strategies in AMD. Our review provides an overview of the antioxidative roles of heterophagy, autophagy, and mitophagy and presents associations between dysregulations of these molecular mechanisms and AMD etiopathogenesis. The authors performed an extensive analysis of the literature, employing PubMed and Google Scholar, complying with the 2013-2023 period, and using the following keywords: age-related macular degeneration, RPE cells, reactive oxygen species, oxidative stress, heterophagy, autophagy, and mitophagy. Heterophagy, autophagy, and mitophagy play antioxidative roles in the retina; however, they become sluggish and dysregulated with age and contribute to AMD development and progression. In the retina, antioxidative roles also play in RPE cells, NFE2L2 and PGC-1α proteins, NFE2L2/PGC-1α/ARE signaling cascade, Nrf2 factor, p62/SQSTM1/Keap1-Nrf2/ARE pathway, circulating miRNAs, and Yttrium oxide nanoparticles performed experimentally in animal studies.
Collapse
Affiliation(s)
- Małgorzata Nita
- Domestic and Specialized Medicine Centre "Dilmed", 40-231 Katowice, Poland
| | - Andrzej Grzybowski
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Gorczyczewskiego 2/3, 61-553 Poznań, Poland
| |
Collapse
|
15
|
Pannetier P, Poulsen R, Gölz L, Coordes S, Stegeman H, Koegst J, Reger L, Braunbeck T, Hansen M, Baumann L. Reversibility of Thyroid Hormone System-Disrupting Effects on Eye and Thyroid Follicle Development in Zebrafish (Danio rerio) Embryos. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1276-1292. [PMID: 36920003 DOI: 10.1002/etc.5608] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 03/10/2023] [Indexed: 05/27/2023]
Abstract
Early vertebrate development is partially regulated by thyroid hormones (THs). Environmental pollutants that interact with the TH system (TH system-disrupting chemicals [THSDCs]) can have massively disrupting effects on this essential phase. Eye development of fish is directly regulated by THs and can, therefore, be used as a thyroid-related endpoint in endocrine disruptor testing. To evaluate the effects of THSDC-induced eye malformations during early development, zebrafish (Danio rerio) embryos were exposed for 5 days postfertilization (dpf) to either propylthiouracil, a TH synthesis inhibitor, or tetrabromobisphenol A, which interacts with TH receptors. Subsequently, one half of the embryos were exposed further to the THSDCs until 8 dpf, while the other half of the embryos were raised in clean water for 3 days to check for reversibility of effects. Continued THSDC exposure altered eye size and pigmentation and induced changes in the cellular structure of the retina. This correlated with morphological alterations of thyroid follicles as revealed by use of a transgenic zebrafish line. Interestingly, effects were partly reversible after a recovery period as short as 3 days. Results are consistent with changes in TH levels measured in different tissues of the embryos, for example, in the eyes. The results show that eye development in zebrafish embryos is very sensitive to THSDC treatment but able to recover quickly from early exposure by effective repair mechanisms. Environ Toxicol Chem 2023;42:1276-1292. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Pauline Pannetier
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Rikke Poulsen
- Environmental Metabolomics Laboratory, Department of Environmental Science, University of Aarhus, Aarhus, Denmark
| | - Lisa Gölz
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Sara Coordes
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Hanna Stegeman
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Johannes Koegst
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Luisa Reger
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Martin Hansen
- Environmental Metabolomics Laboratory, Department of Environmental Science, University of Aarhus, Aarhus, Denmark
| | - Lisa Baumann
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- Amsterdam Institute for Life and Environment (A-LIFE), Section on Environmental Health & Toxicology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Zhu C, Chen W, Cui H, Huang Z, Ding R, Li N, Wang Q, Wu F, Zhao Y, Cong X. TRIM64 promotes ox-LDL-induced foam cell formation, pyroptosis, and inflammation in THP-1-derived macrophages by activating a feedback loop with NF-κB via IκBα ubiquitination. Cell Biol Toxicol 2023; 39:607-620. [PMID: 36229750 PMCID: PMC10406714 DOI: 10.1007/s10565-022-09768-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease and the main pathology behind most cardiovascular diseases and the overactivation of macrophages initiates the development of atherosclerosis. However, the specific functions of oxidized low-density lipoprotein (ox-LDL) in macrophages remain elusive. Macrophages derived from monocyte (THP-1) were treated with ox-LDL and were used to generate atherosclerosis in an in vitro model. NLRP3 inflammasome markers were examined using quantitative RT-PCR and Western blotting. Cytokines were measured using ELISA. Chromatin immunoprecipitation (ChIP) was utilized to detect nuclear factor kappa B (NF-κB) and TRIM64 interactions. A fat-rich diet was applied to ApoE-/- mice for in vivo studies. ox-LDL promoted TRIM64 expression in a time-dependent manner. According to loss- and gain-of-function analyses, TRIM64 enhanced the activation of NLRP3 inflammasomes and the expression of downstream molecules. TRIM64 directly interacted with IκBα and promoted IκBα ubiquitination at K67 to activate NF-κB signaling. We detected direct binding between NF-κB and the TRIM64 promoter, as well as enhanced TRIM64 expression. Our study revealed an interaction between TRIM64 and NF-κB in the development of atherosclerosis. TRIM64 and NF-κB formed a positive feedback to activate NF-κB pathway. ox-LDL induces foam cell formation and TRIM64 expression TRIM64 regulates ox-LDL-induced foam cell formation, pyroptosis and inflammation via the NF-κB signaling TRIM64 activates NF-κB signaling by ubiquitination of IκBα NF-κB inhibition attenuates atherosclerosis in HFD-induced ApoE (-/-) mice.
Collapse
Affiliation(s)
- Chao Zhu
- Department of Nephrology, Changhai Hospital, Shanghai, 200433, China
| | - Wei Chen
- Department of Cardiology, Shanghai Changzheng Hospital, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Haiming Cui
- Department of Cardiology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Zhigang Huang
- Department of Cardiology, Shanghai Changzheng Hospital, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Ru Ding
- Department of Cardiology, Shanghai Changzheng Hospital, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Na Li
- Department of Cardiology, Shanghai Changzheng Hospital, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Qinqin Wang
- Department of Cardiology, Shanghai Changzheng Hospital, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China
| | - Feng Wu
- Department of Cardiology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Hongkou District, Shanghai, 200437, China.
| | - Yanmin Zhao
- Department of Cardiology, Shanghai Changzheng Hospital, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China.
| | - Xiaoliang Cong
- Department of Cardiology, Shanghai Changzheng Hospital, 415 Fengyang Road, Huangpu District, Shanghai, 200003, China.
| |
Collapse
|
17
|
Pinelli R, Ferrucci M, Biagioni F, Berti C, Bumah VV, Busceti CL, Puglisi-Allegra S, Lazzeri G, Frati A, Fornai F. Autophagy Activation Promoted by Pulses of Light and Phytochemicals Counteracting Oxidative Stress during Age-Related Macular Degeneration. Antioxidants (Basel) 2023; 12:1183. [PMID: 37371913 DOI: 10.3390/antiox12061183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/15/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
The seminal role of autophagy during age-related macular degeneration (AMD) lies in the clearance of a number of reactive oxidative species that generate dysfunctional mitochondria. In fact, reactive oxygen species (ROS) in the retina generate misfolded proteins, alter lipids and sugars composition, disrupt DNA integrity, damage cell organelles and produce retinal inclusions while causing AMD. This explains why autophagy in the retinal pigment epithelium (RPE), mostly at the macular level, is essential in AMD and even in baseline conditions to provide a powerful and fast replacement of oxidized molecules and ROS-damaged mitochondria. When autophagy is impaired within RPE, the deleterious effects of ROS, which are produced in excess also during baseline conditions, are no longer counteracted, and retinal degeneration may occur. Within RPE, autophagy can be induced by various stimuli, such as light and naturally occurring phytochemicals. Light and phytochemicals, in turn, may synergize to enhance autophagy. This may explain the beneficial effects of light pulses combined with phytochemicals both in improving retinal structure and visual acuity. The ability of light to activate some phytochemicals may further extend such a synergism during retinal degeneration. In this way, photosensitive natural compounds may produce light-dependent beneficial antioxidant effects in AMD.
Collapse
Affiliation(s)
- Roberto Pinelli
- SERI, Switzerland Eye Research Institute, 6900 Lugano, Switzerland
| | - Michela Ferrucci
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Francesca Biagioni
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy
| | - Caterina Berti
- SERI, Switzerland Eye Research Institute, 6900 Lugano, Switzerland
| | - Violet Vakunseth Bumah
- Department of Chemistry and Biochemistry, College of Sciences, San Diego State University, San Diego, CA 92182, USA
- Department of Chemistry and Physics, University of Tennessee, Martin, TN 38237, USA
| | - Carla Letizia Busceti
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy
| | | | - Gloria Lazzeri
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Alessandro Frati
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy
| | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy
| |
Collapse
|
18
|
Pinelli R, Ferrucci M, Berti C, Biagioni F, Scaffidi E, Bumah VV, Busceti CL, Lenzi P, Lazzeri G, Fornai F. The Essential Role of Light-Induced Autophagy in the Inner Choroid/Outer Retinal Neurovascular Unit in Baseline Conditions and Degeneration. Int J Mol Sci 2023; 24:ijms24108979. [PMID: 37240326 DOI: 10.3390/ijms24108979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/26/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The present article discusses the role of light in altering autophagy, both within the outer retina (retinal pigment epithelium, RPE, and the outer segment of photoreceptors) and the inner choroid (Bruch's membrane, BM, endothelial cells and the pericytes of choriocapillaris, CC). Here autophagy is needed to maintain the high metabolic requirements and to provide the specific physiological activity sub-serving the process of vision. Activation or inhibition of autophagy within RPE strongly depends on light exposure and it is concomitant with activation or inhibition of the outer segment of the photoreceptors. This also recruits CC, which provides blood flow and metabolic substrates. Thus, the inner choroid and outer retina are mutually dependent and their activity is orchestrated by light exposure in order to cope with metabolic demand. This is tuned by the autophagy status, which works as a sort of pivot in the cross-talk within the inner choroid/outer retina neurovascular unit. In degenerative conditions, and mostly during age-related macular degeneration (AMD), autophagy dysfunction occurs in this area to induce cell loss and extracellular aggregates. Therefore, a detailed analysis of the autophagy status encompassing CC, RPE and interposed BM is key to understanding the fine anatomy and altered biochemistry which underlie the onset and progression of AMD.
