1
|
Xia L, Mei J, Huang M, Bao D, Wang Z, Chen Y. O-GlcNAcylation in ovarian tumorigenesis and its therapeutic implications. Transl Oncol 2025; 51:102220. [PMID: 39616984 DOI: 10.1016/j.tranon.2024.102220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 12/11/2024] Open
Abstract
Ovarian cancer is a prevalent malignancy among women, often associated with a poor prognosis. Post-translational modifications (PTMs), particularly O-GlcNAcylation, have been implicated in the progression of ovarian cancer. Emerging evidence indicates that dysregulation of O-GlcNAcylation contributes to the initiation and malignant progression of ovarian cancer. This review discusses the potential role of O-GlcNAcylation in ovarian tumorigenesis, with a focus on its regulation of various cellular signaling pathways, including p53, RhoA/ROCK/MLC, Ezrin/Radixin/Moesin (ERM), and β-catenin. This review also emphasizes the O-GlcNAcylation of critical proteins in ovarian cancer, such as SNAP-23, SNAP-29, E-cadherin, and calreticulin. Additionally, the potential of O-GlcNAcylation to enhance immunotherapy for ovarian cancer patients is explored. Several compounds targeting OGT and OGA in ovarian cancer are also highlighted. Targeting the dynamic and versatile nature of O-GlcNAcylation could undoubtedly contribute to more effective treatments and improved outcomes for ovarian cancer patients.
Collapse
Affiliation(s)
- Lu Xia
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jie Mei
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Min Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Dandan Bao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhiwei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Yizhe Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
2
|
Xu L, Yan X, Wang J, Zhao Y, Liu Q, Fu J, Shi X, Su J. The Roles of Histone Deacetylases in the Regulation of Ovarian Cancer Metastasis. Int J Mol Sci 2023; 24:15066. [PMID: 37894746 PMCID: PMC10606123 DOI: 10.3390/ijms242015066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy, and metastasis is the major cause of death in patients with ovarian cancer, which is regulated by the coordinated interplay of genetic and epigenetic mechanisms. Histone deacetylases (HDACs) are enzymes that can catalyze the deacetylation of histone and some non-histone proteins and that are involved in the regulation of a variety of biological processes via the regulation of gene transcription and the functions of non-histone proteins such as transcription factors and enzymes. Aberrant expressions of HDACs are common in ovarian cancer. Many studies have found that HDACs are involved in regulating a variety of events associated with ovarian cancer metastasis, including cell migration, invasion, and the epithelial-mesenchymal transformation. Herein, we provide a brief overview of ovarian cancer metastasis and the dysregulated expression of HDACs in ovarian cancer. In addition, we discuss the roles of HDACs in the regulation of ovarian cancer metastasis. Finally, we discuss the development of compounds that target HDACs and highlight their importance in the future of ovarian cancer therapy.
Collapse
Affiliation(s)
- Long Xu
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
- School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China
| | - Xiaoyu Yan
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| | - Jian Wang
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| | - Yuanxin Zhao
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| | - Qingqing Liu
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| | - Jiaying Fu
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| | - Xinyi Shi
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| | - Jing Su
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (L.X.); (X.Y.); (J.W.); (Y.Z.); (Q.L.); (J.F.); (X.S.)
| |
Collapse
|
3
|
Mekhileri NV, Major G, Lim K, Mutreja I, Chitcholtan K, Phillips E, Hooper G, Woodfield T. Biofabrication of Modular Spheroids as Tumor-Scale Microenvironments for Drug Screening. Adv Healthc Mater 2023; 12:e2201581. [PMID: 36495232 PMCID: PMC11468982 DOI: 10.1002/adhm.202201581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/13/2022] [Indexed: 12/14/2022]
Abstract
To streamline the drug discovery pipeline, there is a pressing need for preclinical models which replicate the complexity and scale of native tumors. While there have been advancements in the formation of microscale tumor units, these models are cell-line dependent, time-consuming and have not improved clinical trial success rates. In this study, two methods for generating 3D tumor microenvironments are compared, rapidly fabricated hydrogel microspheres and traditional cell-dense spheroids. These modules are then bioassembled into 3D printed thermoplastic scaffolds, using an automated biofabrication process, to form tumor-scale models. Modules are formed with SKOV3 and HFF cells as monocultures and cocultures, and the fabrication efficiency, cell architecture, and drug response profiles are characterized, both as single modules and as multimodular constructs. Cell-encapsulated Gel-MA microspheres are fabricated with high-reproducibility and dimensions necessary for automated tumor-scale bioassembly regardless of cell type, however, only cocultured spheroids form compact modules suitable for bioassembly. Chemosensitivity assays demonstrate the reduced potency of doxorubicin in coculture bioassembled constructs and a ≈five-fold increase in drug resistance of cocultured cells in 3D modules compared with 2D monolayers. This bioassembly system is efficient and tailorable so that a variety of relevant-sized tumor constructs could be developed to study tumorigenesis and modernize drug discovery.
Collapse
Affiliation(s)
- Naveen Vijayan Mekhileri
- Department of Orthopaedic Surgery and Musculoskeletal MedicineCentre for Bioengineering & NanomedicineUniversity of OtagoChristchurchCanterbury8011New Zealand
| | - Gretel Major
- Department of Orthopaedic Surgery and Musculoskeletal MedicineCentre for Bioengineering & NanomedicineUniversity of OtagoChristchurchCanterbury8011New Zealand
| | - Khoon Lim
- Department of Orthopaedic Surgery and Musculoskeletal MedicineCentre for Bioengineering & NanomedicineUniversity of OtagoChristchurchCanterbury8011New Zealand
| | - Isha Mutreja
- Department of Orthopaedic Surgery and Musculoskeletal MedicineCentre for Bioengineering & NanomedicineUniversity of OtagoChristchurchCanterbury8011New Zealand
| | - Kenny Chitcholtan
- Department of Obstetrics and GynaecologyGynaecological Cancer Research GroupUniversity of OtagoChristchurchCanterbury8011New Zealand
| | - Elisabeth Phillips
- Mackenzie Cancer Research GroupDepartment of Pathology and Biomedical ScienceUniversity of OtagoChristchurchCanterbury8011New Zealand
| | - Gary Hooper
- Department of Orthopaedic Surgery and Musculoskeletal MedicineCentre for Bioengineering & NanomedicineUniversity of OtagoChristchurchCanterbury8011New Zealand
| | - Tim Woodfield
- Department of Orthopaedic Surgery and Musculoskeletal MedicineCentre for Bioengineering & NanomedicineUniversity of OtagoChristchurchCanterbury8011New Zealand
| |
Collapse
|
4
|
Bridges K, Yao HHC, Nicol B. Loss of Runx1 Induces Granulosa Cell Defects and Development of Ovarian Tumors in the Mouse. Int J Mol Sci 2022; 23:ijms232214442. [PMID: 36430923 PMCID: PMC9697285 DOI: 10.3390/ijms232214442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022] Open
Abstract
Genetic alterations of the RUNX1 gene are associated with a variety of malignancies, including female-related cancers. The role of RUNX1 as either a tumor suppressor gene or an oncogene is tissue-dependent and varies based on the cancer type. Both the amplification and deletion of the RUNX1 gene have been associated with ovarian cancer in humans. In this study, we investigated the effects of Runx1 loss on ovarian pathogenesis in mice. A conditional loss of Runx1 in the somatic cells of the ovary led to an increased prevalence of ovarian tumors in aged mice. By the age of 15 months, 27% of Runx1 knockout (KO) females developed ovarian tumors that presented characteristics of granulosa cell tumors. While ovaries from young adult mice did not display tumors, they all contained abnormal follicle-like lesions. The granulosa cells composing these follicle-like lesions were quiescent, displayed defects in differentiation and were organized in a rosette-like pattern. The RNA-sequencing analysis further revealed differentially expressed genes in Runx1 KO ovaries, including genes involved in metaplasia, ovarian cancer, epithelial cell development, tight junctions, cell-cell adhesion, and the Wnt/beta-catenin pathway. Together, this study showed that Runx1 is required for normal granulosa cell differentiation and prevention of ovarian tumor development in mice.
Collapse
|
5
|
Kielbik M, Szulc-Kielbik I, Klink M. E-Cadherin Expression in Relation to Clinicopathological Parameters and Survival of Patients with Epithelial Ovarian Cancer. Int J Mol Sci 2022; 23:ijms232214383. [PMID: 36430858 PMCID: PMC9695266 DOI: 10.3390/ijms232214383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
It is generally accepted that loss/reduction of E-cadherin expression on tumor cells promotes their migration, invasiveness, and metastasis. It is also an indicator of cancer cells' aggressiveness. The aim of this study was to assess how the expression of E-cadherin varies in primary ovarian cancer tissue in regard to overall survival of patients; FIGO stage; grade; histopathological type of tumor; and potential factors discriminating malignant and nonmalignant ovarian tumors. Our analysis was based on literature research (1 January 2000-8 November 2021) conducted according to the PRISMA guidelines. Most studies support the assumption that loss/reduced expression of E-cadherin results in shorter overall survival of EOC patients. Moreover, most research has shown that there is a correlation between the low level of E-cadherin and the advancement stage of disease, especially in high-grade serous ovarian carcinoma type. However, E-cadherin expression seems to not be helpful to distinguish malignant and nonmalignant tumors. In conclusion, reduced E-cadherin expression in primary ovarian cancer tissue may indicate a less favorable disease outcome and is associated with high advancement of the disease.
Collapse
|
6
|
|
7
|
Gogola-Mruk J, Hoffmann-Młodzianowska M, Kamińska K, Ptak A. Mixtures of persistent organic pollutants increase ovarian granulosa tumor cell line migration and spheroid invasion by upregulating MMP2 expression and activity via IGF1R. Toxicology 2021; 452:152715. [PMID: 33571556 DOI: 10.1016/j.tox.2021.152715] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/31/2021] [Accepted: 02/05/2021] [Indexed: 12/22/2022]
Abstract
Granulosa cell tumors (GCT) of the ovary have a good prognosis. Recurrence tends to be late; however, > 66 % of patients with recurrent GCT die from the disease. Most recurrences are abdominopelvic, although distant metastases have been documented. Here, we tested the hypothesis that a mixture of persistent endocrine-disrupting chemicals (EDCs) stimulates the invasion of GCT cells. We selected perfluorooctanoate (PFOA, 2 ng/mL), perfluorooctanesulfonate (PFOS, 8 ng/mL), 2,2-dichlorodiphenyldichloroethylene (p,p'-DDE, 1 ng/mL), polychlorinated biphenyl 153 (PCB153, 100 pg/mL), and hexachlorobenzene (HCB, 50 pg/mL), which have the highest measured concentrations in follicular fluid of women undergoing treatment with assisted reproductive technology. The human GCT cell lines COV434 and KGN have been used as in vitro models of juvenile (JGCT) and adult (AGCT) GCT subtypes, respectively. Cells were treated with a mixture of the test compounds for 15 min prior to analysis of protein phosphorylation; for 4 h prior to analysis in a circular chemorepellent-induced defect assay; for 6 h prior to analysis of matrix metalloproteinase 2 (MMP2) activity; for 24 h prior to analysis of migration, invasion, and gene expression; and for 48 h prior to analysis of protein expression. First, we showed that KGN cells migrated and exhibited invasive behavior. By contrast, COV434 cells lacked migration and invasion potential. Moreover, expression of mesenchymal genes and the gene encoding MMP2 was higher in KGN cells, and that of epithelial genes lower, than that in COV434 cells. Treatment of KGN cells with the EDC mixture stimulated cell migration, invasion, and lymphatic dissemination. The results suggest that the role of the EDC mixture in AGCT invasion is not related to changes in expression of epithelial and mesenchymal genes; rather, it is related to increased expression and activity of MMP2. Additionally, silencing insulin-like growth factor 1 (IGF1R) in AGCT abolished the stimulatory effect of the EDC mixture on KGN spheroid invasion. These results demonstrate that the EDC mixture increased KGN spheroid invasion by stimulating expression and activity of MMP2 via IGF1R.
Collapse
Affiliation(s)
- Justyna Gogola-Mruk
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| | - Marta Hoffmann-Młodzianowska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| | - Kinga Kamińska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| | - Anna Ptak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| |
Collapse
|
8
|
Heinze K, Rengsberger M, Gajda M, Jansen L, Osmers L, Oliveira-Ferrer L, Schmalfeldt B, Dürst M, Häfner N, Runnebaum IB. CAMK2N1/RUNX3 methylation is an independent prognostic biomarker for progression-free and overall survival of platinum-sensitive epithelial ovarian cancer patients. Clin Epigenetics 2021; 13:15. [PMID: 33482905 PMCID: PMC7824928 DOI: 10.1186/s13148-021-01006-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND To date, no predictive or prognostic molecular biomarkers except BRCA mutations are clinically established for epithelial ovarian cancer (EOC) despite being the deadliest gynecological malignancy. Aim of this biomarker study was the analysis of DNA methylation biomarkers for their prognostic value independent from clinical variables in a heterogeneous cohort of 203 EOC patients from two university medical centers. RESULTS The marker combination CAMK2N1/RUNX3 exhibited a significant prognostic value for progression-free (PFS) and overall survival (OS) of sporadic platinum-sensitive EOC (n = 188) both in univariate Kaplan-Meier (LogRank p < 0.05) and multivariate Cox regression analysis (p < 0.05; hazard ratio HR = 1.587). KRT86 methylation showed a prognostic value only in univariate analysis because of an association with FIGO staging (Fisher's exact test p < 0.01). Thus, it may represent a marker for EOC staging. Dichotomous prognostic values were observed for KATNAL2 methylation depending on BRCA aberrations. KATNAL2 methylation exhibited a negative prognostic value for PFS in sporadic EOC patients without BRCA1 methylation (HR 1.591, p = 0.012) but positive prognostic value in sporadic EOC with BRCA1 methylation (HR 0.332, p = 0.04) or BRCA-mutated EOC (HR 0.620, n.s.). CONCLUSION The retrospective analysis of 188 sporadic platinum-sensitive EOC proved an independent prognostic value of the methylation marker combination CAMK2N1/RUNX3 for PFS and OS. If validated prospectively this combination may identify EOC patients with worse prognosis after standard therapy potentially benefiting from intensive follow-up, maintenance therapies or inclusion in therapeutic studies. The dichotomous prognostic value of KATNAL2 should be validated in larger sample sets of EOC.
Collapse
Affiliation(s)
- Karolin Heinze
- Department of Gynecology and Reproduction Medicine, Jena University Hospital-Friedrich Schiller University Jena, 07747, Jena, Germany
| | - Matthias Rengsberger
- Department of Gynecology and Reproduction Medicine, Jena University Hospital-Friedrich Schiller University Jena, 07747, Jena, Germany
| | - Mieczyslaw Gajda
- Department of Forensic Medicine, Section of Pathology, Jena University Hospital - Friedrich Schiller University Jena, 07747, Jena, Germany
| | - Lars Jansen
- Department of Gynecology and Reproduction Medicine, Jena University Hospital-Friedrich Schiller University Jena, 07747, Jena, Germany
| | - Linea Osmers
- Department of Gynecology and Reproduction Medicine, Jena University Hospital-Friedrich Schiller University Jena, 07747, Jena, Germany
| | - Leticia Oliveira-Ferrer
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Barbara Schmalfeldt
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Matthias Dürst
- Department of Gynecology and Reproduction Medicine, Jena University Hospital-Friedrich Schiller University Jena, 07747, Jena, Germany
| | - Norman Häfner
- Department of Gynecology and Reproduction Medicine, Jena University Hospital-Friedrich Schiller University Jena, 07747, Jena, Germany.
| | - Ingo B Runnebaum
- Department of Gynecology and Reproduction Medicine, Jena University Hospital-Friedrich Schiller University Jena, 07747, Jena, Germany.
| |
Collapse
|
9
|
Roberts CM, Cardenas C, Tedja R. The Role of Intra-Tumoral Heterogeneity and Its Clinical Relevance in Epithelial Ovarian Cancer Recurrence and Metastasis. Cancers (Basel) 2019; 11:E1083. [PMID: 31366178 PMCID: PMC6721439 DOI: 10.3390/cancers11081083] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/22/2019] [Accepted: 07/27/2019] [Indexed: 12/14/2022] Open
Abstract
Epithelial ovarian cancer is the deadliest gynecologic cancer, due in large part to recurrent tumors. Recurrences tend to have metastasized, mainly in the peritoneal cavity and developed resistance to the first line chemotherapy. Key to the progression and ultimate lethality of ovarian cancer is the existence of extensive intra-tumoral heterogeneity (ITH). In this review, we describe the genetic and epigenetic changes that have been reported to give rise to different cell populations in ovarian cancer. We also describe at length the contributions made to heterogeneity by both linear and parallel models of clonal evolution and the existence of cancer stem cells. We dissect the key biological signals from the tumor microenvironment, both directly from other cell types in the vicinity and soluble or circulating factors. Finally, we discuss the impact of tumor heterogeneity on the choice of therapeutic approaches in the clinic. Variability in ovarian tumors remains a major barrier to effective therapy, but by leveraging future research into tumor heterogeneity, we may be able to overcome this barrier and provide more effective, personalized therapy to patients.
Collapse
Affiliation(s)
- Cai M Roberts
- Obstetrics, Gynecology and Reproductive Sciences Department, Yale School of Medicine, New Haven, CT 06520, USA
| | - Carlos Cardenas
- Obstetrics, Gynecology and Reproductive Sciences Department, Yale School of Medicine, New Haven, CT 06520, USA
| | - Roslyn Tedja
- Obstetrics, Gynecology and Reproductive Sciences Department, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
10
|
Lin HW, Fu CF, Chang MC, Lu TP, Lin HP, Chiang YC, Chen CA, Cheng WF. CDH1, DLEC1 and SFRP5 methylation panel as a prognostic marker for advanced epithelial ovarian cancer. Epigenomics 2018; 10:1397-1413. [PMID: 30324802 DOI: 10.2217/epi-2018-0035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM To investigate the CDH1, DLEC1 and SFRP5 gene methylation panel for advanced epithelial ovarian carcinoma (EOC). MATERIALS & METHODS One hundred and seventy-seven advanced EOC specimens were evaluated by methylation-specific PCR. We also used The Cancer Genome Atlas dataset to evaluate the panel. RESULTS The presence of two or more methylated genes was significant in recurrence (hazard ratio [HR]: 1.91 [1.33-2.76]; p = 0.002) and death (HR: 1.96 [1.26-3.06]; p = 0.006) in our cohort. In The Cancer Genome Atlas dataset, the presence of two or three methylated genes was significant in death (HR: 1.59 [1.15-2.18]; p = 0.0047) and close to the significance level in recurrence (HR: 1.37 [0.99-1.88]; p = 0.058). CONCLUSION The CDH1, DLEC1 and SFRP5 methylation panel is a potential prognostic biomarker for advanced EOC.
Collapse
Affiliation(s)
- Han-Wei Lin
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Chi-Feng Fu
- Department of Obstetrics & Gynecology, E-da Cancer Hospital, Kaohsiung 82445, Taiwan
| | - Ming-Cheng Chang
- Department of Obstetrics & Gynecology, College of Medicine, National Taiwan University, Taipei 10041, Taiwan.,Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan, Taoyuan 32546, Taiwan
| | - Tzu-Pin Lu
- Institute of Epidemiology & Preventive Medicine, College of Public Health, National Taiwan University, Taipei 10055, Taiwan
| | - Hsiu-Ping Lin
- Department of Obstetrics & Gynecology, College of Medicine, National Taiwan University, Taipei 10041, Taiwan
| | - Ying-Cheng Chiang
- Department of Obstetrics & Gynecology, College of Medicine, National Taiwan University, Taipei 10041, Taiwan
| | - Chi-An Chen
- Department of Obstetrics & Gynecology, College of Medicine, National Taiwan University, Taipei 10041, Taiwan
| | - Wen-Fang Cheng
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan.,Department of Obstetrics & Gynecology, College of Medicine, National Taiwan University, Taipei 10041, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| |
Collapse
|
11
|
Ciucci A, Zannoni GF, Buttarelli M, Martinelli E, Mascilini F, Petrillo M, Ferrandina G, Scambia G, Gallo D. Ovarian low and high grade serous carcinomas: hidden divergent features in the tumor microenvironment. Oncotarget 2018; 7:68033-68043. [PMID: 27462782 PMCID: PMC5356537 DOI: 10.18632/oncotarget.10797] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/13/2016] [Indexed: 01/22/2023] Open
Abstract
Only recently low-grade serous carcinoma (LGSOC) of the ovary has been recognized as a disease entity distinct from the more common high-grade serous carcinoma (HGSOC), with significant differences in pathogenesis and clinical and pathologic features. The present study aimed at evaluating whether the different natural histories and patterns of response to therapy demonstrated for LGSOC and HGSOC, along with a diverse genomic landscape, may also reside in the supporting tumor stroma, specifically in the state of differentiation and activation of tumor associated macrophages (TAMs). TAMs play complex roles in tumorigenesis since they are believed to possess both tumor rejecting (M1 macrophages) and tumor promoting (M2 macrophages) activities. Here we showed that, when compared to HGSOC (n = 55), LGSOC patients (n = 25) exhibited lower density of tumor-infiltrating CD68+ macrophage, along with an attenuated M2-skewed (CD163+) phenotype. Accordingly, assessment of intratumoral vascularization and of matrix metalloproteinase 9 expression (a key protein involved in tumor invasion and metastasis) revealed lower expression in LGSOC compared to HGSOC patients, in line with emerging evidence supporting a role for TAMs in all aspects of tumor initiation, growth, and development. In conclusion, results from the present study demonstrate that microenvironmental factors contribute greatly to determine clinical and pathological features that differentiate low and high grade serous ovarian carcinomas. This understanding may increase possibilities and opportunities to improve disease control and design new therapeutic strategies.
Collapse
Affiliation(s)
- Alessandra Ciucci
- Unit of Translational Medicine for Women and Children Health, Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, Rome, Italy
| | - Gian Franco Zannoni
- Department of Pathology, Catholic University of the Sacred Heart, Rome, Italy
| | - Marianna Buttarelli
- Unit of Translational Medicine for Women and Children Health, Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, Rome, Italy
| | - Enrica Martinelli
- Unit of Translational Medicine for Women and Children Health, Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, Rome, Italy
| | - Floriana Mascilini
- Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, Rome, Italy
| | - Marco Petrillo
- Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, Rome, Italy
| | - Gabriella Ferrandina
- Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, Rome, Italy.,Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Giovanni Scambia
- Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, Rome, Italy
| | - Daniela Gallo
- Unit of Translational Medicine for Women and Children Health, Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
12
|
Xiong S, Klausen C, Cheng JC, Leung PCK. Activin B promotes endometrial cancer cell migration by down-regulating E-cadherin via SMAD-independent MEK-ERK1/2-SNAIL signaling. Oncotarget 2018; 7:40060-40072. [PMID: 27223076 PMCID: PMC5129992 DOI: 10.18632/oncotarget.9483] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 04/24/2016] [Indexed: 01/03/2023] Open
Abstract
High-risk type II endometrial cancers account for ~30% of cases but ~75% of deaths due, in part, to their tendency to metastasize. Histopathological studies of type II endometrial cancers (non-endometrioid, mostly serous) suggest overproduction of activin B and down-regulation of E-cadherin, both of which are associated with reduced survival. Our previous studies have shown that activin B increases the migration of type II endometrial cancer cell lines. However, little is known about the relationship between activin B signaling and E-cadherin in endometrial cancer. We now demonstrate that activin B treatment significantly decreases E-cadherin expression in both a time- and concentration-dependent manner in KLE and HEC-50 cell lines. Interestingly, these effects were not inhibited by knockdown of SMAD2, SMAD3 or SMAD4. Rather, the suppressive effects of activin B on E-cadherin were mediated by MEK-ERK1/2-induced production of the transcription factor SNAIL. Importantly, activin B-induced cell migration was inhibited by forced-expression of E-cadherin or pre-treatment with the activin/TGF-β type I receptor inhibitor SB431542 or the MEK inhibitor U0126. We have identified a novel SMAD-independent pathway linking enhanced activin B signaling to reduced E-cadherin expression and increased migration in type II endometrial cancer.
Collapse
Affiliation(s)
- Siyuan Xiong
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Christian Klausen
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Jung-Chien Cheng
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| |
Collapse
|
13
|
Wong SHM, Fang CM, Chuah LH, Leong CO, Ngai SC. E-cadherin: Its dysregulation in carcinogenesis and clinical implications. Crit Rev Oncol Hematol 2018; 121:11-22. [PMID: 29279096 DOI: 10.1016/j.critrevonc.2017.11.010] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 10/15/2017] [Accepted: 11/16/2017] [Indexed: 02/06/2023] Open
Abstract
E-cadherin is a transmembrane glycoprotein which connects epithelial cells together at adherens junctions. In normal cells, E-cadherin exerts its tumour suppressing role mainly by sequestering β-catenin from its binding to LEF (Lymphoid enhancer factor)/TCF (T cell factor) which serves the function of transcribing genes of the proliferative Wnt signaling pathway. Despite the ongoing debate on whether the loss of E-cadherin is the cause or effect of epithelial-mesenchymal transition (EMT), E-cadherin functional loss has frequently been associated with poor prognosis and survival in patients of various cancers. The dysregulation of E-cadherin expression that leads to carcinogenesis happens mostly at the epigenetic level but there are cases of genetic alterations as well. E-cadherin expression has been linked to the cellular functions of invasiveness reduction, growth inhibition, apoptosis, cell cycle arrest and differentiation. Studies on various cancers have shown that these different cellular functions are also interdependent. Recent studies have reported a rapid expansion of E-cadherin clinical relevance in various cancers. This review article summarises the multifaceted effect E-cadherin expression has on cellular functions in the context of carcinogenesis as well as its clinical implications in diagnosis, prognosis and therapeutics.
Collapse
Affiliation(s)
- Sonia How Ming Wong
- School of Biosciences, Faculty of Science, University of Nottingham Malaysia Campus, 43500, Semenyih, Selangor, Malaysia.
| | - Chee Mun Fang
- School of Pharmacy, Faculty of Science, University of Nottingham Malaysia Campus, 43500, Semenyih, Selangor, Malaysia.
| | - Lay-Hong Chuah
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| | - Chee Onn Leong
- School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia; Centre for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| | - Siew Ching Ngai
- School of Biosciences, Faculty of Science, University of Nottingham Malaysia Campus, 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|
14
|
E-cadherin expression as a prognostic factor in patients with ovarian cancer: a meta-analysis. Oncotarget 2017; 8:81052-81061. [PMID: 29113366 PMCID: PMC5655261 DOI: 10.18632/oncotarget.18898] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/12/2017] [Indexed: 01/11/2023] Open
Abstract
The prognostic role of epithelial cadherin (E-cadherin) downregulation in ovarian cancer has been assessed for years while the results remain inconclusive. The aim of our study was to assess this issue. Eligible studies were identified through searches of PubMed, EMBASE and Cochrane Database. In total, 1562 patients from 17 studies were included to assess the association between E-cadherin expression and overall survival/progression-free survival and clinicopathological characteristics of ovarian cancer patients. Hazard ratios (HRs) or odds ratios (ORs) with 95% confidence interval (95% CI) were calculated to estimate the effect. The quality of 17 studies was evaluated using the Newcastle Ottawa Quality Assessment Scale. We also performed subgroup analysis, publication bias and sensitivity analysis in this meta-analysis. The results showed that negative E-cadherin expression significantly predicted poor overall survival of ovarian cancer patients (HR = 1.90, 95% CI = 1.50–2.40). However, negative E-cadherin was not associated with poor progression-free survival (HR = 1.19, 95% CI = 0.86–1.64). Moreover, Negative E-cadherin expression was distinctly associated with FIGO stage (OR = 0.42, 95% CI = 0.31–0.57), tumor grade (OR = 0.48, 95% CI = 0.34–0.67), metastasis (OR = 0.13, 95% CI = 0.07–0.26) and recurrence (OR = 0.48, 95% CI = 0.29–0.79). This meta-analysis revealed that negative E-cadherin expression might be a predicative factor of poor prognosis in ovarian cancer patients.
Collapse
|
15
|
Brockmeyer P, Hemmerlein B. Epigenetic modification suppresses proliferation, migration and invasion of urothelial cancer cell lines. Oncol Lett 2016; 12:1693-1700. [PMID: 27602104 PMCID: PMC4998357 DOI: 10.3892/ol.2016.4877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 05/23/2016] [Indexed: 12/12/2022] Open
Abstract
Epigenetic approaches offer additional therapeutic options, including apoptosis induction, modification of cell cycle regulating proteins and the re-expression of pharmaceutical targets, such as hormone receptors. The present study analyzed the effect of the epigenetic modifiers 5-aza-2′-deoxycytidine and Trichostatin A on the proliferative, migratory and invasive behavior of four urinary bladder cancer cell lines (RT-4, RT-112, VMCUB-1 and T-24), and the expression of various matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs). Cell proliferation, migration and invasion assays revealed that treatment with the two epigenetic modifiers resulted in proliferation inhibition in all cell lines, and migration and invasion inhibition in RT-4, RT-112 and T-24 cell lines. Quantitative polymerase chain reaction demonstrated that the mRNA expression of a broad selection of MMPs and their TIMPs was induced in all cell lines, and MMP-14 mRNA expression was suppressed in all cell lines, with the exception of RT-4. In conclusion, epigenetic modifications suppressed the motility and invasiveness of three out of four urothelial cancer cell lines. The inhibitory effect on cell motility appears to be crucial for reduced invasive properties. However, even a broad spectrum of mRNA analysis does not sufficiently explain the loss of invasiveness, as it does not allow for functional conclusions. Further complex urothelial tumour models should be applied to investigate whether epigenetic therapeutic approaches may be an option in urothelial cancer.
Collapse
Affiliation(s)
- Phillipp Brockmeyer
- Department of Oral and Maxillofacial Surgery, University Medical Centre Göttingen, Göttingen D-37075, Germany
| | - Bernhard Hemmerlein
- Department of Pathology, University Medical Centre Göttingen, Göttingen D-37075, Germany; Department of Pathology, Helios Klinikum Krefeld, Krefeld D-47805, Germany
| |
Collapse
|
16
|
El-Sayed M, Abd Elazeem MA. Expression of epithelial–mesenchymal transition-related markers E-cadherin and vimentin in ovarian serous carcinomas. EGYPTIAN JOURNAL OF PATHOLOGY 2016; 36:1-8. [DOI: 10.1097/01.xej.0000472882.59885.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
17
|
Alaee M, Danesh G, Pasdar M. Plakoglobin Reduces the in vitro Growth, Migration and Invasion of Ovarian Cancer Cells Expressing N-Cadherin and Mutant p53. PLoS One 2016; 11:e0154323. [PMID: 27144941 PMCID: PMC4856367 DOI: 10.1371/journal.pone.0154323] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/12/2016] [Indexed: 12/20/2022] Open
Abstract
Aberrant expression of cadherins and catenins plays pivotal roles in ovarian cancer development and progression. Plakoglobin (PG, γ-catenin) is a paralog of β-catenin with dual adhesive and signaling functions. While β-catenin has known oncogenic function, PG generally acts as a tumor/metastasis suppressor. We recently showed that PG interacted with p53 and that its growth/metastasis inhibitory function may be mediated by this interaction. Very little is known about the role of PG in ovarian cancer. Here, we investigated the in vitro tumor/metastasis suppressor effects of PG in ovarian cancer cell lines with mutant p53 expression and different cadherin profiles. We showed that the N-cadherin expressing and E-cadherin and PG deficient ES-2 cells were highly migratory and invasive, whereas OV-90 cells that express E-cadherin, PG and very little/no N-cadherin were not. Exogenous expression of PG or E-cadherin or N-cadherin knockdown in ES-2 cells (ES-2-E-cad, ES-2-PG and ES-2-shN-cad) significantly reduced their migration and invasion. Also, PG expression or N-cadherin knockdown significantly decreased ES-2 cells growth. Furthermore, PG interacted with both cadherins and with wild type and mutant p53 in normal ovarian and ES-2-PG cell lines, respectively.
Collapse
Affiliation(s)
- Mahsa Alaee
- Department of Oncology, University of Alberta, Edmonton, AB, T6G1Z2, Canada
| | - Ghazal Danesh
- Department of Oncology, University of Alberta, Edmonton, AB, T6G1Z2, Canada
| | - Manijeh Pasdar
- Department of Oncology, University of Alberta, Edmonton, AB, T6G1Z2, Canada
- * E-mail:
| |
Collapse
|
18
|
Wang Q, Wang B, Zhang YM, Wang W. The association between CDH1 promoter methylation and patients with ovarian cancer: a systematic meta-analysis. J Ovarian Res 2016; 9:23. [PMID: 27067410 PMCID: PMC4827236 DOI: 10.1186/s13048-016-0231-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 03/23/2016] [Indexed: 01/08/2023] Open
Abstract
Background The down-regulation of E-cadherin gene (CDH1) expression has been regarded as an important event in cancer invasion and metastasis. However, the association between CDH1 promoter methylation and ovarian cancer remains unclear. A meta-analysis was conducted to evaluate the potential role of CDH1 promoter methylation in ovarian cancer. Methods Relevant articles were identified by searches of PubMed, EMBASE, Cochrane Library, CNKI and Wanfang databases. The pooled odds ratio (OR) and corresponding 95 % confidence interval (CI) were calculated to assess the strength of association. Results Nine studies were performed using the fixed-effects model in this study, including 485 cancer tissues and 255 nonmalignant tissues. The findings showed that CDH1 promoter methylation had an increased risk of ovarian cancer in cancer tissues (OR = 8.71, P < 0.001) in comparison with nonmalignant tissues. Subgroup analysis of the ethnicity showed that the OR value of CDH1 methylation in Asian population subgroup (OR = 13.20, P < 0.001) was higher than that in Caucasian population subgroup (OR = 3.84, P = 0.005). No significant association was found between ovarian cancer and low malignant potential (LMP) tumor (P = 0.096) among 2 studies, and between CDH1 promoter methylation and tumor stage and tumor histology (all P > 0.05). There was not any evidence of publication bias by Egger’s test (all P > 0.05). Conclusions CDH1 promoter methylation can be a potential biomarker in ovarian cancer risk prediction, especially Asians can be more susceptible to CDH1 methylation. However, more studies are still done in the future.
Collapse
Affiliation(s)
- Qiang Wang
- Obstetrics and Gynecology Department, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Bing Wang
- Plastic Surgery Department, China-Japan Friendship Hospital Affiliated Jilin University, Changchun, 130033, China
| | - Yun-Mei Zhang
- Obstetrics and Gynecology Department, The Second People's Hospital of Dunhua, Dunhua, 133700, China
| | - Wei Wang
- Radiology Department, The First Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
19
|
Rafehi S, Ramos Valdes Y, Bertrand M, McGee J, Préfontaine M, Sugimoto A, DiMattia GE, Shepherd TG. TGFβ signaling regulates epithelial-mesenchymal plasticity in ovarian cancer ascites-derived spheroids. Endocr Relat Cancer 2016; 23:147-59. [PMID: 26647384 DOI: 10.1530/erc-15-0383] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/08/2015] [Indexed: 12/23/2022]
Abstract
Epithelial-mesenchymal transition (EMT) serves as a key mechanism driving tumor cell migration, invasion, and metastasis in many carcinomas. Transforming growth factor-beta (TGFβ) signaling is implicated in several steps during cancer pathogenesis and acts as a classical inducer of EMT. Since epithelial ovarian cancer (EOC) cells have the potential to switch between epithelial and mesenchymal states during metastasis, we predicted that modulation of TGFβ signaling would significantly impact EMT and the malignant potential of EOC spheroid cells. Ovarian cancer patient ascites-derived cells naturally underwent an EMT response when aggregating into spheroids, and this was reversed upon spheroid re-attachment to a substratum. CDH1/E-cadherin expression was markedly reduced in spheroids compared with adherent cells, in concert with an up-regulation of several transcriptional repressors, i.e., SNAI1/Snail, TWIST1/2, and ZEB2. Treatment of EOC spheroids with the TGFβ type I receptor inhibitor, SB-431542, potently blocked the endogenous activation of EMT in spheroids. Furthermore, treatment of spheroids with SB-431542 upon re-attachment enhanced the epithelial phenotype of dispersing cells and significantly decreased cell motility and Transwell migration. Spheroid formation was significantly compromised by exposure to SB-431542 that correlated with a reduction in cell viability particularly in combination with carboplatin treatment. Thus, our findings are the first to demonstrate that intact TGFβ signaling is required to control EMT in EOC ascites-derived cell spheroids, and it promotes the malignant characteristics of these structures. As such, we show the therapeutic potential for targeted inhibition of this pathway in ovarian cancer patients with late-stage disease.
Collapse
Affiliation(s)
- Samah Rafehi
- Translational Ovarian Cancer Research ProgramLondon Regional Cancer Program, 790 Commissioners Road East, Room A4-836, London, Ontario, Canada N6A 4L6Department of Anatomy and Cell BiologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of BiochemistrySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of Obstetrics and GynaecologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of OncologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada Translational Ovarian Cancer Research ProgramLondon Regional Cancer Program, 790 Commissioners Road East, Room A4-836, London, Ontario, Canada N6A 4L6Department of Anatomy and Cell BiologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of BiochemistrySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of Obstetrics and GynaecologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of OncologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Yudith Ramos Valdes
- Translational Ovarian Cancer Research ProgramLondon Regional Cancer Program, 790 Commissioners Road East, Room A4-836, London, Ontario, Canada N6A 4L6Department of Anatomy and Cell BiologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of BiochemistrySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of Obstetrics and GynaecologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of OncologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Monique Bertrand
- Translational Ovarian Cancer Research ProgramLondon Regional Cancer Program, 790 Commissioners Road East, Room A4-836, London, Ontario, Canada N6A 4L6Department of Anatomy and Cell BiologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of BiochemistrySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of Obstetrics and GynaecologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of OncologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada Translational Ovarian Cancer Research ProgramLondon Regional Cancer Program, 790 Commissioners Road East, Room A4-836, London, Ontario, Canada N6A 4L6Department of Anatomy and Cell BiologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of BiochemistrySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of Obstetrics and GynaecologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of OncologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada Translational Ovarian Cancer Research ProgramLondon Regional Cancer Program, 790 Commissioners Road East, Room A4-836, London, Ontario, Canada N6A 4L6Department of Anatomy and Cell BiologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of BiochemistrySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of Obstetrics and GynaecologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of OncologySchulich School of Medicine and Dentistry, The University o
| | - Jacob McGee
- Translational Ovarian Cancer Research ProgramLondon Regional Cancer Program, 790 Commissioners Road East, Room A4-836, London, Ontario, Canada N6A 4L6Department of Anatomy and Cell BiologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of BiochemistrySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of Obstetrics and GynaecologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of OncologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada Translational Ovarian Cancer Research ProgramLondon Regional Cancer Program, 790 Commissioners Road East, Room A4-836, London, Ontario, Canada N6A 4L6Department of Anatomy and Cell BiologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of BiochemistrySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of Obstetrics and GynaecologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of OncologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Michel Préfontaine
- Translational Ovarian Cancer Research ProgramLondon Regional Cancer Program, 790 Commissioners Road East, Room A4-836, London, Ontario, Canada N6A 4L6Department of Anatomy and Cell BiologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of BiochemistrySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of Obstetrics and GynaecologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of OncologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada Translational Ovarian Cancer Research ProgramLondon Regional Cancer Program, 790 Commissioners Road East, Room A4-836, London, Ontario, Canada N6A 4L6Department of Anatomy and Cell BiologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of BiochemistrySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of Obstetrics and GynaecologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of OncologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Akira Sugimoto
- Translational Ovarian Cancer Research ProgramLondon Regional Cancer Program, 790 Commissioners Road East, Room A4-836, London, Ontario, Canada N6A 4L6Department of Anatomy and Cell BiologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of BiochemistrySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of Obstetrics and GynaecologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of OncologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada Translational Ovarian Cancer Research ProgramLondon Regional Cancer Program, 790 Commissioners Road East, Room A4-836, London, Ontario, Canada N6A 4L6Department of Anatomy and Cell BiologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of BiochemistrySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of Obstetrics and GynaecologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of OncologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada Translational Ovarian Cancer Research ProgramLondon Regional Cancer Program, 790 Commissioners Road East, Room A4-836, London, Ontario, Canada N6A 4L6Department of Anatomy and Cell BiologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of BiochemistrySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of Obstetrics and GynaecologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of OncologySchulich School of Medicine and Dentistry, The University o
| | - Gabriel E DiMattia
- Translational Ovarian Cancer Research ProgramLondon Regional Cancer Program, 790 Commissioners Road East, Room A4-836, London, Ontario, Canada N6A 4L6Department of Anatomy and Cell BiologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of BiochemistrySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of Obstetrics and GynaecologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of OncologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada Translational Ovarian Cancer Research ProgramLondon Regional Cancer Program, 790 Commissioners Road East, Room A4-836, London, Ontario, Canada N6A 4L6Department of Anatomy and Cell BiologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of BiochemistrySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of Obstetrics and GynaecologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of OncologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada Translational Ovarian Cancer Research ProgramLondon Regional Cancer Program, 790 Commissioners Road East, Room A4-836, London, Ontario, Canada N6A 4L6Department of Anatomy and Cell BiologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of BiochemistrySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of Obstetrics and GynaecologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of OncologySchulich School of Medicine and Dentistry, The University o
| | - Trevor G Shepherd
- Translational Ovarian Cancer Research ProgramLondon Regional Cancer Program, 790 Commissioners Road East, Room A4-836, London, Ontario, Canada N6A 4L6Department of Anatomy and Cell BiologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of BiochemistrySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of Obstetrics and GynaecologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of OncologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada Translational Ovarian Cancer Research ProgramLondon Regional Cancer Program, 790 Commissioners Road East, Room A4-836, London, Ontario, Canada N6A 4L6Department of Anatomy and Cell BiologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of BiochemistrySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of Obstetrics and GynaecologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of OncologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada Translational Ovarian Cancer Research ProgramLondon Regional Cancer Program, 790 Commissioners Road East, Room A4-836, London, Ontario, Canada N6A 4L6Department of Anatomy and Cell BiologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of BiochemistrySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of Obstetrics and GynaecologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, CanadaDepartment of OncologySchulich School of Medicine and Dentistry, The University o
| |
Collapse
|
20
|
Li Y, Ran R, Guan Y, Zhu X, Kang S. Aberrant Methylation of the E-Cadherin Gene Promoter Region in the Endometrium of Women With Uterine Fibroids. Reprod Sci 2016; 23:1096-102. [DOI: 10.1177/1933719116630415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yan Li
- Department of Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Ran Ran
- Department of Gynecology, Fourth Hospital, Hebei Medical University, Shijiazhuang, China
| | - Yingxia Guan
- Department of Gynecology, Fourth Hospital, Hebei Medical University, Shijiazhuang, China
| | - Xiaoxiong Zhu
- Department of Gynecology, Fourth Hospital, Hebei Medical University, Shijiazhuang, China
| | - Shan Kang
- Department of Gynecology, Fourth Hospital, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
21
|
Loss of PCDH9 is associated with the differentiation of tumor cells and metastasis and predicts poor survival in gastric cancer. Clin Exp Metastasis 2015; 32:417-28. [DOI: 10.1007/s10585-015-9712-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 03/05/2015] [Indexed: 12/23/2022]
|
22
|
Abstract
Malignancies of the genitourinary system have some of the highest cancer incidence and mortality rates. For example prostate cancer is the second most common cancer in men and ovarian cancer mortality and incidence are near equal. In addition to genetic changes modulation of the epigenome is critical to cancer development and progression. In this regard epigenetic changes in DNA methylation state and DNA hypermethylation in particular has garnered a great deal of attention. While hypomethylation occurs mostly in repeated sequence such as tandem and interspersed repeats and segment duplications, hypermethylation is associated with CpG islands. Hypomethylation leads to activation of cancer-causing genes with global DNA hypomethylation being commonly associated with metastatic disease. Hypermethylation-mediated silencing of tumor suppressive genes is commonly associated with cancer development. Bioactive phytochemicals such as flavonoids present in fruits, vegetables, beverages etc. have the ability to modulate DNA methylation status and are therefore very valuable agents for cancer prevention. In this review we discuss several commonly methylated genes and flavonoids used to modulate DNA methylation in the prevention of genitourinary cancers.
Collapse
|
23
|
So WK, Fan Q, Lau MT, Qiu X, Cheng JC, Leung PCK. Amphiregulin induces human ovarian cancer cell invasion by down-regulating E-cadherin expression. FEBS Lett 2014; 588:3998-4007. [PMID: 25261255 DOI: 10.1016/j.febslet.2014.09.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/05/2014] [Accepted: 09/11/2014] [Indexed: 11/17/2022]
Abstract
Aberrant epidermal growth factor receptor (EGFR) activation is associated with ovarian cancer progression. In this study, we report that the EGFR ligand amphiregulin (AREG) stimulates cell invasion and down-regulates E-cadherin expression in two human ovarian cancer cell lines, SKOV3 and OVCAR5. In addition, AREG increases the expression of transcriptional repressors of E-cadherin including SNAIL, SLUG and ZEB1. siRNA targeting SNAIL or SLUG abolishes AREG-induced cell invasion. Moreover, ERK1/2 and AKT pathways are involved in AREG-induced E-cadherin down-regulation and cell invasion. Finally, we show that three EGFR ligands, AREG, epidermal growth factor (EGF) and transforming growth factor-α (TGF-α), exhibit comparable effects in down-regulating E-cadherin and promoting cell invasion. This study demonstrates that AREG induces ovarian cancer cell invasion by down-regulating E-cadherin expression.
Collapse
Affiliation(s)
- Wai-Kin So
- Department of Obstetrics and Gynecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Qianlan Fan
- Department of Obstetrics and Gynecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Man-Tat Lau
- Department of Obstetrics and Gynecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Xin Qiu
- Department of Obstetrics and Gynecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Jung-Chien Cheng
- Department of Obstetrics and Gynecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada.
| |
Collapse
|
24
|
Ptak A, Hoffmann M, Gruca I, Barć J. Bisphenol A induce ovarian cancer cell migration via the MAPK and PI3K/Akt signalling pathways. Toxicol Lett 2014; 229:357-65. [DOI: 10.1016/j.toxlet.2014.07.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 11/25/2022]
|
25
|
Li ZG, Zhang W, Qiu ZC, Ji Y, Li L, Xia KH. Comparative analysis of each prescription of Jiedu Huayu Jianpi Fang for multiple gene demethylation and expression in mucosal dysplasia in rats. Shijie Huaren Xiaohua Zazhi 2014; 22:1820-1825. [DOI: 10.11569/wcjd.v22.i13.1820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the contribution of each prescription of Jiedu Huayu Jianpi Fang to the therapeutic effects on gastric mucosal dysplasia from the perspective of induced gene expression.
METHODS: We divided gastric mucosal dysplasia rats into a model control (MG) group, a Western medicine (retinoic acid) treatment (PCG) group, a combined prescription (Jiedu Huayu Jianpi) treatment (A) group, and Jiedu (B), Huayu (C), Yiqi (D), Yangying (E) and Liqi (F) single prescription treatment groups. Normal rats were used as controls (CG). Methylation specific PCR technique was used to detect the methylation status of p16, PETN, Thbs1, E-Cadherin, and Runx3 genes in gastric mucosal cells of rats. Real-time PCR and immunohistochemistry were used to detect the mRNA and protein expression of each genes.
RESULTS: All of the Jiedu Huayu Jianpi treatment groups showed a certain degree of demethylation of p16, PETN, Thbs1, E-Cadherin, and Runx3 gene. Compared with group CG, the mRNA expression of p16 (P < 0.01), PETN, E-Cadherin and Thbs1 in group A, Thbs1 in group B, p16, PETN and Thbs1 in group C, Thbs1 in group E, p16 and Thbs1 in group F increased significantly (P < 0.05 for all); and the protein expression of p16, PTEN, E-cad, RUNX3, and THBS1 in group A, p16 in group B, p16 and THBS1 in group C, p16, PTEN, E-cad and THBS1 in group D, p16, E-cad, RUNX3 and THBS1 in group E, p16, PTEN, E-cad, RUNX3 and THBS1 in group F increased significantly (P < 0.05 for all). The effect of Jiedu Huayu Jianpi Fang on gastric mucosal dysplasia was the most prominent, followed by Liqi, Yangyin, Huayu, Yiqi and Jiedu single prescriptions.
CONCLUSION: The effect of Jiedu Huayu Jianpi Fang on gastric mucosal dysplasia is much better than those of each single prescription. Gastric mucosal dysplasia should be treated mainly by means of Liqi and Yangyin.
Collapse
|
26
|
Roll JD, Rivenbark AG, Sandhu R, Parker JS, Jones WD, Carey LA, Livasy CA, Coleman WB. Dysregulation of the epigenome in triple-negative breast cancers: basal-like and claudin-low breast cancers express aberrant DNA hypermethylation. Exp Mol Pathol 2013; 95:276-87. [PMID: 24045095 DOI: 10.1016/j.yexmp.2013.09.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 11/29/2022]
Abstract
A subset of human breast cancer cell lines exhibits aberrant DNA hypermethylation that is characterized by hyperactivity of the DNA methyltransferase enzymes, overexpression of DNMT3b, and concurrent methylation-dependent silencing of numerous epigenetic biomarker genes. The objective of this study was to determine if this aberrant DNA hypermethylation (i) is found in primary breast cancers, (ii) is associated with specific breast cancer molecular subtypes, and (iii) influences patient outcomes. Analysis of epigenetic biomarker genes (CDH1, CEACAM6, CST6, ESR1, GNA11, MUC1, MYB, SCNN1A, and TFF3) identified a gene expression signature characterized by reduced expression levels or loss of expression among a cohort of primary breast cancers. The breast cancers that express this gene expression signature are enriched for triple-negative subtypes - basal-like and claudin-low breast cancers. Methylation analysis of primary breast cancers showed extensive promoter hypermethylation of epigenetic biomarker genes among triple-negative breast cancers, compared to other breast cancer subclasses where promoter hypermethylation events were less frequent. Furthermore, triple-negative breast cancers either did not express or expressed significantly reduced levels of protein corresponding to methylation-sensitive biomarker gene products. Together, these findings suggest strongly that loss of epigenetic biomarker gene expression is frequently associated with gene promoter hypermethylation events. We propose that aberrant DNA hypermethylation is a common characteristic of triple-negative breast cancers and may represent a fundamental biological property of basal-like and claudin-low breast cancers. Kaplan-Meier analysis of relapse-free survival revealed a survival disadvantage for patients with breast cancers that exhibit aberrant DNA hypermethylation. Identification of this distinguishing trait among triple-negative breast cancers forms the basis for development of new rational therapies that target the epigenome in patients with basal-like and claudin-low breast cancers.
Collapse
Affiliation(s)
- J Devon Roll
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599 USA; UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599 USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Regulation of the Epithelial-Mesenchymal Transition by Claudin-3 and Claudin-4. PLoS One 2013; 8:e67496. [PMID: 23805314 PMCID: PMC3689737 DOI: 10.1371/journal.pone.0067496] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 05/20/2013] [Indexed: 01/06/2023] Open
Abstract
The mechanisms that control intracellular adhesion are central to the process of invasion and metastasis. Claudin-3 (CLDN3) and claudin-4 (CLDN4) are major structural molecules of the tight junctions that link epithelial cells. Our prior work has demonstrated that knockdown of the expression of either CLDN3 or CLDN4 produces marked changes in the phenotype of ovarian carcinoma cells including increases in growth rate in vivo, migration, invasion, metastasis, and drug resistance, similar to those produced by the epithelial-to-mesenchymal transition (EMT). We postulated that these changes may result from the ability of CLDN3 or CLDN4 to suppress EMT. In this study we found that knockdown of either CLDN3 or CLDN4 increased cell size and resulted in flattened morphology. While knockdown of CLDN3 or CLDN4 did not alter the expression of vimentin, it significantly down-regulated the level of E-cadherin and up-regulated N-cadherin expression. Conversely, over-expression of CLDN3 or CLDN4 in a cell line that does not express endogenous CLDN3 or CLDN4 decreased N-cadherin expression. Re-expression of E-cadherin in the CLDN3 or CLDN4 knockdown cells reduced migration, invasion and tumor growth in vivo. Loss of either CLDN3 or CLDN4 resulted in activation of the PI3K pathway as evidenced by increased Akt phosphorylation, elevated cellular PIP3 content and PI3K activity as well as up-regulation of the mRNA and protein levels of the transcription factor Twist. Taken together, these findings suggest that CLDN3 and CLDN4 function to sustain an epithelial phenotype and that their loss promotes EMT.
Collapse
|
28
|
Zhang Q, Hu G, Yang Q, Dong R, Xie X, Ma D, Shen K, Kong B. A multiplex methylation-specific PCR assay for the detection of early-stage ovarian cancer using cell-free serum DNA. Gynecol Oncol 2013; 130:132-9. [PMID: 23623832 DOI: 10.1016/j.ygyno.2013.04.048] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Epithelial ovarian cancer (EOC) remains the most lethal disease among gynecological malignancies. Prompt diagnosis is challenging because of the non-specific symptoms exhibited during the early stage of the disease. As a result, there is an urgent need for improved detection methods. In this study, we established a multiplex methylation-specific PCR (MSP) assay to improve the early detection of ovarian cancer, via identification of the methylation status of cell-free serum DNA. METHODS After screening, we chose seven candidate genes (APC, RASSF1A, CDH1, RUNX3, TFPI2, SFRP5 and OPCML) with a high frequency of methylation to construct the multiplex-MSP assay. When methylation of at least one of the seven genes was observed, the multiplex-MSP assay was considered positive. We performed retrospective and screening studies to verify the specificity and sensitivity of the assay in the detection of EOC. RESULTS The methylation status of cell-free serum DNA was examined in the preoperative serum of 202 patients, including 87 EOC patients (stage I, n=41; stage II-IV, n=46), 53 patients with benign ovarian tumors and 62 healthy controls. As expected, the multiplex MSP assay achieved a sensitivity of 85.3% and a specificity of 90.5% in stageI EOC, strikingly higher rates compared with a single CA125, which produced a sensitivity of 56.1% at 64.15% specificity [P=0.0036]. CONCLUSION A multiplex MSP assay that analyzes the methylation status of cell-free serum DNA is a suitable and reliable approach to improve the early detection of ovarian cancer, potentially benefiting a broad range of applications in clinical oncology.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong 250012, PR China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Tight junction proteins claudin-3 and claudin-4 control tumor growth and metastases. Neoplasia 2013; 14:974-85. [PMID: 23097631 DOI: 10.1593/neo.12942] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/05/2012] [Accepted: 09/07/2012] [Indexed: 12/30/2022] Open
Abstract
The extent of tight junction (TJ) formation is one of many factors that regulate motility, invasion, and metastasis. Claudins are required for the formation and maintenance of TJs. Claudin-3 (CLDN3) and claudin-4 (CLDN4) are highly expressed in the majority of ovarian cancers. We report here that CLDN3 and CLDN4 each serve to constrain the growth of human 2008 cancer xenografts and limit metastatic potential. Knockdown of CLDN3 increased in vivo growth rate by 2.3-fold and knockdown of CLDN4 by 3.7-fold in the absence of significant change in in vitro growth rate. Both types of tumors exhibited increase in birth rate as measured by Ki67 staining and decrease in death rate as reflected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Knockdown of either claudin did not alter expression of other TJ protein but did reduce TJ formation as measured by transepithelial resistance and paracellular flux of dextran, enhance migration and invasion in in vitro assays, and increase lung colonization following intravenous injection. Knockdown of CLDN3 and CLDN4 increased total lung metastatic burden by 1.7-fold and 2.4-fold, respectively. Loss of either CLDN3 or CLDN4 resulted in down-regulation of E-cadherin mRNA and protein, increased inhibitory phosphorylation of glycogen synthase kinase-3β (GSK-3β), and activation of β-catenin pathway signaling as evidenced by increases in nuclear β-catenin, the dephosphorylated form of the protein, and transcriptional activity of β-catenin/T-cell factor (TCF). We conclude that both CLDN3 and CLDN4 mediate interactions with other cells in vivo that restrain growth and metastatic potential by sustaining expression of E-cadherin and limiting β-catenin signaling.
Collapse
|
30
|
Fibroblast growth factor 2 induces E-cadherin down-regulation via PI3K/Akt/mTOR and MAPK/ERK signaling in ovarian cancer cells. PLoS One 2013; 8:e59083. [PMID: 23554977 PMCID: PMC3598697 DOI: 10.1371/journal.pone.0059083] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 02/11/2013] [Indexed: 11/19/2022] Open
Abstract
Fibroblast growth factor 2 (FGF2) is produced by ovarian cancer cells and it has been suggested to play an important role in tumor progression. In this study, we report that FGF2 treatment down-regulated E-cadherin by up-regulating its transcriptional repressors, Slug and ZEB1, in human ovarian cancer cells. The pharmacological inhibition of phosphatidylinositol-3-kinase (PI3K), mammalian target of rapamycin (mTOR), and MEK suggests that both PI3K/Akt/mTOR and MAPK/ERK signaling are required for FGF2-induced E-cadherin down-regulation. Moreover, FGF2 up-regulated Slug and ZEB1 expression via the PI3K/Akt/mTOR and MAPK/ERK signaling pathways, respectively. Finally, FGF2-induced cell invasion was abolished by the inhibition of the PI3K/Akt/mTOR and MAPK/ERK pathways, and the forced expression of E-cadherin diminished the intrinsic invasiveness of ovarian cancer cells as well as the FGF2-induced cell invasion. This study demonstrates a novel mechanism in which FGF2 down-regulates E-cadherin expression through the activation of PI3K/Akt/mTOR and MAPK/ERK signaling, and the up-regulation of Slug and ZEB1 in human ovarian cancer cells.
Collapse
|
31
|
Taskin S, Dunder I, Erol E, Taskin EA, Kiremitci S, Oztuna D, Sertcelik A. Roles of E-cadherin and Cyclooxygenase Enzymes in Predicting Different Survival Patterns of Optimally Cytoreduced Serous Ovarian Cancer Patients. Asian Pac J Cancer Prev 2012. [DOI: 10.7314/apjcp.2012.13.11.5715] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
32
|
D'Costa ZJ, Jolly C, Androphy EJ, Mercer A, Matthews CM, Hibma MH. Transcriptional repression of E-cadherin by human papillomavirus type 16 E6. PLoS One 2012; 7:e48954. [PMID: 23189137 PMCID: PMC3506579 DOI: 10.1371/journal.pone.0048954] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/03/2012] [Indexed: 02/01/2023] Open
Abstract
There is increasing evidence supporting DNA virus regulation of the cell adhesion and tumour suppressor protein, E-cadherin. We previously reported that loss of E-cadherin in human papillomavirus (HPV) type 16-infected epidermis is contributed to by the major viral proto-oncogene E6 and is associated with reduced Langerhans cells density, potentially regulating the immune response. The focus of this study is determining how the HPV16 E6 protein mediates E-cadherin repression. We found that the E-cadherin promoter is repressed in cells expressing E6, resulting in fewer E-cadherin transcripts. On exploring the mechanism for this, repression by increased histone deacetylase activity or by increased binding of trans-repressors to the E-cadherin promoter Epal element was discounted. In contrast, DNA methyltransferase (DNMT) activity was increased in E6 expressing cells. Upon inhibiting DNMT activity using 5-Aza-2'-deoxycytidine, E-cadherin transcription was restored in the presence of HPV16 E6. The E-cadherin promoter was not directly methylated, however a mutational analysis showed general promoter repression and reduced binding of the transactivators Sp1 and AML1 and the repressor Slug. Expression of E7 with E6 resulted in a further reduction in surface E-cadherin levels. This is the first report of HPV16 E6-mediated transcriptional repression of this adhesion molecule and tumour suppressor protein.
Collapse
Affiliation(s)
- Zarina J. D'Costa
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Carol Jolly
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Elliot J. Androphy
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Andrew Mercer
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Charles M. Matthews
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Merilyn H. Hibma
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
33
|
Cheng JC, Klausen C, Leung PCK. Hypoxia-inducible factor 1 alpha mediates epidermal growth factor-induced down-regulation of E-cadherin expression and cell invasion in human ovarian cancer cells. Cancer Lett 2012; 329:197-206. [PMID: 23142284 DOI: 10.1016/j.canlet.2012.10.029] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/23/2012] [Accepted: 10/29/2012] [Indexed: 01/11/2023]
Abstract
Hypoxia-inducible factor 1α (HIF-1α) regulates the transcription of a number of genes under hypoxia and other extracellular stimulations. It has been shown that E-cadherin is down-regulated by epidermal growth factor receptor (EGF) stimulation, and that cells with low E-cadherin expression are more invasive. Our recent study demonstrated a novel mechanism by which EGF down-regulates E-cadherin expression through production of hydrogen peroxide (H(2)O(2)) and the activation of p38 MAPK in human ovarian cancer cells. In this study, we were interested in examining the potential role of HIF-1α in cell invasion under normoxic conditions, specifically when cells are treated with EGF, which is known to down-regulate E-cadherin and increase invasiveness. We show that EGF treatment induces HIF-1α expression in two human ovarian cancer cell lines (SKOV3 and OVCAR5), and that this effect is diminished by treatment with a membrane-permeable H(2)O(2) scavenger, PEG-catalase. However, the induction of HIF-1α by EGF did not require the activation of p38 MAPK. Treatment with siRNA targeting HIF-1α reduces both basal and EGF-induced HIF-1α levels. Importantly, treatment with HIF-1α siRNA diminishes the up-regulation of Snail and Slug as well as the down-regulation of E-cadherin by EGF. The involvement of HIF-1α in the down-regulation of E-cadherin was confirmed with cobalt chloride (CoCl(2)), a hypoxia-mimetic reagent. Finally, we also show that EGF-induced cell invasion is attenuated by treatment with HIF-1α siRNA. This study demonstrates an important role for HIF-1α in mediating the effects of EGF on Snail, Slug and E-cadherin expression as well as invasiveness in human ovarian cancer cells.
Collapse
Affiliation(s)
- Jung-Chien Cheng
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | | | | |
Collapse
|
34
|
Ozdemir F, Altinisik J, Karateke A, Coksuer H, Buyru N. Methylation of tumor suppressor genes in ovarian cancer. Exp Ther Med 2012; 4:1092-1096. [PMID: 23226780 PMCID: PMC3494110 DOI: 10.3892/etm.2012.715] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 08/09/2012] [Indexed: 12/18/2022] Open
Abstract
Aberrant methylation of gene promoter regions is one of the mechanisms for inactivation of tumor suppressor genes in human malignancies. In this study, the methylation pattern of 24 tumor suppressor genes was analyzed in 75 samples of ovarian cancer using the methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) assay. Of the 24 tumor suppressor genes examined, aberrant methylation was observed in 17. The three most frequently methylated genes were CDKN2B, CDH13 and RASSF1, followed by ESR1 and MLH1. Methylation frequencies ranged from 1.3% for CDKN2A, RARβ, CASP8, VHL and TP73 to 24% for CDKN2B. The corresponding normal DNA from each patient was also investigated. Methylation was detected in tumors, although not in normal tissues, with the exception of two samples, indicating aberrant methylation in tumors. Clear cell carcinoma samples exhibited a higher frequency of CDKN2B promoter hypermethylation compared to those of other histological types (P=0.05). Our data indicate that methylation of the CDKN2B gene is a frequent event in ovarian carcinogenesis and that analysis of only three genes is sufficient to detect the presence of methylation in 35% of ovarian cancer cases. However, more studies using a much larger sample size are needed to define the potential role of DNA methylation as a marker for ovarian cancer.
Collapse
Affiliation(s)
- Filiz Ozdemir
- Department of Medical Biology, Istanbul University, Cerrahpasa Medical Faculty
| | | | | | | | | |
Collapse
|
35
|
Lau MT, Leung PCK. The PI3K/Akt/mTOR signaling pathway mediates insulin-like growth factor 1-induced E-cadherin down-regulation and cell proliferation in ovarian cancer cells. Cancer Lett 2012; 326:191-8. [PMID: 22922215 DOI: 10.1016/j.canlet.2012.08.016] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 08/03/2012] [Accepted: 08/14/2012] [Indexed: 12/30/2022]
Abstract
Insulin-like growth factor 1 (IGF1) is produced by ovarian cancer cells and it has been suggested that it plays an important role in tumor progression. In this study, we report that IGF1 treatment down-regulated E-cadherin by up-regulating E-cadherin transcriptional repressors, Snail and Slug, in human ovarian cancer cells. The pharmacological inhibition of phosphatidylinositol-3-kinase (PI3K) and mammalian target of rapamycin (mTOR) suggests that PI3K/Akt/mTOR signaling is required for IGF1-induced E-cadherin down-regulation. Moreover, IGF1 up-regulated Snail and Slug expression via the PI3K/Akt/mTOR signaling pathway. Finally, IGF1-induced cell proliferation was abolished by inhibiting PI3K/Akt/mTOR signaling. This study demonstrates a novel mechanism in which IGF1 down-regulates E-cadherin expression through the activation of PI3K/Akt/mTOR signaling and the up-regulation of Snail and Slug in human ovarian cancer cells.
Collapse
Affiliation(s)
- Man-Tat Lau
- Department of Obstetrics and Gynecology, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
36
|
Samudio-Ruiz SL, Hudson LG. Increased DNA methyltransferase activity and DNA methylation following Epidermal Growth Factor stimulation in ovarian cancer cells. Epigenetics 2012; 7:216-24. [PMID: 22430797 DOI: 10.4161/epi.7.3.19273] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ovarian cancer progression is correlated with accumulation of aberrant CpG island methylation. In ovarian cancer, ascites fluid contains numerous Epidermal-Growth-Factor-Receptor (EGFR) activators, which could result in a tumor microenvironment of constant EGFR activation. Signaling pathways downstream of EGFR, such as Ras, regulate DNA methylation. We hypothesized that chronic EGFR activation could alter DNA methylation. We found that EGFR activation increased DNA methyltransferase (DNMT) activity acutely, as well as after long-term EGF treatment or expression of a mutationally activated EGFR. Furthermore, this increase in DNMT activity was dependent on EGFR catalytic activity and resulted in increased global DNA methylation. Additionally, treatment with the DNMT inhibitor/hypomethylating agent 5-Aza-2'-deoxycytidine (AZA) inhibited the EGF induced increase of both DNMT activity and global methylation. These data support a role for EGFR in the process of accumulated DNA methylation during ovarian cancer progression and suggest that epigenetic therapy may be beneficial for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Sabrina L Samudio-Ruiz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA.
| | | |
Collapse
|
37
|
Peng HL, He L, Zhao X. