1
|
Wang L, Zhao Z, Li X, Zhao X, Li S, Li H. Ecofriendly dual-function cotton fabric with antibacterial and anti-adhesion properties based on modified natural materials. Int J Biol Macromol 2024; 271:132698. [PMID: 38824104 DOI: 10.1016/j.ijbiomac.2024.132698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
Ecofriendly fabrics with antibacterial and anti-adhesion properties have been attracted an increasing attention in recent years. Herein, natural menthol modified polyacrylate (PMCA) antibacterial adhesion agent was synthesized by esterification and polymerisation while natural pterostilbene-grafted-chitosan (PGC) antibacterial agent was prepared through Mannich reaction. The antibacterial and anti-adhesion cotton fabric was fabricated through durable PMCA dip finishing and then layer-by-layer self-assembly of PGC. The results showed that the antibacterial adhesion rates and antibacterial rates of the dual-function cotton fabric against Staphylococcus aureus and Escherichia coli reached up to 99.9 %. Its antibacterial adhesion rates improved by 36.1 % and 40.1 % in comparison with those of cotton fabric treated by menthol alone. Meanwhile against S. aureus, the dual-function cotton fabrics improved the antibacterial rates by 56.7 % and 36.4 %, respectively, from those of chitosan- and pterostilbene-treated fabrics. Against E. coli, the improvements were 89.4 % and 24.8 %, respectively. After 20 household washings, the dual-function cotton fabric maintained >80 % of its original anti-adhesion and antibacterial rates against both species. The dual-function cotton fabric also possessed safe and excellent wearability.
Collapse
Affiliation(s)
- Lili Wang
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Tongxiang Research Institute, Zhejiang Sci-Tech University, Tongxiang 314500, PR China.
| | - Zhiqiang Zhao
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xiangyu Li
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xiaomin Zhao
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Shuokang Li
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Huijun Li
- Hangzhou Huasi Xiasha Textile Technology Co., LTD., Hangzhou 311199, PR China
| |
Collapse
|
2
|
Bukhari A, Yar M, Zahra F, Nazir A, Iqbal M, Shah SAA, Yasir M, Al-Mijalli SH, Ahmad N. A novel formulation of triethyl orthoformate mediated durable, smart and antibacterial chitosan cross-linked cellulose fabrics. Int J Biol Macromol 2023; 253:126813. [PMID: 37690650 DOI: 10.1016/j.ijbiomac.2023.126813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Antibacterial, durable and smart cotton fabrics was developed using chitosan-based formulation. The cellulose was covalently cross-linked with chitosan using TEOF. The antibacterial activity of prepared smart fabrics and CS was studied against S. aureus and E. coli strains. The FTIR, SEM and XRD were employed to confirm the linkage of CS molecules with cellulose in cotton fabrics. The CS of 160 KDa extracted from shrimp shell showed the optimum antibacterial activity. The prominent asymmetric, symmetric alkyl CH peaks of CS were shifted to 2930 and 2845 (cm-1), respectively. Moreover, the shifted peaks at 1590 and 1400 (cm-1) indicate the CO stretching and NH2 bending bands of CS, respectively. This confirm the existence of new imine functional group that was generated after cross-linking of NH2 groups of CS. The SEM results showed more uniform morphology of TEOF cross-linked fabrics versus CS coated fabrics, which revealed a promising microbial growth inhibition activity. The TEOF as a cross-linker has been unveiled, showcasing the effectiveness of this innovative crosslinking approach. The fabric treated with cross-linked CS exhibited remarkable antibacterial properties that endured even after undergoing 30 washing cycles. These antibacterial textiles possess substantial commercial potential across a diverse range of industries.
Collapse
Affiliation(s)
| | - Muhammad Yar
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan
| | - Fatima Zahra
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Arif Nazir
- Department of Chemistry, The University of Lahore, Lahore, Pakistan.
