1
|
Liang X, Tian R, Li T, Wang H, Qin Y, Qian M, Fan J, Wang D, Cui HY, Jiang J. Integrative insights into the role of CAV1 in ketogenic diet and ferroptosis in pancreatic cancer. Cell Death Discov 2025; 11:139. [PMID: 40180904 PMCID: PMC11968908 DOI: 10.1038/s41420-025-02421-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 02/26/2025] [Accepted: 03/20/2025] [Indexed: 04/05/2025] Open
Abstract
Pancreatic cancer exhibits high mortality rates with limited therapeutic options. Emerging evidence suggests that the ketogenic diet may act as adjuvant therapy by triggering ferroptosis in cancer cells, though the underlying molecular mechanisms remain unclear. This study aims to investigate the molecular mechanisms linking ketogenic metabolism and ferroptosis, with an emphasis on key regulatory proteins. We demonstrated that pancreatic adenocarcinoma (PAAD) tissues significantly enhanced ketogenic and ferroptosis phenotypes compared to normal tissues, both correlating with poorer patient prognosis. These phenotypes showed strong interdependence mediated by CAV1. In the pancreatic tumor microenvironment, CAV1 was predominantly expressed in tumor cells. Through in vitro cell experiments, we clarified that Na-OHB downregulated CAV1 expression in pancreatic cancer cells, inhibiting the transcription of the CAV1/AMPK/NRF2 downstream ferroptosis-protective genes SLC7A11 and SLC40A1. Additionally, we demonstrated the interaction between CAV1 and SLC7A11 molecules; when CAV1 was downregulated, it affected the stability of SLC7A11, leading to the ubiquitination and degradation of the translated SLC7A11 protein. Through these dual mechanisms, Na-OHB caused Fe2+ overload, lipid peroxidation accumulation, and oxidative stress in pancreatic cancer cells, ultimately triggering ferroptosis. In ketogenic diet-fed tumor-bearing mouse models, we also observed a significant increase in lipid peroxidation and other related biomarkers, while CAV1 and SLC7A11 levels were markedly decreased compared to the normal diet group. Our findings identify CAV1 as a pivotal molecular link between ketogenic metabolism and ferroptosis in pancreatic cancer. The multi-level regulatory axis involving CAV1-mediated transcriptional regulation and post-translational modifications provides mechanistic insights into ketogenic diet-induced ferroptosis, suggesting potential therapeutic targets for pancreatic cancer adjuvant treatment.
Collapse
Affiliation(s)
- Xue Liang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xi'an, Shaanxi, 710032, China
| | - Ruofei Tian
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xi'an, Shaanxi, 710032, China
| | - Ting Li
- Cardiovascular Surgery Department, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Hao Wang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xi'an, Shaanxi, 710032, China
| | - Yifei Qin
- Institutes of Biomedicine and Department of Cell Biology, Jinan University, Guangzhou, 510632, China
| | - Meirui Qian
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xi'an, Shaanxi, 710032, China
| | - Jing Fan
- Air Force Hospital of the Northern Theater Command of the People's Liberation Army of China, Shenyang, Liaoning, 110003, China
| | - Dan Wang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xi'an, Shaanxi, 710032, China
| | - Hong-Yong Cui
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xi'an, Shaanxi, 710032, China
| | - Jianli Jiang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, Shaanxi, 710032, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
2
|
Zhang Y, Zhao J, Guo H, Lu X, Tan D. Production and Bioseparation Applications of Polyhydroxyalkanoate Nano-Granules Functionalized with Streptavidin. Microorganisms 2025; 13:312. [PMID: 40005680 PMCID: PMC11858450 DOI: 10.3390/microorganisms13020312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Rapidly growing industrial biotechnology and bio-manufacturing require simple and cost-effective bioseparation tools. A novel strategy of bioseparation based on the streptavidin-decorated polyhydroxyalkanoate (PHA) nano-granules was developed in this study. By fusing to the N-terminus of PHA-associated phasin protein, the streptavidin was one-step immobilized on the surface of PHA nano-granules simultaneously with the accumulation of PHA in recombinant Escherichia coli. About 1.95 g/L of PHA nano-granules (54.51 wt% of cell dry weight) were produced after 48 h bacterial cultivation. The following qualitative and quantitative characterizations demonstrated that the streptavidin accounted for approximately 6.78% of the total weight of the purified PHA nano-granules and confirmed a considerable biotin affinity of 0.1 ng biotin/μg surface protein. As a proof of concept, the nano-granules were further functionalized with biotinylated oligo(dT) for mRNA isolation and about 1.26 μg of mRNA (occupied 2.59%) was purified from 48.45 μg of total RNA, achieving good integrity and high purity with few DNA and rRNA contaminations. Moreover, the nano-granules retained more than 80% of their initial mRNA recovery efficiency after ten cycles of repeated use. The PHA-SAP nano-granules were also functionalized with biotinylated magnetic beads, allowing magnetic recovery of the PHA nano-granules from cell lysates that still needs optimization. Our study provides a novel and expandable platform of PHA nano-granules that can be further functionalized with various biological groups for bioseparation applications. The functional PHA nano-granules have a great potential to serve as bioseparation resin for large-scale purification processes after suitable optimizations for "bench-to-factory" translation, contributing to scalable and sustainable bioprocessing.
Collapse
Affiliation(s)
- Yuyan Zhang
- School of Life Science & Technology, Xinjiang University, Urumchi 830049, China;
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biological Science and Bioengineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.Z.); (H.G.)
| | - Jiping Zhao
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biological Science and Bioengineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.Z.); (H.G.)
| | - Hui Guo
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biological Science and Bioengineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.Z.); (H.G.)
| | - Xiaoyun Lu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biological Science and Bioengineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.Z.); (H.G.)
| | - Dan Tan
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biological Science and Bioengineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.Z.); (H.G.)
| |
Collapse
|
3
|
Wang J, Xie L, Jiang L. Potential inflammatory mechanisms of the ketogenic diet against febrile infection-related epilepsy syndrome. ACTA EPILEPTOLOGICA 2025; 7:3. [PMID: 40217546 PMCID: PMC11960355 DOI: 10.1186/s42494-024-00187-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/12/2024] [Indexed: 04/14/2025] Open
Abstract
Febrile infection-related epilepsy syndrome (FIRES) is a rare epilepsy syndrome with unclear pathogenesis, characterized by fever-induced, super-refractory status epilepticus and high mortality. Studies have shown that ketogenic diet (KD) is effective in controlling convulsions in FIRES, but its mechanisms are unclear. This paper intends to summarize the mechanisms by which KD may exert effects against FIRES. Clinical studies have shown that patients with FIRES have elevated levels of various inflammatory factors such as interleukin (IL)-6, IL-8, IL-10, and so on. KD may exert anti-FIRES effects through several potential inflammatory pathways, including nuclear factor -κB (NF-κB) and NLR family pyrin domain containing 3 (NLRP3). Furthermore, the Kyoto Encyclopedia of Genes and Genomes (KEGG) network suggested that KD may play an anti-inflammatory role through several pathways such as cellular senescence and neutrophil extracellular trap formation. These mechanisms need to be further investigated.
Collapse
Affiliation(s)
- Juan Wang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, China
- Chongqing Key Laboratory of Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Lingling Xie
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, China
- Chongqing Key Laboratory of Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Li Jiang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, China.
- Chongqing Key Laboratory of Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China.
| |
Collapse
|
4
|
Ji J, Fotros D, Sohouli MH, Velu P, Fatahi S, Liu Y. The effect of a ketogenic diet on inflammation-related markers: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev 2025; 83:40-58. [PMID: 38219223 DOI: 10.1093/nutrit/nuad175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
CONTEXT Despite the important role of inflammation-related factors on the occurrence of chronic diseases, there is still conflicting evidence about the effects of the ketogenic diet (KD) on these factors. OBJECTIVE In order to obtain a better viewpoint, this study aimed to comprehensively investigate the effects of a KD on inflammation-related markers. DATA SOURCES To find pertinent randomized controlled trials up to August 2023, databases including PubMed/Medline, Web of Science, Scopus, Cochrane Library, and Embase were searched. DATA EXTRACTION This study included all randomized controlled trials investigating the effects of a KD on C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, IL-8, and IL-10 levels. Pooled weighted mean difference (WMD) and 95% confidence intervals (CIs) were achieved by random-effects model analysis for the best estimation of outcomes. DATA ANALYSIS Forty-four studies were included in this article. The pooled findings showed that a KD has an effect on lowering TNF-α (WMD: -0.32 pg/mL; 95% CI: -0.55, -0.09; P = 0.007) and IL-6 (WMD: -0.27 pg/mL; 95% CI: -0.52, -0.02; P = 0.036) compared with control groups. However, no significant effect was reported for others inflammation marker-related levels. The results of the subgroup analysis showed that, in trials following the KD for ≤8 weeks and in people aged ≤50 years, the reduction in TNF-α levels was significantly higher than in other groups. In addition, in people with a body mass index greater than 30 kg/m2 compared to a body mass index ≤30 kg/m2, IL-6 levels decreased to a greater extent after receiving the KD. CONCLUSIONS Consequently, adherence to a KD appears to improve some markers associated with inflammation, including TNF-α and IL-6.
Collapse
Affiliation(s)
- Jiawei Ji
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danial Fotros
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Sohouli
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Periyannan Velu
- Galileovasan Offshore and Research and Development Pvt Ltd, Nagapattinam, Tamil Nadu, India
| | - Somaye Fatahi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yinghao Liu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| |
Collapse
|
5
|
Rajkhowa S, Jha S. The role of NLRP3 and NLRP12 inflammasomes in glioblastoma. Genes Immun 2024; 25:541-551. [PMID: 39604503 DOI: 10.1038/s41435-024-00309-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Glioblastoma (GBM) is the deadliest malignant brain tumor, with a survival of less than 14 months after diagnosis. The highly invasive nature of GBM makes total surgical resection challenging, leading to tumor recurrence and declined survival. The heterocellular composition of the GBM reprograms its microenvironment, favoring tumor growth, proliferation, and migration. The innate immune cells in the GBM tumor microenvironment, including microglia, astrocytes, and macrophages, express pattern recognition receptors such as NLRs (Nucleotide-binding domain and leucine-rich repeat-containing) that sense pathogen- and damage-associated molecular patterns initiating inflammation. Upon activation, NLRP3 promotes inflammation by NLRP3 inflammasome formation. Auto-proteolytic cleavage and activation of Caspase-1 within the inflammasome leads to caspase-1-mediated cleavage, activation, and conversion of pro-IL-1ß and pro-IL-18 to IL-1ß and IL-18, leading to pyroptosis. In contrast, NLRP12 downregulates inflammatory responses in microglia and macrophages by regulating the NF-κB pathway. NLRP3 and NLRP12 have been implicated in the disease pathophysiology of several cancers with cell-context-dependent, pro- or anti-tumorigenic roles. In this review, we discuss the current literature on the mechanistic roles of NLRP3 and NLRP12 in GBM and the gaps in the scientific literature in the context of GBM pathophysiology with potential for targeted therapeutics.