Collapse
Affiliation(s)
- Roberto Pinelli
- Switzerland Eye Research Institute (SERI), 6900 Lugano, Switzerland
| | - Michela Ferrucci
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Caterina Berti
- Switzerland Eye Research Institute (SERI), 6900 Lugano, Switzerland
| | - Francesca Biagioni
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 86077 Pozzili, Italy
| | - Elena Scaffidi
- Switzerland Eye Research Institute (SERI), 6900 Lugano, Switzerland
| | - Violet Vakunseth Bumah
- Department of Chemistry and Biochemistry College of Sciences San Diego State University, San Diego, CA 92182, USA
- Department of Chemistry and Physics, University of Tennessee, Knoxville, TN 37996, USA
| | - Carla L Busceti
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 86077 Pozzili, Italy
| | - Paola Lenzi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Gloria Lazzeri
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 86077 Pozzili, Italy
| |
Collapse
|
19
|
Zuo H, Chen C, Sa Y. Therapeutic potential of autophagy in immunity and inflammation: current and future perspectives. Pharmacol Rep 2023; 75:499-510. [PMID: 37119445 PMCID: PMC10148586 DOI: 10.1007/s43440-023-00486-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 05/01/2023]
Abstract
Autophagy is recognized as a lysosomal degradation pathway important for cellular and organismal homeostasis. Accumulating evidence has demonstrated that autophagy is a paradoxical mechanism that regulates homeostasis and prevents stress under physiological and pathological conditions. Nevertheless, how autophagy is implicated in immune responses remains unclear. It is well established that autophagy bridges innate and adaptive immunity, while autophagic dysfunction is closely related to infection, inflammation, neurodegeneration, and tumorigenesis. Therefore, autophagy has attracted great attention from fundamental and translational fields due to its crucial role in inflammation and immunity. Inflammation is involved in the development and progression of various human diseases, and as a result, autophagy might be a potential target to prevent and treat inflammatory diseases. Nevertheless, insufficient autophagy might cause cell death, perpetrate inflammation, and trigger hereditary unsteadiness. Hence, targeting autophagy is a promising disease prevention and treatment strategy. To accomplish this safely, we should thoroughly understand the basic aspects of how autophagy works. Herein, we systematically summarized the correlation between autophagy and inflammation and its implication for human diseases.
Collapse
Affiliation(s)
- Hui Zuo
- Department of Pharmacology, The First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan Province, China.
- Department of Pharmaceutical Science, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan Province, China.
| | - Cheng Chen
- Department of Pharmacology, The First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan Province, China
| | - Yalian Sa
- Institute of Clinical and Basic Medical Sciences (Yunnan Provincial Key Laboratory of Clinical Virology), The First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China.
| |
Collapse
|
20
|
Chen X, Xue W, Zhang J, Peng J, Huang W. Ginsenoside Rg1 attenuates the NASH phenotype by regulating the miR-375-3p/ATG2B/PTEN-AKT axis to mediate autophagy and pyroptosis. Lipids Health Dis 2023; 22:22. [PMID: 36759837 PMCID: PMC9912620 DOI: 10.1186/s12944-023-01787-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH) is one of the most frequent liver diseases at present, and there is no radical treatment. The consequences of a variety of ginsenoside compounds on this situation have before been reported, however, the specific effect on the monomeric ginsenoside Rg1 (Rg1) and its associated underlying molecular mechanism stay unknown. MATERIAL AND METHODS In vitro, the cell models were constructed by exposing free fatty acids (FFAs) to HepG2 cells. A methionine and choline deficiency (MCD)-induced NASH mouse model was also established over 5-6 weeks of treatment. Rg1 is a traditional Chinese medicine monomer. These NASH models were treated with Rg1 and analyzed by qRT-PCR, Western Blot, sequencing, Oil red O staining, immunofluorescence, enzyme activity, HE staining, ELISA, double luciferase reporter assay, and immunohistochemistry. RESULTS Overexpression of ATG2B, an autophagy-related protein, attenuated lipid droplet accumulation and reduces ALT, AST, inflammatory cytokines, hydrogen peroxide, and pyroptosis in established mouse and cellular models of NASH and increased levels of ATP and autophagy. The binding sites of miR-375-3p and ATG2B were verified by bioinformatic prediction and a dual-luciferase reporter gene. Knockdown of miR-375-3p promoted autophagy and inhibited pyroptosis. ATG2B knockdown substantially attenuated the impact of miR-375-3p on NASH. Rg1 appears to regulate the occurrence and development of NASH inflammation through miR-375-3p and ATG2B in vitro and in vivo, and is regulated by PTEN-AKT pathway. CONCLUSIONS This study showed that Rg1 participates in autophagy and pyroptosis through the miR-375-3p/ATG2B/PTEN-AKT pathway, thereby alleviating the occurrence and development of NASH, for that reason revealing Rg1 as a candidate drug for NASH.
Collapse
Affiliation(s)
- Xuanxin Chen
- grid.452206.70000 0004 1758 417XDepartment of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Wei Xue
- grid.452206.70000 0004 1758 417XDepartment of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Jia Zhang
- grid.452206.70000 0004 1758 417XDepartment of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Jiayi Peng
- grid.452206.70000 0004 1758 417XDepartment of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Wenxiang Huang
- Department of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
21
|
Kaarniranta K, Blasiak J, Liton P, Boulton M, Klionsky DJ, Sinha D. Autophagy in age-related macular degeneration. Autophagy 2023; 19:388-400. [PMID: 35468037 PMCID: PMC9851256 DOI: 10.1080/15548627.2022.2069437] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 01/22/2023] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of visual impairment in the aging population with limited understanding of its pathogenesis and a lack of effective treatment. The progression of AMD is initially characterized by atrophic alterations in the retinal pigment epithelium, as well as the formation of lysosomal lipofuscin and extracellular drusen deposits. Damage caused by chronic oxidative stress, protein aggregation and inflammatory processes may lead to geographic atrophy and/or choroidal neovascularization and fibrosis. The role of macroautophagy/autophagy in AMD pathology is steadily emerging. This review describes selective and secretory autophagy and their role in drusen biogenesis, senescence-associated secretory phenotype, inflammation and epithelial-mesenchymal transition in the pathogenesis of AMD.Abbreviations: Aβ: amyloid-beta; AMBRA1: autophagy and beclin 1 regulator 1; AMD: age-related macular degeneration; ATF6: activating transcription factor 6; ATG: autophagy related; BACE1: beta-secretase 1; BHLHE40: basic helix-loop-helix family member e40; BNIP3: BCL2 interacting protein 3; BNIP3L/NIX: BCL2 interacting protein 3 like; C: complement; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CARD: caspase recruitment domain; CDKN2A/p16: cyclin dependent kinase inhibitor 2A; CFB: complement factor B; DELEC1/Dec1; deleted in esophageal cancer 1; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; EMT: epithelial-mesenchymal transition; ER: endoplasmic reticulum; ERN1/IRE1: endoplasmic reticulum to nucleus signaling 1; FUNDC1: FUN14 domain containing 1; GABARAP: GABA type A receptor-associated protein; HMGB1: high mobility group box 1; IL: interleukin; KEAP1: kelch like ECH associated protein 1; LAP: LC3-associated phagocytosis; LAMP2: lysosomal associated membrane protein 2; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; NFE2L2: NFE2 like bZIP transcription factor 2; NLRP3; NLR family pyrin domain containing 3; NFKB/NFκB: nuclear factor kappa B; OPTN: optineurin; PARL: presenilin associated rhomboid like; PGAM5: PGAM family member 5, mitochondrial serine/threonine protein phosphatase; PINK1: PTEN induced kinase 1; POS: photoreceptor outer segment; PPARGC1A: PPARG coactivator 1 alpha; PRKN: parkin RBR E3 ubiquitin protein ligase; PYCARD/ASC: PYD and CARD domain containing; ROS: reactive oxygen species; RPE: retinal pigment epithelium; SA: secretory autophagy; SASP: senescence-associated secretory phenotype; SEC22B: SEC22 homolog B, vesicle trafficking protein; SNAP: synaptosome associated protein; SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor; SQSTM1/p62: sequestosome 1; STX: syntaxin; TGFB2: transforming growth factor beta 2; TRIM16: tripartite motif containing 16; TWIST: twist family bHLH transcription factor; Ub: ubiquitin; ULK: unc-51 like autophagy activating kinase; UPR: unfolded protein response; UPS: ubiquitin-proteasome system; V-ATPase: vacuolar-type H+-translocating ATPase; VIM: vimentin.
Collapse
Affiliation(s)
- Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | - Paloma Liton
- Duke University, Department of Ophthalmology, Durham, NC, USA
| | - Michael Boulton
- University of Alabama at Birmingham, Department of Ophthalmology and Visual Sciences, Birmingham, AL, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Debasish Sinha
- University of Pittsburgh School of Medicine, Departments of Ophthalmology, Cell Biology, and Developmental Biology, Pittsburgh, PA, USA
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Josifovska N, Andjelic S, Lytvynchuk L, Lumi X, Dučić T, Petrovski G. Biomacromolecular Profile in Human Primary Retinal Pigment Epithelial Cells-A Study of Oxidative Stress and Autophagy by Synchrotron-Based FTIR Microspectroscopy. Biomedicines 2023; 11:biomedicines11020300. [PMID: 36830838 PMCID: PMC9952973 DOI: 10.3390/biomedicines11020300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Synchrotron radiation-based Fourier Transform Infrared (SR-FTIR) microspectroscopy is a non-destructive and chemically sensitive technique for the rapid detection of changes in the different components of the cell's biomacromolecular profile. Reactive oxygen species and oxidative stress may cause damage to the DNA, RNA, and proteins in the retinal pigment epithelium (RPE), which can further lead to age-related macular degeneration (AMD) and visual loss in the elderly. In this study, human primary RPEs (hRPEs) were used to study AMD pathogenesis by using an established in vitro cellular model of the disease. Autophagy-a mechanism of intracellular degradation, which is altered during AMD, was studied in the hRPEs by using the autophagy inducer rapamycin and treated with the autophagy inhibitor bafilomycin A1. In addition, oxidative stress was induced by the hydrogen peroxide (H2O2) treatment of hRPEs. By using SR-FTIR microspectroscopy and multivariate analyses, the changes in the phosphate groups of nucleic acids, Amide I and II of the proteins, the carbonyl groups, and the lipid status in the hRPEs showed a significantly different pattern under oxidative stress/autophagy induction and inhibition. This biomolecular fingerprint can be evaluated in future drug discovery studies affecting autophagy and oxidative stress in AMD.
Collapse
Affiliation(s)
- Natasha Josifovska
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Oslo University Hospital, and Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, 0450 Oslo, Norway
- Correspondence:
| | - Sofija Andjelic
- Eye Hospital, University Medical Center, 1000 Ljubljana, Slovenia
| | - Lyubomyr Lytvynchuk
- Department of Ophthalmology, Justus Liebig University, University Hospital Giessen and Marburg GmbH, 35390 Giessen, Germany
- Karl Landsteiner Institute for Retinal Research and Imaging, 1030 Vienna, Austria
| | - Xhevat Lumi
- Eye Hospital, University Medical Center, 1000 Ljubljana, Slovenia
| | - Tanja Dučić
- CELLS-ALBA, Carrer de la Llum 2-26, Cerdanyola del Valles, 08290 Barcelona, Spain
| | - Goran Petrovski
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Oslo University Hospital, and Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, 0450 Oslo, Norway
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, 21000 Split, Croatia
| |
Collapse
|
23
|
Protective effects of Panax ginseng berry extract on blue light-induced retinal damage in ARPE-19 cells and mouse retina. J Ginseng Res 2023; 47:65-73. [PMID: 36644394 PMCID: PMC9834005 DOI: 10.1016/j.jgr.2022.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 01/18/2023] Open
Abstract
Background Age-related macular degeneration (AMD) is a significant visual disease that induces impaired vision and irreversible blindness in the elderly. However, the effects of ginseng berry extract (GBE) on the retina have not been studied. Therefore, this study aimed to investigate the protective effects of GBE on blue light (BL)-induced retinal damage and elucidate its underlying mechanisms in human retinal pigment epithelial cells (ARPE-19 cells) and Balb/c retina. Methods To investigate the effects and underlying mechanisms of GBE on retinal damage in vitro, we performed cell viability assay, pre-and post-treatment of sample, reactive oxygen species (ROS) assay, quantitative real-time PCR (qRT-PCR), and western immunoblotting using A2E-laden ARPE-19 cells with BL exposure. In addition, Balb/c mice were irradiated with BL to induce retinal degeneration and orally administrated with GBE (50, 100, 200 mg/kg). Using the harvested retina, we performed histological analysis (thickness of retinal layers), qRT-PCR, and western immunoblotting to elucidate the effects and mechanisms of GBE against retinal damage in vivo. Results GBE significantly inhibited BL-induced cell damage in ARPE-19 cells by activating the SIRT1/PGC-1α pathway, regulating NF-kB translocation, caspase 3 activation, PARP cleavage, expressions of apoptosis-related factors (BAX/BCL-2, LC3-Ⅱ, and p62), and ROS production. Furthermore, GBE prevented BL-induced retinal degeneration by restoring the thickness of retinal layers and suppressed inflammation and apoptosis via regulation of NF-kB and SIRT1/PGC-1α pathway, cleavage of caspase 3 and PARP, and expressions of apoptosis-related factors in vivo. Conclusions GBE could be a potential agent to prevent dry AMD and progression to wet AMD.
Collapse
|
24
|
Giorgianni F, Beranova-Giorgianni S. Oxidized low-density lipoprotein causes ribosome reduction and inhibition of protein synthesis in retinal pigment epithelial cells. Biochem Biophys Rep 2022; 32:101345. [PMID: 36204727 PMCID: PMC9530482 DOI: 10.1016/j.bbrep.2022.101345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/27/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
Retinal pigment epithelium (RPE) are specialized multifunctional cells indispensable for maintenance of vision. Dysfunction and death of the RPE cells is implicated in the genesis and progression of age-related macular degeneration (AMD). Oxidative stress and resulting cellular damage plays a critical mechanistic role in AMD pathogenesis. Oxidized low-density lipoprotein (oxLDL), derived from LDL in a pro-oxidative environment, is found adjacent to the RPE as part of drusen, extracellular deposits that are a characteristic clinical feature of AMD. OxLDL is cytotoxic and oxLDL-induced oxidative damage may contribute to functional impairment of the RPE. Therefore, knowledge of how the RPE respond to oxLDL exposure is important to understand the mechanisms underlying RPE dysfunction and death associated with AMD. The objective of this study was to characterize alterations in the RPE proteome triggered by exposure to non-cytotoxic levels of oxLDL. Protein identification and quantification were performed with a high -resolution LC-MS/MS-based proteomics workflow. In total, out of the ca 3000 RPE proteins quantified, oxLDL treatment caused expression changes of 303 proteins. As revealed by protein functional analysis, oxLDL uptake caused a multifaceted molecular response that involved numerous biological pathways. This response included up-regulation of anti-oxidative stress proteins whose expression is mediated by the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2), confirming results of transcriptomics studies previously published by us and others. Significantly, and previously unreported, the oxLDL treatment induced down-regulation of ribosomal and translation initiation proteins, and up-regulation of proteins involved in autophagy, thus suggesting that a major cellular mechanism through which the RPE mitigate oxLDL-induced damage involves inhibition of protein synthesis and removal of misfolded proteins. OxLDL causes oxidative stress in the RPE. The proteome of the RPE is impacted by non-lethal doses of OxLDL. Differentially expressed proteins include oxidative stress response and proteins involved in protein synthesis and autophagy. Protein synthesis reduction and increase in autophagy suggest presence of misfolded proteins as a result of OxLDL exposure.
Collapse
|
25
|
Liang KH, Chen CH, Tsai HR, Chang CY, Chen TL, Hsu WC. Association Between Oral Metformin Use and the Development of Age-Related Macular Degeneration in Diabetic Patients: A Systematic Review and Meta-Analysis. Invest Ophthalmol Vis Sci 2022; 63:10. [PMID: 36484633 DOI: 10.1167/iovs.63.13.10] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Metformin is a biguanide derivative that is commonly used for the treatment of diabetes mellitus (DM). It demonstrates antioxidative, anti-inflammatory, and antiangiogenic activity within the ocular tissue and thus may be implicated in the treatment of age-related macular degeneration (AMD). However, epidemiological studies have shown conflicting results. Methods The Ovid MEDLINE/Embase, Cochrane Library, and Web of Science databases were systematically searched from inception through August 3, 2022. Studies reporting the association between metformin use and odds of AMD were enrolled. Adjusted odds ratios (ORs) of AMD were extracted and pooled with random-effects model meta-analysis. Subgroup analyses based on AMD subtypes, ethnicity, study design, sex, and confirmation of AMD diagnosis were conducted. Results A total of 9 observational studies with 1,446,284 participants were included in the analysis. The meta-analysis showed that metformin use was associated with a significant reduction in the odds of AMD (pooled ORs = 0.81, 95% confidence interval [CI] = 0.70-0.93). Subgroup analyses revealed that metformin use was not significantly associated with dry or wet AMD. Black (pooled ORs = 0.61, 95% CI = 0.58-0.64) and Hispanic populations (pooled ORs = 0.85, 95% CI = 0.81-0.89) demonstrated significantly lower odds of AMD. Conclusions This systematic review and meta-analysis found that patients with DM with metformin usage were at lower odds of developing AMD. Future prospective clinical trials are needed to confirm this association.
Collapse
Affiliation(s)
- Kai-Hsiang Liang
- Department of Medical Education, Medical Administration Office, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chih-Hao Chen
- Department of Otolaryngology, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Hou-Ren Tsai
- Department of Ophthalmology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chun-Yu Chang
- Department of Anesthesiology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Tai-Li Chen
- Department of Dermatology, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Wei-Cherng Hsu
- School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Ophthalmology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| |
Collapse
|
26
|
Terao R, Ahmed T, Suzumura A, Terasaki H. Oxidative Stress-Induced Cellular Senescence in Aging Retina and Age-Related Macular Degeneration. Antioxidants (Basel) 2022; 11:2189. [PMID: 36358561 PMCID: PMC9686487 DOI: 10.3390/antiox11112189] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 07/30/2023] Open
Abstract
Aging leads to a gradual decline of function in multiple organs. Cataract, glaucoma, diabetic retinopathy, and age-related macular degeneration (AMD) are age-related ocular diseases. Because their pathogenesis is unclear, it is challenging to combat age-related diseases. Cellular senescence is a cellular response characterized by cell cycle arrest. Cellular senescence is an important contributor to aging and age-related diseases through the alteration of cellular function and the secretion of senescence-associated secretory phenotypes. As a driver of stress-induced premature senescence, oxidative stress triggers cellular senescence and age-related diseases by inducing senescence markers via reactive oxygen species and mitochondrial dysfunction. In this review, we focused on the mechanism of oxidative stress-induced senescence in retinal cells and its role in the pathogenesis of AMD.
Collapse
Affiliation(s)
- Ryo Terao
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Tazbir Ahmed
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Ayana Suzumura
- Department of Ophthalmology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Hiroko Terasaki
- Institutes of Innovation for Future Society, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
27
|
Harju N. Regulation of oxidative stress and inflammatory responses in human retinal pigment epithelial cells. Acta Ophthalmol 2022; 100 Suppl 273:3-59. [DOI: 10.1111/aos.15275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Niina Harju
- School of Pharmacy University of Eastern Finland Kuopio Finland
| |
Collapse
|
28
|
Liu C, Sun W, Zhu T, Shi S, Zhang J, Wang J, Gao F, Ou Q, Jin C, Li J, Xu JY, Zhang J, Tian H, Xu GT, Lu L. Glia maturation factor-β induces ferroptosis by impairing chaperone-mediated autophagic degradation of ACSL4 in early diabetic retinopathy. Redox Biol 2022; 52:102292. [PMID: 35325805 PMCID: PMC8942824 DOI: 10.1016/j.redox.2022.102292] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 12/27/2022] Open
Abstract
Diabetic retinopathy (DR) is one of the leading causes of blindness in the world, and timely prevention and treatment are very important. Previously, we found that a neurodegenerative factor, Glia maturation factor-β (GMFB), was upregulated in the vitreous at a very early stage of diabetes, which may play an important role in pathogenesis. Here, we found that in a high glucose environment, large amounts of GMFB protein can be secreted in the vitreous, which translocates the ATPase ATP6V1A from the lysosome, preventing its assembly and alkalinizing the lysosome in the retinal pigment epithelial (RPE) cells. ACSL4 protein can be recognized by HSC70, the receptor for chaperone-mediated autophagy, and finally digested in the lysosome. Abnormalities in the autophagy-lysosome degradation process lead to its accumulation, which catalyzes the production of lethal lipid species and finally induces ferroptosis in RPE cells. GMFB antibody, lysosome activator NKH477, CMA activator QX77, and ferroptosis inhibitor Liproxstatin-1 were all effective in preventing early diabetic retinopathy and maintaining normal visual function, which has powerful clinical application value. Our research broadens the understanding of the relationship between autophagy and ferroptosis and provides a new therapeutic target for the treatment of DR.