| | - Munawar Iqbal
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | | | - Muhammad Yasir
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Samiah H Al-Mijalli
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Naveed Ahmad
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| |
Collapse
|
3
|
Raduly FM, Rădițoiu V, Rădițoiu A, Frone AN, Nicolae CA, Răut I, Constantin M, Grapin M. Multifunctional Finishing of Cotton Fabric with Curcumin Derivatives Coatings Obtained by Sol-Gel Method. Gels 2023; 9:gels9050369. [PMID: 37232961 DOI: 10.3390/gels9050369] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Textile materials with fluorescent, repellent, or antimicrobial properties are increasingly used in common applications. Obtaining multi-functional coatings is of wide interest, especially for applications related to signaling or to the medical field. In order to increase the performance (color properties, fluorescence lifetime, self-cleaning or antimicrobial properties) of textile materials with special uses, a series of research was carried out regarding the modification of surfaces with nanosols. In this study, coatings with multiple properties were obtained by depositing nanosols on cotton fabrics generated through sol-gel reactions. These multifunctional coatings are hybrid materials in which the host matrix is generated using tetraethylorthosilicate (TEOS) and network modifying organosilanes:dimethoxydimethylsilane (DMDMS) or dimethoxydiphenylsilane (DMDPS) in a 1:1 mass ratio. Two curcumin derivatives were embedded in siloxane matrices, a yellow one (CY) that is identical to bis-demethoxycurcumin (one of the natural constituents in turmeric) and a red dye (CR) that has a N,N-dimethylamino group grafted in position 4 of the dicinnamoylmethane skeleton of curcumin. The nanocomposites obtained by embedding curcumin derivatives in siloxane matrices were deposited on cotton fabric and studied in relation to the dye and the type of host matrix. Fabrics coated with such systems provide a hydrophobic surface, have fluorescent and antimicrobial properties, change color depending on the pH, and therefore can be used in various fields where textiles provide signaling properties, self-cleaning, or antibacterial protection. The coated fabrics maintained their good multifunctional properties even after several washing cycles.
Collapse
Affiliation(s)
- Florentina Monica Raduly
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania
| | - Valentin Rădițoiu
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania
| | - Alina Rădițoiu
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania
| | - Adriana Nicoleta Frone
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania
| | - Cristian Andi Nicolae
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania
| | - Iuliana Răut
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania
| | - Mariana Constantin
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania
- Faculty of Pharmacy, Titu Maiorescu University, Bd. Gh. Sincai, No. 16, 040441 Bucharest, Romania
| | - Maria Grapin
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania
| |
Collapse
|
4
|
Zamora-Mendoza L, Guamba E, Miño K, Romero MP, Levoyer A, Alvarez-Barreto JF, Machado A, Alexis F. Antimicrobial Properties of Plant Fibers. Molecules 2022; 27:7999. [PMID: 36432099 PMCID: PMC9699224 DOI: 10.3390/molecules27227999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022] Open
Abstract
Healthcare-associated infections (HAI), or nosocomial infections, are a global health and economic problem in developed and developing countries, particularly for immunocompromised patients in their intensive care units (ICUs) and surgical site hospital areas. Recurrent pathogens in HAIs prevail over antibiotic-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa. For this reason, natural antibacterial mechanisms are a viable alternative for HAI treatment. Natural fibers can inhibit bacterial growth, which can be considered a great advantage in these applications. Moreover, these fibers have been reported to be biocompatible and biodegradable, essential features for biomedical materials to avoid complications due to infections and significant immune responses. Consequently, tissue engineering, medical textiles, orthopedics, and dental implants, as well as cosmetics, are fields currently expanding the use of plant fibers. In this review, we will discuss the source of natural fibers with antimicrobial properties, antimicrobial mechanisms, and their biomedical applications.
Collapse
Affiliation(s)
- Lizbeth Zamora-Mendoza
- School of Biological Sciences & Engineering, Yachay Tech University, Urcuquí 100119, Ecuador
| | - Esteban Guamba
- School of Biological Sciences & Engineering, Yachay Tech University, Urcuquí 100119, Ecuador
| | - Karla Miño
- School of Biological Sciences & Engineering, Yachay Tech University, Urcuquí 100119, Ecuador
| | - Maria Paula Romero
- School of Biological Sciences & Engineering, Yachay Tech University, Urcuquí 100119, Ecuador
| | - Anghy Levoyer
- Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito (USFQ), Departamento de Ingeniería Química, Quito 170901, Ecuador
| | - José F. Alvarez-Barreto
- Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito (USFQ), Departamento de Ingeniería Química, Quito 170901, Ecuador
| | - António Machado
- Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Universidad San Francisco de Quito (USFQ), Laboratorio de Bacteriología, Quito 170901, Ecuador
| | - Frank Alexis
- Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito (USFQ), Departamento de Ingeniería Química, Quito 170901, Ecuador
| |
Collapse
|
5
|
Bujnicki B, Sowinski P, Makowski T, Krasowska D, Pokora-Sobczak P, Shkyliuk I, Drabowicz J, Piorkowska E. Microbiologically Pure Cotton Fabrics Treated with Tetrabutylammonium OXONE as Mild Disinfection Agent. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7749. [PMID: 36363341 PMCID: PMC9654703 DOI: 10.3390/ma15217749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The microbiological purity of textiles plays a pivotal role in the use of textiles, especially in hospitals and other medical facilities. Microbiological purity of cotton fabric was achieved by a new disinfection method using tetrabutyloammonium OXONE (TBA-OXONE) before washing. As a result of the disinfection, the cotton fabric became microbiologically pure, despite the markedly decreased washing time with respect to the widely used standard procedure. Shortening of the washing time allowed for significant energy savings. In addition, the effect of the number of disinfection and washing cycles on the tensile properties and tearing force of the fabric was examined. After 120 disinfection and washing cycles the mechanical properties of cotton fabric were only slightly worsened.