Collapse
Affiliation(s)
- Sushmita Rajkhowa
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Sushmita Jha
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India.
| |
Collapse
|
6
|
Ye F, Huang Y, Zeng L, Li N, Hao L, Yue J, Li S, Deng J, Yu F, Hu X. The genetically predicted causal associations between circulating 3-hydroxybutyrate levels and malignant neoplasms: A pan-cancer Mendelian randomization study. Clin Nutr 2024; 43:137-152. [PMID: 39378563 DOI: 10.1016/j.clnu.2024.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/15/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Abstract
OBJECTIVE The ketogenic diet or exogenous supplementation with 3-hydroxybutyrate (3HB) is progressively gaining recognition as a valuable therapeutic or health intervention strategy. However, the effects of 3HB on cancers have been inconsistent in previous studies. This study aimed to comprehensively investigate the causal effects of circulating 3HB levels on 120 cancer phenotypes, and explore the 3HB mediation effect between liver fat accumulation and cancers. METHODS Univariate Mendelian randomization (UVMR) was used in this study to investigate the causal impact of circulating 3HB levels on cancers. We conducted meta-analyses for 3HB-cancer associations sourced from different exposure data. In multivariate MR(MVMR), the body mass index, alcohol frequency and diabetes were included as covariates to investigate the independent effect of 3HB on cancer risk. Additionally, utilizing mediation MR analysis, we checked the potential mediating role of 3HB in the association between liver fat and cancer. RESULTS Integrating findings from UVMR and MVMR, we observed that elevated circulating 3HB levels were associated with reduced risk of developing diffuse large B-cell lymphoma(DLBCL) (OR[95%CI] = 0.28[0.14-0.57] p = 3.92e-04), biliary malignancies (OR[95%CI] = 0.30[0.15-0.60], p = 7.67e-04), hepatocellular carcinoma(HCC) (OR[95%CI] = 0.25[0.09-0.71], p = 9.33e-03), primary lymphoid and hematopoietic malignancies (OR[95%CI] = 0.76[0.58-0.99], p = 0.045). Further UVMR analysis revealed that an increase in the percent liver fat was associated with reduced 3HB levels (Beta[95%CI] = -0.073[-0.122∼-0.024], p = 0.0034) and enhanced susceptibility to HCC (OR[95%CI] = 13.9[9.76-19.79], p = 3.14e-48), biliary malignancies (OR[95%CI] = 4.04[3.22-5.07], p = 1.64e-33), nasopharyngeal cancer (OR[95%CI] = 3.26[1.10-9.67], p = 0.03), and primary lymphoid and hematopoietic malignancies (OR[95%CI] = 1.27[1.13-1.44], p = 1.04e-4). Furthermore, 3HB fully mediated the effect of liver fat on susceptibility to DLBCL (OR[95%CI] = 1.076[1.01-1.15], p = 0.034). CONCLUSIONS Circulating 3HB is associated with a reduced susceptibility to developing DLBCL, HCC, biliary malignancies, and primary lymphoid and hematopoietic malignancies. The impaired ketogenesis induced by metabolic-dysfunction associated fatty liver disease (MAFLD) contributes to risk of DLBCL.
Collapse
Affiliation(s)
- Fanghang Ye
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yucheng Huang
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Rheumatology and Immunology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Liang Zeng
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Na Li
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Liyuan Hao
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jiayun Yue
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Shenghao Li
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jiali Deng
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Fei Yu
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
7
|
Grabiec M, Sobstyl M, Skirecki T. Nod-like receptors: The relevant elements of glioblastoma`s prognostic puzzle. Pharmacol Res 2024; 208:107411. [PMID: 39270948 DOI: 10.1016/j.phrs.2024.107411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Despite considerable improvements in understanding the biology of glioblastoma (GB), it still remains the most lethal type of brain tumor in adults. The role of innate immune cells in the development of GB was recently described. In particular, the tumor-immune cell interactions are thought to be critical in enabling tumor tolerance and even protection against therapeutics. Interestingly, the GB cells express proteins belonging to the family of intracellular pattern-recognition receptors, namely the NOD-like receptors (NLRs). Their activation may trigger the formation of the inflammasome complex leading to the secretion of mature IL-1β and IL-18 and thus resulting in cell death. Intrudingly, the expression of most NLRs was found to be correlated with tumor progression and poor prognosis. We speculate that recognizing the role of NOD-like receptors in GB has the potential to improve the effectiveness of diagnostic tools and prognosis, while also encouraging the development of novel precision medicine-based therapies.
Collapse
Affiliation(s)
- Marta Grabiec
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland.
| | - Michał Sobstyl
- Department of Neurosurgery, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
8
|
Qin J, Huang X, Gou S, Zhang S, Gou Y, Zhang Q, Chen H, Sun L, Chen M, Liu D, Han C, Tang M, Feng Z, Niu S, Zhao L, Tu Y, Liu Z, Xuan W, Dai L, Jia D, Xue Y. Ketogenic diet reshapes cancer metabolism through lysine β-hydroxybutyrylation. Nat Metab 2024; 6:1505-1528. [PMID: 39134903 DOI: 10.1038/s42255-024-01093-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 07/02/2024] [Indexed: 08/29/2024]
Abstract
Lysine β-hydroxybutyrylation (Kbhb) is a post-translational modification induced by the ketogenic diet (KD), a diet showing therapeutic effects on multiple human diseases. Little is known how cellular processes are regulated by Kbhb. Here we show that protein Kbhb is strongly affected by the KD through a multi-omics analysis of mouse livers. Using a small training dataset with known functions, we developed a bioinformatics method for the prediction of functionally important lysine modification sites (pFunK), which revealed functionally relevant Kbhb sites on various proteins, including aldolase B (ALDOB) Lys108. KD consumption or β-hydroxybutyrate supplementation in hepatocellular carcinoma cells increases ALDOB Lys108bhb and inhibits the enzymatic activity of ALDOB. A Kbhb-mimicking mutation (p.Lys108Gln) attenuates ALDOB activity and its binding to substrate fructose-1,6-bisphosphate, inhibits mammalian target of rapamycin signalling and glycolysis, and markedly suppresses cancer cell proliferation. Our study reveals a critical role of Kbhb in regulating cancer cell metabolism and provides a generally applicable algorithm for predicting functionally important lysine modification sites.
Collapse
Affiliation(s)
- Junhong Qin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Xinhe Huang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Shengsong Gou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Sitao Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yujie Gou
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Hongyu Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Lin Sun
- Frontiers Science Center for Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Miaomiao Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Han
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Min Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Zihao Feng
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Shenghui Niu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Lin Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Zexian Liu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weimin Xuan
- Frontiers Science Center for Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.
| | - Yu Xue
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
- Nanjing University Institute of Artificial Intelligence Biomedicine, Nanjing, China.
| |
Collapse
|
9
|
Zhang L, Tang Y, Huang P, Luo S, She Z, Peng H, Chen Y, Luo J, Duan W, Xiong J, Liu L, Liu L. Role of NLRP3 inflammasome in central nervous system diseases. Cell Biosci 2024; 14:75. [PMID: 38849934 PMCID: PMC11162045 DOI: 10.1186/s13578-024-01256-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
The central nervous system (CNS) is the most delicate system in human body, with the most complex structure and function. It is vulnerable to trauma, infection, neurodegeneration and autoimmune diseases, and activates the immune system. An appropriate inflammatory response contributes to defence against invading microbes, whereas an excessive inflammatory response can aggravate tissue damage. The NLRP3 inflammasome was the first one studied in the brain. Once primed and activated, it completes the assembly of inflammasome (sensor NLRP3, adaptor ASC, and effector caspase-1), leading to caspase-1 activation and increased release of downstream inflammatory cytokines, as well as to pyroptosis. Cumulative studies have confirmed that NLRP3 plays an important role in regulating innate immunity and autoimmune diseases, and its inhibitors have shown good efficacy in animal models of various inflammatory diseases. In this review, we will briefly discuss the biological characteristics of NLRP3 inflammasome, summarize the recent advances and clinical impact of the NLRP3 inflammasome in infectious, inflammatory, immune, degenerative, genetic, and vascular diseases of CNS, and discuss the potential and challenges of NLRP3 as a therapeutic target for CNS diseases.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Yufen Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Senlin Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Zhou She
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Hong Peng
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Yuqiong Chen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Jinwen Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Wangxin Duan
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Jie Xiong
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, HuChina, 410011, China.
| |
Collapse
|
10
|
Weissman D, Dudek J, Sequeira V, Maack C. Fabry Disease: Cardiac Implications and Molecular Mechanisms. Curr Heart Fail Rep 2024; 21:81-100. [PMID: 38289538 PMCID: PMC10923975 DOI: 10.1007/s11897-024-00645-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 03/09/2024]
Abstract
PURPOSE OF REVIEW This review explores the interplay among metabolic dysfunction, oxidative stress, inflammation, and fibrosis in Fabry disease, focusing on their potential implications for cardiac involvement. We aim to discuss the biochemical processes that operate in parallel to sphingolipid accumulation and contribute to disease pathogenesis, emphasizing the importance of a comprehensive understanding of these processes. RECENT FINDINGS Beyond sphingolipid accumulation, emerging studies have revealed that mitochondrial dysfunction, oxidative stress, and chronic inflammation could be significant contributors to Fabry disease and cardiac involvement. These factors promote cardiac remodeling and fibrosis and may predispose Fabry patients to conduction disturbances, ventricular arrhythmias, and heart failure. While current treatments, such as enzyme replacement therapy and pharmacological chaperones, address disease progression and symptoms, their effectiveness is limited. Our review uncovers the potential relationships among metabolic disturbances, oxidative stress, inflammation, and fibrosis in Fabry disease-related cardiac complications. Current findings suggest that beyond sphingolipid accumulation, other mechanisms may significantly contribute to disease pathogenesis. This prompts the exploration of innovative therapeutic strategies and underscores the importance of a holistic approach to understanding and managing Fabry disease.
Collapse
Affiliation(s)
- David Weissman
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany
| | - Jan Dudek
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany
| | - Vasco Sequeira
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany.
| |
Collapse
|
11
|
Zhang Y, Li Y. β-hydroxybutyrate inhibits malignant phenotypes of prostate cancer cells through β-hydroxybutyrylation of indoleacetamide-N-methyltransferase. Cancer Cell Int 2024; 24:121. [PMID: 38555451 PMCID: PMC10981303 DOI: 10.1186/s12935-024-03277-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/19/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is one of the most prevalent cancers in men and is associated with high mortality and disability rates. β-hydroxybutyrate (BHB), a ketone body, has received increasing attention for its role in cancer. However, its role in PCa remains unclear. This study aimed to explore the mechanism and feasibility of BHB as a treatment alternative for PCa. METHODS Colony formation assay, flow cytometry, western blot assay, and transwell assays were performed to determine the effect of BHB on the proliferation and metastasis of PCa cells. Tumor sphere formation and aldehyde dehydrogenase assays were used to identify the impact of BHB or indoleacetamide-N-methyltransferase (INMT) on the stemness of PCa cells. N6-methyladenosine (m6A)-meRIP real-time reverse transcription polymerase chain reaction and dual luciferase assays were conducted to confirm INMT upregulation via the METTL3-m6A pathway. Co-IP assay was used to detect the epigenetic modification of INMT by BHB-mediated β-hydroxybutyrylation (kbhb) and screen enzymes that regulate INMT kbhb. Mouse xenograft experiments demonstrated the antitumor effects of BHB in vivo. RESULTS BHB can inhibit the proliferation, migration, and invasion of PCa cells by suppressing their stemness. Mechanistically, INMT, whose expression is upregulated by the METTL3-m6A pathway, was demonstrated to be an oncogenic gene that promotes the stem-like characteristics of PCa cells. BHB can suppress the malignant phenotypes of PCa by kbhb of INMT, which in turn inhibits INMT expression. CONCLUSIONS Our findings indicate a role of BHB in PCa metabolic therapy, thereby suggesting an epigenetic therapeutic strategy to target INMT in aggressive PCa. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, Henan, Henan, 450000, China.
| | - Yunlong Li
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, Henan, Henan, 450000, China
| |
Collapse
|
12
|
Zheng X, Chen D, Li M, Liao J, He L, Chen L, Xu R, Zhang M. Calycosin (CA) inhibits proliferation, migration and invasion by suppression of CXCL10 signaling pathway in glioma. Aging (Albany NY) 2024; 16:4191-4203. [PMID: 38461458 PMCID: PMC10968673 DOI: 10.18632/aging.205572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/13/2023] [Indexed: 03/12/2024]
Abstract
Glioblastoma is the most common malignant tumor in the central nervous system and its occurrence and development is involved in various molecular abnormalities. C-X-C chemokine ligand 10 (CXCL10), an inflammatory chemokine, has been reported to be related to the pathogenesis of cancer while it has not yet been linked to glioma. Calycosin, a bioactive compound derived from Radix astragali, has demonstrated anticancer properties in several malignancies, including glioma. Nonetheless, its underlying mechanisms are not fully understood. This study explores CXCL10 as a potential therapeutic target for calycosin in the suppression of glioblastoma. We observed that CXCL10 expression correlates positively with glioma malignancy and inversely with patient prognosis, highlighting its potential as a glioblastoma treatment target. Furthermore, we found that calycosin inhibited proliferation, migration, and invasion in U87 and U251 glioma cells, and decreased CXCL10 expression in a dose-dependent manner, along with its downstream effectors such as NLRP3, NF-κB, and IL-1β. Additionally, molecular docking experiments demonstrated that calycosin exhibits a notable binding affinity to CXCL10. Overexpression of CXCL10 counteracted the inhibitory effects of calycosin on cell proliferation, migration, and invasion, while CXCL10 knockdown enhanced these effects. Finally, we verified that calycosin inhibited glioma growth in a xenograft mouse model and downregulated CXCL10 and its downstream molecules. These findings suggest that targeting CXCL10 may be an effective strategy in glioblastoma treatment, and calycosin emerges as a potential therapeutic agent.
