1
|
Bridgeman L, Cimbalo A, López-Rodríguez D, Pamies D, Frangiamone M. Exploring toxicological pathways of microplastics and nanoplastics: Insights from animal and cellular models. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137795. [PMID: 40043388 DOI: 10.1016/j.jhazmat.2025.137795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/12/2025] [Accepted: 02/27/2025] [Indexed: 04/16/2025]
Abstract
Microplastics (MPs) and nanoplastics (NPs) represent an emerging issue for human and animal health. This review critically examines in vitro and in vivo studies to elucidate their mechanisms of action and toxicological effects. Key objectives included: providing a comprehensive overview of MP-NPs studies in literature, assessing experimental conditions relative to real environmental scenarios, and identifying toxicological pathways at the molecular level. The findings revealed significant progress in understanding MP-NPs impacts. In particular, it has been observed the promotion of inflammation, oxidative stress, apoptosis, autophagy, and endoplasmic reticulum (ER) stress via specific signaling axes. Reproductive toxicity emerged as the primary research focus, particularly in male models, whereas effects on gastrointestinal, neurological, and cardiovascular systems were insufficiently studied, especially for the molecular pathways affected. Most studies disproportionately focused on polystyrene particles, neglecting other prevalent polymers such as polyethylene and polypropylene. Furthermore, reliance on synthetic microspheres and non-realistic experimental concentrations limits relevance to real-world conditions. Limited long-term exposure studies further constrain the understanding of MP-NPs persistence and risks. In view of this, future research should integrate environmentally relevant conditions for particles doses, size and composition, long-term exposure assessments, and advanced methodologies such as omics and computational modeling. In addition, therapeutic interventions targeting oxidative and ER stress, inflammation and apoptosis may be an excellent solution to mitigate MP-NPs toxicity. At the same time, a standardized global approach is needed to fully understand the risks posed by MP-NPs, attempting to safeguard public and environmental health.
Collapse
Affiliation(s)
- Luna Bridgeman
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, University of Valencia, Burjassot, València 46100, Spain
| | - Alessandra Cimbalo
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, University of Valencia, Burjassot, València 46100, Spain
| | - David López-Rodríguez
- Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon 7, Lausanne 1005, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland; Institute of Earth Surface Dynamics, Faculty of Geosciences and Environment, University of Lausanne, Switzerland
| | - David Pamies
- Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon 7, Lausanne 1005, Switzerland; Stem Cell & Organoid Facility. University of Lausanne, Rue du Bugnon 9, Lausanne 1005, Switzerland
| | - Massimo Frangiamone
- Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon 7, Lausanne 1005, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland.
| |
Collapse
|
2
|
Chen S, Fang L, Yang T, Li Z, Zhang M, Wang M, Lan T, Dong J, Lu Z, Li Q, Luo Y, Yang B. Unveiling the systemic impact of airborne microplastics: Integrating breathomics and machine learning with dual-tissue transcriptomics. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137781. [PMID: 40022938 DOI: 10.1016/j.jhazmat.2025.137781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Airborne microplastics (MPs) pose significant respiratory and systemic health risks upon inhalation; however, current assessment methods remain inadequate. This study integrates breathomics and transcriptomics to establish a non-invasive approach for evaluating MP-induced damage to the lungs and heart. C57BL/6 mice were exposed to polystyrene MPs (0.1 μm, 2 μm, and 10 μm), and their exhaled volatile organic compounds (VOCs) were analyzed using photoinduced associative ionization time-of-flight mass spectrometry. Machine learning algorithms identified hydrogen sulfide, acetone, acrolein, propionitrile, and butyronitrile as key VOC biomarkers, linking MP exposure to oxidative stress and metabolic dysregulation. Transcriptomic analysis further revealed significant gene expression alterations in pulmonary and cardiac tissues, implicating immune dysregulation, metabolic disturbance, and cardiac dysfunction. Pathway enrichment analysis, supported by histological and immunohistochemical validation, confirmed pulmonary inflammation and cardiac injury. By integrating exhaled biomarker profiling with transcriptomic insights, this study advances non-invasive detection strategies for MP-related health effects, offering valuable prospects for public health monitoring and early diagnosis.
Collapse
Affiliation(s)
- Siwei Chen
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longfa Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems. Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Teng Yang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China.
| | - Mo Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
| | - Meng Wang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Ting Lan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawei Dong
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongbing Lu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qirun Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinwei Luo
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| | - Bo Yang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Ahmadi P, Doyle D, Mojarad N, Taherkhani S, Janzadeh A, Honardoost M, Gholami M. Effects of Micro- and Nanoplastic Exposure on Macrophages: A Review of Molecular and Cellular Mechanisms. Toxicol Mech Methods 2025:1-40. [PMID: 40323219 DOI: 10.1080/15376516.2025.2500546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/24/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
Micro- and nanoplastics (MNPs), pervasive environmental pollutants, contaminate water, soil, air, and the food chain and ultimately accumulate in living organisms. Macrophages are the main immune cells that gather around MNPs and engulf them through the process of phagocytosis. This internalization triggers M1 polarization and the secretion of inflammatory cytokines, including IL-1, IL-18, IL-12, TNF-α, and IFN-γ. Furthermore, MNPs damage mitochondria and lysosomes, causing overactivation of iNOS and excessive production of ROS. This results in cellular stress and induce apoptosis, necroptosis, and, in some cases, metosis in macrophages. The internalization of MNPs also increases the expression of receptors, involving CD36, SR-A, LOX-1, and the macrophage receptor with a collagenous structure (MARCO) while decreasing ABCA-1 and ABCG-1. MNPs in adipose tissue macrophages trigger proinflammatory cytokine secretion, causing adipogenesis, lipid accumulation, insulin resistance, and the secretion of inflammatory cytokines in adipocytes. Various factors influence the rate of MNP internalization by macrophages, including size, charge, and concentration, which affect internalization through passive diffusion. Receptor-mediated phagocytosis of MNPs occurs directly via receptors like T-cell immunoglobulin and mucin domain containing 4 (TIM-4) and MARCO. The attachment of biomolecules, including proteins, antibodies, opsonins, or microbes to MNPs (forming corona structures) promotes indirect receptor-mediated endocytosis, as macrophages possess receptors like TLRs and FcγRIII. MNPs also cause gut dysbiosis, a risk factor for proinflammatory microenvironment and M1 polarization. Here, we review the mechanisms and consequences of MNP macrophage exposure, which is linked to autoimmunity, inflammation, and cardiometabolic syndrome manifestations, including atherosclerosis and obesity, highlighting the immunotoxicity of MNPs.
Collapse
Affiliation(s)
- Parisa Ahmadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuromusculoskeletal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - David Doyle
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859 USA
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859 USA
| | - Negin Mojarad
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859 USA
| | - Soroush Taherkhani
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atousa Janzadeh
- Neuromusculoskeletal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Honardoost
- Breast Health and Cancer Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Gholami
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Kong L, Li S, Fu Y, Cai Q, Zhai Z, Liang J, Ma T. Microplastics/nanoplastics contribute to aging and age-related diseases: Mitochondrial dysfunction as a crucial role. Food Chem Toxicol 2025; 199:115355. [PMID: 40020987 DOI: 10.1016/j.fct.2025.115355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/08/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
The pervasive utilization of plastic products has led to a significant escalation in plastic waste accumulation. Concurrently, the implications of emerging pollutants such as microplastics (MPs) and nanoplastics (NPs) on human health are increasingly being acknowledged. Recent research has demonstrated that MPs/NPs may contribute to the onset of human aging and age-related diseases. Additionally, MPs/NPs have the potential to induce mitochondrial damage, resulting in mitochondrial dysfunction. Mitochondrial dysfunction is widely recognized as a hallmark of aging; thus, it is necessary to elucidate the relationship between them. In this article, we first elucidate the distribution of MPs/NPs in various environmental media, their pathways into the human body, and their subsequent distribution within human tissues and organs. Subsequently, we examine the interplay between MPs/NPs, mitochondrial dysfunction, and the aging process. We aspire that this article will enhance awareness regarding the toxicity of MPs/NPs while also offering a theoretical framework to support the development of improved regulatory policies in the future.
Collapse
Affiliation(s)
- Liang Kong
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Shuhao Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Yu Fu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Qinyun Cai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Zhengyu Zhai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Jingyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Tan Ma
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou, Jiangsu 225001, China.
| |
Collapse
|
5
|
Chen Y, Zhang Z, Ji K, Zhang Q, Qian L, Yang C. Role of microplastics in the tumor microenvironment (Review). Oncol Lett 2025; 29:193. [PMID: 40041410 PMCID: PMC11877014 DOI: 10.3892/ol.2025.14939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/07/2025] [Indexed: 03/06/2025] Open
Abstract
Microplastics (MPs) are pervasive in several ecosystems and have the potential to infiltrate multiple aspects of human life through ingestion, inhalation and dermal exposure, thus eliciting substantial concerns regarding their potential implications for human health. Whilst initial research has documented the effects of MPs on disease development across multiple physiological systems, MPs may also facilitate tumor progression by influencing the tumor microenvironment (TME). This evolving focus underscores the growing interest in the role of MPs in tumorigenesis and their interactions within the TME. In the present review, the relationship between MPs and the TME is comprehensively assessed, providing a detailed analysis of their interactions with tumor cells, stromal cells (including macrophages, fibroblasts and endothelial cells), the extracellular matrix and inflammatory processes. Recommendations for future research directions and strategies to address and reduce microplastic pollution are proposed.
Collapse
Affiliation(s)
- Yunjie Chen
- Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Zihang Zhang
- Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Kangming Ji
- Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qiuchen Zhang
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Lijun Qian
- Department of Geriatric Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Chuang Yang
- Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|
6
|
Bishop B, Webber WS, Atif SM, Ley A, Pankratz KA, Kostelecky R, Colgan SP, Dinarello CA, Zhang W, Li S. Micro- and nano-plastics induce inflammation and cell death in human cells. Front Immunol 2025; 16:1528502. [PMID: 40230834 PMCID: PMC11995046 DOI: 10.3389/fimmu.2025.1528502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/11/2025] [Indexed: 04/16/2025] Open
Abstract
Introduction The presence of micro- and nano-plastics (MNPLs) in the environment has increased significantly in the past decades. However, the direct impact of MNPL particles on human health remains unclear. Methods In this study, we utilized a modified extraction method with a previously reported staining technique to develop a novel approach for identifying individual plastics in mixtures of MNPLs of commercial and environmental origins to be able to investigate their impacts on human cell inflammation and cell death. Polypropylene (PP), polyethylene (PE), polystyrene (PS), and polyethylene terephthalate (PET) were the plastics analyzed. The plastic composition of the environmental MNPLs was characterized using multiple analytical techniques, including Fourier transform infrared spectroscopy, confocal imaging, scanning electron microscopy, and X-ray diffraction. Results We found that both commercial and environmental MNPLs, especially PET, impose a strong inflammatory response on various human cells and tissues. At 1 mg/mL, they robustly stimulate inflammatory IL-1β and IL-6 secretion in a time-dependent manner. Importantly, we observed that the MNPLs induced variable inflammatory responses in cells depending on their plastic composition. Environmental samples rich in PET showed a strong dose-dependent response and induced IL-1β secretion at doses as low as 100 ng/mL. In addition, MNPLs can induce human cell death with or without obviously altering the cell morphology. Discussion These findings are significant because they represent the first instance of authentic MNPLs being collected from ecological water samples for characterization and the first time the direct influences of commercial and environmental MNPLs have been compared in human cell studies. The methods developed in this study provide a foundation for future research to isolate MNPLs from the environment and explore their potential impacts on human health and disease development.
Collapse
Affiliation(s)
- Brandon Bishop
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, United States
| | - William S. Webber
- Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, United States
| | - Shaikh M. Atif
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, United States
| | - Ashley Ley
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, United States
| | - Karl A. Pankratz
- Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, United States
| | - Rachael Kostelecky
- Mucosal Inflammation Program, Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Sean P. Colgan
- Mucosal Inflammation Program, Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Charles A. Dinarello
- Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, United States
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, United States
| | - Suzhao Li
- Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
7
|
Bianchi MG, Casati L, Sauro G, Taurino G, Griffini E, Milani C, Ventura M, Bussolati O, Chiu M. Biological Effects of Micro-/Nano-Plastics in Macrophages. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:394. [PMID: 40072197 PMCID: PMC11901536 DOI: 10.3390/nano15050394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
The environmental impact of plastics is worsened by their inadequate end-of-life disposal, leading to the ubiquitous presence of micro- (MPs) and nanosized (NPs) plastic particles. MPs and NPs are thus widely present in water and air and inevitably enter the food chain, with inhalation and ingestion as the main exposure routes for humans. Many recent studies have demonstrated that MPs and NPs gain access to several body compartments, where they are taken up by cells, increase the production of reactive oxygen species, and lead to inflammatory changes. In most tissues, resident macrophages engage in the first approach to foreign materials, and this interaction largely affects the subsequent fate of the material and the possible pathological outcomes. On the other hand, macrophages are the main organizers and controllers of both inflammatory responses and tissue repair. Here, we aim to summarize the available information on the interaction of macrophages with MPs and NPs. Particular attention will be devoted to the consequences of this interaction on macrophage viability and functions, as well as to possible implications in pathology.
Collapse
Affiliation(s)
- Massimiliano G. Bianchi
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.B.); (G.T.); (E.G.)
- Microbiome Research Hub, University of Parma, 43125 Parma, Italy; (C.M.); (M.V.)
| | - Lavinia Casati
- Department of Health Sciences, University of Milan, 20122 Milan, Italy; (L.C.); (G.S.)
| | - Giulia Sauro
- Department of Health Sciences, University of Milan, 20122 Milan, Italy; (L.C.); (G.S.)
| | - Giuseppe Taurino
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.B.); (G.T.); (E.G.)
| | - Erika Griffini
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.B.); (G.T.); (E.G.)
| | - Christian Milani
- Microbiome Research Hub, University of Parma, 43125 Parma, Italy; (C.M.); (M.V.)
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43125 Parma, Italy
| | - Marco Ventura
- Microbiome Research Hub, University of Parma, 43125 Parma, Italy; (C.M.); (M.V.)
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43125 Parma, Italy
| | - Ovidio Bussolati
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.B.); (G.T.); (E.G.)
- Microbiome Research Hub, University of Parma, 43125 Parma, Italy; (C.M.); (M.V.)
| | - Martina Chiu
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.B.); (G.T.); (E.G.)
| |
Collapse
|
8
|
Chi J, Patterson JS, Jin Y, Kim KJ, Lalime N, Hawley D, Lewis F, Li L, Wang X, Campen MJ, Cui JY, Gu H. Metabolic Reprogramming in Gut Microbiota Exposed to Polystyrene Microplastics. Biomedicines 2025; 13:446. [PMID: 40002859 PMCID: PMC11853289 DOI: 10.3390/biomedicines13020446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/26/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Microplastics (MPs) are small plastic fragments with diameters less than 5 mm in size and are prevalent in everyday essentials and consumables. Large global plastic production has now led to a flooding of MPs in our natural environment. Due to their detrimental impacts on the planet's ecosystems and potentially our health, MPs have emerged as a significant public health concern. In this pilot study, we hypothesize that MPs exposure will negatively affect gut microbiota composition and function, in which metabolic reprogramming plays an important role. Methods: Using in vitro experiments, three bacterial strains (Escherichia coli MG1655, Nissle 1917, and Lactobacillus rhamnosus) were selected to investigate the impacts of MPs exposure. The bacterial strains were individually cultured in an anaerobic chamber and exposed to 1 µm polystyrene MPs at various concentrations (0, 10, 20, 50, 100, and 500 µg/mL) in the culture medium. Results: MPs exposure reduced the growth of all three bacterial strains in a dose-dependent manner. Liquid chromatography mass spectrometry (LC-MS)-based untargeted metabolomics revealed significant differences in multiple metabolic pathways, such as sulfur metabolism and amino sugar and nucleotide sugar metabolism. In addition, we extracted gut microbiota from C57BL/6 mice, and 16S rRNA sequencing results showed a significant upregulation of Lactobacillales and a significant reduction in Erysipelotrichales due to MPs exposure. Furthermore, targeted and untargeted metabolomics corroborated the in vitro results and revealed alterations in microbial tryptophan metabolism and energy producing pathways, such as glycolysis/gluconeogenesis and the pentose phosphate pathway. Conclusions: These findings provide evidence that MPs exposure causes comprehensive changes to healthy gut microbiota, which may also provide insights into the mechanistic effects of MPs exposure in humans.
Collapse
Affiliation(s)
- Jinhua Chi
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (J.C.); (J.S.P.); (L.L.)
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA;
| | - Jeffrey S. Patterson
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (J.C.); (J.S.P.); (L.L.)
| | - Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA;
| | - Kyle Joohyung Kim
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA; (K.J.K.); (J.Y.C.)
| | - Nicole Lalime
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA;
| | - Daniella Hawley
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (D.H.); (X.W.)
| | - Freeman Lewis
- Environmental Health Sciences, Florida International University, Miami, FL 33199, USA;
| | - Lingjun Li
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (J.C.); (J.S.P.); (L.L.)
| | - Xuan Wang
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (D.H.); (X.W.)
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM 87106, USA;
| | - Julia Yue Cui
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA; (K.J.K.); (J.Y.C.)
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (J.C.); (J.S.P.); (L.L.)
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA;
| |
Collapse
|
9
|
Jochum M, Garcia M, Hammerquist A, Howell J, Stanford M, Liu R, Olewine M, Hayek EE, Phan E, Showalter L, Shope C, Suter M, Campen M, Aagaard K, Barrozo E. Elevated Micro- and Nanoplastics Detected in Preterm Human Placentae. RESEARCH SQUARE 2025:rs.3.rs-5903715. [PMID: 39975889 PMCID: PMC11838745 DOI: 10.21203/rs.3.rs-5903715/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Recent analytical advancements have uncovered increasing micro- and nanoplastics (MNPs) in environmental, dietary, and biological domains, raising concerns about their health impacts. Preterm birth (PTB), a leading cause of maternal and neonatal morbidity and mortality, may be influenced by MNP exposure, yet this relationship remains unexplored. This study quantified 12 MNP polymers in placentae from term (n=87) and preterm (n=71) deliveries using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). Cumulative MNP concentrations were 28% higher in PTB placentae (mean ±SD: 224.7 ± 180.7 μg/g vs. 175.5 ± 137.9 μg/g; p=0.038). Polyvinyl chloride (PVC), polyethylene terephthalate (PET), polyurethane (PU), and polycarbonate (PC) were significantly elevated in PTB, and PET, PU, and PC inversely correlated with gestational age and birth weight. Logistic regression identified PVC and PC as independent predictors of PTB. These findings suggest total and specific MNPs are associated with PTB, providing actionable insights and emphasizing the importance of minimizing exposure during pregnancy.
Collapse
Affiliation(s)
- Michael Jochum
- Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital
| | | | - Alexandra Hammerquist
- Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital
| | - Jacquelyne Howell
- Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital
| | - Myla Stanford
- Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital
| | | | | | | | - Emily Phan
- Department of Pharmaceutical Sciences, University of New Mexico
| | - Lori Showalter
- Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital
| | - Cynthia Shope
- Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital
| | - Melissa Suter
- Baylor College of Medicine, Department of Obstetrics & Gynecology
| | | | - Kjersti Aagaard
- Oregon National Primate Research Center & HCA Healthcare and HCA Healthcare Research Institute & Boston Children's Hospital, Harvard Medical School
| | - Enrico Barrozo
- Baylor College of Medicine and Texas Children's Hospital
| |
Collapse
|
10
|
Saha U, Jena S, Simnani FZ, Singh D, Choudhury A, Naser SS, Lenka SS, Kirti A, Nandi A, Sinha A, Patro S, Kujawska M, Suar M, Kaushik NK, Ghosh A, Verma SK. The unseen perils of oral-care products generated micro/nanoplastics on human health. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117526. [PMID: 39674028 DOI: 10.1016/j.ecoenv.2024.117526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/23/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
The extensive use of plastics in modern dentistry, including oral care products and dental materials, has raised significant concerns due to the increasing evidence of potential harm to human health and the environment caused by the unintentional release of microplastics (MPs) and nanoplastics (NPs). Particles from sources like toothpaste, toothbrushes, orthodontic implants, and denture materials are generated through mechanical friction, pH changes, and thermal fluctuations. These processes cause surface stress, weaken material integrity, and induce wear, posing health risks such as exposure to harmful monomers and additives, while contributing to environmental contamination. MPs/NPs released during dental procedures can be ingested, leading to immune suppression, tissue fibrosis, and systemic toxicities. The gut epithelium absorbs some particles, while others are excreted, entering ecosystems, accumulating through the food chain, and causing ecological damage. Although analytical techniques have advanced in detecting MPs/NPs in oral care products, more robust methods are needed to understand their release mechanisms. This review explores the prevalence of MPs/NPs in dentistry, the mechanisms by which MPs/NPs are released into the oral environment, and their implications for human and ecological health. It underscores the urgency of public awareness and sustainable dental practices to mitigate these risks and promote environmental well-being.
Collapse
Affiliation(s)
- Utsa Saha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Snehasmita Jena
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | | | - Dibyangshee Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Anmol Choudhury
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Shaikh Sheeran Naser
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Sudakshya S Lenka
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Apoorv Kirti
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Aditya Nandi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Swadheena Patro
- Kalinga Institute of Dental Sciences, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, South Korea.
| | - Aishee Ghosh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India; Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-751 20, Sweden.
| | - Suresh K Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India; Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
11
|
Liang J, Ji F, Abdullah ALB, Qin W, Zhu T, Tay YJ, Li Y, Han M. Micro/nano-plastics impacts in cardiovascular systems across species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173770. [PMID: 38851343 DOI: 10.1016/j.scitotenv.2024.173770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
The widespread presence of microplastics and nanoplastics (MPs/NPs) in the environment has become a critical public health issue due to their potential to infiltrate and affect various biological systems. Our review is crucial as it consolidates current data and provides a comprehensive analysis of the cardiovascular impacts of MPs/NPs across species, highlighting significant implications for human health. By synthesizing findings from studies on aquatic and terrestrial organisms, including humans, this review offers insights into the ubiquity of MPs/NPs and their pathophysiological roles in cardiovascular systems. We demonstrated that exposure to MPs/NPs is linked to various cardiovascular ailments such as thrombogenesis, vascular damage, and cardiac impairments in model organisms, which likely extrapolate to humans. Our review critically evaluated methods for detecting MPs/NPs in biological tissues, assessing their toxicity, and understanding their behaviour within the vasculature. These findings emphasise the urgent need for targeted public health strategies and enhanced regulatory measures to mitigate the impacts of MP/NP pollution. Furthermore, the review underlined the necessity of advancing research methodologies to explore long-term effects and potential intergenerational consequences of MP/NP exposure. By mapping out the intricate links between environmental exposure and cardiovascular risks, our work served as a pivotal reference for future research and policymaking aimed at curbing the burgeoning threat of plastic pollution.