Collapse
Affiliation(s)
- Bogdan Bujnicki
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Przemyslaw Sowinski
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Tomasz Makowski
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Dorota Krasowska
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Patrycja Pokora-Sobczak
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Inna Shkyliuk
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
- The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Józef Drabowicz
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
- Institute of Chemistry, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15, 42-200 Czestochowa, Poland
| | - Ewa Piorkowska
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
6
|
Xu Q, Wang X, Wang P, Zhang Y, Wang Z. Durable antibacterial cotton fabric fabricated using a "self-created" mist polymerization device. Int J Biol Macromol 2022; 216:148-156. [PMID: 35788008 DOI: 10.1016/j.ijbiomac.2022.06.184] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022]
Abstract
There are two major problems associated with the use of antibacterial cotton fabric. The durability of the fabric is poor, and the inherent properties of the fabric deteriorate following the execution of the finishing processes. These limit the application of antibacterial fabric. We first treated the cotton fabric with acryloyl chloride (AC) molecules to make the surface of the fabric rich in carbon‑carbon double (C=C) bonds. Following this, the [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (DMES) monomer was polymerized with the CC bonds on the fabric following the "grafting through" method. As a result, the cotton fabric was successfully grafted with the poly[2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (PDMES), exploiting covalent bonds. The finished fabric exhibited excellent antibacterial effects. The bacterial reduction (BR) rates of the finished fabric against E. coli and S. aureus were greater than 99.0 %. Even after 50 washing cycles, the BR rates of the finished fabric against E. coli and S. aureus were greater than 96.0 %. In addition, the use of the "self-created" mist polymerization technology ensured that the inherent properties of the finished fabric were retained to a large extent. Therefore, the antibacterial cotton fabric prepared following this method can be potentially used for the fabrication of industrial and household textiles.
Collapse
Affiliation(s)
- Qingbo Xu
- Key Laboratory of Textile Fabric, College of Textiles and Clothing, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| | - Xinyu Wang
- Key Laboratory of Textile Fabric, College of Textiles and Clothing, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Peng Wang
- Key Laboratory of Textile Fabric, College of Textiles and Clothing, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Yanyan Zhang
- Key Laboratory of Textile Fabric, College of Textiles and Clothing, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Zongqian Wang
- Key Laboratory of Textile Fabric, College of Textiles and Clothing, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| |
Collapse
|
7
|
Aizamddin MF, Mahat MM, Zainal Ariffin Z, Nawawi MA, Jani NA, Nor Amdan NA, Sadasivuni KK. Antibacterial Performance of Protonated Polyaniline-Integrated Polyester Fabrics. Polymers (Basel) 2022; 14:2617. [PMID: 35808667 PMCID: PMC9269132 DOI: 10.3390/polym14132617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/12/2022] [Accepted: 06/19/2022] [Indexed: 02/04/2023] Open
Abstract
During the last few years, there has been an increase in public awareness of antimicrobial fabrics, as well as an increase in commercial opportunities for their use in pharmaceutical and medical settings. The present study reports on the optimized fabrication of protonated polyaniline (PANI)-integrated polyester (PES) fabric. Para-toluene sulfonic acid (pTSA) was used to protonate the PANI fabric and thus grant it antibacterial performance. The results of a 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging assay showed high antioxidant activity of protonated PANI fabric at a scavenging efficiency of 84.83%. Moreover, the findings revealed remarkably sensitive antibacterial performance of PANI-integrated fabric against the following Gram-positive bacteria: methicillin-resistant Staphylococcus aureus (MRSA), S. epidermidis, and S. aureus; and also against the following Gram-negative bacteria: P. aeruginosa, E. coli, and S. typhi. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy and energy dispersive X-ray fluorescence (EDXRF) were used to determine the changes in the structural and elemental compositions of PANI fabric upon treatment with bacterial strains. Electrochemical impedance spectroscopy (EIS) revealed that the electrical conductivity value of protonated PANI fabric decreased by one (1) order of magnitude against P. aeruginosa and S. aureus, from 3.35 ± 7.81 × 10-3 S cm-1 to 6.11 ± 7.81 × 10-4 S cm-1 and 4.63 ± 7.81 × 10-4 S cm-1, respectively. Scanning electron microscopy (SEM) analysis showed the disruption of bacterial membranes and their structures when exposed to protonated PANI fabric; meanwhile, thermogravimetric analysis (TGA) demonstrated that the fabric retained its thermal stability characteristics. These findings open up potential for the use of antimicrobial fabrics in the pharmaceutical and medical sectors.