Collapse
Affiliation(s)
- Xiaoyu Zheng
- Department of Intensive-Care Unit, Affiliated First Hospital, Jinan University, Guangzhou 510630, China
- Department of Neurosurgery, Affiliated Shunde Hospital, Jinan University, Shunde, Foshan 528000, China
| | - Danmin Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Menghui Li
- Department of Neurosurgery, Affiliated First Hospital, Jinan University, Guangzhou 510630, China
| | - Jianchen Liao
- Department of Neurosurgery, Affiliated First Hospital, Jinan University, Guangzhou 510630, China
| | - Liqun He
- Department of Neurosurgery, Affiliated First Hospital, Jinan University, Guangzhou 510630, China
| | - Lu Chen
- Department of Neurosurgery, Affiliated First Hospital, Jinan University, Guangzhou 510630, China
| | - Rong Xu
- Department of Operating Room, Guangzhou Tianhe Longdong Hospital, Guangzhou 510520, China
| | - Maoying Zhang
- Department of Neurosurgery, Affiliated Shunde Hospital, Jinan University, Shunde, Foshan 528000, China
- Department of Neurosurgery, Affiliated First Hospital, Jinan University, Guangzhou 510630, China
| |
Collapse
|
13
|
Giuliani G, Longo VD. Ketone bodies in cell physiology and cancer. Am J Physiol Cell Physiol 2024; 326:C948-C963. [PMID: 38189128 DOI: 10.1152/ajpcell.00441.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Ketogenic diets (KDs), fasting, or prolonged physical activity elevate serum ketone bodies (KBs) levels, providing an alternative fuel source for the brain and other organs. However, KBs play pleiotropic roles that go beyond their role in energy production. KBs can act as signaling metabolites, influence gene expression, proteins' posttranslational modifications (PTMs), inflammation, and oxidative stress. Here, we explore the impact of KBs on mammalian cell physiology, including aging and tissue regeneration. We also concentrate on KBs and cancer, given the extensive evidence that dietary approaches inducing ketosis, including fasting-mimicking diets (FMDs) and KDs, can prevent cancer and affect tumor progression.
Collapse
Affiliation(s)
- Giacomo Giuliani
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, California, United States
| | - Valter D Longo
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, California, United States
- IFOM, FIRC Institute of Molecular Oncology, Milan, Italy
| |
Collapse
|
14
|
Kodi T, Sankhe R, Gopinathan A, Nandakumar K, Kishore A. New Insights on NLRP3 Inflammasome: Mechanisms of Activation, Inhibition, and Epigenetic Regulation. J Neuroimmune Pharmacol 2024; 19:7. [PMID: 38421496 PMCID: PMC10904444 DOI: 10.1007/s11481-024-10101-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/06/2023] [Indexed: 03/02/2024]
Abstract
Inflammasomes are important modulators of inflammation. Dysregulation of inflammasomes can enhance vulnerability to conditions such as neurodegenerative diseases, autoinflammatory diseases, and metabolic disorders. Among various inflammasomes, Nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) is the best-characterized inflammasome related to inflammatory and neurodegenerative diseases. NLRP3 is an intracellular sensor that recognizes pathogen-associated molecular patterns and damage-associated patterns resulting in the assembly and activation of NLRP3 inflammasome. The NLRP3 inflammasome includes sensor NLRP3, adaptor apoptosis-associated speck-like protein (ASC), and effector cysteine protease procaspase-1 that plays an imperative role in caspase-1 stimulation which further initiates a secondary inflammatory response. Regulation of NLRP3 inflammasome ameliorates NLRP3-mediated diseases. Much effort has been invested in studying the activation, and exploration of specific inhibitors and epigenetic mechanisms controlling NLRP3 inflammasome. This review gives an overview of the established NLRP3 inflammasome assembly, its brief molecular mechanistic activations as well as a current update on specific and non-specific NLRP3 inhibitors that could be used in NLRP3-mediated diseases. We also focused on the recently discovered epigenetic mechanisms mediated by DNA methylation, histone alterations, and microRNAs in regulating the activation and expression of NLRP3 inflammasome, which has resulted in a novel method of gaining insight into the mechanisms that modulate NLRP3 inflammasome activity and introducing potential therapeutic strategies for CNS disorders.
Collapse
Affiliation(s)
- Triveni Kodi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Runali Sankhe
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Adarsh Gopinathan
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Anoop Kishore
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
15
|
Pu K, Feng Y, Tang Q, Yang G, Xu C. Review of dietary patterns and gastric cancer risk: epidemiology and biological evidence. Front Oncol 2024; 14:1333623. [PMID: 38444674 PMCID: PMC10912593 DOI: 10.3389/fonc.2024.1333623] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/02/2024] [Indexed: 03/07/2024] Open
Abstract
Due to rapid research expansion on dietary factors and development of cancer prevention guidelines, the field of dietary pattern and its relationship to cancer risk has gained more focus. Numerous epidemiology studies have reported associations between Gastric Cancer (GC) and both data-driven posteriori dietary pattern and priori dietary pattern defined by predetermined dietary indexes. As dietary patterns have evolved, a series of patterns based on biological markers has advanced, offering deeper insights into the relationship between diet and the risk of cancer. Although researches on dietary patterns and cancer risk are booming, there is limited body of literature focusing specifically on GC. In this study, we compare the similarities and differences among the specific components of dietary patterns and indices, summarize current state of knowledge regarding dietary patterns related to GC and illustrate their potential mechanisms for GC prevention. In conclusion, we offer suggestions for future research based on the emerging themes within this rapidly evolving field.
Collapse
Affiliation(s)
- Ke Pu
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yang Feng
- Department of Neurosurgery, Xi’an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi’an, Shaanxi, China
| | - Qian Tang
- Statesboro Office, Southeast Medical Group, Atlanta, GA, United States
| | - Guodong Yang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Chuan Xu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Neudorf H, Little JP. Impact of fasting & ketogenic interventions on the NLRP3 inflammasome: A narrative review. Biomed J 2024; 47:100677. [PMID: 37940045 PMCID: PMC10821592 DOI: 10.1016/j.bj.2023.100677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
Overactivation of the NLRP3 inflammasome is implicated in chronic low-grade inflammation associated with various disease states, including obesity, type 2 diabetes, atherosclerosis, Alzheimer's disease, and Parkinson's disease. Emerging evidence, mostly from cell and animal models of disease, supports a role for ketosis in general, and the main circulating ketone body beta-hydroxybutyrate (BHB) in particular, in reducing NLRP3 inflammasome activation to improve chronic inflammation. As a result, interventions that can induce ketosis (e.g., fasting, intermittent fasting, time-restricted feeding/eating, very low-carbohydrate high-fat ketogenic diets) and/or increase circulating BHB (e.g., exogenous ketone supplementation) have garnered increasing interest for their therapeutic potential. The purpose of the present review is to summarize our current understanding of the literature on how ketogenic interventions impact the NLRP3 inflammasome across human, rodent and cell models. Overall, there is convincing evidence that ketogenic interventions, likely acting through multiple interacting mechanisms in a cell-, disease- and context-specific manner, can reduce NLRP3 inflammasome activation. The evidence supports a direct effect of BHB, although it is important to consider the myriad of other metabolic responses to fasting or ketogenic diet interventions (e.g., elevated lipolysis, low insulin, stable glucose, negative energy balance) that may also impact innate immune responses. Future research is needed to translate promising findings from discovery science to clinical application.
Collapse
Affiliation(s)
- Helena Neudorf
- University of British Columbia, Okanagan Campus, Kelowna, BC, Canada
| | - Jonathan P Little
- University of British Columbia, Okanagan Campus, Kelowna, BC, Canada.
| |
Collapse
|
17
|
Guo Z, Su Z, Wei Y, Zhang X, Hong X. Pyroptosis in glioma: Current management and future application. Immunol Rev 2024; 321:152-168. [PMID: 38063042 DOI: 10.1111/imr.13294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Glioma, the predominant form of central nervous system (CNS) malignancies, presents a significant challenge due to its high prevalence and low 5-year survival rate. The efficacy of current treatment methods is limited by the presence of the blood-brain barrier, the immunosuppressive microenvironment, and other factors. Immunotherapy has emerged as a promising approach, as it can overcome the blood-brain barrier. A tumor's immune privilege, which is induced by an immunosuppressive environment, constricts immunotherapy's clinical impact in glioma. Pyroptosis, a programmed cell death mechanism facilitated by gasdermins, plays a significant role in the management of glioma. Its ability to initiate and regulate tumor occurrence, progression, and metastasis is well-established. However, it is crucial to note that uncontrolled or excessive cell death can result in tissue damage, acute inflammation, and cytokine release syndrome, thereby potentially promoting tumor advancement or recurrence. This paper aims to elucidate the molecular pathways involved in pyroptosis and subsequently discuss its induction in cancer therapy. In addition, the current treatment methods of glioma and the use of pyroptosis in these treatments are introduced. It is hoped to provide more ideas for the treatment of glioma.
Collapse
Affiliation(s)
- Zeshang Guo
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, China
| | - Zhenjin Su
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, China
| | - Ying Wei
- Department of Radiology, The First Bethune Hospital of Jilin University, Changchun, China
| | - Xingmei Zhang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Hong
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Kraushaar K, Hollenbach J, Schmauch N, Seeger B, Pfarrer C. β-Hydroxybutyrate affects cell physiological parameters, inflammatory markers and hormone receptor expression in bovine endometrial gland cells in vitro. Placenta 2023; 142:98-105. [PMID: 37683337 DOI: 10.1016/j.placenta.2023.08.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
INTRODUCTION After calving, dairy cows are commonly affected by negative energy balance (NEB), indicated by high β-Hydroxybutyrate (BHBA) blood levels. These are associated with subfertility frequently related to uterine inflammation. Since this could compromise functionality of endometrial glands that are essential for proper embryo implantation in sheep, we investigated effects of BHBA on bovine endometrial gland cells (BEGC) in vitro. MATERIAL AND METHODS BEGC were stimulated with different concentrations of BHBA over different periods. Cell metabolism and motility were examined by MTT-assay and Live-cell-imaging. The mRNA expression of the receptors for estrogen (ESR1, ESR2), progesterone (PR) and IFNτ (IFNAR1, IFNAR2), and the inflammatory cytokines TNFα and IL-6 was determined by RT-qPCR. Protein expression for PR and ESR1 was analyzed by semiquantitative Western Blot. RESULTS BEGC metabolism was significantly decreased after stimulation with 1.2, 1.8 and 2.4 mM BHBA over 24 and 36 h. Cell motility was significantly reduced by 1.8 and 2.4 mM BHBA already after 11 h. After 24 h stimulation, the ESR1 mRNA expression was significantly increased in BEGC stimulated with 0.6 mM BHBA. PR and TNFα mRNA expressions were increased in cells stimulated with 2.4 mM BHBA. Protein expression of ESR1 and PR was not altered. DISCUSSION Treatment with BHBA leads to restriction of BEGC metabolism and motility, and increased expression of TNFα, ESR1 and PR in vitro. This could explain how increased BHBA blood levels might compromise functionality of uterine glands in vivo and thus could contribute to compromised reproductive success of cows suffering from NEB.
