1
|
Hu M, Liu R, Castro N, Loza Sanchez L, Rueankham L, Learn JA, Huang R, Lam KS, Carraway KL. A novel lipophilic amiloride derivative efficiently kills chemoresistant breast cancer cells. Sci Rep 2024; 14:20263. [PMID: 39217266 PMCID: PMC11365969 DOI: 10.1038/s41598-024-71181-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Derivatives of the potassium-sparing diuretic amiloride are preferentially cytotoxic toward tumor cells relative to normal cells, and have the capacity to target tumor cell populations resistant to currently employed therapeutic agents. However, a major barrier to clinical translation of the amilorides is their modest cytotoxic potency, with estimated IC50 values in the high micromolar range. Here we report the synthesis of ten novel amiloride derivatives and the characterization of their cytotoxic potency toward MCF7 (ER/PR-positive), SKBR3 (HER2-positive) and MDA-MB-231 (triple negative) cell line models of breast cancer. Comparisons of derivative structure with cytotoxic potency toward these cell lines underscore the importance of an intact guanidine group, and uncover a strong link between drug-induced cytotoxicity and drug lipophilicity. We demonstrate that our most potent derivative called LLC1 is preferentially cytotoxic toward mouse mammary tumor over normal epithelial organoids, acts in the single digit micromolar range on breast cancer cell line models representing all major subtypes, acts on cell lines that exhibit both transient and sustained resistance to chemotherapeutic agents, but exhibits limited anti-tumor effects in a mouse model of metastatic breast cancer. Nonetheless, our observations offer a roadmap for the future optimization of amiloride-based compounds with preferential cytotoxicity toward breast tumor cells.
Collapse
Affiliation(s)
- Michelle Hu
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, USA
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, USA
| | - Noemi Castro
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, USA
| | - Liliana Loza Sanchez
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, USA
| | - Lapamas Rueankham
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, USA
| | - Julie A Learn
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, USA
| | - Ruiqi Huang
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, USA
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, USA
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, USA.
- UC Davis School of Medicine, 4645 2nd Avenue, Room 1100B, Sacramento, CA, 95817, USA.
| |
Collapse
|
2
|
Meuten TK, Dean GA, Thamm DH. Review: The PI3K-AKT-mTOR signal transduction pathway in canine cancer. Vet Pathol 2024; 61:339-356. [PMID: 37905509 DOI: 10.1177/03009858231207021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Tumors in dogs and humans share many similar molecular and genetic features, incentivizing a better understanding of canine neoplasms not only for the purpose of treating companion animals, but also to facilitate research of spontaneously developing tumors with similar biologic behavior and treatment approaches in an immunologically competent animal model. Multiple tumor types of both species have similar dysregulation of signal transduction through phosphatidylinositol 3-kinase (PI3K), protein kinase B (PKB; AKT), and mechanistic target of rapamycin (mTOR), collectively known as the PI3K-AKT-mTOR pathway. This review aims to delineate the pertinent aspects of the PI3K-AKT-mTOR signaling pathway in health and in tumor development. It will then present a synopsis of current understanding of PI3K-AKT-mTOR signaling in important canine cancers and advancements in targeted inhibitors of this pathway.
Collapse
|
3
|
Sarver AL, Mills LJ, Makielski KM, Temiz NA, Wang J, Spector LG, Subramanian S, Modiano JF. Distinct mechanisms of PTEN inactivation in dogs and humans highlight convergent molecular events that drive cell division in the pathogenesis of osteosarcoma. Cancer Genet 2023; 276-277:1-11. [PMID: 37267683 PMCID: PMC11694714 DOI: 10.1016/j.cancergen.2023.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/02/2023] [Accepted: 05/19/2023] [Indexed: 06/04/2023]
Abstract
A hallmark of osteosarcoma in both human and canine tumors is somatic fragmentation and rearrangement of chromosome structure which leads to recurrent increases and decreases in DNA copy number. The PTEN gene has been implicated as an important tumor suppressor in osteosarcoma via forward genetic screens. Here, we analyzed copy number changes, promoter methylation and transcriptomes to better understand the role of PTEN in canine and human osteosarcoma. Reduction in PTEN copy number was observed in 23 of 95 (25%) of the canine tumors examined leading to corresponding decreases in PTEN transcript levels from RNA-Seq samples. Unexpectedly, canine tumors with an intact PTEN locus had higher levels of PTEN transcripts than human tumors. This variation in transcript abundance was used to evaluate the role of PTEN in osteosarcoma biology. Decreased PTEN copy number and transcript level was observed in - and likely an important driver of - increases in cell cycle transcripts in four independent canine transcriptional datasets. In human osteosarcoma, homozygous copy number loss was not observed, instead increased methylation of the PTEN promoter was associated with increased cell cycle transcripts. Somatic modification of PTEN, either by homozygous deletion in dogs or by promoter methylation in humans, is clinically relevant to osteosarcoma, because the cell cycle related transcripts are associated with patient outcomes. The PTEN gene is part of a syntenic rearrangement unique to the canine genome, making it susceptible to somatic loss of both copies of distal chromosome 26 which also includes the FAS death receptor. SIGNIFICANCE STATEMENT: PTEN function is abrogated by different mechanisms in canine and human osteosarcoma tumors leading to uncontrolled cell cycling. Somatic loss of this canine specific syntenic region may help explain why the canine genome appears to be uniquely susceptible to osteosarcoma. Syntenic arrangement, in the context of copy number change, may lead to synergistic interactions that in turn modify species specific cancer risk. Comparative models of tumorigenesis may utilize different driver mechanisms.
Collapse
Affiliation(s)
- Aaron L Sarver
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA; Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN 55108, USA.
| | - Lauren J Mills
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Kelly M Makielski
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN 55108, USA; Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN 55108, USA
| | - Nuri A Temiz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jinhua Wang
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Logan G Spector
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN 55108, USA
| | - Subbaya Subramanian
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN 55108, USA; Department of Surgery, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA
| | - Jaime F Modiano
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN 55108, USA; Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN 55108, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA; Center for Engineering and Medicine, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Williams K, Parker S, MacDonald-Dickinson V. Risk factors for appendicular osteosarcoma occurrence in large and giant breed dogs in western Canada. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2023; 64:167-173. [PMID: 36733647 PMCID: PMC9847425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Objective Risk factors for the development of canine appendicular osteosarcoma (OSA) have been investigated in numerous studies, but with contradictory results. The aim of this study was to analyze weight, age, breed, sex, neuter status, body condition score, and previous lameness in a population of large and giant breed dogs in western Canada with and without appendicular OSA. Animals and procedure Medical records of 227 large or giant breed dogs diagnosed with appendicular OSA were compared to records from a control population of 454 large and giant breed dogs from the years 2000 to 2020. Results Gonadectomized dogs, body condition score (BCS), and a history of lameness condition(s) (other than OSA) were associated with increased odds for presentation with OSA. Breeds shown to have increased odds for appendicular OSA occurrence included Rottweilers and Great Danes relative to Labrador retrievers. Conclusion and clinical relevance Obesity and lameness appear to be independently associated with appendicular osteosarcoma. This study demonstrated that spayed females had the greatest risk compared to other sex and neuter status combinations; further investigation of these factors would be beneficial.
Collapse
|
5
|
Barani M, Mukhtar M, Rahdar A, Sargazi S, Pandey S, Kang M. Recent Advances in Nanotechnology-Based Diagnosis and Treatments of Human Osteosarcoma. BIOSENSORS 2021; 11:55. [PMID: 33672770 PMCID: PMC7924594 DOI: 10.3390/bios11020055] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/24/2022]
Abstract
Osteosarcoma (OSA) is a type of bone cancer that begins in the cells that form bones.OSA is a rare mesenchymal bone neoplasm derived from mesenchymal stem cells. Genome disorganization, chromosomal modifications, deregulation of tumor suppressor genes, and DNA repair defects are the factors most responsible for OSA development. Despite significant advances in the diagnosing and treatment of OSA, patients' overall survival has not improved within the last twenty years. Lately, advances in modern nanotechnology have spurred development in OSA management and offered several advantages to overcome the drawbacks of conventional therapies. This technology has allowed the practical design of nanoscale devices combined with numerous functional molecules, including tumor-specific ligands, antibodies, anti-cancer drugs, and imaging probes. Thanks to their small sizes, desirable drug encapsulation efficiency, and good bioavailability, functionalized nanomaterials have found wide-spread applications for combating OSA progression. This review invokes the possible utility of engineered nanomaterials in OSA diagnosis and treatment, motivating the researchers to seek new strategies for tackling the challenges associated with it.
Collapse
Affiliation(s)
- Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran;
| | - Mahwash Mukhtar
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6720 Szeged, Hungary;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran
| | - Saman Sargazi
- Cellular and Molecule Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran;
| | - Sadanand Pandey
- Particulate Matter Research Center, Research Institute of Industrial Science & Technology (RIST), 187-12, Geumho-ro, Gwangyang-si 57801, Korea
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea;
| | - Misook Kang
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea;
| |
Collapse
|
6
|
Xavier PLP, Müller S, Fukumasu H. Epigenetic Mechanisms in Canine Cancer. Front Oncol 2020; 10:591843. [PMID: 33194754 PMCID: PMC7646326 DOI: 10.3389/fonc.2020.591843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/05/2020] [Indexed: 01/18/2023] Open
Abstract
A plethora of data has highlighted the role of epigenetics in the development of cancer. Initiation and progression of different cancer types are associated with a variety of changes of epigenetic mechanisms, including aberrant DNA methylation, histone modifications, and miRNA expression. At the same time, advances in the available epigenetic tools allow to investigate and reverse these epigenetic changes and form the basis for the development of anticancer drugs in human oncology. Although human and canine cancer shares several common features, only recently that studies emerged investigating the epigenetic landscape in canine cancer and applying epigenetic modulators to canine cancer. This review focuses on the existing studies involving epigenetic changes in different types of canine cancer and the use of small-molecule inhibitors in canine cancer cells.
Collapse
Affiliation(s)
- Pedro Luiz Porfirio Xavier
- Laboratory of Comparative and Translational Oncology (LOCT), Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Brazil
| | - Susanne Müller
- Structural Genomics Consortium and Institute of Pharmaceutical Chemistry, Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Heidge Fukumasu
- Laboratory of Comparative and Translational Oncology (LOCT), Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Brazil
| |
Collapse
|
7
|
MicroRNAs as Biomarkers in Canine Osteosarcoma: A New Future? Vet Sci 2020; 7:vetsci7040146. [PMID: 33008041 PMCID: PMC7711435 DOI: 10.3390/vetsci7040146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Sarcomas are frequent in dogs and canine species are excellent animal models for studying the human counterpart. However, osteosarcomas are a rare form of sarcoma with high death rates in humans and dogs. miRNAs are small endogenous RNAs that regulate gene expression post-transcriptionally. The discovery of miRNAs could give a contribute in the diagnosis and prognosis of different types of tumors in animal species, as already in humans. The differentiated expression of miRNAs is a frequent finding in cancers and is related to their pathogenesis in many cases. Most canine and human sarcomas show similar miRNA aberrations. Lower levels of miR-1 and miR-133b in canine osteosarcoma tissues were found to increase tumorigenesis through a higher expression of their target genes MET and MCL1. The overexpression of miR-9 promotes a metastatic phenotype in canine osteosarcomas and its capacity as a prognostic biomarker for the disease is currently being evaluated. MicroRNAs at the 14q32 locus could be used as prognostic biomarkers, since their decreased expression has been associated with poor prognosis in canine and human osteosarcomas. Furthermore, a decreased expression of miR-34a in osteosarcoma tumour cells has been associated with shorter disease-free survival times and its reintroduction as a synthetic prodrug shows good potential as a novel therapeutic target to fight the disease. Circulating miR-214 and miR-126 are significantly increased in a broad-spectrum cancer and have the ability to successfully predict the prognosis of dogs. However, further studies are needed to make the use of miRNAs as biomarkers a common practice.