Collapse
Affiliation(s)
- Caiying Liu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Wan Sun
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Tong Zhu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Si Shi
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jieping Zhang
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Juan Wang
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Furong Gao
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Qingjian Ou
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Caixia Jin
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jiao Li
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jing-Ying Xu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China
| | - Haibin Tian
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Guo-Tong Xu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, 200092, China; The Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
| | - Lixia Lu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
29
|
Garcia-Garcia J, Usategui-Martin R, Sanabria MR, Fernandez-Perez E, Telleria JJ, Coco-Martin RM. Pathophysiology of Age-Related Macular Degeneration: Implications for Treatment. Ophthalmic Res 2022; 65:615-636. [PMID: 35613547 DOI: 10.1159/000524942] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/29/2022] [Indexed: 12/16/2022]
Abstract
Age-related macular degeneration (AMD) is a complex, multifactorial, progressive retinal disease that affects millions of people worldwide and has become the leading cause of visual impairment in developed countries. The disease etiopathogenesis is not understood fully, although many triggers and processes that lead to dysfunction and degeneration of the retinal pigment epithelium (RPE) have already been identified. Thus, the lack of cellular control of oxidative stress, altered proteostasis, dysfunction of lipid homeostasis, and mitochondrial dysfunction form an internal feedback loop that causes the RPE to fail and allows accumulation of abnormal misfolded proteins and abnormal lipids that will form drusen. An inadequate antioxidant response, deficits in autophagy mechanisms, and dysregulation of the extracellular matrix (ECM) help to increase the deposition of abnormal drusen material over time. The drusen then act as inflammatory centers that trigger chronic inflammation of the subretinal space in which microglia and recruited macrophages are also involved, and where the complement system is a key component. Choriocapillaris degeneration and nutritional influences are also classic elements recognized in the AMD pathophysiology. The genetic component of the disease is embodied in the recognition of the described risk or protective polymorphisms of some complement and ECM related genes (mainly CFH and ARMS2/HTRA1). Thus, carriers of the risk haplotype at ARMS2/HTRA1 have a higher risk of developing late AMD at a younger age. Finally, gut microbiota and epigenetics may play a role in modulating the progression to advanced AMD with the presence of local inflammatory conditions. Because of multiple implicated processes, different complex combinations of treatments will probably be the best option to obtain the best visual results; they in turn will differ depending on the type and spectrum of disease affecting individual patients or the disease stage in each patient at a specific moment. This will undoubtedly lead to personalized medicine for control and hopefully find a future cure. This necessitates the continued unraveling of all the processes involved in the pathogenesis of AMD that must be understood to devise the combinations of treatments for different concurrent or subsequent problems.
Collapse
Affiliation(s)
- Julián Garcia-Garcia
- Instituto de Oftalmobiologia Aplicada (IOBA), University of Valladolid, Valladolid, Spain
| | - Ricardo Usategui-Martin
- Instituto de Oftalmobiologia Aplicada (IOBA), University of Valladolid, Valladolid, Spain
- RICORS of Inflammation and Immunopathology of Organs and Systems Network, ISCIII, Madrid, Spain
- Dpto. de Biología Celular, Histología y Farmacología, University of Valladolid, Valladolid, Spain
| | - Maria Rosa Sanabria
- Instituto de Oftalmobiologia Aplicada (IOBA), University of Valladolid, Valladolid, Spain
- RICORS of Inflammation and Immunopathology of Organs and Systems Network, ISCIII, Madrid, Spain
- Ophthalmology Department, Palencia University Hospital Complex, Palencia, Spain
| | - Esther Fernandez-Perez
- Instituto de Oftalmobiologia Aplicada (IOBA), University of Valladolid, Valladolid, Spain
| | - Juan Jose Telleria
- Institute of Biology and Molecular Genetics (IBGM) University of Valladolid, Valladolid, Spain
- Dpto. de Biología Celular, Histología y Farmacología, University of Valladolid, Valladolid, Spain
| | - Rosa M Coco-Martin
- Instituto de Oftalmobiologia Aplicada (IOBA), University of Valladolid, Valladolid, Spain
- RICORS of Inflammation and Immunopathology of Organs and Systems Network, ISCIII, Madrid, Spain
| |
Collapse
|
30
|
Caban M, Owczarek K, Lewandowska U. The Role of Metalloproteinases and Their Tissue Inhibitors on Ocular Diseases: Focusing on Potential Mechanisms. Int J Mol Sci 2022; 23:ijms23084256. [PMID: 35457074 PMCID: PMC9026850 DOI: 10.3390/ijms23084256] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/04/2022] [Accepted: 04/09/2022] [Indexed: 02/01/2023] Open
Abstract
Eye diseases are associated with visual impairment, reduced quality of life, and may even lead to vision loss. The efficacy of available treatment of eye diseases is not satisfactory. The unique environment of the eye related to anatomical and physiological barriers and constraints limits the bioavailability of existing agents. In turn, complex ethiopathogenesis of ocular disorders that used drugs generally are non-disease specific and do not act causally. Therefore, there is a need for the development of a new therapeutic and preventive approach. It seems that matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) have a significant role in the development and progression of eye diseases and could be used in the therapy of these disorders as pharmacological targets. MMPs and TIMPs play an important role in the angiogenesis, epithelial-mesenchymal transition, cell invasion, and migration, which occur in ocular diseases. In this review, we aim to describe the participation of MMPs and TIMPs in the eye diseases, such as age-related macular degeneration, cataract, diabetic retinopathy, dry eye syndrome, glaucoma, and ocular cancers, posterior capsule opacification focusing on potential mechanisms.
Collapse
|
31
|
Francisco S, Martinho V, Ferreira M, Reis A, Moura G, Soares AR, Santos MAS. The Role of MicroRNAs in Proteostasis Decline and Protein Aggregation during Brain and Skeletal Muscle Aging. Int J Mol Sci 2022; 23:ijms23063232. [PMID: 35328652 PMCID: PMC8955204 DOI: 10.3390/ijms23063232] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 01/14/2023] Open
Abstract
Aging can be defined as the progressive deterioration of cellular, tissue, and organismal function over time. Alterations in protein homeostasis, also known as proteostasis, are a hallmark of aging that lead to proteome imbalances and protein aggregation, phenomena that also occur in age-related diseases. Among the various proteostasis regulators, microRNAs (miRNAs) have been reported to play important roles in the post-transcriptional control of genes involved in maintaining proteostasis during the lifespan in several organismal tissues. In this review, we consolidate recently published reports that demonstrate how miRNAs regulate fundamental proteostasis-related processes relevant to tissue aging, with emphasis on the two most studied tissues, brain tissue and skeletal muscle. We also explore an emerging perspective on the role of miRNA regulatory networks in age-related protein aggregation, a known hallmark of aging and age-related diseases, to elucidate potential miRNA candidates for anti-aging diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Stephany Francisco
- Institute of Biomedicine—iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (S.F.); (V.M.); (M.F.); (A.R.); (G.M.)
| | - Vera Martinho
- Institute of Biomedicine—iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (S.F.); (V.M.); (M.F.); (A.R.); (G.M.)
| | - Margarida Ferreira
- Institute of Biomedicine—iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (S.F.); (V.M.); (M.F.); (A.R.); (G.M.)
| | - Andreia Reis
- Institute of Biomedicine—iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (S.F.); (V.M.); (M.F.); (A.R.); (G.M.)
| | - Gabriela Moura
- Institute of Biomedicine—iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (S.F.); (V.M.); (M.F.); (A.R.); (G.M.)
| | - Ana Raquel Soares
- Institute of Biomedicine—iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (S.F.); (V.M.); (M.F.); (A.R.); (G.M.)
- Correspondence: (A.R.S.); (M.A.S.S.)
| | - Manuel A. S. Santos
- Institute of Biomedicine—iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (S.F.); (V.M.); (M.F.); (A.R.); (G.M.)
- Multidisciplinary Institute of Aging, MIA-Portugal, Faculty of Medicine, University of Coimbra, Rua Largo 2, 3º, 3000-370 Coimbra, Portugal
- Correspondence: (A.R.S.); (M.A.S.S.)
| |
Collapse
|
32
|
Puertas-Neyra K, Galindo-Cabello N, Hernández-Rodríguez LA, González-Pérez F, Rodríguez-Cabello JC, González-Sarmiento R, Pastor JC, Usategui-Martín R, Fernandez-Bueno I. Programmed Cell Death and Autophagy in an in vitro Model of Spontaneous Neuroretinal Degeneration. Front Neuroanat 2022; 16:812487. [PMID: 35221932 PMCID: PMC8873173 DOI: 10.3389/fnana.2022.812487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/18/2022] [Indexed: 11/15/2022] Open
Abstract
Retinal neurodegenerative diseases are the leading causes of visual impairment and irreversible blindness worldwide. Although the retinal response to injury remains closely similar between different retinal neurodegenerative diseases, available therapeutic alternatives are only palliative, too expensive, or very specific, such as gene therapy. In that sense, the development of broad-spectrum neuroprotective therapies seems to be an excellent option. In this regard, it is essential to identify molecular targets involved in retinal degeneration, such as cell death mechanisms. Apoptosis has been considered as the primary cell death mechanism during retinal degeneration; however, recent studies have demonstrated that the only use of anti-apoptotic drugs is not enough to confer good neuroprotection in terms of cell viability and preservation. For that reason, the interrelationship that exists between apoptosis and other cell death mechanisms needs to be characterized deeply to design future therapeutic options that simultaneously block the main cell death pathways. In that sense, the study aimed to characterize the programmed cell death (in terms of apoptosis and necroptosis) and autophagy response and modulation in retinal neurodegenerative diseases, using an in vitro model of spontaneous retinal neurodegeneration. For that purpose, we measured the mRNA relative expression through qPCR of a selected pool of genes involved in apoptosis (BAX, BCL2, CASP3, CASP8, and CASP9), necroptosis (MLKL, RIPK1, and RIPK3), and autophagy (ATG7, BCLIN1, LC3B, mTOR, and SQSTM1); besides, the immunoexpression of their encoding proteins (Casp3, MLKL, RIPK1, LC3B, and p62) were analyzed using immunohistochemistry. Our results showed an increase of pro-apoptotic and pro-necroptotic related genes and proteins during in vitro retinal neurodegeneration. Besides, we describe for the first time the modulation between programmed cell death mechanisms and autophagy in an in vitro retinal neurodegeneration model. This study reinforces the idea that cell death mechanisms are closely interconnected and provides new information about molecular signaling and autophagy along the retinal degeneration process.