Collapse
Affiliation(s)
- Ji Liang
- University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Feng Ji
- Department of Clinical Science and Research, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China
| | | | - Wei Qin
- Department of Cardiothoracic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Tian Zhu
- University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Yi Juin Tay
- University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China.
| | - Mingming Han
- University Sains Malaysia, Minden, Penang 11800, Malaysia.
| |
Collapse
|
12
|
Bruno A, Dovizio M, Milillo C, Aruffo E, Pesce M, Gatta M, Chiacchiaretta P, Di Carlo P, Ballerini P. Orally Ingested Micro- and Nano-Plastics: A Hidden Driver of Inflammatory Bowel Disease and Colorectal Cancer. Cancers (Basel) 2024; 16:3079. [PMID: 39272937 PMCID: PMC11393928 DOI: 10.3390/cancers16173079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Micro- and nano-plastics (MNPLs) can move along the food chain to higher-level organisms including humans. Three significant routes for MNPLs have been reported: ingestion, inhalation, and dermal contact. Accumulating evidence supports the intestinal toxicity of ingested MNPLs and their role as drivers for increased incidence of colorectal cancer (CRC) in high-risk populations such as inflammatory bowel disease (IBD) patients. However, the mechanisms are largely unknown. In this review, by using the leading scientific publication databases (Web of Science, Google Scholar, Scopus, PubMed, and ScienceDirect), we explored the possible effects and related mechanisms of MNPL exposure on the gut epithelium in healthy conditions and IBD patients. The summarized evidence supports the idea that oral MNPL exposure may contribute to intestinal epithelial damage, thus promoting and sustaining the chronic development of intestinal inflammation, mainly in high-risk populations such as IBD patients. Colonic mucus layer disruption may further facilitate MNPL passage into the bloodstream, thus contributing to the toxic effects of MNPLs on different organ systems and platelet activation, which may, in turn, contribute to the chronic development of inflammation and CRC development. Further exploration of this threat to human health is warranted to reduce potential adverse effects and CRC risk.
Collapse
Affiliation(s)
- Annalisa Bruno
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Melania Dovizio
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Cristina Milillo
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Eleonora Aruffo
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Mirko Pesce
- Department of Medicine and Aging Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- UdA-TechLab, Research Center, "G. d'Annunzio" University of Chieti-Pescara, 66110 Chieti, Italy
| | - Marco Gatta
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Piero Chiacchiaretta
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Piero Di Carlo
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Patrizia Ballerini
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
13
|
Choi H, Kaneko S, Suzuki Y, Inamura K, Nishikawa M, Sakai Y. Size-Dependent Internalization of Microplastics and Nanoplastics Using In Vitro Model of the Human Intestine-Contribution of Each Cell in the Tri-Culture Models. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1435. [PMID: 39269097 PMCID: PMC11397364 DOI: 10.3390/nano14171435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Pollution by microplastics and nanoplastics (MNPs) raises concerns, not only regarding their environmental effects, but also their potential impact on human health by internalization via the small intestine. However, the detailed pathways of MNP internalization and their toxicities to the human intestine have not sufficiently been understood, thus, further investigations are required. This work aimed to understand the behavior of MNPs, using in vitro human intestine models, tri-culture models composed of enterocyte Caco-2 cells, goblet-like HT29-MTX-E12 cells, and microfold cells (M cells) induced by the lymphoblast cell line Raji B. Three sizes (50, 100, and 500 nm) of polystyrene (PS) particles were exposed as MNPs on the culture model, and size-dependent translocation of the MNPs and the contributions of each cell were clarified, emphasizing the significance of the tri-culture model. In addition, potential concerns of MNPs were suggested when they invaded the circulatory system of the human body.
Collapse
Affiliation(s)
- Hyunjin Choi
- Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Shohei Kaneko
- Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Yusei Suzuki
- Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Kosuke Inamura
- Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Masaki Nishikawa
- Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
14
|
Lin Z, Li Z, Ji S, Lo HS, Billah B, Sharmin A, Han X, Lui WY, Tse WKF, Fang JKH, Zhang C, Shang X, Lai KP, Li L. Size-dependent deleterious effects of nano- and microplastics on sperm motility. Toxicology 2024; 506:153834. [PMID: 38763425 DOI: 10.1016/j.tox.2024.153834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
INTRODUCTION Growing concerns regarding the reproductive toxicity associated with daily life exposure to micro-/nano-plastics (abbreviated as MNPs) have become increasingly prevalent. In reality, MNPs exposure involves a heterogeneous mixture of MNPs of different sizes rather than a single size. METHODS In this study, an oral exposure mouse model was used to evaluate the effects of MNPs of four size ranges: 25-30 nm, 1-5 µm, 20-27 µm, and 125-150 µm. Adult male C57BL/6 J mice were administered environmentally relevant concentrations of 0.1 mg MNPs/day for 21 days. After that, open field test and computer assisted sperm assessment (CASA) were conducted. Immunohistochemical analyses of organ and cell type localization of MNPs were evaluated. Testicular transcriptome analysis was carried out to understand the molecular mechanisms. RESULTS Our result showed that MNPs of different size ranges all impaired sperm motility, with a decrease in progressive sperm motility, linearity and straight-line velocity of sperm movement. Alterations did not manifest in animal locomotion, body weight, or sperm count. Noteworthy effects were most pronounced in the smaller MNPs size ranges (25-30 nm and 1-5 µm). Linear regression analysis substantiated a negative correlation between the size of MNPs and sperm curvilinear activity. Immunohistochemical analysis unveiled the intrusions of 1-5 µm MNPs, but not 20-27 µm and 125-150 µm MNPs, into Leydig cells and testicular macrophages. Further testicular transcriptomic analysis revealed perturbations in pathways related to spermatogenesis, oxidative stress, and inflammation. Particularly within the 1-5 µm MNPs group, a heightened perturbation in pathways linked to spermatogenesis and oxidative stress was observed. CONCLUSIONS Our data support the size-dependent impairment of MNPs on sperm functionality, underscoring the pressing need for apprehensions about and interventions against the escalation of environmental micro-/nano-plastics contamination. This urgency is especially pertinent to small-sized MNPs.
Collapse
Affiliation(s)
- Ziyi Lin
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zijie Li
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shuqin Ji
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hoi Shing Lo
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Baki Billah
- Department of Zoology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Ayesha Sharmin
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Xiaofang Han
- Core Laboratory, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Wing-Yee Lui
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - James Kar-Hei Fang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region of China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region of China
| | - Chunqiu Zhang
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Xuejun Shang
- Department of Urology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, China.
| | - Lei Li
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
| |
Collapse
|
15
|
Peng Y, He Q. Reproductive toxicity and related mechanisms of micro(nano)plastics in terrestrial mammals: Review of current evidence. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116505. [PMID: 38810287 DOI: 10.1016/j.ecoenv.2024.116505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Micro(nano)plastics (MNPs) have been detected in various ecological environments and are widely used due to their stable properties, raising widespread concern about their potential human reproductive toxicity. Currently, infertility affects approximately 10-30% of couples of reproductive age globally. MNPs, as environmental pollutants, have been shown to exhibit reproductive toxicity through intrinsic mechanisms or as carriers of other hazardous substances. Numerous studies have established that MNPs of varying sizes and types can penetrate biological barriers, and enter tissues and even organelles of organisms through four main routes: dietary ingestion, inhalation, dermal contact, and medical interventions. However, historical research on the toxic effects of MNPs on reproduction mainly focused on lower and aquatic species. We conducted an inclusive review of studies involving terrestrial mammals, revealing that MNPs can induce reproductive toxicity via various mechanisms such as oxidative stress, inflammation, fibrosis, apoptosis, autophagy, disruption of intestinal flora, endocrine disruption, endoplasmic reticulum stress, and DNA damage. In terrestrial mammals, reproductive toxicity predominantly manifests as disruption in the blood-testis barrier (BTB), impaired spermatogenesis, sperm malformation, sperm DNA damage, reduced sperm fertilizing capacity, compromised oocyte maturation, impaired follicular growth, granulosa cell apoptosis, diminished ovarian reserve function, uterine and ovarian fibrosis, and endocrine disruption, among other effects. Furthermore, MNPs can traverse the maternal-fetal interface, potentially impacting offspring reproductive health. To gain a comprehensive understanding of the potential reproductive toxicity and underlying mechanisms of MNPs with different sizes, polymer types, shapes, and carried toxins, as well as to explore effective protective interventions for mitigating reproductive damage, further in-depth animal studies, clinical trials, and large-scale epidemiological studies are urgently required.
Collapse
Affiliation(s)
- Yangyang Peng
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, China.
| | - Qi He
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, China
| |
Collapse
|
16
|
Adler MY, Issoual I, Rückert M, Deloch L, Meier C, Tschernig T, Alexiou C, Pfister F, Ramsperger AF, Laforsch C, Gaipl US, Jüngert K, Paulsen F. Effect of micro- and nanoplastic particles on human macrophages. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134253. [PMID: 38642497 DOI: 10.1016/j.jhazmat.2024.134253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/22/2024]
Abstract
Micro- and nanoplastics (MNPs) are ubiquitous in the environment, resulting in the uptake of MNPs by a variety of organisms, including humans, leading to particle-cell interaction. Human macrophages derived from THP-1 cell lines take up Polystyrene (PS), a widespread plastic. The question therefore arises whether primary human macrophages also take up PS micro- and nanobeads (MNBs) and how they react to this stimulation. Major aim of this study is to visualize this uptake and to validate the isolation of macrophages from peripheral blood mononuclear cells (PBMCs) to assess the impact of MNPs on human macrophages. Uptake of macrophages from THP-1 cell lines and PBMCs was examined by transmission electron microscopy (TEM), scanning electron microscopy and live cell imaging. In addition, the reaction of the macrophages was analyzed in terms of metabolic activity, cytotoxicity, production of reactive oxygen species (ROS) and macrophage polarization. This study is the first to visualize PS MNBs in primary human cells using TEM and live cell imaging. Metabolic activity was size- and concentration-dependent, necrosis and ROS were increased. The methods demonstrated in this study outline an approach to assess the influence of MNP exposure on human macrophages and help investigating the consequences of worldwide plastic pollution.
Collapse
Affiliation(s)
- Maike Y Adler
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Insaf Issoual
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Chair of Machine Learning and Data Analytics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Rückert
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lisa Deloch
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Carola Meier
- Institute of Anatomy and Cell Biology, Saarland University, Homburg/Saar, Germany
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, Saarland University, Homburg/Saar, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Felix Pfister
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Christian Laforsch
- Animal Ecology I and Bay CEER, University of Bayreuth, Bayreuth, Germany
| | - Udo S Gaipl
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Katharina Jüngert
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Friedrich Paulsen
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
17
|
Wright S, Cassee FR, Erdely A, Campen MJ. Micro- and nanoplastics concepts for particle and fibre toxicologists. Part Fibre Toxicol 2024; 21:18. [PMID: 38566142 PMCID: PMC10985949 DOI: 10.1186/s12989-024-00581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
Micro- and nanoplastic particles (MNP) are omnipresent as either pollution or intentionally used in consumer products, released from packaging or even food. There is an exponential increase in the production of plastics. With the realization of bioaccumulation in humans, toxicity research is quickly expanding. There is a rapid increase in the number of papers published on the potential implications of exposure to MNP which necessitates a call for quality criteria to be applied when doing the research. At present, most papers on MNP describe the effects of commercially available polymer (mostly polystyrene) beads that are typically not the MNP of greatest concern. This is not a fault of the research community, necessarily, as the MNPs to which humans are exposed are usually not available in the quantities needed for toxicological research and innovations are needed to supply environmentally-relevant MNP models. In addition, like we have learned from decades of research with particulate matter and engineered nanomaterials, sample physicochemical characteristics and preparation can have major impacts on the biological responses and interpretation of the research findings. Lastly, MNP dosimetry may pose challenges as (1) we are seeing early evidence that plastics are already in the human body at quite high levels that may be difficult to achieve in acute in vitro studies and (2) plastics are already in the diets fed to preclinical models. This commentary highlights the pitfalls and recommendations for particle and fibre toxicologists that should be considered when performing and disseminating the research.