Collapse
|
8
|
Atherton MJ, Lenz JA, Mason NJ. Sarcomas-A barren immunological wasteland or field of opportunity for immunotherapy? Vet Comp Oncol 2020; 18:447-470. [PMID: 32246517 DOI: 10.1111/vco.12595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 12/11/2022]
Abstract
Key advances in our understanding of immunobiology and the immunosuppressive mechanisms of the tumour microenvironment have led to significant breakthroughs in manipulating the immune system to successfully treat cancer. Remarkable therapeutic responses have occurred with tumours that carry a high mutational burden. In these cases, pre-existing tumour-specific T cells can be rejuvenated via checkpoint inhibition to eliminate tumours. Furthermore, durable remissions have been achieved in haematological malignancies following adoptive transfer of T cells that specifically target cell surface proteins where expression is restricted to the malignancy's cell of origin. Soft tissue sarcomas and bone sarcomas have a paucity of non-synonymous somatic mutations and do not commonly express known, targetable, tumour-specific antigens. Historically, soft tissue sarcomas have been considered immunologically 'cold' and as such, unlikely candidates for immune therapy. Here, we review the immune landscape of canine and feline sarcomas and the immunotherapeutic strategies that have been employed in veterinary clinical trials to improve patient outcome. We also provide insight into immunotherapeutic approaches being used to treat human sarcomas. Together, current data indicates that, rather than a barren immunological wasteland, sarcomas represent a field of opportunities for immunotherapies. Furthermore, we and others would suggest that strategic combinations of immunotherapeutic approaches may hold promise for more effective treatments for high grade soft tissue sarcomas and bone sarcomas.
Collapse
Affiliation(s)
- Matthew J Atherton
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jennifer A Lenz
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nicola J Mason
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Demographic characteristics, site and phylogenetic distribution of dogs with appendicular osteosarcoma: 744 dogs (2000-2015). PLoS One 2019; 14:e0223243. [PMID: 31887114 PMCID: PMC6936818 DOI: 10.1371/journal.pone.0223243] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 09/17/2019] [Indexed: 01/07/2023] Open
Abstract
Objective To report demographic characteristics of a contemporary population of dogs with appendicular osteosarcoma and assess the relationship between demographic characteristics, site distribution, and phylogenetic breed clusters. Design Retrospective case series. Methods A search of the Veterinary Medical Database was performed for dogs with appendicular osteosarcoma as a new diagnosis. Entries were reviewed for the sex, neuter status, age at diagnosis, breed, affected limb, and tumor location. The reported breed for purebred dogs was used to categorize each dog into one of five phylogenetic groups based on microsatellite analysis. Results 744 client-owned dogs were included in the study. Study dogs were represented by a male-to-female ratio of 0.95:1.0, the majority of which (80.9%) were neutered. Most dogs were diagnosed between 7–10 years of age. The majority (77.8%) of dogs were large or giant-breed dogs. Purebred dogs comprised 80.4% of the population. The most common purebred breed affected by OS was the Rottweiler (17.1%). The most common phylogenetic group represented was Mastiff-Terrier (M-T, 26.3%). OS was more commonly located in the forelimb (64.2%) versus the hindlimb (35.8%), and the humerus was the most common site (20.9%). The distribution of age groups and tumor locations were significantly different between phylogenetic clusters. The distribution of age groups and neuter status were significantly different between size groups. Conclusions and significance The demographic data of canine appendicular OS are similar to previous reports. The data on phylogenetic associations can guide future studies aimed at evaluating the genomic mutations that contribute to OS development and its biological behavior.
Collapse
|
10
|
Gardner HL, Sivaprakasam K, Briones N, Zismann V, Perdigones N, Drenner K, Facista S, Richholt R, Liang W, Aldrich J, Trent JM, Shields PG, Robinson N, Johnson J, Lana S, Houghton P, Fenger J, Lorch G, Janeway KA, London CA, Hendricks WPD. Canine osteosarcoma genome sequencing identifies recurrent mutations in DMD and the histone methyltransferase gene SETD2. Commun Biol 2019; 2:266. [PMID: 31341965 PMCID: PMC6642146 DOI: 10.1038/s42003-019-0487-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/29/2019] [Indexed: 02/08/2023] Open
Abstract
Osteosarcoma (OS) is a rare, metastatic, human adolescent cancer that also occurs in pet dogs. To define the genomic underpinnings of canine OS, we performed multi-platform analysis of OS tumors from 59 dogs, including whole genome sequencing (n = 24) and whole exome sequencing (WES; n = 13) of primary tumors and matched normal tissue, WES (n = 10) of matched primary/metastatic/normal samples and RNA sequencing (n = 54) of primary tumors. We found that canine OS recapitulates features of human OS including low point mutation burden (median 1.98 per Mb) with a trend towards higher burden in metastases, high structural complexity, frequent TP53 (71%), PI3K pathway (37%), and MAPK pathway mutations (17%), and low expression of immune-associated genes. We also identified novel features of canine OS including putatively inactivating somatic SETD2 (42%) and DMD (50%) aberrations. These findings set the stage for understanding OS development in dogs and humans, and establish genomic contexts for future comparative analyses.
Collapse
Affiliation(s)
- Heather L. Gardner
- Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111 USA
| | | | - Natalia Briones
- Translational Genomics Research Institute, Phoenix, AZ 85004 USA
| | - Victoria Zismann
- Translational Genomics Research Institute, Phoenix, AZ 85004 USA
| | | | - Kevin Drenner
- Translational Genomics Research Institute, Phoenix, AZ 85004 USA
| | | | - Ryan Richholt
- Translational Genomics Research Institute, Phoenix, AZ 85004 USA
| | - Winnie Liang
- Translational Genomics Research Institute, Phoenix, AZ 85004 USA
| | - Jessica Aldrich
- Translational Genomics Research Institute, Phoenix, AZ 85004 USA
| | - Jeffrey M. Trent
- Translational Genomics Research Institute, Phoenix, AZ 85004 USA
| | - Peter G. Shields
- College of Medicine, The Ohio State University, Columbus, OH 43210 USA
| | - Nicholas Robinson
- Cummings School of Veterinary Medicine, Tufts University, Grafton, MA 01536 USA
| | | | - Susan Lana
- Colorado State University, Fort Collins, CO 80525 USA
| | - Peter Houghton
- University of Texas Health Science Center, San Antonio, TX 78229 USA
| | - Joelle Fenger
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH 43210 USA
| | - Gwendolen Lorch
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH 43210 USA
| | | | - Cheryl A. London
- Cummings School of Veterinary Medicine, Tufts University, Grafton, MA 01536 USA
| | | |
Collapse
|
11
|
Zapata I, Moraes LE, Fiala EM, Zaldivar-Lopez S, Couto CG, Rowell JL, Alvarez CE. Risk-modeling of dog osteosarcoma genome scans shows individuals with Mendelian-level polygenic risk are common. BMC Genomics 2019; 20:226. [PMID: 30890123 PMCID: PMC6425649 DOI: 10.1186/s12864-019-5531-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/13/2019] [Indexed: 12/14/2022] Open
Abstract
Background Despite the tremendous therapeutic advances that have stemmed from somatic oncogenetics, survival of some cancers has not improved in 50 years. Osteosarcoma still has a 5-year survival rate of 66%. We propose the natural canine osteosarcoma model can change that: it is extremely similar to the human condition, except for being highly heritable and having a dramatically higher incidence. Here we reanalyze published genome scans of osteosarcoma in three frequently-affected dog breeds and report entirely new understandings with immediate translational indications. Results First, meta-analysis revealed association near FGF9, which has strong biological and therapeutic relevance. Secondly, risk-modeling by multiple logistic regression shows 22 of the 34 associated loci contribute to risk and eight have large effect sizes. We validated the Greyhound stepwise model in our own, independent, case-control cohort. Lastly, we updated the gene annotation from approximately 50 genes to 175, and prioritized those using cross-species genomics data. Mostly positional evidence suggests 13 genes are likely to be associated with mapped risk (including MTMR9, EWSR1 retrogene, TANGO2 and FGF9). Previous annotation included seven of those 13 and prioritized four by pathway enrichment. Ten of our 13 priority genes are in loci that contribute to risk modeling and thus can be studied epidemiologically and translationally in pet dogs. Other new candidates include MYCN, SVIL and MIR100HG. Conclusions Polygenic osteosarcoma-risk commonly rises to Mendelian-levels in some dog breeds. This justifies caninized animal models and targeted clinical trials in pet dogs (e.g., using CDK4/6 and FGFR1/2 inhibitors). Electronic supplementary material The online version of this article (10.1186/s12864-019-5531-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Isain Zapata
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH, USA.
| | - Luis E Moraes
- Department of Animal Sciences, The Ohio State University College of Food, Agricultural and Environmental Sciences, Columbus, OH, USA
| | - Elise M Fiala
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Present address: Clinical Genetics Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sara Zaldivar-Lopez
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH, USA.,Present address: Genomics and Animal Breeding Group, Department of Genetics, Faculty of Veterinary Medicine, University of Cordoba, 14071, Córdoba, Spain
| | - C Guillermo Couto
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH, USA.,Couto Veterinary Consultants, Hilliard, OH, USA
| | - Jennie L Rowell
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Nursing, The Ohio State University College of Nursing, Columbus, OH, USA
| | - Carlos E Alvarez
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH, USA. .,Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA. .,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
12
|
Heishima K, Meuten T, Yoshida K, Mori T, Thamm DH. Prognostic significance of circulating microRNA-214 and -126 in dogs with appendicular osteosarcoma receiving amputation and chemotherapy. BMC Vet Res 2019; 15:39. [PMID: 30683101 PMCID: PMC6347759 DOI: 10.1186/s12917-019-1776-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Dogs with appendicular osteosarcoma (OSA) receiving standard amputation and adjuvant chemotherapy demonstrate variable outcome with treatment; however, additional biomarkers would be helpful for predicting their outcome. In the present study, we assessed the potential of circulating microRNA-214 (miR-214) and - 126 (miR-126) to predict time to metastasis and death in dogs with OSA treated with amputation and chemotherapy. RESULTS Seventy-six dogs that fully met inclusion criteria were included in the analysis. The criteria included (1) a diagnosis of appendicular OSA without metastases at diagnosis, (2) treatment by amputation and chemotherapy using carboplatin, doxorubicin, cisplatin, or a combination of these agents. Circulating miR-214 and -126 levels at the time before treatment were measured by using RT-qPCR. High circulating miR-214 and serum alkaline phosphatase (ALP) significantly predicted short disease-free survival (DFS) and overall survival (OS). Conversely, high circulating miR-126 significantly predicted prolonged DFS and OS. An integrated approach using circulating miR-214, - 126, and serum ALP showed better accuracy in the prediction of DFS and OS and identification of long-term survivors than prediction using only ALP. Other variables (age, weight, sex, monocyte counts, and primary tumor site) were associated with neither DFS nor OS. miRNA levels did not strongly correlate with histopathological indices. CONCLUSIONS Circulating miR-214, - 126, and an integrated prognostic score have strong potential to predict the outcome of canine appendicular OSA patients receiving amputation and chemotherapy.