Collapse
Affiliation(s)
- Kim Kraushaar
- Institute of Anatomy, University of Veterinary Medicine Hannover Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Julia Hollenbach
- Institute of Anatomy, University of Veterinary Medicine Hannover Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany.
| | - Niklas Schmauch
- Institute of Anatomy, University of Veterinary Medicine Hannover Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Bettina Seeger
- Institute for Food Quality and Safety, Research Group Food Toxicology and Alternative/Complementary Methods to Animal Experiments, University of Veterinary Medicine Hannover Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Christiane Pfarrer
- Institute of Anatomy, University of Veterinary Medicine Hannover Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| |
Collapse
|
19
|
Hildebrand C, Hollenbach J, Seeger B, Pfarrer C. β-Hydroxybutyrate Effects on Bovine Caruncular Epithelial Cells: A Model for Investigating the Peri-Implantation Period Disruption in Ketotic Dairy Cows. Animals (Basel) 2023; 13:2950. [PMID: 37760350 PMCID: PMC10525762 DOI: 10.3390/ani13182950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Ketosis is a metabolic disorder arising from a negative energy balance (NEB). It is characterized by high β-Hydroxybutyrate (BHBA) blood levels and associated with reduced fertility in dairy cows. To investigate the impact of BHBA on bovine caruncular epithelial cells (BCEC) in vitro, these cells were stimulated with different concentrations of BHBA. Cell metabolism and motility were examined using an MTT assay and Live-cell imaging. RT-qPCR was used to examine mRNA expressions of TNF, IL6, RELA, prostaglandin E2 synthase (PTGES2) and receptor (PTGER2) as well as integrin subunits ITGAV, ITGA6, ITGB1 and ITGB3. Stimulation with 1.8 and 2.4 mM of BHBA negatively affected cell metabolism and motility. TNF showed increased mRNA expression related to rising BHBA concentrations. IL6, RELA, ITGAV, ITGA6, ITGB1 and ITGB3 as well as PTGER2 showed no changes in mRNA expression. Stimulation with 0.6 and 1.2 mM of BHBA significantly increased the mRNA expression of PTGES2. This does not indicate a negative effect on reproductive performance because low BHBA concentrations are found in steady-state conditions. However, the results of the study show negative effects of high BHBA concentrations on the function of BCECs as well as an inflammatory response. This could negatively affect the feto-maternal communication during the peri-implantation period in ketotic dairy cows.
Collapse
Affiliation(s)
- Carolin Hildebrand
- Institute of Anatomy, University of Veterinary Medicine Hannover Foundation, Bischofsholer Damm 15, 30173 Hanover, Germany; (C.H.); (J.H.)
| | - Julia Hollenbach
- Institute of Anatomy, University of Veterinary Medicine Hannover Foundation, Bischofsholer Damm 15, 30173 Hanover, Germany; (C.H.); (J.H.)
| | - Bettina Seeger
- Research Group Food Toxicology and Alternative/Complementary Methods to Animal Experiments, Institute for Food Quality and Safety, University of Veterinary Medicine Hannover Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany;
| | - Christiane Pfarrer
- Institute of Anatomy, University of Veterinary Medicine Hannover Foundation, Bischofsholer Damm 15, 30173 Hanover, Germany; (C.H.); (J.H.)
| |
Collapse
|
20
|
Sim J, Park J, Moon JS, Lim J. Dysregulation of inflammasome activation in glioma. Cell Commun Signal 2023; 21:239. [PMID: 37723542 PMCID: PMC10506313 DOI: 10.1186/s12964-023-01255-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/01/2023] [Indexed: 09/20/2023] Open
Abstract
Gliomas are the most common brain tumors characterized by complicated heterogeneity. The genetic, molecular, and histological pathology of gliomas is characterized by high neuro-inflammation. The inflammatory microenvironment in the central nervous system (CNS) has been closely linked with inflammasomes that control the inflammatory response and coordinate innate host defenses. Dysregulation of the inflammasome causes an abnormal inflammatory response, leading to carcinogenesis in glioma. Because of the clinical importance of the various physiological properties of the inflammasome in glioma, the inflammasome has been suggested as a promising treatment target for glioma management. Here, we summarize the current knowledge on the contribution of the inflammasomes in glioma and therapeutic insights. Video Abstract.
Collapse
Affiliation(s)
- JeongMin Sim
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, 11160, Republic of Korea
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University College of Medicine, 59 Yatap-Ro, Bundang-Gu, Seongnam, 13496, Republic of Korea
| | - JeongMan Park
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, 11160, Republic of Korea
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University College of Medicine, 59 Yatap-Ro, Bundang-Gu, Seongnam, 13496, Republic of Korea
| | - Jong-Seok Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Republic of Korea.
| | - Jaejoon Lim
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, 11160, Republic of Korea.
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University College of Medicine, 59 Yatap-Ro, Bundang-Gu, Seongnam, 13496, Republic of Korea.
| |
Collapse
|
21
|
Santangelo A, Corsello A, Spolidoro GCI, Trovato CM, Agostoni C, Orsini A, Milani GP, Peroni DG. The Influence of Ketogenic Diet on Gut Microbiota: Potential Benefits, Risks and Indications. Nutrients 2023; 15:3680. [PMID: 37686712 PMCID: PMC10489661 DOI: 10.3390/nu15173680] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
The ketogenic diet (KD) restricts carbohydrate consumption, leading to an increase in ketone bodies, such as acetoacetate, β-hydroxybutyrate, and acetone, which are utilized as energy substrates. This dietary approach impacts several biochemical processes, resulting in improved clinical management of various disorders, particularly in childhood. However, the exact mechanisms underlying the efficacy of KD remain unclear. Interestingly, KD may also impact the gut microbiota, which plays a pivotal role in metabolism, nutrition, and the development of the immune and nervous systems. KD has gained popularity for its potential benefits in weight loss, blood sugar control, and certain neurological conditions. This narrative review sums up KD-related studies published over 30 years. While short-term studies have provided valuable insights into the effects of KD on the gut microbiota, persistent uncertainties surround its long-term efficacy and potential for inducing dysbiosis. The significant influence of KD on epigenetic mechanisms, intracellular pathways, and gut microbial composition underscores its potential as a therapeutic choice. However, a judicious consideration of the potential risks associated with the strict adherence to a low-carbohydrate, high-fat, and high-protein regimen over prolonged periods is imperative. As KDs gain popularity among the adolescent and young adult demographic for weight management, it becomes imperative to undertake additional research to comprehensively assess their impact on nutritional status and gut microbiota, ensuring a holistic and sustainable approach to medical nutrition.
Collapse
Affiliation(s)
- Andrea Santangelo
- Department of Pediatrics, Santa Chiara Hospital, Azienda Ospedaliero Universitaria Pisana, 56126 Pisa, Italy; (A.S.); (A.O.); (D.G.P.)
| | - Antonio Corsello
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (G.C.I.S.); (C.A.); (G.P.M.)
| | - Giulia Carla Immacolata Spolidoro
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (G.C.I.S.); (C.A.); (G.P.M.)
| | - Chiara Maria Trovato
- Hepatology Gastroenterology and Nutrition Unit, Bambino Gesù Children Hospital, 00165 Rome, Italy;
| | - Carlo Agostoni
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (G.C.I.S.); (C.A.); (G.P.M.)
- Pediatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Alessandro Orsini
- Department of Pediatrics, Santa Chiara Hospital, Azienda Ospedaliero Universitaria Pisana, 56126 Pisa, Italy; (A.S.); (A.O.); (D.G.P.)
| | - Gregorio Paolo Milani
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (G.C.I.S.); (C.A.); (G.P.M.)
- Pediatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Diego Giampietro Peroni
- Department of Pediatrics, Santa Chiara Hospital, Azienda Ospedaliero Universitaria Pisana, 56126 Pisa, Italy; (A.S.); (A.O.); (D.G.P.)
| |
Collapse
|
22
|
Enders JD, Thomas S, Lynch P, Jack J, Ryals JM, Puchalska P, Crawford P, Wright DE. ATP-gated potassium channels contribute to ketogenic diet-mediated analgesia in mice. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 14:100138. [PMID: 38099277 PMCID: PMC10719532 DOI: 10.1016/j.ynpai.2023.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 12/17/2023]
Abstract
Chronic pain is a substantial health burden and options for treating chronic pain remain minimally effective. Ketogenic diets are emerging as well-tolerated, effective therapeutic strategies in preclinical models of chronic pain, especially diabetic neuropathy. We tested whether a ketogenic diet is antinociceptive through ketone oxidation and related activation of ATP-gated potassium (KATP) channels in mice. We demonstrate that consumption of a ketogenic diet for one week reduced evoked nocifensive behaviors (licking, biting, lifting) following intraplantar injection of different noxious stimuli (methylglyoxal, cinnamaldehyde, capsaicin, or Yoda1) in mice. A ketogenic diet also decreased the expression of p-ERK, an indicator of neuronal activation in the spinal cord, following peripheral administration of these stimuli. Using a genetic mouse model with deficient ketone oxidation in peripheral sensory neurons, we demonstrate that protection against methylglyoxal-induced nociception by a ketogenic diet partially depends on ketone oxidation by peripheral neurons. Injection of tolbutamide, a KATP channel antagonist, prevented ketogenic diet-mediated antinociception following intraplantar capsaicin injection. Tolbutamide also restored the expression of spinal activation markers in ketogenic diet-fed, capsaicin-injected mice. Moreover, activation of KATP channels with the KATP channel agonist diazoxide reduced pain-like behaviors in capsaicin-injected, chow-fed mice, similar to the effects observed with a ketogenic diet. Diazoxide also reduced the number of p-ERK+ cells in capsaicin-injected mice. These data support a mechanism that includes neuronal ketone oxidation and activation of KATP channels to provide ketogenic diet-related analgesia. This study also identifies KATP channels as a new target to mimic the antinociceptive effects of a ketogenic diet.
Collapse
Affiliation(s)
- Jonathan D. Enders
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Sarah Thomas
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Paige Lynch
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Jarrid Jack
- Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Janelle M. Ryals
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Patrycja Puchalska
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, MN 55455, United States
| | - Peter Crawford
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, MN 55455, United States
- Department of Molecular Biology, Biochemistry, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Douglas E. Wright
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, United States
- KU Diabetes Institute, University of Kansas Medical Center, Kansas City, KS 66160, United States
| |
Collapse
|
23
|
Enders JD, Thomas S, Lynch P, Jack J, Ryals JM, Puchalska P, Crawford P, Wright DE. ATP-Gated Potassium Channels Contribute to Ketogenic Diet-Mediated Analgesia in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541799. [PMID: 37292762 PMCID: PMC10245818 DOI: 10.1101/2023.05.22.541799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chronic pain is a substantial health burden and options for treating chronic pain remain minimally effective. Ketogenic diets are emerging as well-tolerated, effective therapeutic strategies in preclinical models of chronic pain, especially diabetic neuropathy. We tested whether a ketogenic diet is antinociceptive through ketone oxidation and related activation of ATP-gated potassium (KATP) channels in mice. We demonstrate that consumption of a ketogenic diet for one week reduced evoked nocifensive behaviors (licking, biting, lifting) following intraplantar injection of different noxious stimuli (methylglyoxal, cinnamaldehyde, capsaicin, or Yoda1) in mice. A ketogenic diet also decreased the expression of p-ERK, an indicator of neuronal activation in the spinal cord, following peripheral administration of these stimuli. Using a genetic mouse model with deficient ketone oxidation in peripheral sensory neurons, we demonstrate that protection against methylglyoxal-induced nociception by a ketogenic diet partially depends on ketone oxidation by peripheral neurons. Injection of tolbutamide, a KATP channel antagonist, prevented ketogenic diet-mediated antinociception following intraplantar capsaicin injection. Tolbutamide also restored the expression of spinal activation markers in ketogenic diet-fed, capsaicin-injected mice. Moreover, activation of KATP channels with the KATP channel agonist diazoxide reduced pain-like behaviors in capsaicin-injected, chow-fed mice, similar to the effects observed with a ketogenic diet. Diazoxide also reduced the number of p-ERK+ cells in capsaicin-injected mice. These data support a mechanism that includes neuronal ketone oxidation and activation of KATP channels to provide ketogenic diet-related analgesia. This study also identifies KATP channels as a new target to mimic the antinociceptive effects of a ketogenic diet.