Collapse
Affiliation(s)
- Stephanie Wright
- Environmental Research Group, School of Public Health, Imperial College London, London, UK
| | - Flemming R Cassee
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Aaron Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, 87122, Albuquerque, NM, MSC09 5360, USA.
| |
Collapse
|
18
|
Wardani I, Hazimah Mohamed Nor N, Wright SL, Kooter IM, Koelmans AA. Nano- and microplastic PBK modeling in the context of human exposure and risk assessment. ENVIRONMENT INTERNATIONAL 2024; 186:108504. [PMID: 38537584 DOI: 10.1016/j.envint.2024.108504] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/30/2024] [Accepted: 02/14/2024] [Indexed: 04/26/2024]
Abstract
Insufficient data on nano- and microplastics (NMP) hinder robust evaluation of their potential health risks. Methodological disparities and the absence of established toxicity thresholds impede the comparability and practical application of research findings. The diverse attributes of NMP, such as variations in sizes, shapes, and compositions, complicate human health risk assessment. Although probability density functions (PDFs) show promise in capturing this diversity, their integration into risk assessment frameworks is limited. Physiologically based kinetic (PBK) models offer a potential solution to bridge the gap between external exposure and internal dosimetry for risk evaluation. However, the heterogeneity of NMP poses challenges for accurate biodistribution modeling. A literature review, encompassing both experimental and modeling studies, was conducted to examine biodistribution studies of monodisperse micro- and nanoparticles. The literature search in PubMed and Scopus databases yielded 39 studies that met the inclusion criteria. Evaluation criteria were adapted from previous Quality Assurance and Quality Control (QA-QC) studies, best practice guidelines from WHO (2010), OECD guidance (2021), and additional criteria specific to NMP risk assessment. Subsequently, a conceptual framework for a comprehensive NMP-PBK model was developed, addressing the multidimensionality of NMP particles. Parameters for an NMP-PBK model are presented. QA-QC evaluations revealed that most experimental studies scored relatively well (>0) in particle characterizations and environmental settings but fell short in criteria application for biodistribution modeling. The evaluation of modeling studies revealed that information regarding the model type and allometric scaling requires improvement. Three potential applications of PDFs in PBK modeling of NMP are identified: capturing the multidimensionality of the NMP continuum, quantifying the probabilistic definition of external exposure, and calculating the bio-accessibility fraction of NMP in the human body. A framework for an NMP-PBK model is proposed, integrating PDFs to enhance the assessment of NMP's impact on human health.
Collapse
Affiliation(s)
- Ira Wardani
- Department of aquatic ecology and water quality management, Wageningen University and Research, the Netherlands.
| | | | - Stephanie L Wright
- Environmental Research Group, School of Public Health, Imperial College London, London W12 0BZ, UK
| | - Ingeborg M Kooter
- TNO, Princetonlaan 6-8, 3584 CB Utrecht, the Netherlands; Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center, 6200 MD Maastricht, the Netherlands
| | - Albert A Koelmans
- Department of aquatic ecology and water quality management, Wageningen University and Research, the Netherlands
| |
Collapse
|
19
|
Kuang Q, Gao L, Feng L, Xiong X, Yang J, Zhang W, Huang L, Li L, Luo P. Toxicological effects of microplastics in renal ischemia-reperfusion injury. ENVIRONMENTAL TOXICOLOGY 2024; 39:2350-2362. [PMID: 38156432 DOI: 10.1002/tox.24115] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/27/2023] [Accepted: 12/10/2023] [Indexed: 12/30/2023]
Abstract
The widespread presence of microplastics (MPs) in the environment poses a significant threat to biological survival and human health. However, our understanding of the toxic effects of MPs on the kidneys remains limited. This study aimed to investigate the underlying mechanism of the toxic effects of MPs on the kidneys using an ischemia-reperfusion (IR) mouse model. Four-week-old ICR mice were exposed to 0.5 μm MPs for 12 weeks prior to IR injury. The results showed that MPs exposure could aggravate the IR-induced damage to renal tubules and glomeruli. Although there were no significant changes in blood urea nitrogen and serum creatinine levels 7 days after IR, MPs treatment resulted in a slight increase in both parameters. In addition, the expression levels of inflammatory factors (MCP-1 and IL-6) at the mRNA level, as well as macrophage markers (CD68 and F4/80), were significantly higher in the MPs + IR group than in the Sham group after IR. Furthermore, MPs exposure exacerbated IR-induced renal fibrosis. Importantly, the expression of pyroptosis-related genes, including NLRP3, ASC, GSDMD, cleaved caspase-1, and IL-18, was significantly upregulated by MPs, indicating that MPs exacerbate pyroptosis in the context of renal IR. In conclusion, our findings suggest that MPs exposure can aggravate renal IR-induced pyroptosis by activating NLRP3-GSDMD signaling.
Collapse
Affiliation(s)
- Qihui Kuang
- Department of Urology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan, China
| | - Likun Gao
- Department of Pathology, Shenzhen People's Hospital, the Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Lixiang Feng
- Department of Urology, Wuhan Third Hospital, School of Medicine, Wuhan University of science and Technology, Wuhan, China
| | - Xi Xiong
- Department of Urology, Wuhan Third Hospital, School of Medicine, Wuhan University of science and Technology, Wuhan, China
| | - Jun Yang
- Department of Urology, Department of Urology, Wuhan Third Hospital, Wuhan, China
| | - Wei Zhang
- Department of Urology, Department of Urology, Wuhan Third Hospital, Wuhan, China
| | - Lizhi Huang
- School of Civil Engineering, Wuhan University, Wuhan, China
| | - Lili Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pengcheng Luo
- Department of Urology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Garcia MM, Romero AS, Merkley SD, Meyer-Hagen JL, Forbes C, Hayek EE, Sciezka DP, Templeton R, Gonzalez-Estrella J, Jin Y, Gu H, Benavidez A, Hunter RP, Lucas S, Herbert G, Kim KJ, Cui JY, Gullapalli RR, In JG, Campen MJ, Castillo EF. In Vivo Tissue Distribution of Polystyrene or Mixed Polymer Microspheres and Metabolomic Analysis after Oral Exposure in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:47005. [PMID: 38598326 PMCID: PMC11005960 DOI: 10.1289/ehp13435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/05/2024] [Accepted: 02/23/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Global plastic use has consistently increased over the past century with several different types of plastics now being produced. Much of these plastics end up in oceans or landfills leading to a substantial accumulation of plastics in the environment. Plastic debris slowly degrades into microplastics (MPs) that can ultimately be inhaled or ingested by both animals and humans. A growing body of evidence indicates that MPs can cross the gut barrier and enter into the lymphatic and systemic circulation leading to accumulation in tissues such as the lungs, liver, kidney, and brain. The impacts of mixed MPs exposure on tissue function through metabolism remains largely unexplored. OBJECTIVES This study aims to investigate the impacts of polymer microspheres on tissue metabolism in mice by assessing the microspheres ability to translocate across the gut barrier and enter into systemic circulation. Specifically, we wanted to examine microsphere accumulation in different organ systems, identify concentration-dependent metabolic changes, and evaluate the effects of mixed microsphere exposures on health outcomes. METHODS To investigate the impact of ingested microspheres on target metabolic pathways, mice were exposed to either polystyrene (5 μ m ) microspheres or a mixture of polymer microspheres consisting of polystyrene (5 μ m ), polyethylene (1 - 4 μ m ), and the biodegradability and biocompatible plastic, poly-(lactic-co-glycolic acid) (5 μ m ). Exposures were performed twice a week for 4 weeks at a concentration of either 0, 2, or 4 mg / week via oral gastric gavage. Tissues were collected to examine microsphere ingress and changes in metabolites. RESULTS In mice that ingested microspheres, we detected polystyrene microspheres in distant tissues including the brain, liver, and kidney. Additionally, we report on the metabolic differences that occurred in the colon, liver, and brain, which showed differential responses that were dependent on concentration and type of microsphere exposure. DISCUSSION This study uses a mouse model to provide critical insight into the potential health implications of the pervasive issue of plastic pollution. These findings demonstrate that orally consumed polystyrene or mixed polymer microspheres can accumulate in tissues such as the brain, liver, and kidney. Furthermore, this study highlights concentration-dependent and polymer type-specific metabolic changes in the colon, liver, and brain after plastic microsphere exposure. These results underline the mobility within and between biological tissues of MPs after exposure and emphasize the importance of understanding their metabolic impact. https://doi.org/10.1289/EHP13435.
Collapse
Affiliation(s)
- Marcus M. Garcia
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Aaron S. Romero
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Seth D. Merkley
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Jewel L. Meyer-Hagen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Charles Forbes
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Eliane El Hayek
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - David P. Sciezka
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Rachel Templeton
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jorge Gonzalez-Estrella
- School of Civil & Environmental Engineering, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, Florida, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, Florida, USA
| | - Angelica Benavidez
- Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, New Mexico, USA
| | - Russell P. Hunter
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Selita Lucas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Guy Herbert
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Kyle Joohyung Kim
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Julia Yue Cui
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Rama R. Gullapalli
- Department of Pathology, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Julie G. In
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Eliseo F. Castillo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| |
Collapse
|
21
|
Shi Y, Li D, Hill C, Yang L, Sheerin ED, Pilliadugula R, Wang JJ, Boland J, Xiao L. Micro and nano plastics release from a single absorbable suture into simulated body fluid. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133559. [PMID: 38301437 DOI: 10.1016/j.jhazmat.2024.133559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/31/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
Synthetic polymers are widely used in medical devices and implants where biocompatibility and mechanical strength are key enablers of emerging technologies. One concern that has not been widely studied is the potential of their microplastics (MPs) release. Here we studied the levels of MP debris released following 8-week in vitro tests on three typical polyglycolic acid (PGA) based absorbable sutures (PGA 100, PGA 90 and PGA 75) and two nonabsorbable sutures (polypropylene-PP and polyamide-PA) in simulated body fluid. The MP release levels ranked from PGA 100 > > PGA 90 > PGA 75 > > PP ∼ PA. A typical PGA 100 suture released 0.63 ± 0.087 million micro (MPs > 1 µm) and 1.96 ± 0.04 million nano (NPs, 200-1000 nm) plastic particles per centimeter. In contrast, no MPs were released from the nonabsorbable sutures under the same conditions. PGA that was co-blended with 10-25% L-lactide or epsilon-caprolactone resulted in a two orders of magnitude lower level of MP release. These results underscore the need to assess the release of nano- and microplastics from medical polymers while applied in the human body and to evaluate possible risks to human health.