Collapse
Affiliation(s)
- Muhammad Faiz Aizamddin
- School of Physics and Material Studies, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (M.F.A.); (N.A.J.)
| | - Mohd Muzamir Mahat
- School of Physics and Material Studies, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (M.F.A.); (N.A.J.)
| | - Zaidah Zainal Ariffin
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia;
| | - Mohd Azizi Nawawi
- School of Chemistry and Environmental Studies, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia;
| | - Nur Aimi Jani
- School of Physics and Material Studies, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (M.F.A.); (N.A.J.)
| | - Nur Asyura Nor Amdan
- Bacteriology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Setia Alam, Shah Alam 40170, Malaysia;
| | | |
Collapse
|
8
|
Cost-effective fabrication, antibacterial application and cell viability studies of modified nonwoven cotton fabric. Sci Rep 2022; 12:2493. [PMID: 35169158 PMCID: PMC8847346 DOI: 10.1038/s41598-022-06391-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 01/28/2022] [Indexed: 11/08/2022] Open
Abstract
In the present work, nonwoven cotton fabric was modified for antibacterial applications using low-cost and eco-friendly precursors. The treatment of fabric with alkali leads to the formation of active sites for surface modification, followed by dip coating with silver nanoparticles and chitosan. The surface was chlorinated in the next step to transform amide (N-H) groups in chitosan into N-halamine (N-Cl). The modified and unmodified surfaces of the nonwoven cotton fabric have been characterized by FTIR, SEM, and XRD. The active chlorine loading is measured with iodine/sodium thiosulphate. The antimicrobial activity and cell toxicity assay were carried out with and without modifications of nonwoven cotton fabric. The antimicrobial efficacies of loaded fabric were evaluated against four bacterial species (Micrococcus luteus, Staphylococcus aureus, Enterobacter aerogenes, and E.coli). It was found that modified fabric exhibited superior efficiency against gram-positive and gram-negative bacterial strains as compared to their bulk counterparts upon exposure without affecting strength and integrity of fabric. The overall process is economical for commercial purposes. The modified fabric can be used for antimicrobial, health, and food packaging industries, and in other biomedical applications.
Collapse
|
9
|
Nie X, Wu S, Liao S, Chen J, Huang F, Li W, Wang Q, Wei Q. Light-driven self-disinfecting textiles functionalized by PCN-224 and Ag nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125786. [PMID: 33873032 DOI: 10.1016/j.jhazmat.2021.125786] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/13/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Toward the goal of preventing microbial infections in hospitals or other healthcare institutions, here we developed a self-disinfecting textile with synergistic photodynamic/photothermal antibacterial property. Porphyrinic Metal-organic frameworks (PCN-224) and Ag nanoparticles (NPs) were in situ grown on knitted cotton textile (KCT) successively to achieve rapid photodynamic antibacterial and durable bacteriostatic effect. Light-driven singlet oxygen (1O2) generated from PCN-224 and heat generated from Ag could function synergistically to realize rapid bacterial inactivation. Interestingly, 1O2 could promote Ag NPs to be degraded to release more Ag+ ions, achieving durable bacteriostatic effect. Antibacterial assay demonstrated 6 and 4.49 log unit inactivation toward two typical bacterial strains (E. coli and S. aureus) under Xe arc lamp in 30 min, respectively. Even after ten washes, the textile still maintained 6 log unit bacterial inactivation. Mechanism study proved light-driven 1O2 and heat are main factors causing bacterial inactivation, they could work synergistically to enhance bacterial inactivation efficiency. Photothermal study revealed that the textile could reach to 69 ℃ under visible light and 79.1 ℃ under 780-nm light-laser, which showed much potential in photothermal material applications. Taken together, our findings demonstrated a synergistic self-disinfecting cotton textile that exhibited constructive significance for preventing microbial infections and transmissions.
Collapse
Affiliation(s)
- Xiaolin Nie
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Shuanglin Wu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Shiqin Liao
- Jiangxi Center for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, China
| | - Juanfen Chen
- Jiangxi Center for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, China
| | - Fenglin Huang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wei Li
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qingqing Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|