Collapse
Affiliation(s)
- Jonathan D Enders
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, 66160
| | - Sarah Thomas
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, 66160
| | - Paige Lynch
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, 66160
| | - Jarrid Jack
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, 66160
| | - Janelle M Ryals
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, 66160
| | - Patrycja Puchalska
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, MN, 55455
| | - Peter Crawford
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, MN, 55455
- Department of Molecular Biology, Biochemistry, and Biophysics, University of Minnesota, Minneapolis, MN, 55455
| | - Douglas E Wright
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, 66160
- KU Diabetes Institute, University of Kansas Medical Center, Kansas City, KS, 66160
| |
Collapse
|
24
|
Corsello A, Trovato CM, Di Profio E, Cardile S, Campoy C, Zuccotti G, Verduci E, Diamanti A. Ketogenic diet in children and adolescents: The effects on growth and nutritional status. Pharmacol Res 2023; 191:106780. [PMID: 37088260 DOI: 10.1016/j.phrs.2023.106780] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 04/25/2023]
Abstract
The ketogenic diet is known to be a possible adjuvant treatment in several medical conditions, such as in patients with severe or drug-resistant forms of epilepsy. Its use has recently been increasing among adolescents and young adults due to its supposed weight-loss effect, mediated by lipolysis and lowered insulin levels. However, there are still no precise indications on the possible use of ketogenic diets in pediatric age for weight loss. This approach has also recently been proposed for other types of disorder such as inherited metabolic disorders, Prader-Willi syndrome, and some specific types of cancers. Due to its unbalanced ratio of lipids, carbohydrates and proteins, a clinical evaluation of possible side effects with a strict evaluation of growth and nutritional status is essential in all patients following a long-term restrictive diet such as the ketogenic one. The prophylactic use of micronutrients supplementation should be considered before starting any ketogenic diet. Lastly, while there is sufficient literature on possible short-term side effects of ketogenic diets, their possible long-term impact on growth and nutritional status is not yet fully understood, especially when started in pediatric age.
Collapse
Affiliation(s)
- Antonio Corsello
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Chiara Maria Trovato
- Hepatology Gastroenterology and Nutrition Unit, Bambino Gesù Children Hospital IRCCS, Rome, Italy
| | - Elisabetta Di Profio
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy; Department of Health Sciences, University of Milan, Milan, Italy
| | - Sabrina Cardile
- Hepatology Gastroenterology and Nutrition Unit, Bambino Gesù Children Hospital IRCCS, Rome, Italy
| | - Cristina Campoy
- Department of Pediatrics, School of Medicine, University of Granada, Granada, Spain; EURISTIKOS Excellence Centre for Pediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain; Spanish Network of Biomedical Research in Epidemiology and Public Health (CIBERESP), Granada's node, Institute of Health Carlos III, Madrid, Spain
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy; Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy; Pediatric Clinical Research Center, Fondazione Romeo ed Enrica Invernizzi, University of Milan, Milan, Italy
| | - Elvira Verduci
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy; Department of Health Sciences, University of Milan, Milan, Italy.
| | - Antonella Diamanti
- Hepatology Gastroenterology and Nutrition Unit, Bambino Gesù Children Hospital IRCCS, Rome, Italy
| |
Collapse
|
25
|
Zhang Z, Li X, Wang Y, Wei Y, Wei X. Involvement of inflammasomes in tumor microenvironment and tumor therapies. J Hematol Oncol 2023; 16:24. [PMID: 36932407 PMCID: PMC10022228 DOI: 10.1186/s13045-023-01407-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/08/2023] [Indexed: 03/19/2023] Open
Abstract
Inflammasomes are macromolecular platforms formed in response to damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns, whose formation would cause maturation of interleukin-1 (IL-1) family members and gasdermin D (GSDMD), leading to IL-1 secretion and pyroptosis respectively. Several kinds of inflammasomes detecting different types of dangers have been found. The activation of inflammasomes is regulated at both transcription and posttranscription levels, which is crucial in protecting the host from infections and sterile insults. Present findings have illustrated that inflammasomes are involved in not only infection but also the pathology of tumors implying an important link between inflammation and tumor development. Generally, inflammasomes participate in tumorigenesis, cell death, metastasis, immune evasion, chemotherapy, target therapy, and radiotherapy. Inflammasome components are upregulated in some tumors, and inflammasomes can be activated in cancer cells and other stromal cells by DAMPs, chemotherapy agents, and radiation. In some cases, inflammasomes inhibit tumor progression by initiating GSDMD-mediated pyroptosis in cancer cells and stimulating IL-1 signal-mediated anti-tumor immunity. However, IL-1 signal recruits immunosuppressive cell subsets in other cases. We discuss the conflicting results and propose some possible explanations. Additionally, we also summarize interventions targeting inflammasome pathways in both preclinical and clinical stages. Interventions targeting inflammasomes are promising for immunotherapy and combination therapy.
Collapse
Affiliation(s)
- Ziqi Zhang
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Xue Li
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Yang Wang
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Yuquan Wei
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Xiawei Wei
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| |
Collapse
|
26
|
Xiao Q, Deng B, Akbari A, Liu Q, Zhu B. The ketogenic diet could improve the efficacy of curcumin and Oldenlandia diffusa extract in the treatment of gastric cancer by increasing miR340 expression and apoptosis mediated by autophagy, oxidative stress, and angiogenesis. J Food Biochem 2022; 46:e14407. [PMID: 36219718 DOI: 10.1111/jfbc.14407] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/03/2022] [Accepted: 08/30/2022] [Indexed: 01/13/2023]
Abstract
The pathogenesis of gastric cancer is a multistage process that involves glucose metabolism, inflammation, oxidative damage, angiogenesis, autophagy, and apoptosis. Moreover, microRNA-340 (miR340) also plays a vital role in tumorigenesis and the biology of gastric cancer as an epigenetic factor. It seems that the use of ketogenic diets (KDs) and plant extracts that have antitumor, anti-inflammatory, and antioxidant properties can be good treatment options to cure gastric cancer. The aim of this study was to investigate the role of miR-340 on pathways involved in the pathogenesis of gastric cancer and the improving effects of the KD, Oldenlandia diffusa extract (ODE), and curcumin in the animal model of gastric cancer. One hundred and ten male Wistar rats were divided into control and treatment groups. The expression of miR-340 along with genes involved in inflammation, oxidative damage, angiogenesis, and apoptosis were assessed. The results showed that the KD and different doses of curcumin and ODE in a dose-dependent behavior could induce apoptosis and the expression of the Akt/mTORC1 pathway and inhibit inflammation, oxidative damage, and angiogenesis in the gastric tissue of rats with cancer. In addition, there was no significant difference between cancer groups receiving ODE and curcumin. These results also showed that consumption of KD could significantly increase the efficacy of ODE and curcumin which may be due to increasing miR-340 expression. The results of this study suggested well that the KD along with conventional therapies in traditional medicine can be a useful solution for the prevention and treatment of gastric cancer. PRACTICAL APPLICATIONS: Gastric cancer is the third leading cause of cancer death, and genetic and epigenetic factors, including miR-340, are involved in its pathogenesis. However, the use of ketogenic diets (KDs) and plant products such as curcumin and Oldenlandia diffusa extract (ODE) can play an effective role in inhibiting tumorigenesis in some cancers. Our results showed that the KD and different doses of curcumin and ODE could induce apoptosis and the expression of the Akt/mTORC1 pathway and inhibit inflammation, oxidative damage, and angiogenesis in the gastric tissue. Moreover, the KD could significantly increase the efficacy of ODE and curcumin which may be due to an increase in miR-340 expression. These findings provide novel perceptions about the mechanisms of the KD, curcumin, and ODE to cure gastric cancer. It suggested that the KD as adjunctive therapy along with conventional therapies in traditional medicine could be considered a useful solution to prevent and treat gastric cancer.
Collapse
Affiliation(s)
- Qiuju Xiao
- Department of Oncology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, China
| | - Bo Deng
- Department of Oncology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, China
| | - Abolfazl Akbari
- Department of Physiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Qisheng Liu
- Department of Gastroenterology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, China
| | - Bisheng Zhu
- Department of Oncology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
27
|
Xu C, Shang Z, Najafi M. Lung Pneumonitis and Fibrosis in Cancer Therapy: A Review on Cellular and Molecular Mechanisms. Curr Drug Targets 2022; 23:1505-1525. [PMID: 36082868 DOI: 10.2174/1389450123666220907144131] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/05/2022] [Accepted: 08/02/2022] [Indexed: 01/25/2023]
Abstract
Fibrosis and pneumonitis are the most important side effects of lung tissue following cancer therapy. Radiotherapy and chemotherapy by some drugs, such as bleomycin, can induce pneumonitis and fibrosis. Targeted therapy and immunotherapy also may induce pneumonitis and fibrosis to a lesser extent compared to chemotherapy and radiotherapy. Activation of lymphocytes by immunotherapy or infiltration of inflammatory cells such as macrophages, lymphocytes, neutrophils, and mast cells following chemo/radiation therapy can induce pneumonitis. Furthermore, the polarization of macrophages toward M2 cells and the release of anti-inflammatory cytokines stimulate fibrosis. Lung fibrosis and pneumonitis may also be potentiated by some other changes such as epithelial-mesenchymal transition (EMT), oxidative stress, reduction/oxidation (redox) responses, renin-angiotensin system, and the upregulation of some inflammatory mediators such as a nuclear factor of kappa B (NF-κB), inflammasome, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS). Damages to the lung vascular system and the induction of hypoxia also can induce pulmonary injury following chemo/radiation therapy. This review explains various mechanisms of the induction of pneumonitis and lung fibrosis following cancer therapy. Furthermore, the targets and promising agents to mitigate lung fibrosis and pneumonitis will be discussed.
Collapse
Affiliation(s)
- Chaofeng Xu
- Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang, 311800, China
| | - Zhongtu Shang
- Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang, 311800, China
| | - Masoud Najafi
- Medical Technology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
28
|
Hwang CY, Choe W, Yoon KS, Ha J, Kim SS, Yeo EJ, Kang I. Molecular Mechanisms for Ketone Body Metabolism, Signaling Functions, and Therapeutic Potential in Cancer. Nutrients 2022; 14:nu14224932. [PMID: 36432618 PMCID: PMC9694619 DOI: 10.3390/nu14224932] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The ketone bodies (KBs) β-hydroxybutyrate and acetoacetate are important alternative energy sources for glucose during nutrient deprivation. KBs synthesized by hepatic ketogenesis are catabolized to acetyl-CoA through ketolysis in extrahepatic tissues, followed by the tricarboxylic acid cycle and electron transport chain for ATP production. Ketogenesis and ketolysis are regulated by the key rate-limiting enzymes, 3-hydroxy-3-methylglutaryl-CoA synthase 2 and succinyl-CoA:3-oxoacid-CoA transferase, respectively. KBs participate in various cellular processes as signaling molecules. KBs bind to G protein-coupled receptors. The most abundant KB, β-hydroxybutyrate, regulates gene expression and other cellular functions by inducing post-translational modifications. KBs protect tissues by regulating inflammation and oxidative stress. Recently, interest in KBs has been increasing due to their potential for treatment of various diseases such as neurological and cardiovascular diseases and cancer. Cancer cells reprogram their metabolism to maintain rapid cell growth and proliferation. Dysregulation of KB metabolism also plays a role in tumorigenesis in various types of cancer. Targeting metabolic changes through dietary interventions, including fasting and ketogenic diets, has shown beneficial effects in cancer therapy. Here, we review current knowledge of the molecular mechanisms involved in the regulation of KB metabolism and cellular signaling functions, and the therapeutic potential of KBs and ketogenic diets in cancer.