Collapse
Affiliation(s)
- Yunhong Shi
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland; TrinityHaus, Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland
| | - Dunzhu Li
- College of Jiyang, Zhejiang A&F University, Zhuji 311800, China.
| | - Christopher Hill
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland; School of Chemistry, Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland
| | - Luming Yang
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland; AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland
| | - Emmet D Sheerin
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland; School of Chemistry, Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland
| | - Rekha Pilliadugula
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland; School of Chemistry, Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland
| | - Jing Jing Wang
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland.
| | - John Boland
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland; School of Chemistry, Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland.
| | - Liwen Xiao
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland; TrinityHaus, Trinity College Dublin, Dublin 2, Dublin D02PN40, Ireland.
| |
Collapse
|
22
|
Wang L, Pei W, Li J, Feng Y, Gao X, Jiang P, Wu Q, Li L. Microplastics induced apoptosis in macrophages by promoting ROS generation and altering metabolic profiles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115970. [PMID: 38218108 DOI: 10.1016/j.ecoenv.2024.115970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
The ubiquitous presence of Microplastics (MPs) in various environments documented in recent years has recently raised significant concerns about their toxic effects. While macrophages serve as the first line of defense against toxic substances and pathogens, the impact and mechanisms of microplastics on these immune cells remain unclear. This study aims to explore whether MPs induce macrophage apoptosis through the promotion of reactive oxygen species (ROS) generation and alterations in metabolic profiles. The viability of RAW264.7 cells decreased as the concentration of 0.5 µm or 5 µm MPs ranged from 0.2 to 1.5 mg/mL, with a more pronounced effect observed in the 0.5 µm MPs group. Zebrafish exposed to 0.5 µm or 5 µm MPs at a concentration of 0.5 mg/mL exhibited decreased macrophage abundance and increased apoptosis, accompanied by alterations in the expression of inflammatory and apoptosis-related genes. While 0.5 µm MPs were observed to enter macrophages, 5 µm MPs only adhered to the cell membrane surface. Both particle sizes induced ROS generation and disrupted cellular metabolism in RAW264.7 cells. Notably, macrophages exhibited a more pronounced response to 0.5 µm MPs, characterized by heightened ROS generation, increased secretion of pro-inflammatory mediators, and a significant decrease in sphingolipid metabolism. These findings suggest that the adverse effects on macrophages are greater with 0.5 µm MPs compared to 5 µm MPs, possibly attributed to particle size effects. This study contributes additional evidence on the impact of MPs on human immune cells.
Collapse
Affiliation(s)
- Lijuan Wang
- Department of Pathogen Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Wenlong Pei
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Jiacong Li
- Department of Pathogen Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
| | - Yiming Feng
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Xingsu Gao
- Department of Public Health, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
| | - Ping Jiang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Qian Wu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Lei Li
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China.
| |
Collapse
|
23
|
Wieland S, Ramsperger AFRM, Gross W, Lehmann M, Witzmann T, Caspari A, Obst M, Gekle S, Auernhammer GK, Fery A, Laforsch C, Kress H. Nominally identical microplastic models differ greatly in their particle-cell interactions. Nat Commun 2024; 15:922. [PMID: 38297000 PMCID: PMC10830523 DOI: 10.1038/s41467-024-45281-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/19/2024] [Indexed: 02/02/2024] Open
Abstract
Due to the abundance of microplastics in the environment, research about its possible adverse effects is increasing exponentially. Most studies investigating the effect of microplastics on cells still rely on commercially available polystyrene microspheres. However, the choice of these model microplastic particles can affect the outcome of the studies, as even nominally identical model microplastics may interact differently with cells due to different surface properties such as the surface charge. Here, we show that nominally identical polystyrene microspheres from eight different manufacturers significantly differ in their ζ-potential, which is the electrical potential of a particle in a medium at its slipping plane. The ζ-potential of the polystyrene particles is additionally altered after environmental exposure. We developed a microfluidic microscopy platform to demonstrate that the ζ-potential determines particle-cell adhesion strength. Furthermore, we find that due to this effect, the ζ-potential also strongly determines the internalization of the microplastic particles into cells. Therefore, the ζ-potential can act as a proxy of microplastic-cell interactions and may govern adverse effects reported in various organisms exposed to microplastics.
Collapse
Affiliation(s)
- Simon Wieland
- Biological Physics, University of Bayreuth, Bayreuth, Germany
- Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Anja F R M Ramsperger
- Biological Physics, University of Bayreuth, Bayreuth, Germany
- Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Wolfgang Gross
- Biological Physics, University of Bayreuth, Bayreuth, Germany
| | - Moritz Lehmann
- Biofluid Simulation and Modeling - Theoretical Physics VI, University of Bayreuth, Bayreuth, Germany
| | - Thomas Witzmann
- Leibniz Institut für Polymerforschung Dresden e. V., Institute of Physical Chemistry and Polymer Physics, Dresden, Germany
| | - Anja Caspari
- Leibniz Institut für Polymerforschung Dresden e. V., Institute of Physical Chemistry and Polymer Physics, Dresden, Germany
| | - Martin Obst
- Experimental Biogeochemistry, BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Stephan Gekle
- Biofluid Simulation and Modeling - Theoretical Physics VI, University of Bayreuth, Bayreuth, Germany
| | - Günter K Auernhammer
- Leibniz Institut für Polymerforschung Dresden e. V., Institute of Physical Chemistry and Polymer Physics, Dresden, Germany
| | - Andreas Fery
- Leibniz Institut für Polymerforschung Dresden e. V., Institute of Physical Chemistry and Polymer Physics, Dresden, Germany
- Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Dresden, Germany
| | - Christian Laforsch
- Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany.
| | - Holger Kress
- Biological Physics, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
24
|
Koner S, Mukherjee A, Chandrasekaran N. Elucidating the effects of naturally weathered aged-polypropylene microplastics and newly procured polypropylene microplastics on raw 264.7 macrophages. ENVIRONMENTAL SCIENCE: NANO 2024; 11:983-999. [DOI: 10.1039/d3en00742a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
In this work, we investigated weathered aged-PPMPs and naturally obtained polypropylene microplastics (NP-PPMPs) with raw 264.7 macrophages, which causes cytotoxicity and an imbalance in the intracellular system.
Collapse
Affiliation(s)
- Shramana Koner
- Center for Nanobiotechnology, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Amitava Mukherjee
- Center for Nanobiotechnology, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Natarajan Chandrasekaran
- Center for Nanobiotechnology, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| |
Collapse
|
25
|
Delaney S, Rodriguez C, Sarrett SM, Dayts EJ, Zeglis BM, Keinänen O. Unraveling the in vivo fate of inhaled micro- and nanoplastics with PET imaging. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166320. [PMID: 37586535 PMCID: PMC10841220 DOI: 10.1016/j.scitotenv.2023.166320] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/22/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Microplastics and nanoplastics have become ubiquitous environmental pollutants. The threat these plastics pose to human health has fueled research focused on their pathophysiology and toxicology, yet many of their fundamental properties - for example, their in vivo pharmacokinetics - remain poorly understood. In this investigation, we have harnessed positron emission tomography (PET) to track the in vivo fate of micro- and nanoplastics administered to mice intratracheally and intravenously. To this end, 1 μm and 20 nm diameter amine-functionalized polystyrene particles were modified with an isothiocyanate-bearing variant of desferrioxamine (DFO) and radiolabeled with the positron-emitting radiometal [89Zr]Zr4+. Both radioplastics - [89Zr]Zr-DFO-PS1000 and [89Zr]Zr-DFO-PS20 - were produced in ∼95% radiochemical yield and found to be >85% stable to demetallation over one week at 37 °C in human serum and simulated lung fluid. The incubation of [89Zr]Zr-DFO-PS1000 and [89Zr]Zr-DFO-PS20 with MH-S cells revealed that the majority of the former were phagocytosed by alveolar macrophages within 4 h, while the latter largely evaded consumption. Finally, the in vivo behavior of the radioplastics was interrogated in mice upon intravenous and intratracheal administration. PET imaging and biodistribution experiments revealed that the intravenously injected plastics accumulated primarily in the liver and spleen, yielding hepatic radioactivity concentrations of 101 ± 48 %ID/g and 92 ± 22 %ID/g at 168 h post-injection for [89Zr]Zr-DFO-PS1000 and [89Zr]Zr-DFO-PS20, respectively. In contrast, the mice that received the radioplastics via intratracheal installation displayed the highest uptake in the lungs at the end of one week: 4 ± 2 %ID/g for [89Zr]Zr-DFO-PS1000 and 32 ± 6 %ID/g for [89Zr]Zr-DFO-PS20. Ultimately, this work illustrates the critical role that the route of exposure plays in the bioaccumulation of plastic particles, reveals that size dramatically influences the pulmonary retention of inhaled particles, and underscores the value of PET imaging as a tool for studying the pharmacokinetics of environmental pollutants.
Collapse
Affiliation(s)
- Samantha Delaney
- Department of Chemistry, Hunter College of the City University of New York, New York, NY 10065, USA; Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Cindy Rodriguez
- Department of Chemistry, Hunter College of the City University of New York, New York, NY 10065, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Samantha M Sarrett
- Department of Chemistry, Hunter College of the City University of New York, New York, NY 10065, USA; Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Eric J Dayts
- Department of Chemistry, Hunter College of the City University of New York, New York, NY 10065, USA
| | - Brian M Zeglis
- Department of Chemistry, Hunter College of the City University of New York, New York, NY 10065, USA; Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA; Department of Radiology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Outi Keinänen
- Department of Chemistry, Hunter College of the City University of New York, New York, NY 10065, USA; Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA; Department of Chemistry, University of Helsinki, Helsinki 00014, Finland.
| |
Collapse
|
26
|
Yang S, Lee S, Lee Y, Cho JH, Kim SH, Ha ES, Jung YS, Chung HY, Kim MS, Kim HS, Chang SC, Min KJ, Lee J. Cationic nanoplastic causes mitochondrial dysfunction in neural progenitor cells and impairs hippocampal neurogenesis. Free Radic Biol Med 2023; 208:194-210. [PMID: 37553025 DOI: 10.1016/j.freeradbiomed.2023.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023]
Abstract
Nanoplastics (NPs) exposure to humans can occur through various routes, including the food chain, drinking water, skin contact, and respiration. NPs are plastics with a diameter of less than 100 nm and have the potential to accumulate in tissues, leading to toxic effects. This study aimed to investigate the neurotoxicity of polystyrene NPs on neural progenitor cells (NPCs) and hippocampal neurogenesis in a rodent model. Toxicity screening of polystyrene NPs based on their charge revealed that cationic amine-modified polystyrene (PS-NH3+) exhibited cytotoxicity, while anionic carboxylate-modified polystyrene (PS-COO-) and neutral NPs (PS) did not. NPCs treated with PS-NH3+ showed a significant reduction in growth rate due to G1 cell cycle arrest. PS-NH3+ increased the expression of cell cycle arrest markers p21 and p27, while decreasing cyclin D expression in NPCs. Interestingly, PS-NH3+ accumulated in mitochondria, leading to mitochondrial dysfunction and energy depletion, which caused G1 cell cycle arrest. Prolonged exposure to PS-NH3+ in C17.2 NPCs increased the expression of p16 and senescence-associated secretory phenotype factors, indicating cellular senescence. In vivo studies using C57BL/6 mice demonstrated impaired hippocampal neurogenesis and memory retention after 10 days of PS-NH3+ administration. This study suggests that NPs could deplete neural stem cell pools in the brain by mitochondrial dysfunction, thereby adversely affecting hippocampal neurogenesis and neurocognitive functions.