Collapse
Affiliation(s)
- Kevin Puertas-Neyra
- Retina Group, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain
| | - Nadia Galindo-Cabello
- Retina Group, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain
- Postgraduate Unit, Faculty of Biological Sciences, National University of San Marcos, Lima, Peru
| | | | - Fernando González-Pérez
- Group for Advanced Materials and Nanobiotechnology (GIR BIOFORGE), CIBER-BBN, Edificio LUCIA, Universidad de Valladolid, Valladolid, Spain
| | - José Carlos Rodríguez-Cabello
- Group for Advanced Materials and Nanobiotechnology (GIR BIOFORGE), CIBER-BBN, Edificio LUCIA, Universidad de Valladolid, Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
| | - Rogelio González-Sarmiento
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, Salamanca, Spain
| | - José Carlos Pastor
- Retina Group, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS), Oftared, Instituto de Salud Carlos III, Valladolid, Spain
- RetiBrain (RED2018-102499-T), Ministerio de Ciencia, Innovación y Universidades, Valladolid, Spain
| | - Ricardo Usategui-Martín
- Retina Group, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS), Oftared, Instituto de Salud Carlos III, Valladolid, Spain
- RetiBrain (RED2018-102499-T), Ministerio de Ciencia, Innovación y Universidades, Valladolid, Spain
- Ricardo Usategui-Martín,
| | - Ivan Fernandez-Bueno
- Retina Group, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS), Oftared, Instituto de Salud Carlos III, Valladolid, Spain
- RetiBrain (RED2018-102499-T), Ministerio de Ciencia, Innovación y Universidades, Valladolid, Spain
- *Correspondence: Ivan Fernandez-Bueno,
| |
Collapse
|
33
|
Ren J, Ren A, Deng X, Huang Z, Jiang Z, Li Z, Gong Y. Long-Chain Polyunsaturated Fatty Acids and Their Metabolites Regulate Inflammation in Age-Related Macular Degeneration. J Inflamm Res 2022; 15:865-880. [PMID: 35173457 PMCID: PMC8842733 DOI: 10.2147/jir.s347231] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
Age-related macular degeneration (AMD) is a blinding eye disease, whose incidence strongly increases with ages. The etiology of AMD is complex, including aging, abnormal lipid metabolism, chronic inflammation and oxidative stress. Long-chain polyunsaturated fatty acids (LCPUFA) are essential for ocular structures and functions. This review summarizes the regulatory effects of LCPUFA on inflammation in AMD. LCPUFA are related to aging, autophagy and chronic inflammation. They are metabolized to pro- and anti-inflammatory metabolites by various enzymes. These metabolites stimulate inflammation in response to oxidative stress, causing innate and acquired immune responses. This review also discusses the possible clinical applications, which provided novel targets for the prevention and treatment of AMD and other age-related diseases.
Collapse
Affiliation(s)
- Jiangbo Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Anli Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Xizhi Deng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zhengrong Huang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Ziyu Jiang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zhi Li
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Human Genetics Resource Preservation Center of Wuhan University, Wuhan University, Wuhan, Hubei, People’s Republic of China
- Correspondence: Yan Gong; Zhi Li, Tel +86 27 6781 1461; +86 27 6781 2622, Fax +86 27 6781 1471; +86 27 6781 3133, Email ;
| |
Collapse
|
34
|
Chang KC, Liu PF, Chang CH, Lin YC, Chen YJ, Shu CW. The interplay of autophagy and oxidative stress in the pathogenesis and therapy of retinal degenerative diseases. Cell Biosci 2022; 12:1. [PMID: 34980273 PMCID: PMC8725349 DOI: 10.1186/s13578-021-00736-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/19/2021] [Indexed: 12/27/2022] Open
Abstract
Oxidative stress is mainly caused by intracellular reactive oxygen species (ROS) production, which is highly associated with normal physiological homeostasis and the pathogenesis of diseases, particularly ocular diseases. Autophagy is a self-clearance pathway that removes oxidized cellular components and regulates cellular ROS levels. ROS can modulate autophagy activity through transcriptional and posttranslational mechanisms. Autophagy further triggers transcription factor activation and degrades impaired organelles and proteins to eliminate excessive ROS in cells. Thus, autophagy may play an antioxidant role in protecting ocular cells from oxidative stress. Nevertheless, excessive autophagy may cause autophagic cell death. In this review, we summarize the mechanisms of interaction between ROS and autophagy and their roles in the pathogenesis of several ocular diseases, including glaucoma, age-related macular degeneration (AMD), diabetic retinopathy (DR), and optic nerve atrophy, which are major causes of blindness. The autophagy modulators used to treat ocular diseases are further discussed. The findings of the studies reviewed here might shed light on the development and use of autophagy modulators for the future treatment of ocular diseases.
Collapse
Affiliation(s)
- Kun-Che Chang
- Department of Ophthalmology and Neurobiology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hsuan Chang
- Institute of BioPharmaceutical Sciences, National Sun Yat-Sen University, No. 70, Lianhai Rd., Gushan Dist., Kaohsiung, 80424, Taiwan
| | - Ying-Cheng Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yen-Ju Chen
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chih-Wen Shu
- Institute of BioPharmaceutical Sciences, National Sun Yat-Sen University, No. 70, Lianhai Rd., Gushan Dist., Kaohsiung, 80424, Taiwan.
| |
Collapse
|
35
|
Asatryan A, Calandria JM, Kautzmann MAI, Jun B, Gordon WC, Do KV, Bhattacharjee S, Pham TL, Bermúdez V, Mateos MV, Heap J, Bazan NG. New Retinal Pigment Epithelial Cell Model to Unravel Neuroprotection Sensors of Neurodegeneration in Retinal Disease. Front Neurosci 2022; 16:926629. [PMID: 35873810 PMCID: PMC9301569 DOI: 10.3389/fnins.2022.926629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/30/2022] [Indexed: 01/02/2023] Open
Abstract
Retinal pigment epithelial (RPE) cells sustain photoreceptor integrity, and when this function is disrupted, retinal degenerations ensue. Herein, we characterize a new cell line from human RPE that we termed ABC. These cells remarkably recapitulate human eye native cells. Distinctive from other epithelia, RPE cells originate from the neural crest and follow a neural development but are terminally differentiated into "epithelial" type, thus sharing characteristics with their neuronal lineages counterparts. Additionally, they form microvilli, tight junctions, and honeycomb packing and express distinctive markers. In these cells, outer segment phagocytosis, phagolysosome fate, phospholipid metabolism, and lipid mediator release can be studied. ABC cells display higher resistance to oxidative stress and are protected from senescence through mTOR inhibition, making them more stable in culture. The cells are responsive to Neuroprotectin D1 (NPD1), which downregulates inflammasomes and upregulates antioxidant and anti-inflammatory genes. ABC gene expression profile displays close proximity to native RPE lineage, making them a reliable cell system to unravel signaling in uncompensated oxidative stress (UOS) and retinal degenerative disease to define neuroprotection sites.
Collapse
Affiliation(s)
- Aram Asatryan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Jorgelina M Calandria
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Marie-Audrey I Kautzmann
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Bokkyoo Jun
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - William C Gordon
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Khanh V Do
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Surjyadipta Bhattacharjee
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Thang L Pham
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Vicente Bermúdez
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Melina Valeria Mateos
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Jessica Heap
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| |
Collapse
|
36
|
Kabataş N, Doğan AŞ, Yılmaz M, Kabataş EU, Biçer T, Çalışkan S, Çelikay O, Uçar F, Gürdal C. Association between age-related macular degeneration and 25(OH) vitamin D levels in the Turkish population. Arq Bras Oftalmol 2022; 85:7-12. [PMID: 34586223 PMCID: PMC11826640 DOI: 10.5935/0004-2749.20220002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/03/2020] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Age-related macular degeneration is the most common cause of blindness in developed countries, and several factors have been attributed for its etiology. This study was conducted to explore the relationship between serum vitamin D levels and age-related macular degeneration. METHODS We retrospectively analyzed the data of 114 patients with age-related macular degeneration. A total of 102 patients who did not have any other diseases than refractive error were allocated to the control group. The best-corrected visual acuity, fundus findings, and spectral domain optical coherence tomography findings were analyzed. Patients were allocated to groups based on the Age-related Eye Disease Study classification. Serum 25(OH) vitamin D levels were measured. The central foveal thickness and the subfoveal choroidal thickness were measured by optical coherence tomography. RESULTS The 25(OH) vitamin D levels in age- and gender-matched patients with age-related macular degeneration and in healthy subjects were 14.6 ± 9.8 and 29.14 ± 15.1 ng/ml, respectively. The age-related macular degeneration group had significantly lower vitamin D levels than the control group (p>0.001). The subfoveal choroidal thickness was lower in patients with age-related macular degeneration (p>0.001). The 25(OH) vitamin D level showed a weak positive correlation with choroidal thickness (r=0.357, p=0.01). When the level of 25(OH) vitamin D was evaluated according to the stages of age-related macular degeneration, it was found to be lower in the advanced-stage disease (p=0.01). The risk for the development of choroid neovascular membrane and subretinal fibrosis was found to increase with decreased vitamin D levels. CONCLUSIONS Significantly decreased levels of 25(OH) vitamin D in advanced-stage age-related macular degeneration suggest a significant correlation existing between vitamin D deficiency and age-related macular degeneration development. Further studies are required to examine whether vitamin D supplementation has an effect on the development and progression of age-related macular degeneration.