Collapse
Affiliation(s)
- Chi Yeon Hwang
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eui-Ju Yeo
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
- Correspondence: (E.-J.Y.); (I.K.); Tel.: +82-32-899-6050 (E.-J.Y.); +82-2-961-0922 (I.K.)
| | - Insug Kang
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (E.-J.Y.); (I.K.); Tel.: +82-32-899-6050 (E.-J.Y.); +82-2-961-0922 (I.K.)
| |
Collapse
|
29
|
Seyfried TN, Arismendi-Morillo G, Zuccoli G, Lee DC, Duraj T, Elsakka AM, Maroon JC, Mukherjee P, Ta L, Shelton L, D'Agostino D, Kiebish M, Chinopoulos C. Metabolic management of microenvironment acidity in glioblastoma. Front Oncol 2022; 12:968351. [PMID: 36059707 PMCID: PMC9428719 DOI: 10.3389/fonc.2022.968351] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022] Open
Abstract
Glioblastoma (GBM), similar to most cancers, is dependent on fermentation metabolism for the synthesis of biomass and energy (ATP) regardless of the cellular or genetic heterogeneity seen within the tumor. The transition from respiration to fermentation arises from the documented defects in the number, the structure, and the function of mitochondria and mitochondrial-associated membranes in GBM tissue. Glucose and glutamine are the major fermentable fuels that drive GBM growth. The major waste products of GBM cell fermentation (lactic acid, glutamic acid, and succinic acid) will acidify the microenvironment and are largely responsible for drug resistance, enhanced invasion, immunosuppression, and metastasis. Besides surgical debulking, therapies used for GBM management (radiation, chemotherapy, and steroids) enhance microenvironment acidification and, although often providing a time-limited disease control, will thus favor tumor recurrence and complications. The simultaneous restriction of glucose and glutamine, while elevating non-fermentable, anti-inflammatory ketone bodies, can help restore the pH balance of the microenvironment while, at the same time, providing a non-toxic therapeutic strategy for killing most of the neoplastic cells.
Collapse
Affiliation(s)
- Thomas N. Seyfried
- Biology Department, Boston College, Chestnut Hill, MA, United States
- *Correspondence: Thomas N. Seyfried,
| | - Gabriel Arismendi-Morillo
- Instituto de Investigaciones Biológicas, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Giulio Zuccoli
- The Program for the Study of Neurodevelopment in Rare Disorders (NDRD), University of Pittsburgh, Pittsburgh, PA, United States
| | - Derek C. Lee
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Tomas Duraj
- Faculty of Medicine, Institute for Applied Molecular Medicine (IMMA), CEU San Pablo University, Madrid, Spain
| | - Ahmed M. Elsakka
- Neuro Metabolism, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Joseph C. Maroon
- Department of Neurosurgery, University of Pittsburgh, Medical Center, Pittsburgh, PA, United States
| | - Purna Mukherjee
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Linh Ta
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | | | - Dominic D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, United States
| | | | | |
Collapse
|
30
|
Enders J, Swanson T, Ryals J, Wright D. A ketogenic diet reduces mechanical allodynia and improves epidermal innervation in diabetic mice. Pain 2022; 163:682-689. [PMID: 34252910 PMCID: PMC10067134 DOI: 10.1097/j.pain.0000000000002401] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/28/2021] [Indexed: 01/21/2023]
Abstract
ABSTRACT Dietary interventions are promising approaches to treat pain associated with metabolic changes because they impact both metabolic and neural components contributing to painful neuropathy. Here, we tested whether consumption of a ketogenic diet could affect sensation, pain, and epidermal innervation loss in type 1 diabetic mice. C57Bl/6 mice were rendered diabetic using streptozotocin and administered a ketogenic diet at either 3 weeks (prevention) or 9 weeks (reversal) of uncontrolled diabetes. We quantified changes in metabolic biomarkers, sensory thresholds, and epidermal innervation to assess impact on neuropathy parameters. Diabetic mice consuming a ketogenic diet had normalized weight gain, reduced blood glucose, elevated blood ketones, and reduced hemoglobin-A1C levels. These metabolic biomarkers were also improved after 9 weeks of diabetes followed by 4 weeks of a ketogenic diet. Diabetic mice fed a control chow diet developed rapid mechanical allodynia of the hind paw that was reversed within a week of consumption of a ketogenic diet in both prevention and reversal studies. Loss of thermal sensation was also improved by consumption of a ketogenic diet through normalized thermal thresholds. Finally, diabetic mice consuming a ketogenic diet had normalized epidermal innervation, including after 9 weeks of uncontrolled diabetes and 4 weeks of consumption of the ketogenic diet. These results suggest that, in mice, a ketogenic diet can prevent and reverse changes in key metabolic biomarkers, altered sensation, pain, and axon innervation of the skin. These results identify a ketogenic diet as a potential therapeutic intervention for patients with painful diabetic neuropathy and/or epidermal axon loss.
Collapse
Affiliation(s)
- Jonathan Enders
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Taylor Swanson
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Janelle Ryals
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Douglas Wright
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
31
|
Shen L, Li Y, Li N, Zhao Y, Zhou Q, Shen L, Li Z. Integrative analysis reveals the functional implications and clinical relevance of pyroptosis in low-grade glioma. Sci Rep 2022; 12:4527. [PMID: 35296768 PMCID: PMC8925295 DOI: 10.1038/s41598-022-08619-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/10/2022] [Indexed: 11/09/2022] Open
Abstract
Using the Chinese Glioma Genome Atlas (training dataset) and The Cancer Genome Atlas (validation dataset), we found that low-grade gliomas can be divided into two molecular subclasses based on 30 pyroptosis genes. Cluster 1 presented higher immune cell and immune function scores and poorer prognosis than Cluster 2. We established a prognostic model based on 10 pyroptosis genes; the model could predict overall survival in glioma and was well validated in an independent dataset. The high-risk group had relatively higher immune cell and immune function scores and lower DNA methylation levels in pyroptosis genes than the low-risk group. There were no marked differences in pyroptosis gene alterations between the high- and low-risk groups. The competing endogenous RNA (ceRNA) regulatory network uncovered the lncRNA-miRNA-mRNA regulation patterns of the different risk groups in low-grade glioma. Five pairs of target genes and drugs were identified. In vitro, CASP8 silencing inhibited the migration and invasion of glioma cells. The expression of pyroptosis genes can reflect the molecular biological and clinical features of low-grade glioma subclasses. The developed prognostic model can predict overall survival and distinguish molecular alterations in patients. Our integrated analyses could provide valuable guidelines for improving risk management and therapy for low-grade glioma patients.
Collapse
Affiliation(s)
- Lin Shen
- Department of Oncology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, People's Republic of China
| | - Yanyan Li
- Department of Nursing, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Na Li
- Department of Oncology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, People's Republic of China
| | - Yajie Zhao
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Qin Zhou
- Department of Oncology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, People's Republic of China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, People's Republic of China
| | - Zhanzhan Li
- Department of Oncology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
32
|
Zhu H, Bi D, Zhang Y, Kong C, Du J, Wu X, Wei Q, Qin H. Ketogenic diet for human diseases: the underlying mechanisms and potential for clinical implementations. Signal Transduct Target Ther 2022; 7:11. [PMID: 35034957 PMCID: PMC8761750 DOI: 10.1038/s41392-021-00831-w] [Citation(s) in RCA: 187] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/21/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023] Open
Abstract
The ketogenic diet (KD) is a high-fat, adequate-protein, and very-low-carbohydrate diet regimen that mimics the metabolism of the fasting state to induce the production of ketone bodies. The KD has long been established as a remarkably successful dietary approach for the treatment of intractable epilepsy and has increasingly garnered research attention rapidly in the past decade, subject to emerging evidence of the promising therapeutic potential of the KD for various diseases, besides epilepsy, from obesity to malignancies. In this review, we summarize the experimental and/or clinical evidence of the efficacy and safety of the KD in different diseases, and discuss the possible mechanisms of action based on recent advances in understanding the influence of the KD at the cellular and molecular levels. We emphasize that the KD may function through multiple mechanisms, which remain to be further elucidated. The challenges and future directions for the clinical implementation of the KD in the treatment of a spectrum of diseases have been discussed. We suggest that, with encouraging evidence of therapeutic effects and increasing insights into the mechanisms of action, randomized controlled trials should be conducted to elucidate a foundation for the clinical use of the KD.
Collapse
Affiliation(s)
- Huiyuan Zhu
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dexi Bi
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Youhua Zhang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cheng Kong
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiahao Du
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - Xiawei Wu
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
- Shanghai Clinical College, Anhui Medical University, Hefei, China
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Huanlong Qin
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China.
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
33
|
Chen P, Li Y, Li N, Shen L, Li Z. Comprehensive Analysis of Pyroptosis-Associated in Molecular Classification, Immunity and Prognostic of Glioma. Front Genet 2022; 12:781538. [PMID: 35069683 PMCID: PMC8777075 DOI: 10.3389/fgene.2021.781538] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/15/2021] [Indexed: 01/07/2023] Open
Abstract
Integrative analysis was performed in the Chinese Glioma Genome Atlas and The Cancer Genome Atlas to describe the pyroptosis-associated molecular classification and prognostic signature in glioma. Pyroptosis-related genes were used for consensus clustering and to develop a prognostic signature. The immune statuses, molecular alterations, and clinical features of differentially expressed genes were analyzed among different subclasses and risk groups. A lncRNA-miRNA-mRNA network was built, and drug sensitivity analysis was used to identify small molecular drugs for the identified genes. Glioma can be divided into two subclasses using 30 pyroptosis-related genes. Cluster 1 displayed high immune signatures and poor prognosis as well as high immune-related function scores. A prognostic signature based on 15 pyroptosis-related genes of the CGGA cohort can predict the overall survival of glioma and was well validated in the TCGA cohort. Cluster 1 had higher risk scores. The high-risk group had high immune cell and function scores and low DNA methylation of pyroptosis-related genes. The differences in pyroptosis-related gene mutations and somatic copy numbers were significant between the high-risk and low-risk groups. The ceRNA regulatory network uncovered the regulatory patterns of different risk groups in glioma. Nine pairs of target genes and drugs were identified. In vitro, CASP8 promotes the progression of glioma cells. Pyroptosis-related genes can reflect the molecular biological and clinical features of glioma subclasses. The established prognostic signature can predict prognosis and distinguish molecular alterations in glioma patients. Our comprehensive analyses provide valuable guidelines for improving glioma patient management and individualized therapy.