Collapse
Affiliation(s)
- Seonguk Yang
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Seulah Lee
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Yujeong Lee
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea; Cognitive Science Research Group, Korea Brain Research Institute, Daegu, 41068, Republic of Korea
| | - Jung-Hyun Cho
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Sou Hyun Kim
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Eun-Sol Ha
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Young-Suk Jung
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Hae Young Chung
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Min-Soo Kim
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 2066, Republic of Korea
| | - Seung-Cheol Chang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Kyung-Jin Min
- Department of Biological Sciences, Inha University, Incheon, South Korea
| | - Jaewon Lee
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
27
|
Atanga R, Romero AS, Hernandez AJ, Peralta-Herrera E, Merkley SD, In JG, Castillo EF. Inflammatory macrophages prevent colonic goblet and enteroendocrine cell differentiation through Notch signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547119. [PMID: 37425818 PMCID: PMC10327198 DOI: 10.1101/2023.06.29.547119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Inflammatory macrophages in the intestine are a key pathogenic factor driving inflammatory bowel disease (IBD). Here, we report the role of inflammatory macrophage-mediated notch signaling on secretory lineage differentiation in the intestinal epithelium. Utilizing IL-10-deficient (Il10-/-) mice, a model of spontaneous colitis, we found an increase in Notch activity in the colonic epithelium as well as an increase in intestinal macrophages expressing Notch ligands, which are increased in macrophages upon inflammatory stimuli. Furthermore, a co-culture system of inflammatory macrophages and intestinal stem and proliferative cells during differentiation reduced goblet and enteroendocrine cells. This was recapitulated when utilizing a Notch agonist on human colonic organoids (colonoids). In summary, our findings indicate that inflammatory macrophages upregulate notch ligands that activate notch signaling in ISC via cell-cell interactions, which in turn inhibits secretory lineage differentiation in the gastrointestinal (GI) tract.
Collapse
Affiliation(s)
- Roger Atanga
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences, Albuquerque, NM
| | - Aaron S. Romero
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences, Albuquerque, NM
| | - Anthony Jimenez Hernandez
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences, Albuquerque, NM
| | | | - Seth D. Merkley
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences, Albuquerque, NM
| | - Julie G. In
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences, Albuquerque, NM
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences, Albuquerque, NM
| | - Eliseo F. Castillo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences, Albuquerque, NM
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences, Albuquerque, NM
| |
Collapse
|
28
|
Li S, Keenan JI, Shaw IC, Frizelle FA. Could Microplastics Be a Driver for Early Onset Colorectal Cancer? Cancers (Basel) 2023; 15:3323. [PMID: 37444433 DOI: 10.3390/cancers15133323] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction: The incidence of colorectal cancer in those under 50 years of age (early onset colorectal cancer (EOCRC)) is increasing throughout the world. This has predominantly been an increase in distal colonic and rectal cancers, which are biologically similar to late onset colorectal cancer (LOCRC) but with higher rates of mucinous or signet ring histology, or poorly differentiated cancers. The epidemiology of this change suggests that it is a cohort effect since 1960, and is most likely driven by an environmental cause. We explore the possible role of microplastics as a driver for this change. Review: The development of sporadic colorectal cancer is likely facilitated by the interaction of gut bacteria and the intestinal wall. Normally, a complex layer of luminal mucus provides colonocytes with a level of protection from the effects of these bacteria and their toxins. Plastics were first developed in the early 1900s. After 1945 they became more widely used, with a resultant dramatic increase in plastic pollution and their breakdown to microplastics. Microplastics (MPs) are consumed by humans from an early age and in increasingly large quantities. As MPs pass through the gastrointestinal tract they interact with the normal physiological mechanism of the body, particularly in the colon and rectum, where they may interact with the protective colonic mucus layer. We describe several possible mechanisms of how microplastics may disrupt this mucus layer, thus reducing its protective effect and increasing the likelihood of colorectal cancer. Conclusions: The epidemiology of increase in EOCRC suggests an environmental driver. This increase in EOCRC matches the time sequence in which we could expect to see an effect of rapid increase of MPs in the environment and, as such, we have explored possible mechanisms for this effect. We suggest that it is possible that the MPs damage the barrier integrity of the colonic mucus layer, thus reducing its protective effect. MPs in CRC pathogenesis warrants further investigation. Future directions: Further clarification needs to be sought regarding the interaction between MPs, gut microbiota and the mucus layer. This will need to be modelled in long-term animal studies to better understand how chronic consumption of environmentally-acquired MPs may contribute to an increased risk of colorectal carcinogenesis.
Collapse
Affiliation(s)
- Shelley Li
- Department of Surgery, University of Otago Christchurch, Christchurch 8011, New Zealand
| | - Jacqueline I Keenan
- Department of Surgery, University of Otago Christchurch, Christchurch 8011, New Zealand
| | - Ian C Shaw
- School of Physical & Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand
| | - Frank A Frizelle
- Department of Surgery, University of Otago Christchurch, Christchurch 8011, New Zealand
| |
Collapse
|
29
|
Ding R, Ma Y, Li T, Sun M, Sun Z, Duan J. The detrimental effects of micro-and nano-plastics on digestive system: An overview of oxidative stress-related adverse outcome pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163144. [PMID: 37003332 DOI: 10.1016/j.scitotenv.2023.163144] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 05/13/2023]
Abstract
With the massive manufacture and use of plastics, plastic pollution-related environmental impacts have raised great concern in recent years. As byproducts of plastic fragmentation and degradation, microplastics (MPs) and nanoplastics (NPs) have been identified as novel pollutants that posed a threat to the ecosystem and humans. Since MPs/NPs could be transported via the food chain and retained in the water, the digestive system should be one of the major targets of MPs/NPs-related toxicity. Although considerable evidence has supported the digestive toxicity of MPs/NPs, the proposed mechanisms remained ambiguous due to the variety of study types, models, and endpoints. This review provided a mechanism-based perspective on MPs/NPs-induced digestive effects by adopting the adverse outcome pathway framework as a promising tool. The overproduction of reactive oxygen species was identified as the molecular initiating event in MPs/NPs-mediated injury to the digestive system. A series of detrimental effects including oxidative stress, apoptosis, inflammation, dysbiosis, and metabolic disorders were summarized as key events. Finally, the occurrence of these effects eventually led to an adverse outcome, suggesting a possible increase in the incidence of digestive morbidity and mortality.
Collapse
Affiliation(s)
- Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yiming Ma
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
30
|
Cui L, Digiacomo L, Xiao S, Wang J, Amici A, Pozzi D, Caracciolo G, Marchini C. Insights into the effect of polyethylene terephthalate (PET) microplastics on HER2 signaling pathways. Toxicol In Vitro 2023:105632. [PMID: 37329963 DOI: 10.1016/j.tiv.2023.105632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Plastic pollution poses a significant threat to both ecosystems and human health, as fragments of microscale size are daily inhaled and ingested. Such tiny specks are defined as microplastics (MPs), and although their presence as environmental contaminants is ubiquitous in the world, their possible effects at biological and physiological levels are still not clear. To explore the potential impacts of MP exposure, we produced and characterized polyethylene terephthalate (PET) micro-fragments, then administered them to living cells. PET is widely employed in the production of plastic bottles, and thus represents a potential source of environmental MPs. However, its potential effects on public health are hardly investigated, as the current bio-medical research on MPs mainly utilizes different models, such as polystyrene particles. This study employed cell viability assays and Western blot analysis to demonstrate cell-dependent and dose-dependent cytotoxic effects of PET MPs, as well as a significant impact on HER-2-driven signaling pathways. Our findings provide insight into the biological effects of MP exposure, particularly for a widely used but poorly investigated material such as PET.
Collapse
Affiliation(s)
- Lishan Cui
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Luca Digiacomo
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Siyao Xiao
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Junbiao Wang
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Augusto Amici
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Daniela Pozzi
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Giulio Caracciolo
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Cristina Marchini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy.
| |
Collapse
|
31
|
Yin K, Wang D, Zhang Y, Lu H, Hou L, Guo T, Zhao H, Xing M. Polystyrene microplastics promote liver inflammation by inducing the formation of macrophages extracellular traps. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131236. [PMID: 36958159 DOI: 10.1016/j.jhazmat.2023.131236] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 05/03/2023]
Abstract
Microplastics (MPs), a new and increasing environmental pollutant, can cause ongoing damage to organisms. Although recent studies have revealed mechanisms of action for some of the hepatotoxicity caused by MPs, the role-played by cellular interactions, particularly immune cells, in the process of liver injury has not been elucidated. In the present study, 5-μm polystyrene microplastics (PS-MPs) induced liver inflammation as well as the formation of Macrophage extracellular traps (METs). Macrophage and LMH cell co-culture systems confirmed that PS-MPs-induced METs promote inflammation in hepatocytes. Mechanistically, macrophages actively phagocytose particles after 4 h of exposure to PS-MPs. Subsequently PS-MPs elevated ROS levels and disrupt mitochondrial kinetic homeostasis. Further activation of mitochondrial autophagy and lysosomes. After phagocytosis of PS-MPs by macrophages for 12 h, continued autophagy and lysosome activation eventually lead to lysosome rupture and release of calcium ions to induce the formation of METs. Blocking ROS (NAC) and autophagy (3MA) partially alleviated mitochondrial and lysosomal damage and thus inhibited the formation of METs induced by PS-MPs. NAC also delayed the onset of respiratory burst to alleviate METs formation. In conclusion, our study reveals the mechanism of METs formation in liver inflammation induced by PS-MPs exposure and suggests that lysosomal damage may be one of the key players in the formation of METs induced by PS-MPs.
Collapse
Affiliation(s)
- Kai Yin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Dongxu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongmin Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Lulu Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Tiantian Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|
32
|
Garcia MM, Romero AS, Merkley SD, Meyer-Hagen JL, Forbes C, Hayek EE, Sciezka DP, Templeton R, Gonzalez-Estrella J, Jin Y, Gu H, Benavidez A, Hunter RP, Lucas S, Herbert G, Kim KJ, Cui JY, Gullapalli R, In JG, Campen MJ, Castillo EF. In Vivo Tissue Distribution of Microplastics and Systemic Metabolomic Alterations After Gastrointestinal Exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.542598. [PMID: 37398080 PMCID: PMC10312509 DOI: 10.1101/2023.06.02.542598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Global plastic use has consistently increased over the past century with several different types of plastics now being produced. Much of these plastics end up in oceans or landfills leading to a substantial accumulation of plastics in the environment. Plastic debris slowly degrades into microplastics (MPs) that can ultimately be inhaled or ingested by both animals and humans. A growing body of evidence indicates that MPs can cross the gut barrier and enter into the lymphatic and systemic circulation leading to accumulation in tissues such as the lungs, liver, kidney, and brain. The impacts of mixed MPs exposure on tissue function through metabolism remains largely unexplored. To investigate the impact of ingested MPs on target metabolomic pathways, mice were subjected to either polystyrene microspheres or a mixed plastics (5 µm) exposure consisting of polystyrene, polyethylene and the biodegradability and biocompatible plastic, poly-(lactic-co-glycolic acid). Exposures were performed twice a week for four weeks at a dose of either 0, 2, or 4 mg/week via oral gastric gavage. Our findings demonstrate that, in mice, ingested MPs can pass through the gut barrier, be translocated through the systemic circulation, and accumulate in distant tissues including the brain, liver, and kidney. Additionally, we report on the metabolomic changes that occur in the colon, liver and brain which show differential responses that are dependent on dose and type of MPs exposure. Lastly, our study provides proof of concept for identifying metabolomic alterations associated with MPs exposure and adds insight into the potential health risks that mixed MPs contamination may pose to humans.
Collapse
Affiliation(s)
- Marcus M. Garcia
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Aaron S. Romero
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Seth D. Merkley
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Jewel L. Meyer-Hagen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Charles Forbes
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Eliane El Hayek
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - David P. Sciezka
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Rachel Templeton
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
- University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Angelica Benavidez
- Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM, USA
| | - Russell P. Hunter
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Selita Lucas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Guy Herbert
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Kyle Joohyung Kim
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle WA, USA
| | - Julia Yue Cui
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle WA, USA
| | - Rama Gullapalli
- Department of Pathology, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Julie G. In
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Eliseo F. Castillo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
33
|
Kuroiwa M, Yamaguchi SI, Kato Y, Hori A, Toyoura S, Nakahara M, Morimoto N, Nakayama M. Tim4, a macrophage receptor for apoptotic cells, binds polystyrene microplastics via aromatic-aromatic interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162586. [PMID: 36871719 DOI: 10.1016/j.scitotenv.2023.162586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Understanding the interface between microplastics and biological systems will provide new insights into the impacts of microplastics on living organisms. When microplastics enter the body, they are engulfed preferentially by phagocytes such as macrophages. However, it is not fully understood how phagocytes recognize microplastics and how microplastics impact phagocyte functions. In this study, we demonstrate that T cell immunoglobulin mucin 4 (Tim4), a macrophage receptor for phosphatidylserine (PtdSer) on apoptotic cells, binds polystyrene (PS) microparticles as well as multi-walled carbon nanotubes (MWCNTs) through the extracellular aromatic cluster, revealing a novel interface between microplastics and biological systems via aromatic-aromatic interactions. Genetic deletion of Tim4 demonstrated that Tim4 is involved in macrophage engulfment of PS microplastics as well as of MWCNTs. While Tim4-mediated engulfment of MWCNTs causes NLRP3-dependent IL-1β secretion, that of PS microparticles does not. PS microparticles neither induce TNF-α, reactive oxygen species, nor nitric oxide production. These data indicate that PS microparticles are not inflammatory. The PtdSer-binding site of Tim4 contains an aromatic cluster that binds PS, and Tim4-mediated macrophage engulfment of apoptotic cells, a process called efferocytosis, was competitively blocked by PS microparticles. These data suggest that PS microplastics do not directly cause acute inflammation but perturb efferocytosis, raising concerns that chronic exposure to large amounts of PS microplastics may cause chronic inflammation leading to autoimmune diseases.
Collapse
Affiliation(s)
- Miki Kuroiwa
- Laboratory of Immunology and Microbiology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Shin-Ichiro Yamaguchi
- Laboratory of Immunology and Microbiology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Yoshinobu Kato
- Laboratory of Immunology and Microbiology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Arisa Hori
- Laboratory of Immunology and Microbiology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Saori Toyoura
- Laboratory of Immunology and Microbiology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Mai Nakahara
- Laboratory of Immunology and Microbiology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Nobuyuki Morimoto
- Department of Materials for Energy, Shimane University, Shimane, Japan
| | - Masafumi Nakayama
- Laboratory of Immunology and Microbiology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Japan.
| |
Collapse
|
34
|
Zhao Y, Liu S, Xu H. Effects of microplastic and engineered nanomaterials on inflammatory bowel disease: A review. CHEMOSPHERE 2023; 326:138486. [PMID: 36963581 DOI: 10.1016/j.chemosphere.2023.138486] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
Many microplastics and engineered nanomaterials (ENMs) exist in the daily environment. The intestinal impact of these exogenous fine particles on inflammatory bowel disease (IBD) people may be unpredictable. In this paper, we reviewed the recent progress in the effect of microplastics and ENMs on IBD individuals. We also compared and summarized the various roles of microplastics and ENMs in healthy and IBD bodies, including factors such as particle size, particle properties, intestinal microenvironment, interaction with the intestinal barrier, and molecular mechanism. Our literature review showed that microplastics could be accomplices in the development of IBD and could cause severe intestinal inflammation. Moreover, ENMs could elicit diverse exposure outcomes in healthy and IBD bodies. Silicon dioxide nanoparticles (SiO2 NPs), titanium dioxide nanoparticles (TiO2 NPs), and graphene oxide (GO) displayed slight to adverse effects that turned into apparent adverse effects, while zinc oxide nanoparticles (ZnO NPs) and silver nanoparticles (Ag NPs) showed a toxic effect that became therapeutic. A deeper understanding of the impact of microplastics and ENMs on the high-risk group was needed, and we proposed several insights into the research priorities and directions.
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Shanji Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
35
|
El Hayek E, Castillo E, In JG, Garcia M, Cerrato J, Brearley A, Gonzalez-Estrella J, Herbert G, Bleske B, Benavidez A, Hsiao H, Yin L, Campen MJ, Yu X. Photoaging of polystyrene microspheres causes oxidative alterations to surface physicochemistry and enhances airway epithelial toxicity. Toxicol Sci 2023; 193:90-102. [PMID: 36881996 PMCID: PMC10176241 DOI: 10.1093/toxsci/kfad023] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Microplastics represent an emerging environmental contaminant, with large gaps in our understanding of human health impacts. Furthermore, environmental factors may modify the plastic chemistry, further altering the toxic potency. Ultraviolet (UV) light is one such unavoidable factor for airborne microplastic particulates and a known modifier of polystyrene surface chemistry. As an experimental model, we aged commercially available polystyrene microspheres for 5 weeks with UV radiation, then compared the cellular responses in A549 lung cells with both pristine and irradiated particulates. Photoaging altered the surface morphology of irradiated microspheres and increased the intensities of polar groups on the near-surface region of the particles as indicated by scanning electron microscopy and by fitting of high-resolution X-ray photoelectron spectroscopy C 1s spectra, respectively. Even at low concentrations (1-30 µg/ml), photoaged microspheres at 1 and 5 µm in diameter exerted more pronounced biological responses in the A549 cells than was caused by pristine microspheres. High-content imaging analysis revealed S and G2 cell cycle accumulation and morphological changes, which were also more pronounced in A549 cells treated with photoaged microspheres, and further influenced by the size, dose, and time of exposures. Polystyrene microspheres reduced monolayer barrier integrity and slowed regrowth in a wound healing assay in a manner dependent on dose, photoaging, and size of the microsphere. UV-photoaging generally enhanced the toxicity of polystyrene microspheres in A549 cells. Understanding the influence of weathering and environmental aging, along with size, shape, and chemistry, on microplastics biocompatibility may be an essential consideration for incorporation of different plastics in products.
Collapse
Affiliation(s)
- Eliane El Hayek
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Eliseo Castillo
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, The University of New Mexico, Albuquerque, New Mexico, USA
- Clinical and Translational Science Center, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Julie G In
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Marcus Garcia
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Jose Cerrato
- Department of Civil Engineering, College of Engineering, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Adrian Brearley
- Department of Earth and Planetary Sciences, College of Arts and Sciences, The University of New Mexico, Albuquerque, New Mexico, USA
| | | | - Guy Herbert
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Barry Bleske
- Department of Pharmacy Practice and Administrative Sciences, College of Pharmacy, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Angelica Benavidez
- Center for Micro-Engineered Materials, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Hsuan Hsiao
- ReproTox Biotech, Albuquerque, New Mexico, USA
| | - Lei Yin
- ReproTox Biotech, Albuquerque, New Mexico, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of New Mexico, Albuquerque, New Mexico, USA
- Clinical and Translational Science Center, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Xiaozhong Yu
- College of Nursing, The University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
36
|
Zhu L, Xie C, Chen L, Dai X, Zhou Y, Pan H, Tian K. Transport of microplastics in the body and interaction with biological barriers, and controlling of microplastics pollution. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114818. [PMID: 36958263 DOI: 10.1016/j.ecoenv.2023.114818] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/05/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) are one novel environmental pollutant sized < 5 mm that is ubiquitously present in numerous environmental media and particularly susceptible to interact with various toxic chemicals. Importantly, MPs can enter the food chain, and are bio-enriched and bio-accumulated with trophic levels, eventually endangering ecosystems and human health. However, there need to be more understanding regarding the bio-interaction of MPs with the host, particularly for biological barriers. This review aimed to summarize the latest findings regarding the main exposure routes of MPs that generated health burdens on humans. Furthermore, their interactions with biological barriers that generate adverse health effects and the underlying mechanisms were also reviewed. Additionally, we provided a comprehensive overview of recent advances regarding the removing and controlling of MPs. Finally, we discussed the future directions for MPs hazard prevention to provide helpful information for regulating decision-making and guiding safer plastics applications.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Occupational and Environmental Health, Zunyi Medical University, Zunyi 563000, China
| | - Caiyan Xie
- Department of Occupational and Environmental Health, Zunyi Medical University, Zunyi 563000, China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xingyu Dai
- Department of Clinical Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Yuanzhong Zhou
- Department of Occupational and Environmental Health, Zunyi Medical University, Zunyi 563000, China
| | - Hong Pan
- Department of Occupational and Environmental Health, Zunyi Medical University, Zunyi 563000, China.
| | - Kunming Tian
- Department of Occupational and Environmental Health, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
37
|
Wu D, Lim BXH, Seah I, Xie S, Jaeger JE, Symons RK, Heffernan AL, Curren EEM, Leong SCY, Riau AK, Lim DKA, Stapleton F, Ali MJ, Singh S, Tong L, Mehta JS, Su X, Lim CHL. Impact of Microplastics on the Ocular Surface. Int J Mol Sci 2023; 24:3928. [PMID: 36835339 PMCID: PMC9962686 DOI: 10.3390/ijms24043928] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Plastics are synthetic materials made from organic polymers that are ubiquitous in daily living and are especially important in the healthcare setting. However, recent advances have revealed the pervasive nature of microplastics, which are formed by degradation of existing plastic products. Although the impact on human health has yet to be fully characterised, there is increasing evidence that microplastics can trigger inflammatory damage, microbial dysbiosis, and oxidative stress in humans. Although there are limited studies investigating their effect on the ocular surface, studies of microplastics on other organs provide some insights. The prevalence of plastic waste has also triggered public outcry, culminating in the development of legislation aimed at reducing microplastics in commercial products. We present a review outlining the possible sources of microplastics leading to ocular exposure, and analyse the possible mechanisms of ocular surface damage. Finally, we examine the utility and consequences of current legislation surrounding microplastic regulation.
Collapse
Affiliation(s)
- Duoduo Wu
- Department of Ophthalmology, National University Health System, Singapore 119228, Singapore
| | - Blanche X. H. Lim
- Department of Ophthalmology, National University Health System, Singapore 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Ivan Seah
- Department of Ophthalmology, National University Health System, Singapore 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Shay Xie
- Eurofins Environment Testing Australia & New Zealand, Dandenong, VIC 3175, Australia
- Australian Water Association, St Leonards, NSW 2065, Australia
| | - Julia E. Jaeger
- Eurofins Environment Testing Australia & New Zealand, Dandenong, VIC 3175, Australia
| | - Robert K. Symons
- Eurofins Environment Testing Australia & New Zealand, Dandenong, VIC 3175, Australia
| | - Amy L. Heffernan
- Eurofins Environment Testing Australia & New Zealand, Dandenong, VIC 3175, Australia
| | - Emily E. M. Curren
- St. John’s Island National Marine Laboratory, Tropical Marine Science Institute, National University of Singapore, Singapore 119077, Singapore
| | - Sandric C. Y. Leong
- St. John’s Island National Marine Laboratory, Tropical Marine Science Institute, National University of Singapore, Singapore 119077, Singapore
| | - Andri K. Riau
- Singapore Eye Research Institute, Singapore 169856, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Dawn K. A. Lim
- Department of Ophthalmology, National University Health System, Singapore 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Fiona Stapleton
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia
| | | | - Swati Singh
- LV Prasad Eye Institute, Hyderabad 500034, India
| | - Louis Tong
- Singapore Eye Research Institute, Singapore 169856, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
- Singapore National Eye Centre, Singapore 168751, Singapore
| | - Jodhbir S. Mehta
- Singapore Eye Research Institute, Singapore 169856, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
- Singapore National Eye Centre, Singapore 168751, Singapore
| | - Xinyi Su
- Department of Ophthalmology, National University Health System, Singapore 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Chris H. L. Lim
- Department of Ophthalmology, National University Health System, Singapore 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Singapore Eye Research Institute, Singapore 169856, Singapore
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
38
|
Xuan L, Xiao L, Huang R. The geno-toxicological impacts of microplastic (MP) exposure on health: mechanistic pathways and research trends from a Chinese perspective. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:26-36. [PMID: 36337004 DOI: 10.1039/d2em00301e] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Due to their large-scale manufacture and widespread application, global concern regarding microplastics (MPs) has been increasing rapidly over the past decade, in particular their potential genotoxicity. The genome is constantly exposed to genotoxic insults that can lead to accumulation of reactive oxygen species (ROS), DNA damage, cell death, inflammation or genetic regulation which in turn can have consequences for health, such as the induction of carcinogenesis. In this review, we presented a comprehensive landscape of the effects of MPs on genotoxicity including the molecular mechanisms. Followed by the MP research trend analysis from a global viewpoint including the comparative research between China and USA and point out that scientists should continue to substantially contribute to the field of MPs through more extensive academic investigation, global cooperation, and the development of novel control methods. Challenges are also discussed. Overall, this review provides insights into the genotoxic effects of MPs on human health and related research trends in this field.
Collapse
Affiliation(s)
- Lihui Xuan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| | - Liang Xiao
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China.
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| |
Collapse
|
39
|
Li M, Hou Z, Meng R, Hao S, Wang B. Unraveling the potential human health risks from used disposable face mask-derived micro/nanoplastics during the COVID-19 pandemic scenario: A critical review. ENVIRONMENT INTERNATIONAL 2022; 170:107644. [PMID: 36413926 PMCID: PMC9671534 DOI: 10.1016/j.envint.2022.107644] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/09/2023]
Abstract
With the global spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), disposable face masks (DFMs) have caused negative environmental impacts. DFMs will release microplastics (MPs) and nanoplastics (NPs) during environmental degradation. However, few studies reveal the release process of MPs/NPs from masks in the natural environment. This review presents the current knowledge on the abiotic and biotic degradation of DFMs. Though MPs and NPs have raised serious concerns about their potentially detrimental effects on human health, little attention was paid to their impacts on human health from DFM-derived MPs and NPs. The potential toxicity of mask-derived MPs/NPs, such as gastrointestinal toxicity, pneumotoxicity, neurotoxicity, hepatotoxicity, reproductive and transgenerational toxicity, and the underlying mechanism will be discussed in the present study. MPs/NPs serve as carriers of toxic chemicals and pathogens, leading to their bioaccumulation and adverse effects of biomagnification by food chains. Given human experiments are facing ethical issues and animal studies cannot completely reveal human characteristics, advanced human organoids will provide promising models for MP/NP risk assessment. Moreover, in-depth investigations are required to identify the release of MPs/NPs from discarded face masks and characterize their transportation through the food chains. More importantly, innovative approaches and eco-friendly strategies are urgently demanded to reduce DFM-derived MP/NP pollution.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zongkun Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Run Meng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
40
|
Chen W, Gong Y, McKie M, Almuhtaram H, Sun J, Barrett H, Yang D, Wu M, Andrews RC, Peng H. Defining the Chemical Additives Driving In Vitro Toxicities of Plastics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14627-14639. [PMID: 36173153 DOI: 10.1021/acs.est.2c03608] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Increases in the global use of plastics have caused concerns regarding potential adverse effects on human health. Plastic products contain hundreds of potentially toxic chemical additives, yet the exact chemicals which drive toxicity currently remain unknown. In this study, we employed nontargeted analysis and in vitro bioassays to identify the toxicity drivers in plastics. A total of 56 chemical additives were tentatively identified in five commonly used plastic polymer pellets (i.e., PP, LDPE, HDPE, PET, and PVC) by employing suspect screening and nontargeted analysis. Phthalates and organophosphates were found to be dominant in PVC pellets. Triphenyl phosphate and 2-ethylhexyl diphenyl phosphate accounted for a high amount (53.6%) of the inhibition effect of PVC pellet extract on human carboxylesterase 1 (hCES1) activity. Inspired by the high abundances of chemical additives in PVC pellets, six different end-user PVC-based products including three widely used PVC water pipes were further examined. Among them, extracts of PVC pipe exerted the strongest PPARγ activity and cell viability suppression. Organotins were identified as the primary drivers to these in vitro toxicities induced by the PVC pipe extracts. This study clearly delineates specific chemical additives responsible for hCES1 inhibition, PPARγ activity, and cell viability suppression associated with plastic.
Collapse
Affiliation(s)
- Wanzhen Chen
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Yufeng Gong
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Michael McKie
- Department of Civil and Mineral Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Husein Almuhtaram
- Department of Civil and Mineral Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Holly Barrett
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Diwen Yang
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Menghong Wu
- Department of Civil and Mineral Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Robert C Andrews
- Department of Civil and Mineral Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
- School of the Environment, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
41
|
Lee SE, Yi Y, Moon S, Yoon H, Park YS. Impact of Micro- and Nanoplastics on Mitochondria. Metabolites 2022; 12:897. [PMID: 36295799 PMCID: PMC9612075 DOI: 10.3390/metabo12100897] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Mitochondria are highly dynamic cellular organelles that perform crucial functions such as respiration, energy production, metabolism, and cell fate decisions. Mitochondrial damage and dysfunction critically lead to the pathogenesis of various diseases including cancer, diabetes, and neurodegenerative and cardiovascular disorders. Mitochondrial damage in response to environmental contaminant exposure and its association with the pathogenesis of diseases has also been reported. Recently, persistent pollutants, such as micro- and nanoplastics, have become growing global environmental threats with potential health risks. In this review, we discuss the impact of micro- and nanoplastics on mitochondria and review current knowledge in this field.
Collapse
Affiliation(s)
- Seung Eun Lee
- Department of Microbiology, School of Medicine, Kyung Hee University, #26 Kyungheedae-gil, Dongdaemun-gu, Seoul 02447, Korea
| | - Yoojung Yi
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Sangji Moon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Hyunkyung Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Yong Seek Park
- Department of Microbiology, School of Medicine, Kyung Hee University, #26 Kyungheedae-gil, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
42
|
López de las Hazas MC, Boughanem H, Dávalos A. Untoward Effects of Micro- and Nanoplastics: An Expert Review of Their Biological Impact and Epigenetic Effects. Adv Nutr 2022; 13:1310-1323. [PMID: 34928307 PMCID: PMC9340974 DOI: 10.1093/advances/nmab154] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/17/2021] [Accepted: 12/16/2021] [Indexed: 12/22/2022] Open
Abstract
The production of plastic has dramatically increased in the last 50 y. Because of their stability and durability, plastics are ubiquitously incorporated in both marine and terrestrial ecosystems. Plastic is acted upon by biological, chemical, and physical agents, leading to fragmentation into small pieces [i.e., microplastics (MPs) or nanoplastics (NPs)], classified depending on their size. MPs range from 0.1 to 5000 μm and NPs are fragments between 0.001 to 0.1 μm. MPs and, especially NPs, are easily incorporated into living beings via ingestion. The penetration of MPs and NPs into the food system is an important issue, for both food security and health risk assessment. Ingestion of different MPs and NPs has been associated with different issues in the intestine, such as direct physical damage, increased intestinal permeability, diminished microbiota diversity, and increases in local inflammatory response. However, the potential harmful effects of low-dose dietary plastic are still unclear. Some evidence indicates that intestinal uptake of plastic particles is relatively low and is mostly dependent on the particle's size. However, other evidence highlights that NPs dysregulate key molecular signaling pathways, modify the gut microbiota composition, and may induce important epigenetic changes, including transgenerational effects that might be involved in the onset of many different metabolic disorders. Until now, experiments have been mostly performed on marine organisms, Caenorhabditis elegans, and mouse models, but some research indicates accidental plastic dietary consumption by humans, raising the issue of detrimental health effects of MPs and NPs. This review discusses the impact that MPs and NPs could have on the intestinal tract and the biodistribution and systemic, cellular, and molecular levels. Accumulated evidence of MPs' effects on the human gut suggests that large exposure to MPs and NPs may have phenotypical untoward effects in humans, calling for urgent research in this field.
Collapse
Affiliation(s)
- María-Carmen López de las Hazas
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)–Food, CEI UAM + CSIC, Madrid, Spain
| | - Hatim Boughanem
- Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Málaga, Spain
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)–Food, CEI UAM + CSIC, Madrid, Spain
| |
Collapse
|
43
|
Zhao J, Gomes D, Jin L, Mathis SP, Li X, Rouchka EC, Bodduluri H, Conklin DJ, O'Toole TE. Polystyrene bead ingestion promotes adiposity and cardiometabolic disease in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113239. [PMID: 35093814 PMCID: PMC8860873 DOI: 10.1016/j.ecoenv.2022.113239] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 05/05/2023]
Abstract
Vast amounts of plastic materials are produced in the modern world and despite recycling efforts, large amounts are disposed in water systems and landfills. Under these storage conditions, physical weathering and photochemical processes break down these materials into smaller particles of the micro- and nano-scale. In addition, ecosystems can be contaminated with plastic particles which are manufactured in these size ranges for commercial purposes. Independent of source, microplastics are abundant in the environment and have found their way into water supplies and the food cycle where human exposure is inevitable. Nevertheless, the health consequences of microplastic ingestion, inhalation, or absorption are largely unknown. In this study we sought to determine if ingestion of microplastics promoted pre-clinical cardiovascular disease (CVD). To do this, we supplied mice with normal drinking water or that supplemented with polystyrene beads of two different sizes (0.5 µm and 5 µm) and two different doses (0.1 μg/ml and 1 μg/ml) each for 12 weeks and measured several indices of metabolism and glucose homeostasis. As early as 3 weeks of consumption, we observed an accelerated weight gain with a corresponding increase in body fat for some exposure groups versus the control mice. Some exposure groups demonstrated increased levels of fasting plasma glucose. Those mice consuming the smaller sized beads (0.5 µm) at the higher dose (1 μg/ml), had increased levels of fasting plasma insulin and higher homeostatic model assessment of insulin resistance (HOMA-IR) scores as well. This was accompanied by changes in the gut microbiome consistent with an obese phenotype. Using samples of perivascular adipose tissue collected from the same group, we observed changes in gene expression consistent with increased adipogenesis. These results suggest that ingestion of polystyrene beads promotes a cardiometabolic disease phenotype and thus may be an unrecognized risk factor for CVD.
Collapse
Affiliation(s)
- Jingjing Zhao
- Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Daniel Gomes
- Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Lexiao Jin
- Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Steven P Mathis
- Department of Microbiology and Immunology, James Graham Brown Cancer Center and Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, USA
| | - Xiaohong Li
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, University of Louisville, Louisville, KY, USA; Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA
| | - Eric C Rouchka
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, University of Louisville, Louisville, KY, USA; Department of Computer Science and Engineering, University of Louisville, Louisville, KY, USA
| | - Haribabu Bodduluri
- Department of Microbiology and Immunology, James Graham Brown Cancer Center and Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, USA
| | - Daniel J Conklin
- Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Timothy E O'Toole
- Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|