Collapse
Affiliation(s)
- Naciye Kabataş
- Department of Ophtalmology, Dışkapı
Yıldırım Beyazıt Research and Education Hospital,
Ankara, Turkey
| | - Aysun Şanal Doğan
- Department of Ophtalmology, Dışkapı
Yıldırım Beyazıt Research and Education Hospital,
Ankara, Turkey
| | - Mevlüt Yılmaz
- Department of Ophtalmology, Dışkapı
Yıldırım Beyazıt Research and Education Hospital,
Ankara, Turkey
| | - Emrah Utku Kabataş
- Department of Ophtalmology, Dışkapı
Yıldırım Beyazıt Research and Education Hospital,
Ankara, Turkey
| | - Tolga Biçer
- Department of Ophtalmology, Dışkapı
Yıldırım Beyazıt Research and Education Hospital,
Ankara, Turkey
| | - Sinan Çalışkan
- Department of Ophtalmology, Dışkapı
Yıldırım Beyazıt Research and Education Hospital,
Ankara, Turkey
| | - Osman Çelikay
- Department of Ophtalmology, Dışkapı
Yıldırım Beyazıt Research and Education Hospital,
Ankara, Turkey
| | - Fatma Uçar
- Department of Medicinal Chemistry , Dışkapı
Yıldırım Beyazıt Research and Education Hospital,
Ankara, Turkey
| | - Canan Gürdal
- Department of Ophtalmology, Dışkapı
Yıldırım Beyazıt Research and Education Hospital,
Ankara, Turkey
| |
Collapse
|
37
|
Tamminen T, Koskela A, Toropainen E, Gurubaran IS, Winiarczyk M, Liukkonen M, Paterno JJ, Lackman P, Sadeghi A, Viiri J, Hyttinen JMT, Koskelainen A, Kaarniranta K. Pinosylvin Extract Retinari™ Sustains Electrophysiological Function, Prevents Thinning of Retina, and Enhances Cellular Response to Oxidative Stress in NFE2L2 Knockout Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8028427. [PMID: 34917233 PMCID: PMC8670936 DOI: 10.1155/2021/8028427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/02/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022]
Abstract
Chronic oxidative stress eventually leads to protein aggregation in combination with impaired autophagy, which has been observed in age-related macular degeneration. We have previously shown an effective age-related macular degeneration disease model in mice with nuclear factor-erythroid 2-related factor-2 (NFE2L2) knockout. We have also shown pinosylvin, a polyphenol abundant in bark waste, to increase human retinal pigment epithelium cell viability in vitro. In this work, the effects of commercial natural pinosylvin extract, Retinari™, were studied on the electroretinogram, optical coherence tomogram, autophagic activity, antioxidant capacity, and inflammation markers. Wild-type and NFE2L2 knockout mice were raised until the age of 14.8 ± 3.8 months. They were fed with either regular or Retinari™ chow (141 ± 17.0 mg/kg/day of pinosylvin) for 10 weeks before the assays. Retinari™ treatment preserved significant retinal function with significantly preserved a- and b-wave amplitudes in the electroretinogram responses. Additionally, the treatment prevented thinning of the retina in the NFE2L2 knockout mice. The NFE2L2 knockout mice showed reduced ubiquitin-tagged protein accumulation in addition to local upregulation of complement factor H and antioxidant enzymes superoxide dismutase 1 and catalase. Therefore, the treatment in the NFE2L2 KO disease model led to reduced chronic oxidative stress and sustained retinal function and morphology. Our results demonstrate that pinosylvin supplementation could potentially lower the risk of age-related macular degeneration onset and slow down its progression.
Collapse
Affiliation(s)
- Toni Tamminen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Ali Koskela
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Elisa Toropainen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Iswariyaraja Sridevi Gurubaran
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Mateusz Winiarczyk
- Department of Vitreoretinal Surgery, Medical University of Lublin, Poland
| | - Mikko Liukkonen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Jussi J. Paterno
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS Kuopio, Finland
| | | | - Amir Sadeghi
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Johanna Viiri
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Juha M. T. Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Ari Koskelainen
- Department of Neuroscience and Biomedical Engineering, Aalto University, FI-00067 Aalto, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS Kuopio, Finland
| |
Collapse
|
38
|
Hellinen L, Koskela A, Vattulainen E, Liukkonen M, Wegler C, Treyer A, Handin N, Svensson R, Myöhänen T, Poso A, Kaarniranta K, Artursson P, Urtti A. Inhibition of prolyl oligopeptidase: A promising pathway to prevent the progression of age-related macular degeneration. Biomed Pharmacother 2021; 146:112501. [PMID: 34891119 DOI: 10.1016/j.biopha.2021.112501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 01/18/2023] Open
Abstract
Dry age-related macular degeneration (AMD) is a currently untreatable vision threatening disease. Impaired proteasomal clearance and autophagy in the retinal pigment epithelium (RPE) and subsequent photoreceptor damage are connected with dry AMD, but detailed pathophysiology is still unclear. In this paper, we discover inhibition of cytosolic protease, prolyl oligopeptidase (PREP), as a potential pathway to treat dry AMD. We showed that PREP inhibitor exposure induced autophagy in the RPE cells, shown by increased LC3-II levels and decreased p62 levels. PREP inhibitor treatment increased total levels of autophagic vacuoles in the RPE cells. Global proteomics was used to examine the phenotype of a commonly used cell model displaying AMD characteristics, oxidative stress and altered protein metabolism, in vitro. These RPE cells displayed induced protein aggregation and clear alterations in macromolecule metabolism, confirming the relevance of the cell model. Differences in intracellular target engagement of PREP inhibitors were observed with cellular thermal shift assay (CETSA). These differences were explained by intracellular drug exposure (the unbound cellular partition coefficient, Kpuu). Importantly, our data is in line with previous observations regarding the discrepancy between PREP's cleaving activity and outcomes in autophagy. This highlights the need to further explore PREP's role in autophagy so that more effective compounds can be designed to battle diseases in which autophagy induction is needed. The present work is the first report investigating the PREP pathway in the RPE and we predict that the PREP inhibitors can be further optimized for treatment of dry AMD.
Collapse
Affiliation(s)
- Laura Hellinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland; Department of Pharmacy, Uppsala University, 751 23 Uppsala, Sweden
| | - Ali Koskela
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 , Finland
| | - Elina Vattulainen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 , Finland
| | - Mikko Liukkonen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 , Finland
| | - Christine Wegler
- Department of Pharmacy, Uppsala University, 751 23 Uppsala, Sweden; Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Uppsala University, 751 23 Uppsala, Sweden
| | - Andrea Treyer
- Department of Pharmacy, Uppsala University, 751 23 Uppsala, Sweden
| | - Niklas Handin
- Department of Pharmacy, Uppsala University, 751 23 Uppsala, Sweden
| | - Richard Svensson
- Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Uppsala University, 751 23 Uppsala, Sweden
| | - Timo Myöhänen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland; Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 , Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 1777, FIN-70211 Kuopio, Finland
| | - Per Artursson
- Department of Pharmacy, Uppsala University, 751 23 Uppsala, Sweden; Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Uppsala University, 751 23 Uppsala, Sweden; Science for Life Laboratory Drug Discovery and Development Platform, Uppsala University, 751 23 Uppsala, Sweden
| | - Arto Urtti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland; Drug Research Programme, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland; Laboratory of Biohybrid Technologies, Institute of Chemistry, St. Petersburg State University, Peterhoff, St. Petersburg 198504, Russia.
| |
Collapse
|
39
|
Kim J, Lee YJ, Won JY. Molecular Mechanisms of Retinal Pigment Epithelium Dysfunction in Age-Related Macular Degeneration. Int J Mol Sci 2021; 22:ijms222212298. [PMID: 34830181 PMCID: PMC8624542 DOI: 10.3390/ijms222212298] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023] Open
Abstract
The retinal pigment epithelium (RPE), situated upon Bruch’s membrane, plays multiple roles in the ocular system by interacting with photoreceptors and. Therefore, dysfunction of the RPE causes diseases related to vision loss, such as age-related macular degeneration (AMD). Despite AMD being a global cause of blindness, the pathogenesis remains unclear. Understanding the pathogenesis of AMD is the first step for its prevention and treatment. This review summarizes the common pathways of RPE dysfunction and their effect in AMD. Potential treatment strategies for AMD based on targeting the RPE have also been discussed.
Collapse
Affiliation(s)
- Jongmin Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea;
| | - Yeo Jin Lee
- Department of Ophthalmology and Visual Science, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul 03312, Korea;
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul 14662, Korea
| | - Jae Yon Won
- Department of Ophthalmology and Visual Science, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul 03312, Korea;
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul 14662, Korea
- Correspondence:
| |
Collapse
|
40
|
Targeting Lysosomes to Reverse Hydroquinone-Induced Autophagy Defects and Oxidative Damage in Human Retinal Pigment Epithelial Cells. Int J Mol Sci 2021; 22:ijms22169042. [PMID: 34445748 PMCID: PMC8396439 DOI: 10.3390/ijms22169042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 01/09/2023] Open
Abstract
In age-related macular degeneration (AMD), hydroquinone (HQ)-induced oxidative damage in retinal pigment epithelium (RPE) is believed to be an early event contributing to dysregulation of inflammatory cytokines and vascular endothelial growth factor (VEGF) homeostasis. However, the roles of antioxidant mechanisms, such as autophagy and the ubiquitin-proteasome system, in modulating HQ-induced oxidative damage in RPE is not well-understood. This study utilized an in-vitro AMD model involving the incubation of human RPE cells (ARPE-19) with HQ. In comparison to hydrogen peroxide (H2O2), HQ induced fewer reactive oxygen species (ROS) but more oxidative damage as characterized by protein carbonyl levels, mitochondrial dysfunction, and the loss of cell viability. HQ blocked the autophagy flux and increased proteasome activity, whereas H2O2 did the opposite. Moreover, the lysosomal membrane-stabilizing protein LAMP2 and cathepsin D levels declined with HQ exposure, suggesting loss of lysosomal membrane integrity and function. Accordingly, HQ induced lysosomal alkalization, thereby compromising the acidic pH needed for optimal lysosomal degradation. Pretreatment with MG132, a proteasome inhibitor and lysosomal stabilizer, upregulated LAMP2 and autophagy and prevented HQ-induced oxidative damage in wildtype RPE cells but not cells transfected with shRNA against ATG5. This study demonstrated that lysosomal dysfunction underlies autophagy defects and oxidative damage induced by HQ in human RPE cells and supports lysosomal stabilization with the proteasome inhibitor MG132 as a potential remedy for oxidative damage in RPE and AMD.
Collapse
|
41
|
Zhang C, Hu Z, Hu R, Pi S, Wei Z, Wang C, Yang F, Xing C, Nie G, Hu G. New insights into crosstalk between pyroptosis and autophagy co-induced by molybdenum and cadmium in duck renal tubular epithelial cells. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126138. [PMID: 34492927 DOI: 10.1016/j.jhazmat.2021.126138] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/30/2021] [Accepted: 05/13/2021] [Indexed: 06/13/2023]
Abstract
Pyroptosis and autophagy are two different biological processes that determine cell fates. Our previous studies revealed that pyroptosis and autophagy were involved in cytotoxicity co-induced by molybdenum (Mo) and cadmium (Cd) in duck renal tubular epithelial cells, but crosstalk between them is unclear. Hence, the cells were treated with 500.0 μM Mo, 4.0 μM Cd, 10.0 μM Z-YVAD-fluoromethylketone (YVAD), 2.5 μM 3-methyladenine (3-MA) and 10.0 μM chloroquine (CQ) alone or in combination for 12 h (CQ for the last 4 h). Under Mo and Cd co-stress, data evidenced that YVAD addition decreased the number of autophagosomes, LC3 puncta, and AMPKα-1, Atg5, Beclin-1, LC3A, LC3B mRNA levels and LC3-II/LC3-I, Beclin-1 protein levels, and increased p62 expression levels. Besides, both 3-MA and CQ addition increased NLRP3, Caspase-1, NEK7, ASC, GSDMA, GSDME, IL-1β, IL-18 mRNA levels, NLRP3, Caspase-1 p20, ASC, GSDMD protein and ROS levels, and NO, LDH, IL-1β, IL-18 releases. Collectively, our results revealed that pyroptosis and autophagy co-induced by Mo and Cd were interrelated in duck renal tubular epithelial cells, and inhibiting pyroptosis might attenuate Mo and Cd co-induced autophagy, but inhibiting autophagy might promote Mo and Cd co-induced pyroptosis.