Collapse
Affiliation(s)
- Kazuki Heishima
- Laboratory of Veterinary Clinical Oncology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Travis Meuten
- Flint Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - Kyoko Yoshida
- Laboratory of Veterinary Clinical Oncology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Takashi Mori
- Laboratory of Veterinary Clinical Oncology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Douglas H. Thamm
- Flint Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523 USA
| |
Collapse
|
13
|
Bennett PF, Taylor R, Williamson P. Demographic risk factors for lymphoma in Australian dogs: 6201 cases. J Vet Intern Med 2018; 32:2054-2060. [PMID: 30307659 PMCID: PMC6271309 DOI: 10.1111/jvim.15306] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/27/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022] Open
Abstract
Background Lymphoma is common in the dog. Studies of population risk factors primarily have been derived from referral institution or insurance data. Objective To identify and quantify the host risk factors for lymphoma in a broad population of Australian dogs. Animals Data on 6201 client owned dogs were retrieved from a commercial veterinary laboratory, a general practice group and 2 referral hospitals. Methods Data collected included breed, sex, and neuter status. A reference population of 640 105 dogs was generated from the referral hospitals and from council registration data. The risk of lymphoma by sex and neuter status was calculated as odds ratios (OR). Results The study identified 30 breeds at increased risk of lymphoma, 15 that have not been reported previously, and 26 breeds at decreased risk, 18 that have not been reported previously. Males were over represented compared to females with an OR of 1.1 (95% CI, 1.1–1.2; P < .001). Neutered animals were at higher risk compared to intact animals with an OR of 3.2 (95% CI, 2.9–3.5) which was found in both males (OR, 2.8; 95% CI; 2.5–3.2) and females (OR, 4.4; 95% CI, 3.5–5.1). Conclusions and Clinical Importance Breed, sex, and neuter status alter the risk of lymphoma in dogs. These 3 factors must be considered when evaluating lymphoma risk as potential markers of underlying differences in disease etiology. Comparison of breeds at increased and decreased risk could be advantageous when evaluating specific etiological factors.
Collapse
Affiliation(s)
- Peter F Bennett
- Faculty of Science, Sydney School of Veterinary Science, University of Sydney, New South Wales, Australia
| | - Rosanne Taylor
- Faculty of Science, Sydney School of Veterinary Science, University of Sydney, New South Wales, Australia
| | - Peter Williamson
- Faculty of Science, School of Life and Environmental Science, University of Sydney, New South Wales, Australia
| |
Collapse
|
14
|
Abstract
Pet dogs are becoming increasingly recognized as a population with the potential to inform medical research through their treatment for a variety of maladies by veterinary health professionals. This is the basis of the One Health initiative, supporting the idea of collaboration between human and animal health researchers and clinicians to study spontaneous disease processes and treatment in animals to inform human health. Cancer is a major health burden in pet dogs, accounting for approximately 30% of deaths across breeds. As such, pet dogs with cancer are becoming increasingly recognized as a resource for studying the pharmacology and therapeutic potential of anticancer drugs and therapies under development. This was recently highlighted by a National Academy of Medicine Workshop on Comparative Oncology that took place in mid-2015 (http://www.nap.edu/21830). One component of cancer burden in dogs is their significantly higher incidence of sarcomas as compared to humans. This increased incidence led to canine osteosarcoma being an important component in the development of surgical approaches for osteosarcoma in children. Included in this review of sarcomas in dogs is a description of the incidence, pathology, molecular characteristics and previous translational therapeutic studies associated with these tumors. An understanding of the patho-physiological and molecular characteristics of these naturally occurring canine sarcomas holds great promise for effective incorporation into drug development schemas, for evaluation of target modulation or other pharmacodynamic measures associated with therapeutic response. These data could serve to supplement other preclinical data and bolster clinical investigations in tumor types for which there is a paucity of human patients for clinical trials.
Collapse
Affiliation(s)
- Daniel L Gustafson
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; Flint Animal Cancer Center, Colorado State University, Fort Collins, CO 80523, USA; University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Dawn L Duval
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; Flint Animal Cancer Center, Colorado State University, Fort Collins, CO 80523, USA; University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Daniel P Regan
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; Flint Animal Cancer Center, Colorado State University, Fort Collins, CO 80523, USA; University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Douglas H Thamm
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; Flint Animal Cancer Center, Colorado State University, Fort Collins, CO 80523, USA; University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
15
|
Patatsos K, Shekhar TM, Hawkins CJ. Pre-clinical evaluation of proteasome inhibitors for canine and human osteosarcoma. Vet Comp Oncol 2018; 16:544-553. [PMID: 29998615 DOI: 10.1111/vco.12413] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 04/30/2018] [Accepted: 05/29/2018] [Indexed: 12/12/2022]
Abstract
Osteosarcoma, a common malignancy in large dog breeds, typically metastasises from long bones to lungs and is usually fatal within 1 to 2 years of diagnosis. Better therapies are needed for canine patients and their human counterparts, a third of whom die within 5 years of diagnosis. We compared the in vitro sensitivity of canine osteosarcoma cells derived from 4 tumours to the currently used chemotherapy drugs doxorubicin and carboplatin, and 4 new anti-cancer drugs. Agents targeting histone deacetylases or PARP were ineffective. Two of the 4 cell lines were somewhat sensitive to the BH3-mimetic navitoclax. The proteasome inhibitor bortezomib potently induced caspase-dependent apoptosis, at concentrations substantially lower than levels detected in the bones and lungs of treated rodents. Co-treatment with bortezomib and either doxorubicin or carboplatin was more toxic to canine osteosarcoma cells than each agent alone. Newer proteasome inhibitors carfilzomib, ixazomib, oprozomib and delanzomib manifested similar activities to bortezomib. Human osteosarcoma cells were as sensitive to bortezomib as the canine cells, but slightly less sensitive to the newer drugs. Human osteoblasts were less sensitive to proteasome inhibition than osteosarcoma cells, but physiologically relevant concentrations were toxic. Such toxicity, if replicated in vivo, may impair bone growth and strength in adolescent human osteosarcoma patients, but may be tolerated by canine patients, which are usually diagnosed later in life. Proteasome inhibitors such as bortezomib may be useful for treating canine osteosarcoma, and ultimately may improve outcomes for human patients if their osteoblasts survive exposure in vivo, or if osteoblast toxicity can be managed.
Collapse
Affiliation(s)
- K Patatsos
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - T M Shekhar
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - C J Hawkins
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| |
Collapse
|
16
|
Sakthikumar S, Elvers I, Kim J, Arendt ML, Thomas R, Turner-Maier J, Swofford R, Johnson J, Schumacher SE, Alföldi J, Axelsson E, Couto CG, Kisseberth WC, Pettersson ME, Getz G, Meadows JRS, Modiano JF, Breen M, Kierczak M, Forsberg-Nilsson K, Marinescu VD, Lindblad-Toh K. SETD2 Is Recurrently Mutated in Whole-Exome Sequenced Canine Osteosarcoma. Cancer Res 2018; 78:3421-3431. [PMID: 29724721 DOI: 10.1158/0008-5472.can-17-3558] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/15/2018] [Accepted: 04/30/2018] [Indexed: 11/16/2022]
Abstract
Osteosarcoma is a debilitating bone cancer that affects humans, especially children and adolescents. A homologous form of osteosarcoma spontaneously occurs in dogs, and its differential incidence observed across breeds allows for the investigation of tumor mutations in the context of multiple genetic backgrounds. Using whole-exome sequencing and dogs from three susceptible breeds (22 golden retrievers, 21 Rottweilers, and 23 greyhounds), we found that osteosarcoma tumors show a high frequency of somatic copy-number alterations (SCNA), affecting key oncogenes and tumor-suppressor genes. The across-breed results are similar to what has been observed for human osteosarcoma, but the disease frequency and somatic mutation counts vary in the three breeds. For all breeds, three mutational signatures (one of which has not been previously reported) and 11 significantly mutated genes were identified. TP53 was the most frequently altered gene (83% of dogs have either mutations or SCNA in TP53), recapitulating observations in human osteosarcoma. The second most frequently mutated gene, histone methyltransferase SETD2, has known roles in multiple cancers, but has not previously been strongly implicated in osteosarcoma. This study points to the likely importance of histone modifications in osteosarcoma and highlights the strong genetic similarities between human and dog osteosarcoma, suggesting that canine osteosarcoma may serve as an excellent model for developing treatment strategies in both species.Significance: Canine osteosarcoma genomics identify SETD2 as a possible oncogenic driver of osteosarcoma, and findings establish the canine model as a useful comparative model for the corresponding human disease. Cancer Res; 78(13); 3421-31. ©2018 AACR.
Collapse
Affiliation(s)
- Sharadha Sakthikumar
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
- Broad Institute, Cambridge, Massachusetts
| | - Ingegerd Elvers
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Broad Institute, Cambridge, Massachusetts
| | - Jaegil Kim
- Broad Institute, Cambridge, Massachusetts
| | - Maja L Arendt
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Veterinary Clinical Sciences, University of Copenhagen, Frederiksberg D, Denmark
| | - Rachael Thomas
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | | | | | | | | | | | - Erik Axelsson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - C Guillermo Couto
- Department of Veterinary Clinical Sciences and Veterinary Medical Center, the Ohio State University, Columbus, Ohio
- Couto Veterinary Consultants, Hilliard, Ohio
| | - William C Kisseberth
- Department of Veterinary Clinical Sciences and Veterinary Medical Center, the Ohio State University, Columbus, Ohio
| | - Mats E Pettersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Gad Getz
- Broad Institute, Cambridge, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Massachusetts General Hospital, Boston, Massachusetts
| | - Jennifer R S Meadows
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jaime F Modiano
- Animal Cancer Care and Research Program, College of Veterinary Medicine, St. Paul, Minnesota
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, St. Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
- Institute for Engineering and Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Matthew Breen
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Marcin Kierczak
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Karin Forsberg-Nilsson
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Voichita D Marinescu
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
- Broad Institute, Cambridge, Massachusetts
| |
Collapse
|
17
|
Russell DS, Jaworski L, Kisseberth WC. Immunohistochemical detection of p53, PTEN, Rb, and p16 in canine osteosarcoma using tissue microarray. J Vet Diagn Invest 2018; 30:504-509. [PMID: 29629647 DOI: 10.1177/1040638718770239] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Although inactivating mutations of tumor suppressor genes are well described in cell lines of canine osteosarcoma (OS), expression of tumor suppressor proteins in spontaneous disease is poorly characterized. We determined the immunohistochemical expression of p53, PTEN, Rb, and p16 in a large cohort of dogs with OS. Formalin-fixed, paraffin-embedded samples of canine OS were analyzed retrospectively. Primary tumor samples from 145 dogs, collected between 2003 and 2008, were evaluated by tissue microarray. Streptavidin-biotin complex immunohistochemistry was performed using monoclonal antibodies for Rb and PTEN and polyclonal antibodies for p16 and p53. The average age of dogs was 7.6 y, and 118 of 145 (81%) were purebred. Most commonly represented purebreds were Greyhound (23%), Rottweiler (11%), and Labrador Retriever (10%). Immunohistochemical detection of p53, PTEN, Rb, and p16 was 81%, 61%, 66%, and 66%, respectively. The staining pattern for p16 was primarily cytoplasmic; the predominant pattern for PTEN, Rb, and p53 was cytoplasmic and nuclear. Exclusively cytoplasmic staining was noted in 19% of samples positive for p53 and 8% of samples positive for Rb. Kaplan-Meier curves showed that protein expression was not associated with significant differences in overall survival ( p > 0.191). We documented heterogeneity in both immunostaining and subcellular localization of tumor suppressor proteins, providing further characterization of canine OS.