Collapse
Affiliation(s)
- Peng Chen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Yanyan Li
- Department of Nursing, Xiangya Hospital, Central South University, Changsha, China
| | - Na Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhanzhan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
34
|
Lu Y, Zhou X, Zhao W, Liao Z, Li B, Han P, Yang Y, Zhong X, Mo Y, Li P, Huang G, Xiao X, Zhang Z, Zhou X. Epigenetic Inactivation of Acetyl-CoA Acetyltransferase 1 Promotes the Proliferation and Metastasis in Nasopharyngeal Carcinoma by Blocking Ketogenesis. Front Oncol 2021; 11:667673. [PMID: 34485115 PMCID: PMC8415477 DOI: 10.3389/fonc.2021.667673] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
The dysregulation of epigenetic modification and energy metabolism cooperatively contribute to the tumorigenesis of nasopharyngeal carcinoma (NPC). However, the detailed mechanisms underlying their joint contribution to NPC development and progression remain unclear. Here, we investigate the role of Acy1 Coenzyme A Acyltransferases1 (ACAT1), a key enzyme in the metabolic pathway of ketone bodies, in the proliferation and metastasis of NPC and to elucidate the underlying molecular mechanisms. Ketogenesis, plays a critical role in tumorigenesis. Previously, we reported two enzymes involved in ketone body metabolism mediate epigenetic silencing and act as tumor suppressor genes in NPC. Here, we identify another key enzyme, Acetyl-CoA acetyltransferase 1 (ACAT1), and show that its transcriptional inactivation in NPC is due to promoter hypermethylation. Ectopic overexpression of ACAT1 significantly suppressed the proliferation and colony formation of NPC cells in vitro. The migratory and invasive capacity of NPC cells was inhibited by ACAT1. The tumorigenesis of NPC cells overexpressing ACAT1 was decreased in vivo. Elevated ACAT1 in NPC cells was accompanied by an elevated expression of CDH1 and a reduced expression of vimentin and SPARC, strongly indicating that ACAT1 is involved in regulating epithelial-mesenchymal transition (EMT). We also found that ACAT1 contributes to increased intracellular levels of β-hydroxybutyrate (β-HB). Exogenously supplied β-HB significantly inhibits the growth of NPC cells in a dose-dependent manner. In summary, ACAT1 may function as a tumor suppressor via modulation of ketogenesis and could thus serve as a potential therapeutic target in NPC. In summary, our data suggest that regulation of ketogenesis may serve as adjuvant therapy in NPC.
Collapse
Affiliation(s)
- Yunliang Lu
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaohui Zhou
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Weilin Zhao
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhipeng Liao
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bo Li
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Peipei Han
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yanping Yang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xuemin Zhong
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yingxi Mo
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Ping Li
- Department of Pathology, Affiliated Stomatological Hospital of Guangxi Medical University, Nanning, China
| | - Guangwu Huang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xue Xiao
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhe Zhang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoying Zhou
- Life Science Institute, Guangxi Medical University, Nanning, China
| |
Collapse
|
35
|
Yao A, Li Z, Lyu J, Yu L, Wei S, Xue L, Wang H, Chen GQ. On the nutritional and therapeutic effects of ketone body D-β-hydroxybutyrate. Appl Microbiol Biotechnol 2021; 105:6229-6243. [PMID: 34415393 PMCID: PMC8377336 DOI: 10.1007/s00253-021-11482-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/31/2022]
Abstract
Abstract d-β-hydroxybutyrate (d-3HB), a monomer of microbial polyhydroxybutyrate (PHB), is also a natural ketone body produced during carbohydrate deprivation to provide energy to the body cells, heart, and brain. In recent years, increasing evidence demonstrates that d-3HB can induce pleiotropic effects on the human body which are highly beneficial for improving physical and metabolic health. Conventional ketogenic diet (KD) or exogenous ketone salts (KS) and esters (KE) have been used to increase serum d-3HB level. However, strict adaptation to the KD was often associated with poor patient compliance, while the ingestion of KS caused gastrointestinal distresses due to excessive consumption of minerals. As for ingestion of KE, subsequent degradation is required before releasing d-3HB for absorption, making these methods somewhat inferior. This review provides novel insights into a biologically synthesized d-3HB (d-3-hydroxybutyric acid) which can induce a faster increase in plasma d-3HB compared to the use of KD, KS, or KE. It also emphasizes on the most recent applications of d-3HB in different fields, including its use in improving exercise performance and in treating metabolic or age-related diseases. Ketones may become a fourth micro-nutrient that is necessary to the human body along with carbohydrates, proteins, and fats. Indeed, d-3HB being a small molecule with multiple signaling pathways within the body exhibits paramount importance in mitigating metabolic and age-related diseases. Nevertheless, specific dose–response relationships and safety margins of using d-3HB remain to be elucidated with more research. Key points • d-3HB induces pleiotropic effects on physical and metabolic health. • Exogenous ketone supplements are more effective than ketogenic diet. • d-3HB as a ketone supplement has long-term healthy impact.
Collapse
Affiliation(s)
- Aliya Yao
- MedPHA Bioscience Co. Ltd., Traditional Chinese Medicine Science and Technology Industrial Park of Co-Operation Between Guangdong and Macau, Building No.103, 36 Doukou Rd, Hengqin District, Zhuhai, 519030, Guangdong Province, China
| | - Zihua Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Jinyan Lyu
- MedPHA Bioscience Co. Ltd., Traditional Chinese Medicine Science and Technology Industrial Park of Co-Operation Between Guangdong and Macau, Building No.103, 36 Doukou Rd, Hengqin District, Zhuhai, 519030, Guangdong Province, China
| | - Liusong Yu
- MedPHA Bioscience Co. Ltd., Traditional Chinese Medicine Science and Technology Industrial Park of Co-Operation Between Guangdong and Macau, Building No.103, 36 Doukou Rd, Hengqin District, Zhuhai, 519030, Guangdong Province, China
| | - Situ Wei
- MedPHA Bioscience Co. Ltd., Traditional Chinese Medicine Science and Technology Industrial Park of Co-Operation Between Guangdong and Macau, Building No.103, 36 Doukou Rd, Hengqin District, Zhuhai, 519030, Guangdong Province, China
| | - Lingyun Xue
- MedPHA Bioscience Co. Ltd., Traditional Chinese Medicine Science and Technology Industrial Park of Co-Operation Between Guangdong and Macau, Building No.103, 36 Doukou Rd, Hengqin District, Zhuhai, 519030, Guangdong Province, China
| | - Hui Wang
- Department of Colorectal Surgery, Guangdong Province Biomedical Material Conversion and Evaluation Engineering Technology Center, Institute of Biomedical Innovation, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, Guangdong Province, China
| | - Guo-Qiang Chen
- MedPHA Bioscience Co. Ltd., Traditional Chinese Medicine Science and Technology Industrial Park of Co-Operation Between Guangdong and Macau, Building No.103, 36 Doukou Rd, Hengqin District, Zhuhai, 519030, Guangdong Province, China. .,School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China. .,School of Life Sciences and Dept Chemical Engineering, Center for Synthetic and Systems Biology (CSSB), Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
36
|
Targeting the NLRP3 Inflammasome as a New Therapeutic Option for Overcoming Cancer. Cancers (Basel) 2021; 13:cancers13102297. [PMID: 34064909 PMCID: PMC8151587 DOI: 10.3390/cancers13102297] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammasomes are multiprotein complexes that regulate the maturation and secretion of the proinflammatory cytokines interleukin-1beta (IL-1β and interleukin-18 (IL-18) in response to various intracellular stimuli. As a member of the inflammasomes family, NLRP3 is the most studied and best characterized inflammasome and has been shown to be involved in several pathologies. Recent findings have made it increasingly apparent that the NLRP3 inflammasome may also play a central role in tumorigenesis, and it has attracted attention as a potential anticancer therapy target. In this review, we discuss the role of NLRP3 in the development and progression of cancer, offering a detailed summary of NLRP3 inflammasome activation (and inhibition) in the pathogenesis of various forms of cancer. Moreover, we focus on the therapeutic potential of targeting NLRP3 for cancer therapy, emphasizing how understanding NLRP3 inflammasome-dependent cancer mechanisms might guide the development of new drugs that target the inflammatory response of tumor-associated cells.
Collapse
|
37
|
Jimenez-Duran G, Triantafilou M. Metabolic regulators of enigmatic inflammasomes in autoimmune diseases and crosstalk with innate immune receptors. Immunology 2021; 163:348-362. [PMID: 33682108 PMCID: PMC8274167 DOI: 10.1111/imm.13326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 12/17/2022] Open
Abstract
Nucleotide‐binding domain and leucine‐rich repeat receptor (NLR)‐mediated inflammasome activation is important in host response to microbes, danger‐associated molecular patterns (DAMPs) and metabolic disease. Some NLRs have been shown to interact with distinct cell metabolic pathways and cause negative regulation, tumorigenesis and autoimmune disorders, interacting with multiple innate immune receptors to modulate disease. NLR activation is therefore crucial in host response and in the regulation of metabolic pathways that can trigger a wide range of immunometabolic diseases or syndromes. However, the exact mode by which some of the less well‐studied NLR inflammasomes are activated, interact with other metabolites and immune receptors, and the role they play in the progression of metabolic diseases is still not fully elucidated. In this study, we review up‐to‐date evidence regarding NLR function in metabolic pathways and the interplay with other immune receptors involved in GPCR signalling, gut microbiota and the complement system, in order to gain a better understanding of its link to disease processes.
Collapse
Affiliation(s)
- Gisela Jimenez-Duran
- Immunology Network, GlaxoSmithKline, Stevenage, UK.,Institute of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Cardiff, UK
| | - Martha Triantafilou
- Immunology Network, GlaxoSmithKline, Stevenage, UK.,Institute of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Cardiff, UK
| |
Collapse
|
38
|
Mierziak J, Burgberger M, Wojtasik W. 3-Hydroxybutyrate as a Metabolite and a Signal Molecule Regulating Processes of Living Organisms. Biomolecules 2021; 11:biom11030402. [PMID: 33803253 PMCID: PMC8000602 DOI: 10.3390/biom11030402] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
3-hydroxybutyrate (3-HB) as a very important metabolite occurs in animals, bacteria and plants. It is well known that in animals, 3-HB is formed as a product of the normal metabolism of fatty acid oxidation and can therefore be used as an energy source in the absence of sufficient blood glucose. In microorganisms, 3-HB mainly serves as a substrate for the synthesis of polyhydroxybutyrate, which is a reserve material. Recent studies show that in plants, 3-HB acts as a regulatory molecule that most likely influences the expression of genes involved in DNA methylation, thereby altering DNA methylation levels. Additionally, in animals, 3-HB is not only an intermediate metabolite, but also an important regulatory molecule that can influence gene expression, lipid metabolism, neuronal function, and overall metabolic rate. Some of these effects are the direct effects of 3-HB itself, while others are indirect effects, regulated by the metabolites into which 3-HB is converted. One of the most important regulatory functions of 3-HB is the inhibition of the activity of histone deacetylases and thus the epigenetic regulation of many genes. Due to the number of functions of this compound, it also shows promising therapeutic properties.
Collapse
|
39
|
Moretti IF, Lerario AM, Trombetta-Lima M, Sola PR, da Silva Soares R, Oba-Shinjo SM, Marie SKN. Late p65 nuclear translocation in glioblastoma cells indicates non-canonical TLR4 signaling and activation of DNA repair genes. Sci Rep 2021; 11:1333. [PMID: 33446690 PMCID: PMC7809124 DOI: 10.1038/s41598-020-79356-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 12/01/2020] [Indexed: 02/08/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive brain primary malignancy. Toll-like receptor 4 (TLR4) has a dual role in cell fate, promoting cell survival or death depending on the context. Here, we analyzed TLR4 expression in different grades of astrocytoma, and observed increased expression in tumors, mainly in GBM, compared to non-neoplastic brain tissue. TLR4 role was investigated in U87MG, a GBM mesenchymal subtype cell line, upon LPS stimulation. p65 nuclear translocation was observed in late phase, suggesting TLR4-non-canonical pathway activation. In fact, components of ripoptosome and inflammasome cascades were upregulated and they were significantly correlated in GBMs of the TCGA-RNASeq dataset. Moreover, an increased apoptotic rate was observed when the GBM-derived U87MG cells were co-treated with LPS and Temozolomide (TMZ) in comparison to TMZ alone. Increased TLR4 immunostaining was detected in nuclei of U87MG cells 12 h after LPS treatment, concomitant to activation of DNA repair genes. Time-dependent increased RAD51, FEN1 and UNG expression levels were confirmed after LPS stimulation, which may contribute to tumor cell fitness. Moreover, the combined treatment with the RAD51 inhibitor, Amuvatinib in combination with, TMZ after LPS stimulation reduced tumor cell viability more than with each treatment alone. In conclusion, our results suggest that stimulation of TLR4 combined with pharmacological inhibition of the DNA repair pathway may be an alternative treatment for GBM patients.