Collapse
Affiliation(s)
- Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Zhisheng Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Ruiming Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Shaoxing Pi
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Zejing Wei
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Chang Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Gaohui Nie
- School of Information Technology,Jiangxi University of Finance and Economics, No. 665 Yuping West street, Economic and Technological Development District, Nanchang 330032, Jiangxi, PR China.
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China.
| |
Collapse
|
42
|
Wu D, Wei C, Li Y, Yang X, Zhou S. Pyroptosis, a New Breakthrough in Cancer Treatment. Front Oncol 2021; 11:698811. [PMID: 34381721 PMCID: PMC8350724 DOI: 10.3389/fonc.2021.698811] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022] Open
Abstract
The way of cell death can be roughly divided into two categories: cell necrosis and PCD(programmed cell death). Pyroptosis is a kind of PCD, its occurrence depends on the gasdermin protein family and it will produce inflammatory response. With constant research in recent years, more and more evidences show that pyroptosis is closely related to the occurrence and development of tumors. The treatment of tumors is a big problem worldwide. We focus on whether we can discover new potential tumor markers and new therapeutic targets from the mechanism. If we can understand the mechanism of pyroptosis and clear the relationship between pyroptosis and the development of tumors, this may provide a new reference for clinical cancer treatment.
Collapse
Affiliation(s)
- Dengqiang Wu
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Changhong Wei
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Yujie Li
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Science, Guangxi Medical University, Nanning, China
| | - Xuejia Yang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Sufang Zhou
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China.,Department of Biochemistry and Molecular Biology, School of Pre-Clinical Science, Guangxi Medical University, Nanning, China
| |
Collapse
|
43
|
Feng JH, Dong XW, Yu HL, Shen W, Lv XY, Wang R, Cheng XX, Xiong F, Hu XL, Wang H. Cynaroside protects the blue light-induced retinal degeneration through alleviating apoptosis and inducing autophagy in vitro and in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 88:153604. [PMID: 34130054 DOI: 10.1016/j.phymed.2021.153604] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/08/2021] [Accepted: 05/16/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Blue light can directly penetrate the lens and reach the retina to induce retinal damage, causing dry age-related macular degeneration (dAMD). Cynaroside (Cyn), a flavonoid glycoside, was proved to alleviate the oxidative damage of retinal cells in vitro. However, whether or not Cyn also exerts protective effect on blue light-induced retinal degeneration and its mechanisms of action are unclear. PURPOSE This study aims to evaluate the protective effects of Cyn against blue-light induced retinal degeneration and its underlying mechanisms in vitro and in vivo. STUDY DESIGN/METHODS Blue light-induced N-retinylidene-N-retinylethanolamine (A2E)-laden adult retinal pigment epithelial-19 (ARPE-19) cell damage and retinal damage in SD rats were respectively used to evaluate the protective effects of Cyn on retinal degeneration in vitro and in vivo. MTT assay and AnnexinV-PI double staining assay were used to evaluate the in vitro efficacy. Histological analysis, TUNEL assay, and fundus imaging were conducted to evaluate the in vivo efficacy. ELISA assay, western blot, and immunostaining were performed to investigate the mechanisms of action of Cyn. RESULTS Cyn decreased the blue light-induced A2E-laden ARPE-19 cell damage and oxidative stress. Intravitreal injection of Cyn (2, 4 μg/eye) reversed the retinal degeneration induced by blue light in SD rats. Furthermore, Cyn inhibited the nuclear translocation of NF-κB and induced autophagy, which led to the clearance of overactivated pyrin domain containing 3 (NLRP3) inflammasome in vitro and in vivo. CONCLUSION Cyn protects against blue light-induced retinal degeneration by modulating autophagy and decreasing the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Jia-Hao Feng
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Xiao-Wei Dong
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Hao-Li Yu
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, People's Republic of China
| | - Wei Shen
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Xian-Yu Lv
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Rong Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Xue-Xiang Cheng
- Hubei Fenghuang Baiyunshan Pharmaceutical Co., Ltd, Macheng 438300, People's Republic of China
| | - Fei Xiong
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, People's Republic of China
| | - Xiao-Long Hu
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Hao Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
44
|
ElShelmani H, Wride MA, Saad T, Rani S, Kelly DJ, Keegan D. The Role of Deregulated MicroRNAs in Age-Related Macular Degeneration Pathology. Transl Vis Sci Technol 2021; 10:12. [PMID: 34003896 PMCID: PMC7881277 DOI: 10.1167/tvst.10.2.12] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose We previously identified three microRNAs (miRNAs) with significantly increased expression in the serum of patients with age-related macular degeneration (AMD) compared with healthy controls. Our objective was to identify potential functional roles of these upregulated miRNAs (miR-19a, miR-126, and miR-410) in AMD, using computational tools for miRNAs prediction and identification, and to demonstrate the miRNAs target genes and signaling pathways. We also aim to demonstrate the pathologic role of isolated sera-derived exosomes from patients with AMD and controls using in vitro models. Methods miR-19a, miR-126, and miR-410 were investigated using bioinformatic approaches, including DIANA-mirPath and miR TarBase. Data on the resulting target genes and signaling pathways were incorporated with the differentially expressed miRNAs in AMD. Apoptosis markers, human apoptosis miRNAs polymerase chain reaction arrays and angiogenesis/vasculogenesis assays were performed by adding serum-isolated AMD patient or control patient derived exosomes into an in vitro human angiogenesis model and ARPE-19 cell lines. Results A number of pathways known to be involved in AMD development and progression were predicted, including the vascular endothelial growth factor signaling, apoptosis, and neurodegenerative pathways. The study also provides supporting evidence for the involvement of serum-isolated AMD-derived exosomes in the pathology of AMD, via apoptosis and/or angiogenesis. Conclusions miR-19a, miR-126, miR-410 and their target genes had a significant correlation with AMD pathogenesis. As such, they could be potential new targets as predictive biomarkers or therapies for patients with AMD. Translational Relevance The functional analysis and the pathologic role of altered miRNA expression in AMD may be applicable in developing new therapies for AMD through the disruption of individual or multiple pathophysiologic pathways.
Collapse
Affiliation(s)
- Hanan ElShelmani
- Ocular Development and Neurobiology Research Group, Zoology Department, School of Natural Sciences, University of Dublin, Trinity College Dublin, Dublin 2, Ireland.,Mater Retina Research Group, Mater Misericordiae University Hospital, Eccles St., Dublin 7, Ireland
| | - Michael A Wride
- Ocular Development and Neurobiology Research Group, Zoology Department, School of Natural Sciences, University of Dublin, Trinity College Dublin, Dublin 2, Ireland
| | - Tahira Saad
- Mater Retina Research Group, Mater Misericordiae University Hospital, Eccles St., Dublin 7, Ireland
| | - Sweta Rani
- Department of Science, Waterford Institute of Technology, Waterford, Ireland
| | - David J Kelly
- Zoology Department, School of Natural Sciences, University of Dublin, Trinity College Dublin, Ireland
| | - David Keegan
- Mater Retina Research Group, Mater Misericordiae University Hospital, Eccles St., Dublin 7, Ireland
| |
Collapse
|
45
|
Pathogenic mechanisms contributing to the vulnerability of aging human photoreceptor cells. Eye (Lond) 2021; 35:2917-2929. [PMID: 34079093 DOI: 10.1038/s41433-021-01602-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/29/2021] [Accepted: 05/10/2021] [Indexed: 01/04/2023] Open
Abstract
In human retina, photoreceptor cell death (PCD) is a slow but conspicuous event, which continues with aging. Rods die earlier than cones, the latter continue to alter in a subtle manner until advanced aging. This review summarizes the existing information on age-related changes in photoreceptor cells, especially cones and analyses the possible associated factors. Oxidative and nitrosative stress are involved in photoreceptor alterations, which may stem from light and iron toxicity and other sources. Lipid peroxidation in macular photoreceptor outer segments and mitochondrial aberrations are prominent in aging. It is important to understand how those changes ultimately trigger PCD. The redistribution of calbindin D-28K and long/middle-wavelength-sensitive opsin in the parafoveal and perifoveal cones, anomalies in their somata and axons are strong predictors of their increasing vulnerability with aging. Signs of reduced autophagy, with autophagosomes containing organelle remnants are seen in aging photoreceptor cells. Currently, mechanisms that lead to human PCD are unknown; some observations favour apoptosis as a pathway. Since cones appear to change slowly, there is an opportunity to reverse those changes before they die. Therefore, a full understanding of how cones alter and the molecular pathways they utilize for survival must be the future research goal. Recent approaches to prevent PCD in aging and diseases are highlighted.
Collapse
|
46
|
Romdhoniyyah DF, Harding SP, Cheyne CP, Beare NAV. Metformin, A Potential Role in Age-Related Macular Degeneration: A Systematic Review and Meta-Analysis. Ophthalmol Ther 2021; 10:245-260. [PMID: 33846958 PMCID: PMC8079568 DOI: 10.1007/s40123-021-00344-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/27/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Currently, no generally approved medical treatment can delay the onset of age-related macular degeneration (AMD) or slow the progression of degenerative changes. Repurposing drugs with beneficial effects on AMD pathophysiology offers a route to new treatments which is faster, cost-effective, and safer for patients. Recent studies indicate a potential role for metformin in delaying AMD development and progression. In this context, we conducted a systematic review and meta-analysis to look for beneficial associations between metformin and AMD. METHODS We systematically searched Medline and Embase (via Ovid), Web of Science, and ClinicalTrials.gov databases for clinical studies in humans that examined the associations between metformin treatment and AMD published from inception to February 2021. We calculated pooled odds ratio (OR) with 95% confidence interval (CI) considering a random effect model in the meta-analysis. RESULTS Five retrospective studies met the inclusion criteria. There are no prospective studies that have reported the effect of metformin in AMD. The meta-analysis showed that people taking metformin were less likely to have AMD although statistical significance was not met (pooled adjusted OR = 0.80, 95% CI 0.54-1.05, I2 = 98.8%). Subgroup analysis of the association between metformin and early and late AMD could not be performed since the data was not available from the included studies. CONCLUSIONS Analysis of retrospective data suggests a signal that metformin may be associated with decreased risk of any AMD. It should be interpreted with caution because of the failure to meet statistical significance, the small number of studies, and the limitation of routine record data. However prospective studies are warranted in generalizable populations without diabetes, of varied ethnicities, and AMD stages. Clinical trials are needed to determine if metformin has efficacy in treating early and late-stage AMD.
Collapse
Affiliation(s)
- Dewi Fathin Romdhoniyyah
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK.
| | - Simon P Harding
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
- St. Paul's Eye Unit, Liverpool University Hospitals NHS Foundation Trust, Member of Liverpool Health Partners, Liverpool, UK
| | - Christopher P Cheyne
- Department of Health Data Science, Institute of Population Health, University of Liverpool, Liverpool, UK
| | - Nicholas A V Beare
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
- St. Paul's Eye Unit, Liverpool University Hospitals NHS Foundation Trust, Member of Liverpool Health Partners, Liverpool, UK
| |
Collapse
|
47
|
Dhingra A, Sharp RC, Kim T, Popov AV, Ying GS, Pietrofesa RA, Park K, Christofidou-Solomidou M, Boesze-Battaglia K. Assessment of a Small Molecule Synthetic Lignan in Enhancing Oxidative Balance and Decreasing Lipid Accumulation in Human Retinal Pigment Epithelia. Int J Mol Sci 2021; 22:5764. [PMID: 34071220 PMCID: PMC8198017 DOI: 10.3390/ijms22115764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 01/03/2023] Open
Abstract
Visual function depends on the intimate structural, functional and metabolic interactions between the retinal pigment epithelium (RPE) and the neural retina. The daily phagocytosis of the photoreceptor outer segment tips by the overlaying RPE provides essential nutrients for the RPE itself and photoreceptors through intricate metabolic synergy. Age-related retinal changes are often characterized by metabolic dysregulation contributing to increased lipid accumulation and peroxidation as well as the release of proinflammatory cytokines. LGM2605 is a synthetic lignan secoisolariciresinol diglucoside (SDG) with free radical scavenging, antioxidant and anti-inflammatory properties demonstrated in diverse in vitro and in vivo inflammatory disease models. In these studies, we tested the hypothesis that LGM2605 may be an attractive small-scale therapeutic that protects RPE against inflammation and restores its metabolic capacity under lipid overload. Using an in vitro model in which loss of the autophagy protein, LC3B, results in defective phagosome degradation and metabolic dysregulation, we show that lipid overload results in increased gasdermin cleavage, IL-1 β release, lipid accumulation and decreased oxidative capacity. The addition of LGM2605 resulted in enhanced mitochondrial capacity, decreased lipid accumulation and amelioration of IL-1 β release in a model of defective lipid homeostasis. Collectively, these studies suggest that lipid overload decreases mitochondrial function and increases the inflammatory response, with LGM2605 acting as a protective agent.
Collapse
Affiliation(s)
- Anuradha Dhingra
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.D.); (R.C.S.)
| | - Rachel C. Sharp
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.D.); (R.C.S.)
| | - Taewan Kim
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Anatoliy V. Popov
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Gui-Shuang Ying
- Center for Preventive Ophthalmology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (G.-S.Y.); (K.P.)
| | - Ralph A. Pietrofesa
- Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (R.A.P.); (M.C.-S.)
| | - Kyewon Park
- Center for Preventive Ophthalmology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (G.-S.Y.); (K.P.)
| | - Melpo Christofidou-Solomidou
- Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (R.A.P.); (M.C.-S.)
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.D.); (R.C.S.)
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW This review explores metabolic syndrome (MetS) as a risk factor that accelerates aging in retinal neurons and may contribute to the neurodegeneration seen in glaucomatous optic neuropathy (GON) and age-related macular degeneration (AMD). RECENT FINDINGS Both animal model experiments and epidemiologic studies suggest that metabolic stress may lead to aberrant regulation of a number of cellular pathways that ultimately lead to premature aging of the cell, including those of a neuronal lineage. SUMMARY GON and AMD are each leading causes of irreversible blindness worldwide. Aging is a significant risk factor in the specific retinal neuron loss that is seen with each condition. Though aging at a cellular level is difficult to define, there are many mechanistic modifiers of aging. Metabolic-related stresses induce inflammation, oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, alterations to the unfolded protein response, defects in autophagy, alterations to the microbiome, and deposition of advanced glycation end products that can all hasten the aging process. Due to the number of variables related to metabolic health, defining criteria to enable the study of risk factors at a population level is challenging. MetS is a definable constellation of related metabolic risk factors that includes enlarged waist circumference, dyslipidemia, systemic hypertension, and hyperglycemia. MetS has been associated with both GON and AMD and may contribute to disease onset and/or progression in each disease.
Collapse
|
49
|
MicroRNAs in the regulation of autophagy and their possible use in age-related macular degeneration therapy. Ageing Res Rev 2021; 67:101260. [PMID: 33516915 DOI: 10.1016/j.arr.2021.101260] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022]
Abstract
Age-related macular degeneration (AMD) is a progressive sight-impairing disease of the elderly. The pathogenic mechanisms of AMD are not well understood although both genetic and many environmental factors have been associated with the development of AMD. One clinical hallmark of AMD is the detrimental aggregation of damaged proteins. Recently, it has been suggested that the weakening of autophagy clearance is an important mechanism in the pathogenesis of AMD. Autophagy is important in the removal of damaged or no longer needed cellular material and its recycling. A considerable number of autophagy-targeting microRNAs (miRNAs), small RNA molecules and epigenetic regulators have been found to be either up- or down-regulated in AMD patients and experimental models. The important role of autophagy-targeting miRNAs is supported by several studies and can open the prospect of the use of these miRNAs in the therapy for AMD.
Collapse
|
50
|
Guerra MH, Yumnamcha T, Ebrahim AS, Berger EA, Singh LP, Ibrahim AS. Real-Time Monitoring the Effect of Cytopathic Hypoxia on Retinal Pigment Epithelial Barrier Functionality Using Electric Cell-Substrate Impedance Sensing (ECIS) Biosensor Technology. Int J Mol Sci 2021; 22:ijms22094568. [PMID: 33925448 PMCID: PMC8123793 DOI: 10.3390/ijms22094568] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Disruption of retinal pigment epithelial (RPE barrier integrity is a hallmark feature of various retinal blinding diseases, including diabetic macular edema and age-related macular degeneration, but the underlying causes and pathophysiology are not completely well-defined. One of the most conserved phenomena in biology is the progressive decline in mitochondrial function with aging leading to cytopathic hypoxia, where cells are unable to use oxygen for energy production. Therefore, this study aimed to thoroughly investigate the role of cytopathic hypoxia in compromising the barrier functionality of RPE cells. We used Electric Cell-Substrate Impedance Sensing (ECIS) system to monitor precisely in real time the barrier integrity of RPE cell line (ARPE-19) after treatment with various concentrations of cytopathic hypoxia-inducing agent, Cobalt(II) chloride (CoCl2). We further investigated how the resistance across ARPE-19 cells changes across three separate parameters: Rb (the electrical resistance between ARPE-19 cells), α (the resistance between the ARPE-19 and its substrate), and Cm (the capacitance of the ARPE-19 cell membrane). The viability of the ARPE-19 cells and mitochondrial bioenergetics were quantified with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and seahorse technology, respectively. ECIS measurement showed that CoCl2 reduced the total impedance of ARPE-19 cells in a dose dependent manner across all tested frequencies. Specifically, the ECIS program’s modelling demonstrated that CoCl2 affected Rb as it begins to drastically decrease earlier than α or Cm, although ARPE-19 cells’ viability was not compromised. Using seahorse technology, all three concentrations of CoCl2 significantly impaired basal, maximal, and ATP-linked respirations of ARPE-19 cells but did not affect proton leak and non-mitochondrial bioenergetic. Concordantly, the expression of a major paracellular tight junction protein (ZO-1) was reduced significantly with CoCl2-treatment in a dose-dependent manner. Our data demonstrate that the ARPE-19 cells have distinct dielectric properties in response to cytopathic hypoxia in which disruption of barrier integrity between ARPE-19 cells precedes any changes in cells’ viability, cell-substrate contacts, and cell membrane permeability. Such differences can be used in screening of selective agents that improve the assembly of RPE tight junction without compromising other RPE barrier parameters.
Collapse
Affiliation(s)
- Michael H. Guerra
- Department of Ophthalmology, Visual, and Anatomical Sciences, School of Medicine, Wayne State University, 540 East Canfield, Gordon Scott Hall (room 7133), Detroit, MI 48201, USA; (M.H.G.); (T.Y.); (A.-S.E.); (E.A.B.); (L.P.S.)
| | - Thangal Yumnamcha
- Department of Ophthalmology, Visual, and Anatomical Sciences, School of Medicine, Wayne State University, 540 East Canfield, Gordon Scott Hall (room 7133), Detroit, MI 48201, USA; (M.H.G.); (T.Y.); (A.-S.E.); (E.A.B.); (L.P.S.)
| | - Abdul-Shukkur Ebrahim
- Department of Ophthalmology, Visual, and Anatomical Sciences, School of Medicine, Wayne State University, 540 East Canfield, Gordon Scott Hall (room 7133), Detroit, MI 48201, USA; (M.H.G.); (T.Y.); (A.-S.E.); (E.A.B.); (L.P.S.)
| | - Elizabeth A. Berger
- Department of Ophthalmology, Visual, and Anatomical Sciences, School of Medicine, Wayne State University, 540 East Canfield, Gordon Scott Hall (room 7133), Detroit, MI 48201, USA; (M.H.G.); (T.Y.); (A.-S.E.); (E.A.B.); (L.P.S.)
| | - Lalit Pukhrambam Singh
- Department of Ophthalmology, Visual, and Anatomical Sciences, School of Medicine, Wayne State University, 540 East Canfield, Gordon Scott Hall (room 7133), Detroit, MI 48201, USA; (M.H.G.); (T.Y.); (A.-S.E.); (E.A.B.); (L.P.S.)
| | - Ahmed S. Ibrahim
- Department of Ophthalmology, Visual, and Anatomical Sciences, School of Medicine, Wayne State University, 540 East Canfield, Gordon Scott Hall (room 7133), Detroit, MI 48201, USA; (M.H.G.); (T.Y.); (A.-S.E.); (E.A.B.); (L.P.S.)
- Department of Pharmacology, School of Medicine, Wayne State University, 540 East Canfield, Gordon Scott Hall (room 7133), Detroit, MI 48201, USA
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Correspondence: ; Tel.: +1-313-577-7854 (Office) or +1-313-577-7864 (Lab)
| |
Collapse
|