Collapse
Affiliation(s)
- Duncan S Russell
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR (Russell).,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH (Jaworski, Kisseberth)
| | - Lauren Jaworski
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR (Russell).,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH (Jaworski, Kisseberth)
| | - William C Kisseberth
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR (Russell).,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH (Jaworski, Kisseberth)
| |
Collapse
|
18
|
Abstract
Canine osteosarcoma (OSA) is a malignant neoplastic tumor, which develops from the primitive mesenchymal stem cell, that has or can acquire the capacity to produce neoplastic osteoid with possible neoplastic bone formation. Predisposition of some dog breeds to OSA indicates genetic background of oncogenesis. The aim of the study was to characterize animal-dependent risk factors for canine osteosarcoma development in Poland. The study was conducted on canine patients diagnosed cytologically or histopathologically as having OSA, and data on age, breed, sex, as well as tumor location and character were recorded. No sex predisposition to OSA was observed, mongrels were significantly underrepresented. Large and giant dogs accounted for 47% and 35% of all pedigree dogs, respectively, and both proved predisposed to OSA. A vast majority of OSA developed in the skeleton (appendicular skeleton was more commonly affected than axial skeleton), soft tissues were affected less often. Rottweiler dogs are strongly predisposed to OSA, suggesting that the genetic background is involved in the tumor development, and indicates that dogs of this breed are a promising object for further studies on OSA pathogenesis.
Collapse
|
19
|
Simpson S, Dunning MD, de Brot S, Grau-Roma L, Mongan NP, Rutland CS. Comparative review of human and canine osteosarcoma: morphology, epidemiology, prognosis, treatment and genetics. Acta Vet Scand 2017; 59:71. [PMID: 29065898 PMCID: PMC5655853 DOI: 10.1186/s13028-017-0341-9] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 10/18/2017] [Indexed: 01/09/2023] Open
Abstract
Osteosarcoma (OSA) is a rare cancer in people. However OSA incidence rates in dogs are 27 times higher than in people. Prognosis in both species is relatively poor, with 5 year OSA survival rates in people not having improved in decades. For dogs, 1 year survival rates are only around ~ 45%. Improved and novel treatment regimens are urgently required to improve survival in both humans and dogs with OSA. Utilising information from genetic studies could assist in this in both species, with the higher incidence rates in dogs contributing to the dog population being a good model of human disease. This review compares the clinical characteristics, gross morphology and histopathology, aetiology, epidemiology, and genetics of canine and human OSA. Finally, the current position of canine OSA genetic research is discussed and areas for additional work within the canine population are identified.
Collapse
|
20
|
Murphy BG, Mok MY, York D, Rebhun R, Woolard KD, Hillman C, Dickinson P, Skorupski K. Evaluation of P16 expression in canine appendicular osteosarcoma. BMC Vet Res 2017. [PMID: 28633676 PMCID: PMC5477683 DOI: 10.1186/s12917-017-1113-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Osteosarcoma (OSA) is a common malignant bone tumor of large breed dogs that occurs at predictable anatomic sites. At the time of initial diagnosis, most affected dogs have occult pulmonary metastases. Even with aggressive surgical treatment combined with chemotherapy, the majority of dogs diagnosed with OSA live less than 1 year from the time of diagnosis. The ability to identify canine OSA cases most responsive to treatment is needed. In humans, OSA is also an aggressive tumor that is histologically and molecularly similar to canine OSA. The expression of the tumor suppressor gene product P16 by human OSA tissue has been linked to a favorable response to chemotherapy. RESULTS We identified an antibody that binds canine P16 and developed a canine OSA tissue microarray in order to test the hypothesis that P16 expression by canine OSA tissue is predictive of clinical outcome following amputation and chemotherapy. Although statistical significance was not reached, a trend was identified between the lack of canine OSA P16 expression and a shorter disease free interval. CONCLUSIONS The identification of a molecular marker for canine OSA is an important goal and the results reported here justify a larger study.
Collapse
Affiliation(s)
- B G Murphy
- Department Pathology, University of California, Davis, School of Veterinary Medicine, Microbiology and Immunology, Davis, CA, 95618, USA.
| | - M Y Mok
- Department Pathology, University of California, Davis, School of Veterinary Medicine, Microbiology and Immunology, Davis, CA, 95618, USA
| | - D York
- Department of Surgical and Radiological Sciences, Davis, CA, 95618, USA
| | - R Rebhun
- Department of Surgical and Radiological Sciences, Davis, CA, 95618, USA
| | - K D Woolard
- Department Pathology, University of California, Davis, School of Veterinary Medicine, Microbiology and Immunology, Davis, CA, 95618, USA
| | - C Hillman
- Department Pathology, University of California, Davis, School of Veterinary Medicine, Microbiology and Immunology, Davis, CA, 95618, USA
| | - P Dickinson
- Department of Surgical and Radiological Sciences, Davis, CA, 95618, USA
| | - K Skorupski
- Department of Surgical and Radiological Sciences, Davis, CA, 95618, USA
| |
Collapse
|
21
|
Jark PC, Mundin DBP, de Carvalho M, Ferioli RB, Anai LA, Marchi FA, Rogatto SR, Laufer-Amorim R, Tinucci-Costa M. Genomic copy number variation associated with clinical outcome in canine cutaneous mast cell tumors. Res Vet Sci 2016; 111:26-30. [PMID: 28266316 DOI: 10.1016/j.rvsc.2016.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 10/10/2016] [Accepted: 11/16/2016] [Indexed: 01/02/2023]
Abstract
Mast cell tumors are the most common malignant cutaneous tumors in dogs. Although there are several prognostic factors involved, the clinical and biological behavior of this type of tumor varies greatly, making the best choice of treatment challenging. Molecular techniques can be used to evaluate a large number of genes involved in the neoplastic process and aid in the selection of candidate genes related to prognostic and predicting factors. Identification of the genes associated with tumor development and progression can be performed through the analysis of numerical and structural changes in DNA isolated from tumor cells by array comparative genomic hybridization (aCGH). The aim of this study was to compare copy number variations (CNVs) in cutaneous mast cell tumors of dogs that survived less than six (ST<6) and >12months (ST>12) from the date of diagnosis. Ten animals were used: four from Group ST>12 and six from Group ST<6. Genomic DNA was extracted, and aCGH was performed using Agilent Canine Genome CGH Microarray 4×180 (ID-252 552 - Agilent, USA). Data analysis was carried out using Nexus program version 5.0 (Biodiscovery, USA). The group ST>12 presented 11±3.3 CNVs, while the ST<6 group presented 85±38.5 CNVs. Regions of loss in PTEN and FAS as well as regions of gains in MAPK3, WNT5B, FGF, FOXM1 and RAD51 were detected in mast cell tumors with shorter survival times, and thus, worst prognoses, allowing for the identification of potential candidate genes for more detailed studies.
Collapse
Affiliation(s)
- Paulo C Jark
- Clinical Veterinary Department, College of Agricultural and Veterinary Sciences, São Paulo State University "Júlio de Mesquita Filho" (UNESP), Jaboticabal, São Paulo, Brazil.
| | | | - Marcio de Carvalho
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University "Júlio de Mesquita Filho" (UNESP), Botucatu, São Paulo, Brazil
| | - Raquel B Ferioli
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University "Júlio de Mesquita Filho" (UNESP), Botucatu, São Paulo, Brazil
| | - Letícia A Anai
- Clinical Veterinary Department, College of Agricultural and Veterinary Sciences, São Paulo State University "Júlio de Mesquita Filho" (UNESP), Jaboticabal, São Paulo, Brazil.
| | - Fabio A Marchi
- Neogene Laboratory, CIPE, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Silvia R Rogatto
- Neogene Laboratory, CIPE, A.C. Camargo Cancer Center, São Paulo, Brazil; Department of Urology, Faculty of Medicine, UNESP, Botucatu, São Paulo, Brazil
| | - Renee Laufer-Amorim
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University "Júlio de Mesquita Filho" (UNESP), Botucatu, São Paulo, Brazil
| | - Mirela Tinucci-Costa
- Clinical Veterinary Department, College of Agricultural and Veterinary Sciences, São Paulo State University "Júlio de Mesquita Filho" (UNESP), Jaboticabal, São Paulo, Brazil.
| |
Collapse
|
22
|
Swiss Canine Cancer Registry 1955–2008: Occurrence of the Most Common Tumour Diagnoses and Influence of Age, Breed, Body Size, Sex and Neutering Status on Tumour Development. J Comp Pathol 2016; 155:156-170. [DOI: 10.1016/j.jcpa.2016.05.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 05/03/2016] [Accepted: 05/11/2016] [Indexed: 01/05/2023]
|
23
|
Thomas R, Demeter Z, Kennedy KA, Borst L, Singh K, Valli VE, Le Boedec K, Breen M. Integrated immunohistochemical and DNA copy number profiling analysis provides insight into the molecular pathogenesis of canine follicular lymphoma. Vet Comp Oncol 2016; 15:852-867. [PMID: 27135201 DOI: 10.1111/vco.12227] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 02/21/2016] [Accepted: 02/22/2016] [Indexed: 12/16/2022]
Abstract
Follicular lymphomas (FLs) typically exhibit a chromosome translocation that induces constitutive expression of the anti-apoptotic bcl2 protein and accumulation of additional molecular defects. This rearrangement offers a promising therapeutic target, but its nature as a fundamental driver of FL pathogenesis remains unclear as 15% of cases lack the translocation. We performed an integrated immunohistochemical and genomic investigation of 10 naturally occurring FL cases from domestic dogs, showing that, as with human tumours, they exhibit marked heterogeneity in the frequency and intensity of bcl2 protein expression. Genomic copy number aberrations were infrequent and broadly consistent with those of other canine B-cell lymphoma subtypes. None of the canine FL specimens exhibited a rearrangement consistent with the hallmark translocation of human FL, despite their remarkable histomorphologic similarity. Parallel exploration of canine and human cases may reveal alternative tumour-initiating mechanisms other than BCL2 disruption, yielding a more complete definition of the molecular pathogenesis of FL.