Collapse
Affiliation(s)
- Isabele F Moretti
- Laboratory of Molecular and Cellular Biology (LIM15), Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil.
| | - Antonio M Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Marina Trombetta-Lima
- Laboratory of Molecular and Cellular Biology (LIM15), Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Paula R Sola
- Laboratory of Molecular and Cellular Biology (LIM15), Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Roseli da Silva Soares
- Laboratory of Molecular and Cellular Biology (LIM15), Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Sueli M Oba-Shinjo
- Laboratory of Molecular and Cellular Biology (LIM15), Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Suely K N Marie
- Laboratory of Molecular and Cellular Biology (LIM15), Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
| |
Collapse
|
40
|
Yamanashi T, Iwata M, Shibushita M, Tsunetomi K, Nagata M, Kajitani N, Miura A, Matsuo R, Nishiguchi T, Kato TA, Setoyama D, Shirayama Y, Watanabe K, Shinozaki G, Kaneko K. Beta-hydroxybutyrate, an endogenous NLRP3 inflammasome inhibitor, attenuates anxiety-related behavior in a rodent post-traumatic stress disorder model. Sci Rep 2020; 10:21629. [PMID: 33303808 PMCID: PMC7728809 DOI: 10.1038/s41598-020-78410-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022] Open
Abstract
Accumulating evidence suggests that elevated inflammation contributes to the pathophysiology of post-traumatic stress disorder (PTSD) and that anti-inflammatory drugs might be a new treatment strategy for PTSD. It has been reported that beta-hydroxybutyrate (BHB), one of the main ketone bodies produced, can have an anti-inflammatory and antidepressant effect. Here, we investigated the potential anti-anxiety and anti-inflammatory effects of BHB using a rodent PTSD model, induced by single prolonged stress (SPS). Male, Sprague–Dawley rats were employed in this study. Repeated administration of BHB attenuated SPS-induced anxiety-related behaviors evaluated by the elevated plus maze test. SPS increased the serum levels of TNF-α and IL-1β. In contrast, BHB administration partially attenuated the increase of serum TNF-α. These findings demonstrate that BHB exerts its anxiolytic effects, possibly by inhibiting systemic TNF-α. Hence, BHB may be a novel therapeutic candidate for the treatment of PTSD.
Collapse
Affiliation(s)
- Takehiko Yamanashi
- Department of Neuropsychiatry, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.,Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Masaaki Iwata
- Department of Neuropsychiatry, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
| | - Midori Shibushita
- Department of Neuropsychiatry, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Kyohei Tsunetomi
- Department of Neuropsychiatry, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Mayu Nagata
- Department of Neuropsychiatry, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Naofumi Kajitani
- Department of Neuropsychiatry, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Akihiko Miura
- Department of Neuropsychiatry, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Ryoichi Matsuo
- Department of Neuropsychiatry, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Tsuyoshi Nishiguchi
- Department of Neuropsychiatry, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daiki Setoyama
- Clinical Laboratories, Kyushu University Hospital, Fukuoka, Japan
| | - Yukihiko Shirayama
- Department of Psychiatry, Teikyo University Chiba Medical Center, Ichihara, Japan
| | | | - Gen Shinozaki
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Koichi Kaneko
- Department of Neuropsychiatry, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| |
Collapse
|
41
|
Barrea L, Caprio M, Tuccinardi D, Moriconi E, Di Renzo L, Muscogiuri G, Colao A, Savastano S. Could ketogenic diet "starve" cancer? Emerging evidence. Crit Rev Food Sci Nutr 2020; 62:1800-1821. [PMID: 33274644 DOI: 10.1080/10408398.2020.1847030] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer cells (CCs) predominantly use aerobic glycolysis (Warburg effect) for their metabolism. This important characteristic of CCs represents a potential metabolic pathway to be targeted in the context of tumor treatment. Being this mechanism related to nutrient oxidation, dietary manipulation has been hypothesized as an important strategy during tumor treatment. Ketogenic diet (KD) is a dietary pattern characterized by high fat intake, moderate-to-low protein consumption, and very-low-carbohydrate intake (<50 g), which in cancer setting may target CCs metabolism, potentially influencing both tumor treatment and prognosis. Several mechanisms, far beyond the originally proposed inhibition of glucose/insulin signaling, can underpin the effectiveness of KD in cancer management, ranging from oxidative stress, mitochondrial metabolism, and inflammation. The role of a qualified Nutritionist is essential to reduce and manage the short and long-term complications of this dietary therapy, which must be personalized to the individual patient for the planning of tailored KD protocol in cancer patients. In the present review, we summarize the proposed antitumor mechanisms of KD, the application of KD in cancer patients with obesity and cachexia, and the preclinical and clinical evidence on KD therapy in cancer.
Collapse
Affiliation(s)
- Luigi Barrea
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O.), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy.,Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - Dario Tuccinardi
- Unit of Endocrinology and Diabetes, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Eleonora Moriconi
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Giovanna Muscogiuri
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O.), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O.), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy.,Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| | - Silvia Savastano
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O.), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | | |
Collapse
|
42
|
miR-22 suppresses cell viability and EMT of ovarian cancer cells via NLRP3 and inhibits PI3K/AKT signaling pathway. Clin Transl Oncol 2020; 23:257-264. [PMID: 32524269 DOI: 10.1007/s12094-020-02413-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE miR-22 plays a great role in inhibiting cell growth, metastasis and enhanced cell apoptosis in several cancers. The purpose of this study was to investigate the functions of miR-22 in ovarian cancer. METHODS The proliferative ability was measured using CCK-8 assay. The protein expression associated with EMT and PI3K/AKT signaling biomarkers were measured by western blot. Luciferase assay applied to measure the luciferase activity. Kaplan-Meier method was performed to evaluate the overall survival rate of ovarian cancers. RESULTS miR-22 was low expressed and NLRP3 was overexpressed in ovarian cancer tissues and cells, and downregulation of miR-22 was associated with poor prognosis. The expression of NLRP3 had a negative correlation with miR-22 expression in ovarian cancer. miR-22 promoted cell viability and EMT through directly binding to the 3'-UTR of NLRP3 mRNA and inhibited PI3K/AKT signaling pathway. NLRP3 partially restored functions of miR-22 on cell proliferation and EMT in ovarian cancer. CONCLUSION miR-22 impaired cell viability and EMT by NLRP3 and inhibited PI3K/AKT signaling pathway in ovarian cancer. The newly identified miR-22/NLRP3/PI3K/AKT axis provides novel insight into the pathogenesis of ovarian cancer.
Collapse
|
43
|
Weber DD, Aminzadeh-Gohari S, Tulipan J, Catalano L, Feichtinger RG, Kofler B. Ketogenic diet in the treatment of cancer - Where do we stand? Mol Metab 2020; 33:102-121. [PMID: 31399389 PMCID: PMC7056920 DOI: 10.1016/j.molmet.2019.06.026] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/17/2019] [Accepted: 06/28/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Cancer is one of the greatest public health challenges worldwide, and we still lack complementary approaches to significantly enhance the efficacy of standard anticancer therapies. The ketogenic diet, a high-fat, low-carbohydrate diet with adequate amounts of protein, appears to sensitize most cancers to standard treatment by exploiting the reprogramed metabolism of cancer cells, making the diet a promising candidate as an adjuvant cancer therapy. SCOPE OF REVIEW To critically evaluate available preclinical and clinical evidence regarding the ketogenic diet in the context of cancer therapy. Furthermore, we highlight important mechanisms that could explain the potential antitumor effects of the ketogenic diet. MAJOR CONCLUSIONS The ketogenic diet probably creates an unfavorable metabolic environment for cancer cells and thus can be regarded as a promising adjuvant as a patient-specific multifactorial therapy. The majority of preclinical and several clinical studies argue for the use of the ketogenic diet in combination with standard therapies based on its potential to enhance the antitumor effects of classic chemo- and radiotherapy, its overall good safety and tolerability and increase in quality of life. However, to further elucidate the mechanisms of the ketogenic diet as a therapy and evaluate its application in clinical practice, more molecular studies as well as uniformly controlled clinical trials are needed.
Collapse
Affiliation(s)
- Daniela D Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| | - Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| | - Julia Tulipan
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| | - Luca Catalano
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| | - René G Feichtinger
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| |
Collapse
|
44
|
Wang M, Jiang S, Zhang Y, Li P, Wang K. The Multifaceted Roles of Pyroptotic Cell Death Pathways in Cancer. Cancers (Basel) 2019; 11:1313. [PMID: 31492049 PMCID: PMC6770479 DOI: 10.3390/cancers11091313] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022] Open
Abstract
Cancer is a category of diseases involving abnormal cell growth with the potential to invade other parts of the body. Chemotherapy is the most widely used first-line treatment for multiple forms of cancer. Chemotherapeutic agents act via targeting the cellular apoptotic pathway. However, cancer cells usually acquire chemoresistance, leading to poor outcomes in cancer patients. For that reason, it is imperative to discover other cell death pathways for improved cancer intervention. Pyroptosis is a new form of programmed cell death that commonly occurs upon pathogen invasion. Pyroptosis is marked by cell swelling and plasma membrane rupture, which results in the release of cytosolic contents into the extracellular space. Currently, pyroptosis is proposed to be an alternative mode of cell death in cancer treatment. Accumulating evidence shows that the key components of pyroptotic cell death pathways, including inflammasomes, gasdermins and pro-inflammatory cytokines, are involved in the initiation and progression of cancer. Interfering with pyroptotic cell death pathways may represent a promising therapeutic option for cancer management. In this review, we describe the current knowledge regarding the biological significance of pyroptotic cell death pathways in cancer pathogenesis and also discuss their potential therapeutic utility.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, 266021 Qingdao, China.
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China.
| | - Yinfeng Zhang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, 266021 Qingdao, China.
| | - Peifeng Li
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, 266021 Qingdao, China.
| | - Kun Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, 266021 Qingdao, China.
| |
Collapse
|
45
|
NOD-like receptors: major players (and targets) in the interface between innate immunity and cancer. Biosci Rep 2019; 39:BSR20181709. [PMID: 30837326 PMCID: PMC6454022 DOI: 10.1042/bsr20181709] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/18/2022] Open
Abstract
Innate immunity comprises several inflammation-related modulatory pathways which receive signals from an array of membrane-bound and cytoplasmic pattern recognition receptors (PRRs). The NLRs (NACHT (NAIP (neuronal apoptosis inhibitor protein), C2TA (MHC class 2 transcription activator), HET-E (incompatibility locus protein from Podospora anserina) and TP1 (telomerase-associated protein) and Leucine-Rich Repeat (LRR) domain containing proteins) relate to a large family of cytosolic innate receptors, involved in detection of intracellular pathogens and endogenous byproducts of tissue injury. These receptors may recognize pathogen-associated molecular patterns (PAMPs) and/or danger-associated molecular patterns (DAMPs), activating host responses against pathogen infection and cellular stress. NLR-driven downstream signals trigger a number of signaling circuitries, which may either initiate the formation of inflammasomes and/or activate nuclear factor κB (NF-κB), stress kinases, interferon response factors (IRFs), inflammatory caspases and autophagy. Disruption of those signals may lead to a number of pro-inflammatory conditions, eventually promoting the onset of human malignancies. In this review, we describe the structures and functions of the most well-defined NLR proteins and highlight their association and biological impact on a diverse number of cancers.
Collapse
|