Collapse
Affiliation(s)
- R Thomas
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC, USA
| | - Z Demeter
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA.,IDEXX Reference Laboratories Inc., West Sacramento, CA, USA
| | - K A Kennedy
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - L Borst
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - K Singh
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA
| | - V E Valli
- Visalia Pathology Medical Group, Visalia, CA, USA
| | - K Le Boedec
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA
| | - M Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC, USA.,Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.,University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| |
Collapse
|
24
|
|
25
|
Varshney J, Scott MC, Largaespada DA, Subramanian S. Understanding the Osteosarcoma Pathobiology: A Comparative Oncology Approach. Vet Sci 2016; 3:vetsci3010003. [PMID: 29056713 PMCID: PMC5644613 DOI: 10.3390/vetsci3010003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/23/2015] [Accepted: 01/11/2016] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma is an aggressive primary bone tumor in humans and is among the most common cancer afflicting dogs. Despite surgical advancements and intensification of chemo- and targeted therapies, the survival outcome for osteosarcoma patients is, as of yet, suboptimal. The presence of metastatic disease at diagnosis or its recurrence after initial therapy is a major factor for the poor outcomes. It is thought that most human and canine patients have at least microscopic metastatic lesions at diagnosis. Osteosarcoma in dogs occurs naturally with greater frequency and shares many biological and clinical similarities with osteosarcoma in humans. From a genetic perspective, osteosarcoma in both humans and dogs is characterized by complex karyotypes with highly variable structural and numerical chromosomal aberrations. Similar molecular abnormalities have been observed in human and canine osteosarcoma. For instance, loss of TP53 and RB regulated pathways are common. While there are several oncogenes that are commonly amplified in both humans and dogs, such as MYC and RAS, no commonly activated proto-oncogene has been identified that could form the basis for targeted therapies. It remains possible that recurrent aberrant gene expression changes due to gene amplification or epigenetic alterations could be uncovered and these could be used for developing new, targeted therapies. However, the remarkably high genomic complexity of osteosarcoma has precluded their definitive identification. Several advantageous murine models of osteosarcoma have been generated. These include spontaneous and genetically engineered mouse models, including a model based on forward genetics and transposon mutagenesis allowing new genes and genetic pathways to be implicated in osteosarcoma development. The proposition of this review is that careful comparative genomic studies between human, canine and mouse models of osteosarcoma may help identify commonly affected and targetable pathways for alternative therapies for osteosarcoma patients. Translational research may be found through a path that begins in mouse models, and then moves through canine patients, and then human patients.
Collapse
Affiliation(s)
- Jyotika Varshney
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Surgery, University of Minnesota Medical School, Moos Tower, 11-212420 Delaware Street, S.E.; MMC 195, Minneapolis, MN 55455, USA.
| | - Milcah C Scott
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN 55455, USA.
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| | - David A Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Subbaya Subramanian
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Surgery, University of Minnesota Medical School, Moos Tower, 11-212420 Delaware Street, S.E.; MMC 195, Minneapolis, MN 55455, USA.
| |
Collapse
|
26
|
Abstract
Spontaneous cancers in client-owned dogs closely recapitulate their human counterparts with respect to clinical presentation, histological features, molecular profiles, and response and resistance to therapy, as well as the evolution of drug-resistant metastases. In several instances the incorporation of dogs with cancer into the preclinical development path of cancer therapeutics has influenced outcome by helping to establish pharmacokinetic/pharmacodynamics relationships, dose/regimen, expected clinical toxicities, and ultimately the potential for biologic activity. As our understanding regarding the molecular drivers of canine cancers has improved, unique opportunities have emerged to leverage this spontaneous model to better guide cancer drug development so that therapies likely to fail are eliminated earlier and therapies with true potential are optimized prior to human studies. Both pets and people benefit from this approach, as it provides dogs with access to cutting-edge cancer treatments and helps to insure that people are given treatments more likely to succeed.
Collapse
Affiliation(s)
| | | | - Cheryl A London
- Department of Veterinary Clinical Sciences and.,Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210;
| |
Collapse
|
27
|
Scott MC, Sarver AL, Tomiyasu H, Cornax I, Van Etten J, Varshney J, O'Sullivan MG, Subramanian S, Modiano JF. Aberrant Retinoblastoma (RB)-E2F Transcriptional Regulation Defines Molecular Phenotypes of Osteosarcoma. J Biol Chem 2015; 290:28070-28083. [PMID: 26378234 DOI: 10.1074/jbc.m115.679696] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 12/22/2022] Open
Abstract
We previously identified two distinct molecular subtypes of osteosarcoma through gene expression profiling. These subtypes are associated with distinct tumor behavior and clinical outcomes. Here, we describe mechanisms that give rise to these molecular subtypes. Using bioinformatic analyses, we identified a significant association between deregulation of the retinoblastoma (RB)-E2F pathway and the molecular subtype with worse clinical outcomes. Xenotransplantation models recapitulated the corresponding behavior for each osteosarcoma subtype; thus, we used cell lines to validate the role of the RB-E2F pathway in regulating the prognostic gene signature. Ectopic RB resets the patterns of E2F regulated gene expression in cells derived from tumors with worse clinical outcomes (molecular phenotype 2) to those comparable with those observed in cells derived from tumors with less aggressive outcomes (molecular phenotype 1), providing a functional association between RB-E2F dysfunction and altered gene expression in osteosarcoma. DNA methyltransferase and histone deacetylase inhibitors similarly reset the transcriptional state of the molecular phenotype 2 cells from a state associated with RB deficiency to one seen with RB sufficiency. Our data indicate that deregulation of RB-E2F pathway alters the epigenetic landscape and biological behavior of osteosarcoma.
Collapse
Affiliation(s)
- Milcah C Scott
- Animal Cancer Care and Research Program; Departments of Veterinary Clinical Sciences; Masonic Cancer Center
| | - Aaron L Sarver
- Animal Cancer Care and Research Program; Departments of Veterinary Clinical Sciences
| | - Hirotaka Tomiyasu
- Animal Cancer Care and Research Program; Departments of Veterinary Clinical Sciences; Masonic Cancer Center
| | - Ingrid Cornax
- Animal Cancer Care and Research Program; Masonic Cancer Center; Veterinary Population Medicine
| | - Jamie Van Etten
- Masonic Cancer Center; Department of Surgery, School of Medicine
| | - Jyotika Varshney
- Animal Cancer Care and Research Program; Department of Surgery, School of Medicine; Veterinary Medicine Graduate Program, College of Veterinary Medicine
| | - M Gerard O'Sullivan
- Animal Cancer Care and Research Program; Masonic Cancer Center; Veterinary Population Medicine
| | - Subbaya Subramanian
- Animal Cancer Care and Research Program; Masonic Cancer Center; Department of Surgery, School of Medicine
| | - Jaime F Modiano
- Animal Cancer Care and Research Program; Departments of Veterinary Clinical Sciences; Masonic Cancer Center; Stem Cell Institute; Center for Immunology, University of Minnesota, Minneapolis, Minnesota 55455.
| |
Collapse
|
28
|
Fan TM, Khanna C. Comparative Aspects of Osteosarcoma Pathogenesis in Humans and Dogs. Vet Sci 2015; 2:210-230. [PMID: 29061942 PMCID: PMC5644632 DOI: 10.3390/vetsci2030210] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/01/2015] [Accepted: 08/11/2015] [Indexed: 01/10/2023] Open
Abstract
Osteosarcoma (OS) is a primary and aggressive bone sarcoma affecting the skeleton of two principal species, human beings and canines. The biologic behavior of OS is conserved between people and dogs, and evidence suggests that fundamental discoveries in OS biology can be facilitated through detailed and comparative studies. In particular, the relative genetic homogeneity associated with specific dog breeds can provide opportunities to facilitate the discovery of key genetic drivers involved in OS pathogenesis, which, to-date, remain elusive. In this review, known causative factors that predispose to the development OS in human beings and dogs are summarized in detail. Based upon the commonalities shared in OS pathogenesis, it is likely that foundational discoveries in one species will be translationally relevant to the other and emphasizes the unique opportunities that might be gained through comparative scientific approaches.
Collapse
Affiliation(s)
- Timothy M Fan
- Department of Veterinary Clinical Medicine, Comparative Oncology Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA.
| | - Chand Khanna
- Tumor and Metastasis Biology Section, Pediatric Oncology Branch, Center for Clinical Research, The National Cancer Institute, Washington, DC 20004, USA.
| |
Collapse
|
29
|
miR-196a expression in human and canine osteosarcomas: A comparative study. Res Vet Sci 2015; 99:112-9. [DOI: 10.1016/j.rvsc.2014.12.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/22/2014] [Accepted: 12/26/2014] [Indexed: 12/25/2022]
|
30
|
Fenger JM, London CA, Kisseberth WC. Canine osteosarcoma: a naturally occurring disease to inform pediatric oncology. ILAR J 2015; 55:69-85. [PMID: 24936031 DOI: 10.1093/ilar/ilu009] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Osteosarcoma (OSA) is the most common form of malignant bone cancer in children and dogs, although the disease occurs in dogs approximately 10 times more frequently than in people. Multidrug chemotherapy and aggressive surgical techniques have improved survival; however, new therapies for OSA are critical, as little improvement in survival times has been achieved in either dogs or people over the past 15 years, even with significant efforts directed at the incorporation of novel therapeutic approaches. Both clinical and molecular evidence suggests that human and canine OSA share many key features, including tumor location, presence of microscopic metastatic disease at diagnosis, development of chemotherapy-resistant metastases, and altered expression/activation of several proteins (e.g. Met, ezrin, phosphatase and tensin homolog, signal transducer and activator of transcription 3), and p53 mutations, among others. Additionally, canine and pediatric OSA exhibit overlapping transcriptional profiles and shared DNA copy number aberrations, supporting the notion that these diseases are similar at the molecular level. This review will discuss the similarities between pediatric and canine OSA with regard to histology, biologic behavior, and molecular genetic alterations that indicate canine OSA is a relevant, spontaneous, large animal model of the pediatric disease and outline how the study of naturally occurring OSA in dogs will offer additional insights into the biology and future treatment of this disease in both children and dogs.
Collapse
|
31
|
Alvarez CE. Naturally Occurring Cancers in Dogs: Insights for Translational Genetics and Medicine. ILAR J 2014; 55:16-45. [DOI: 10.1093/ilar/ilu010] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Scharf VF, Farese JP, Coomer AR, Milner RJ, Taylor DP, Salute ME, Chang MN, Neal D, Siemann DW. Effect of bevacizumab on angiogenesis and growth of canine osteosarcoma cells xenografted in athymic mice. Am J Vet Res 2013; 74:771-8. [PMID: 23627391 DOI: 10.2460/ajvr.74.5.771] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Objective-To investigate the effects of bevacizumab, a human monoclonal antibody against vascular endothelial growth factor, on the angiogenesis and growth of canine osteosarcoma cells xenografted in mice. Animals-27 athymic nude mice. Procedures-To each mouse, highly metastasizing parent osteosarcoma cells of canine origin were injected into the left gastrocnemius muscle. Each mouse was then randomly allocated to 1 of 3 treatment groups: high-dose bevacizumab (4 mg/kg, IP), low-dose bevacizumab (2 mg/kg, IP), or control (no treatment). Tumor growth (the number of days required for the tumor to grow from 8 to 13 mm), vasculature, histomorphology, necrosis, and pulmonary metastasis were evaluated. Results-Mice in the high-dose bevacizumab group had significantly delayed tumor growth (mean ± SD, 13.4 ± 3.8 days; range, 9 to 21 days), compared with that for mice in the low-dose bevacizumab group (mean ± SD, 9.4 ± 1.5 days; range, 7 to 11 days) or control group (mean ± SD, 7. 2 ± 1.5 days; range, 4 to 9 days). Mice in the low-dose bevacizumab group also had significantly delayed tumor growth, compared with that for mice in the control group. Conclusions and Clinical Relevance-Results indicated that bevacizumab inhibited growth of canine osteosarcoma cells xenografted in mice, which suggested that vascular endothelial growth factor inhibitors may be clinically useful for the treatment of osteosarcoma in dogs. Impact for Human Medicine-Canine osteosarcoma is used as a research model for human osteosarcoma; therefore, bevacizumab may be clinically beneficial for the treatment of osteosarcoma in humans.
Collapse
Affiliation(s)
- Valery F Scharf
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Beck J, Hennecke S, Bornemann-Kolatzki K, Urnovitz HB, Neumann S, Ströbel P, Kaup FJ, Brenig B, Schütz E. Genome aberrations in canine mammary carcinomas and their detection in cell-free plasma DNA. PLoS One 2013; 8:e75485. [PMID: 24098698 PMCID: PMC3787092 DOI: 10.1371/journal.pone.0075485] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 08/19/2013] [Indexed: 12/17/2022] Open
Abstract
Mammary tumors are the most frequent cancers in female dogs exhibiting a variety of histopathological differences. There is lack of knowledge about the genomes of these common dog tumors. Five tumors of three different histological subtypes were evaluated. Massive parallel sequencing (MPS) was performed in comparison to the respective somatic genome of each animal. Copy number and structural aberrations were validated using droplet digital PCR (ddPCR). Using mate-pair sequencing chromosomal aneuploidies were found in two tumors, frequent smaller deletions were found in one, inter-chromosomal fusions in one other, whereas one tumor was almost normal. These aberrations affect several known cancer associated genes such as cMYC, and KIT. One common deletion of the proximal end of CFA27, harboring the tumor suppressor gene PFDN5 was detected in four tumors. Using ddPCR, this deletion was validated and detected in 50% of tumors (N = 20). Breakpoint specific dPCRs were established for four tumors and tumor specific cell-free DNA (cfDNA) was detected in the plasma. In one animal tumor-specific cfDNA was found >1 year after surgery, attributable to a lung metastasis. Paired-end sequencing proved that copy-number imbalances of the tumor are reflected by the cfDNA. This report on chromosomal instability of canine mammary cancers reveals similarities to human breast cancers as well as special canine alterations. This animal model provides a framework for using MPS for screening for individual cancer biomarkers with cost effective confirmation and monitoring using ddPCR. The possibility exists that ddPCR can be expanded to screening for common cancer related variants.
Collapse
|
34
|
Breed-predispositions to cancer in pedigree dogs. ISRN VETERINARY SCIENCE 2013; 2013:941275. [PMID: 23738139 PMCID: PMC3658424 DOI: 10.1155/2013/941275] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 10/22/2012] [Indexed: 12/20/2022]
Abstract
Cancer is a common problem in dogs and although all breeds of dog and crossbred dogs may be affected, it is notable that some breeds of pedigree dogs appear to be at increased risk of certain types of cancer suggesting underlying genetic predisposition to cancer susceptibility. Although the aetiology of most cancers is likely to be multifactorial, the limited genetic diversity seen in purebred dogs facilitates genetic linkage or association studies on relatively small populations as compared to humans, and by using newly developed resources, genome-wide association studies in dog breeds are proving to be a powerful tool for unravelling complex disorders. This paper will review the literature on canine breed susceptibility to histiocytic sarcoma, osteosarcoma, haemangiosarcoma, mast cell tumours, lymphoma, melanoma, and mammary tumours including the recent advances in knowledge through molecular genetic, cytogenetic, and genome wide association studies.
Collapse
|
35
|
Abstract
Osteosarcoma, the most frequent primary bone tumor, is a malignant mesenchymal sarcoma with a peak incidence in young children and adolescents. Left untreated, it progresses relentlessly to local and systemic disease, ultimately leading to death within months. Genomically, osteosarcomas are aneuploid with chaotic karyotypes, lacking the pathognomonic genetic rearrangements characteristic of most sarcomas. The familial genetics of osteosarcoma helped in elucidating some of the etiological molecular disruptions, such as the tumor suppressor genes RB1 in retinoblastoma and TP53 in Li-Fraumeni, and RECQL4 involved in DNA repair/replication in Rothmund-Thomson syndrome. Genomic profiling approaches such as array comparative genomic hybridization (aCGH) have provided additional insights concerning the mechanisms responsible for generating complex osteosarcoma genomes. This chapter provides a brief introduction to the clinical features of conventional osteosarcoma, the predominant subtypes, and a general overview of materials and analytical methods of osteosarcoma aCGH, followed by a more detailed literature overview of aCGH studies and a discussion of emerging genes, molecular mechanisms, and their clinical implications, as well as more recent application of integrative genomics in osteosarcoma. aCHG is helping elucidate genomic events leading to tumor development and evolution as well as identification of prognostic markers and therapeutic targets in osteosarcoma.
Collapse
|
36
|
Angstadt AY, Thayanithy V, Subramanian S, Modiano JF, Breen M. A genome-wide approach to comparative oncology: high-resolution oligonucleotide aCGH of canine and human osteosarcoma pinpoints shared microaberrations. Cancer Genet 2012; 205:572-87. [PMID: 23137772 DOI: 10.1016/j.cancergen.2012.09.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 08/31/2012] [Accepted: 09/24/2012] [Indexed: 11/19/2022]
Abstract
Molecular cytogenetic evaluation of human osteosarcoma (OS) has revealed the characteristically high degree of genomic reorganization that is the hallmark of this cancer. The extent of genomic disorder in OS has hindered identification of the genomic aberrations driving disease progression. With pathophysiological similarities to its human counterpart, canine OS represents an ideal model for comparison of conserved regions of genomic instability that may be disease-associated rather than genomic passengers. This study used high-resolution oligonucleotide array comparative genomic hybridization and a variety of informatics tools to aid in the identification of disease-associated genome-wide DNA copy number aberrations in canine and human OS. Our findings support and build upon the high level of cytogenetic complexity, through the identification of shared regions of microaberration (<500 kb) and functional analysis of possible orthologous OS-associated genes to pinpoint the cellular processes most commonly affected by aberration in human and canine OS. Aberrant regions contained previously reported genes such as CDC5L, MYC, RUNX2, and CDKN2A/CDKN2B, while expanding the gene of interest list to include ADAM15, CTC1, MEN1, CDK7, and others. Such regions of instability may thus have functional significance in the etiology of OS, the most common primary bone tumor in both species.
Collapse
Affiliation(s)
- Andrea Y Angstadt
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | | | | | | | | |
Collapse
|
37
|
Thayanithy V, Park C, Sarver AL, Kartha RV, Korpela DM, Graef AJ, Steer CJ, Modiano JF, Subramanian S. Combinatorial treatment of DNA and chromatin-modifying drugs cause cell death in human and canine osteosarcoma cell lines. PLoS One 2012; 7:e43720. [PMID: 22957032 PMCID: PMC3434163 DOI: 10.1371/journal.pone.0043720] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 07/23/2012] [Indexed: 11/18/2022] Open
Abstract
Downregulation of microRNAs (miRNAs) at the 14q32 locus stabilizes the expression of cMYC, thus significantly contributing to osteosarcoma (OS) pathobiology. Here, we show that downregulation of 14q32 miRNAs is epigenetically regulated. The predicted promoter regions of miRNA clusters at 14q32 locus showed no recurrent patterns of differential methylation, but Saos2 cells showed elevated histone deacetylase (HDAC) activity. Treatment with 4-phenylbutyrate increased acetylation of histones associated with 14q32 miRNAs, but interestingly, robust restoration of 14q32 miRNA expression, attenuation of cMYC expression, and induction of apoptosis required concomitant treatment with 5-Azacytidine, an inhibitor of DNA methylation. These events were associated with genome-wide gene expression changes including induction of pro-apoptotic genes and downregulation of cell cycle genes. Comparable effects were achieved in human and canine OS cells using the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA/Vorinostat) and the DNA methylation inhibitor Zebularine (Zeb), with significantly more pronounced cytotoxicity in cells whose molecular phenotypes were indicative of aggressive biological behavior. These results suggested that the combination of these chromatin-modifying drugs may be a useful adjuvant in the treatment of rapidly progressive OS.
Collapse
Affiliation(s)
- Venugopal Thayanithy
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - ChangWon Park
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Aaron L. Sarver
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Reena V. Kartha
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Derek M. Korpela
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Ashley J. Graef
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Clifford J. Steer
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jaime F. Modiano
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Subbaya Subramanian
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
38
|
Maeda J, Yurkon CR, Fujisawa H, Kaneko M, Genet SC, Roybal EJ, Rota GW, Saffer ER, Rose BJ, Hanneman WH, Thamm DH, Kato TA. Genomic instability and telomere fusion of canine osteosarcoma cells. PLoS One 2012; 7:e43355. [PMID: 22916246 PMCID: PMC3420908 DOI: 10.1371/journal.pone.0043355] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 07/23/2012] [Indexed: 12/29/2022] Open
Abstract
Canine osteosarcoma (OSA) is known to present with highly variable and chaotic karyotypes, including hypodiploidy, hyperdiploidy, and increased numbers of metacentric chromosomes. The spectrum of genomic instabilities in canine OSA has significantly augmented the difficulty in clearly defining the biological and clinical significance of the observed cytogenetic abnormalities. In this study, eight canine OSA cell lines were used to investigate telomere fusions by fluorescence in situ hybridization (FISH) using a peptide nucleotide acid probe. We characterized each cell line by classical cytogenetic studies and cellular phenotypes including telomere associated factors and then evaluated correlations from this data. All eight canine OSA cell lines displayed increased abnormal metacentric chromosomes and exhibited numerous telomere fusions and interstitial telomeric signals. Also, as evidence of unstable telomeres, colocalization of γ-H2AX and telomere signals in interphase cells was observed. Each cell line was characterized by a combination of data representing cellular doubling time, DNA content, chromosome number, metacentric chromosome frequency, telomere signal level, cellular radiosensitivity, and DNA-PKcs protein expression level. We have also studied primary cultures from 10 spontaneous canine OSAs. Based on the observation of telomere aberrations in those primary cell cultures, we are reasonably certain that our observations in cell lines are not an artifact of prolonged culture. A correlation between telomere fusions and the other characteristics analyzed in our study could not be identified. However, it is important to note that all of the canine OSA samples exhibiting telomere fusion utilized in our study were telomerase positive. Pending further research regarding telomerase negative canine OSA cell lines, our findings may suggest telomere fusions can potentially serve as a novel marker for canine OSA.
Collapse
Affiliation(s)
- Junko Maeda
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Charles R. Yurkon
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Hiroshi Fujisawa
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Masami Kaneko
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Stefan C. Genet
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Erica J. Roybal
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Garrett W. Rota
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Ethan R. Saffer
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Barbara J. Rose
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - William H. Hanneman
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Douglas H. Thamm
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Takamitsu A. Kato
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
39
|
Inflammation, apoptosis, and necrosis induced by neoadjuvant fas ligand gene therapy improves survival of dogs with spontaneous bone cancer. Mol Ther 2012; 20:2234-43. [PMID: 22850679 DOI: 10.1038/mt.2012.149] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fas ligand (FasL) gene therapy for cancer has shown promise in rodents; however, its efficacy in higher mammals remains unknown. Here, we used intratumoral FasL gene therapy delivered in an adenovirus vector (Ad-FasL) as neoadjuvant to standard of care in 56 dogs with osteosarcoma. Tumors from treated dogs had greater inflammation, necrosis, apoptosis, and fibrosis at day 10 (amputation) compared to pretreatment biopsies or to tumors from dogs that did not receive Ad-FasL. Survival improvement was apparent in dogs with inflammation or lymphocyte-infiltration scores >1 (in a 3-point scale), as well as in dogs that had apoptosis scores in the top 50th percentile (determined by cleaved caspase-3). Survival was no different than that expected from standard of care alone in dogs with inflammation scores ≤1 or apoptosis scores in the bottom 50th percentile. Reduced Fas expression by tumor cells was associated with prognostically advantageous inflammation, and this was seen only in dogs that received Ad-FasL. Together, the data suggest that Ad-FasL gene therapy improves survival in a subset of large animals with naturally occurring tumors, and that at least in some tumor types like osteosarcoma, it is most effective when tumor cells fail to express Fas.
Collapse
|
40
|
Immunohistochemical investigation of cell cycle and apoptosis regulators (survivin, β-catenin, p53, caspase 3) in canine appendicular osteosarcoma. BMC Vet Res 2012; 8:78. [PMID: 22686277 PMCID: PMC3514374 DOI: 10.1186/1746-6148-8-78] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 05/22/2012] [Indexed: 02/07/2023] Open
Abstract
Background Osteosarcoma (OSA) represents the most common canine primary bone tumour. Despite several pathways have been investigated so far, few molecules have been identified as prognostic tools or potential therapeutic targets, and there is still the need to find out molecular pathways with specific influence over OSA progression to facilitate earlier prognosis and treatment. Aims of the present study were to evaluate the immunohistochemical pattern and levels of expression of a panel of molecules (survivin, β-catenin, caspase 3 -inactive and active forms- and p53) involved in cell cycle and apoptosis regulation in canine OSA samples, known to be of interest in the study also of human OSA, and to detect specific relations among them and with histological tumour grade, disease free interval (DFI) and overall survival (OS). Results Nuclear β-catenin immunostaining was detected in normal osteoblasts adjacent to the tumour, and in 47% of the cases. Cytoplasmic and/or membranous immunostaining were also observed. Nuclear survivin and p53 positive cells were found in all cases. Moderate/high cytoplasmic β-catenin expression (≥10% positive cells) was significantly associated with the development of metastasis (P = 0.014); moderate/high nuclear p53 expression (≥10% positive cells) was significantly associated with moderate/high histological grade (P = 0.017) and shorter OS (P = 0.049). Moderate/high nuclear survivin expression (≥15% positive cells) showed a tendency toward a longer OS (P = 0,088). Conclusions The present results confirmed p53 as negative prognostic marker, while suggested survivin as a potential positive prognostic indicator, rather than indicative of a poor prognosis. The detection of nuclear β-catenin immunostaining in normal osteoblasts and the absent/low expression in most of the OSAs, suggested that this pathway could not play a major role in oncogenic transformation of canine osteoblasts. Further studies are needed to confirm these hypotheses.
Collapse
|
41
|
Marconato L, Gelain ME, Comazzi S. The dog as a possible animal model for human non-Hodgkin lymphoma: a review. Hematol Oncol 2012; 31:1-9. [PMID: 22674797 DOI: 10.1002/hon.2017] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 05/07/2012] [Indexed: 12/28/2022]
Abstract
Lymphoma represents the most frequent hematopoietic cancer in dogs, and it shows significant overlap with the human disease. Several environmental factors have been associated with canine lymphoma, suggesting that they may contribute to lymphomagenesis. Canine lymphoma often presents in advanced stage (III-V) at diagnosis and, most commonly, has an aggressive clinical course requiring prompt treatment, which relies on the use of polychemotherapy. In this review, we will summarize the state-of-the-art of canine lymphoma epidemiology, pathobiology, diagnostic work-up and therapy, and will highlight the links to the corresponding human disease, providing evidence for the use of dog as an animal model of spontaneous disease.
Collapse
|
42
|
Rankin KS, Starkey M, Lunec J, Gerrand CH, Murphy S, Biswas S. Of dogs and men: comparative biology as a tool for the discovery of novel biomarkers and drug development targets in osteosarcoma. Pediatr Blood Cancer 2012; 58:327-33. [PMID: 21990244 DOI: 10.1002/pbc.23341] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 08/12/2011] [Indexed: 12/20/2022]
Abstract
The similarities between human and canine osteosarcoma with regard to histology, biological behavior and molecular genetic alterations suggest that the dog provides a supplementary model for the development and preclinical testing of novel therapeutics. Counter intuitively, careful examination of the differences between OS in the two species may also be rewarding in terms of increasing our understanding of the pathogenesis of this cancer. This review will discuss the arguments in favor of the "dog model" and outline how the evaluation of treatment strategies in dogs has indicated avenues for improvement of protocols for human patients.
Collapse
Affiliation(s)
- Kenneth S Rankin
- Sarcoma Research Group, Northern Institute for Cancer Research, Newcastle University and North of England Bone and Soft Tissue Sarcoma Service, Framlington Place, Newcastle-Upon-Tyne, UK
| | | | | | | | | | | |
Collapse
|
43
|
Seiser EL, Thomas R, Richards KL, Kelley MK, Moore P, Suter SE, Breen M. Reading between the lines: molecular characterization of five widely used canine lymphoid tumour cell lines. Vet Comp Oncol 2011; 11:30-50. [PMID: 22236332 DOI: 10.1111/j.1476-5829.2011.00299.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Molecular characterization of tumour cell lines is increasingly regarded as a prerequisite for defining their validity as models of in vivo neoplasia. We present the first comprehensive catalogue of genomic and transcriptional characteristics of five widely used canine lymphoid tumour cell lines. High-resolution microarray-based comparative genomic hybridization defined their unique profiles of genomic DNA copy number imbalance. Multicolour fluorescence in situ hybridization identified aberrant gains of MYC, KIT and FLT3 and deletions of PTEN and CDKN2 in individual cell lines, and also revealed examples of extensive structural chromosome reorganization. Gene expression profiling and RT-PCR analyses defined the relationship between genomic imbalance and transcriptional dysregulation in each cell line, clarifying their relevance as models of discrete functional pathways with biological and therapeutic significance. In combination, these data provide an extensive resource of molecular data for directing the appropriate use of these cell lines as tools for studying canine lymphoid neoplasia.
Collapse
Affiliation(s)
- E L Seiser
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Scott MC, Sarver AL, Gavin KJ, Thayanithy V, Getzy DM, Newman RA, Cutter GR, Lindblad-Toh K, Kisseberth WC, Hunter LE, Subramanian S, Breen M, Modiano JF. Molecular subtypes of osteosarcoma identified by reducing tumor heterogeneity through an interspecies comparative approach. Bone 2011; 49:356-67. [PMID: 21621658 PMCID: PMC3143255 DOI: 10.1016/j.bone.2011.05.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/21/2011] [Accepted: 05/05/2011] [Indexed: 12/30/2022]
Abstract
The heterogeneous and chaotic nature of osteosarcoma has confounded accurate molecular classification, prognosis, and prediction for this tumor. The occurrence of spontaneous osteosarcoma is largely confined to humans and dogs. While the clinical features are remarkably similar in both species, the organization of dogs into defined breeds provides a more homogeneous genetic background that may increase the likelihood to uncover molecular subtypes for this complex disease. We thus hypothesized that molecular profiles derived from canine osteosarcoma would aid in molecular subclassification of this disease when applied to humans. To test the hypothesis, we performed genome wide gene expression profiling in a cohort of dogs with osteosarcoma, primarily from high-risk breeds. To further reduce inter-sample heterogeneity, we assessed tumor-intrinsic properties through use of an extensive panel of osteosarcoma-derived cell lines. We observed strong differential gene expression that segregated samples into two groups with differential survival probabilities. Groupings were characterized by the inversely correlated expression of genes associated with 'G2/M transition and DNA damage checkpoint' and 'microenvironment-interaction' categories. This signature was preserved in data from whole tumor samples of three independent dog osteosarcoma cohorts, with stratification into the two expected groups. Significantly, this restricted signature partially overlapped a previously defined, predictive signature for soft tissue sarcomas, and it unmasked orthologous molecular subtypes and their corresponding natural histories in five independent data sets from human patients with osteosarcoma. Our results indicate that the narrower genetic diversity of dogs can be utilized to group complex human osteosarcoma into biologically and clinically relevant molecular subtypes. This in turn may enhance prognosis and prediction, and identify relevant therapeutic targets.
Collapse
Affiliation(s)
- Milcah C. Scott
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN, USA
| | - Aaron L. Sarver
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Katherine J. Gavin
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN, USA
| | - Venugopal Thayanithy
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, MN, USA
- Department of Surgery, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | | | - Robert A. Newman
- Department of Experimental Therapeutics, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Gary R. Cutter
- Department of Biostatistics, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Kerstin Lindblad-Toh
- The Broad Institute, Cambridge, MA, USA
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden
| | - William C. Kisseberth
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus OH, USA
| | - Lawrence E. Hunter
- University of Colorado Cancer Center, Aurora, CO, USA
- Department of Pharmacology, School of Medicine, University of Colorado, Denver, Aurora, CO, USA
| | - Subbaya Subramanian
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, MN, USA
- Department of Surgery, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Jaime F. Modiano
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN, USA
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, MN, USA
- University of Colorado Cancer Center, Aurora, CO, USA
| |
Collapse
|
45
|
Angstadt AY, Motsinger-Reif A, Thomas R, Kisseberth WC, Guillermo Couto C, Duval DL, Nielsen DM, Modiano JF, Breen M. Characterization of canine osteosarcoma by array comparative genomic hybridization and RT-qPCR: signatures of genomic imbalance in canine osteosarcoma parallel the human counterpart. Genes Chromosomes Cancer 2011; 50:859-74. [PMID: 21837709 DOI: 10.1002/gcc.20908] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 06/26/2011] [Indexed: 02/03/2023] Open
Abstract
Osteosarcoma (OS) is the most commonly diagnosed malignant bone tumor in humans and dogs, characterized in both species by extremely complex karyotypes exhibiting high frequencies of genomic imbalance. Evaluation of genomic signatures in human OS using array comparative genomic hybridization (aCGH) has assisted in uncovering genetic mechanisms that result in disease phenotype. Previous low-resolution (10-20 Mb) aCGH analysis of canine OS identified a wide range of recurrent DNA copy number aberrations, indicating extensive genomic instability. In this study, we profiled 123 canine OS tumors by 1 Mb-resolution aCGH to generate a dataset for direct comparison with current data for human OS, concluding that several high frequency aberrations in canine and human OS are orthologous. To ensure complete coverage of gene annotation, we identified the human refseq genes that map to these orthologous aberrant dog regions and found several candidate genes warranting evaluation for OS involvement. Specifically, subsequenct FISH and qRT-PCR analysis of RUNX2, TUSC3, and PTEN indicated that expression levels correlated with genomic copy number status, showcasing RUNX2 as an OS associated gene and TUSC3 as a possible tumor suppressor candidate. Together these data demonstrate the ability of genomic comparative oncology to identify genetic abberations which may be important for OS progression. Large scale screening of genomic imbalance in canine OS further validates the use of the dog as a suitable model for human cancers, supporting the idea that dysregulation discovered in canine cancers will provide an avenue for complementary study in human counterparts.
Collapse
Affiliation(s)
- Andrea Y Angstadt
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Thomas R, Seiser EL, Motsinger-Reif A, Borst L, Valli VE, Kelley K, Suter SE, Argyle D, Burgess K, Bell J, Lindblad-Toh K, Modiano JF, Breen M. Refining tumor-associated aneuploidy through 'genomic recoding' of recurrent DNA copy number aberrations in 150 canine non-Hodgkin lymphomas. Leuk Lymphoma 2011; 52:1321-35. [PMID: 21375435 PMCID: PMC4304668 DOI: 10.3109/10428194.2011.559802] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Identification of the genomic regions most intimately associated with non-Hodgkin lymphoma (NHL) pathogenesis is confounded by the genetic heterogeneity of human populations. We hypothesize that the restricted genetic variation of purebred dogs, combined with the contrasting architecture of the human and canine karyotypes, will increase the penetrance of fundamental NHL-associated chromosomal aberrations in both species. We surveyed non-random aneuploidy in 150 canine NHL cases, revealing limited genomic instability compared to their human counterparts and no evidence for CDKN2A/B deletion in canine B-cell NHL. 'Genomic recoding' of canine NHL data into a 'virtual human' chromosome format showed remarkably few regions of copy number aberration (CNA) shared between both species, restricted to regions of dog chromosomes 13 and 31, and human chromosomes 8 and 21. Our data suggest that gene discovery in NHL may be enhanced through comparative studies exploiting the less complex association between CNAs and tumor pathogenesis in canine patients.
Collapse
Affiliation(s)
- Rachael Thomas
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough Street, Raleigh, NC 27606, USA
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC 27606, USA
| | - Eric L. Seiser
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough Street, Raleigh, NC 27606, USA
| | - Alison Motsinger-Reif
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC 27606, USA
- Department of Statistics, College of Agriculture and Life Sciences, North Carolina State University, Patterson Hall, 2501 Founders Drive, Raleigh, NC 27695, USA
- Cancer Genetics Program, UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Luke Borst
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC 27606, USA
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Victor E. Valli
- VDx Veterinary Diagnostics, 2019 Anderson Rd Suite C, Davis CA 95616, USA
| | - Kathryn Kelley
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough Street, Raleigh, NC 27606, USA
| | - Steven E. Suter
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC 27606, USA
- Cancer Genetics Program, UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough Street, Raleigh, NC 27606, USA
| | - David Argyle
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Roslin, Midlothian, Scotland, UK
| | - Kristine Burgess
- Department of Clinical Sciences, Tufts Cummings School of Veterinary Medicine, Grafton, MA 01536, USA
| | - Jerold Bell
- Department of Clinical Sciences, Tufts Cummings School of Veterinary Medicine, Grafton, MA 01536, USA
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden
- Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Jaime F. Modiano
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough Street, Raleigh, NC 27606, USA
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC 27606, USA
- Cancer Genetics Program, UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| |
Collapse
|
47
|
Rowell JL, McCarthy DO, Alvarez CE. Dog models of naturally occurring cancer. Trends Mol Med 2011; 17:380-8. [PMID: 21439907 PMCID: PMC3130881 DOI: 10.1016/j.molmed.2011.02.004] [Citation(s) in RCA: 271] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/09/2011] [Accepted: 02/11/2011] [Indexed: 11/29/2022]
Abstract
Studies using dogs provide an ideal solution to the gap in animal models for natural disease and translational medicine. This is evidenced by approximately 400 inherited disorders being characterized in domesticated dogs, most of which are relevant to humans. There are several hundred isolated populations of dogs (breeds) and each has a vastly reduced genetic variation compared with humans; this simplifies disease mapping and pharmacogenomics. Dogs age five- to eight-fold faster than do humans, share environments with their owners, are usually kept until old age and receive a high level of health care. Farseeing investigators recognized this potential and, over the past decade, have developed the necessary tools and infrastructure to utilize this powerful model of human disease, including the sequencing of the dog genome in 2005. Here, we review the nascent convergence of genetic and translational canine models of spontaneous disease, focusing on cancer.
Collapse
Affiliation(s)
- Jennie L. Rowell
- The Ohio State University College of Nursing
- The Center for Human and Molecular Genetics at The Research Institute at Nationwide Children’s Hospital, The Ohio State University College of Nursing, 1585 Neil Ave Columbus, Ohio 34210
| | | | - Carlos E. Alvarez
- Department of Pediatrics, The Ohio State University College of Medicine
| |
Collapse
|
48
|
Hedan B, Thomas R, Motsinger-Reif A, Abadie J, Andre C, Cullen J, Breen M. Molecular cytogenetic characterization of canine histiocytic sarcoma: A spontaneous model for human histiocytic cancer identifies deletion of tumor suppressor genes and highlights influence of genetic background on tumor behavior. BMC Cancer 2011; 11:201. [PMID: 21615919 PMCID: PMC3121728 DOI: 10.1186/1471-2407-11-201] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 05/26/2011] [Indexed: 01/20/2023] Open
Abstract
Background Histiocytic malignancies in both humans and dogs are rare and poorly understood. While canine histiocytic sarcoma (HS) is uncommon in the general domestic dog population, there is a strikingly high incidence in a subset of breeds, suggesting heritable predisposition. Molecular cytogenetic profiling of canine HS in these breeds would serve to reveal recurrent DNA copy number aberrations (CNAs) that are breed and/or tumor associated, as well as defining those shared with human HS. This process would identify evolutionarily conserved cytogenetic changes to highlight regions of particular importance to HS biology. Methods Using genome wide array comparative genomic hybridization we assessed CNAs in 104 spontaneously occurring HS from two breeds of dog exhibiting a particularly elevated incidence of this tumor, the Bernese Mountain Dog and Flat-Coated Retriever. Recurrent CNAs were evaluated further by multicolor fluorescence in situ hybridization and loss of heterozygosity analyses. Statistical analyses were performed to identify CNAs associated with tumor location and breed. Results Almost all recurrent CNAs identified in this study were shared between the two breeds, suggesting that they are associated more with the cancer phenotype than with breed. A subset of recurrent genomic imbalances suggested involvement of known cancer associated genes in HS pathogenesis, including deletions of the tumor suppressor genes CDKN2A/B, RB1 and PTEN. A small number of aberrations were unique to each breed, implying that they may contribute to the major differences in tumor location evident in these two breeds. The most highly recurrent canine CNAs revealed in this study are evolutionarily conserved with those reported in human histiocytic proliferations, suggesting that human and dog HS share a conserved pathogenesis. Conclusions The breed associated clinical features and DNA copy number aberrations exhibited by canine HS offer a valuable model for the human counterpart, providing additional evidence towards elucidation of the pathophysiological and genetic mechanisms associated with histiocytic malignancies. Extrapolation of data derived from canine histiocytic disorders to human histiocytic proliferation may help to further our understanding of the propagation and cancerization of histiocytic cells, contributing to development of new and effective therapeutic modalities for both species.
Collapse
Affiliation(s)
- Benoit Hedan
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Stein TJ, Holmes KE, Muthuswamy A, Thompson V, Huelsmeyer MK. Characterization of β-catenin expression in canine osteosarcoma. Vet Comp Oncol 2011; 9:65-73. [PMID: 21303455 PMCID: PMC3099435 DOI: 10.1111/j.1476-5829.2010.00236.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Osteosarcoma (OSA) is the most frequently occurring malignant primary bone tumour in dogs and children and arises from cells of the osteoblast lineage. Inappropriate Wnt signalling activity has been implicated in human OSA. Altered expression of β-catenin, an integral member of the Wnt signalling pathway, has been associated with numerous human cancers, including OSA. In this study, 30 of the 37 primary canine OSA tissues and 2 of the 3 metastatic OSAs were positive for β-catenin expression as determined by immunohistochemistry, whereas 2 normal bones stained negative for β-catenin. No mutations were identified in exon 3 of β-catenin in the three OSA cases in which DNA sequencing was performed. Finally, there was no relationship between β-catenin expression and overall survival time or disease-free interval. Our results indicate β-catenin is frequently expressed within the cytoplasm of neoplastic cells in canine OSA but contains no detectable mutations in exon 3, similar to human OSA.
Collapse
Affiliation(s)
- T J Stein
- Department of Medical Science, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706-1102, USA.
| | | | | | | | | |
Collapse
|
50
|
Shearman JR, Wilton AN. Origins of the domestic dog and the rich potential for gene mapping. GENETICS RESEARCH INTERNATIONAL 2011; 2011:579308. [PMID: 22567358 PMCID: PMC3335641 DOI: 10.4061/2011/579308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 09/30/2010] [Accepted: 11/05/2010] [Indexed: 12/17/2022]
Abstract
The unique breeding structure of the domestic dog makes canine genetics a useful tool to further the understanding of inherited diseases and gene function. Answers to the questions of when and where the dog was domesticated from the wolf are uncertain, but how the modern diversity of dog breeds was developed is documented. Breed development has resulted in many genetically isolated populations which are segregating for different alleles for disease and morphological and behavioral traits. Many genetic tools are available for dog research allowing investigation into the genetic basis of these phenotypes. Research into causes of diseases in dogs is relevant to humans and other species; comparative genomics is being used to transfer genetic information to them, including some studies on morphological and behavioral phenotypes. Because of the unique breed structure and well-maintained pedigrees, dogs represent a model organism containing a wealth of genetic information.
Collapse
Affiliation(s)
- Jeremy R Shearman
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | | |
Collapse
|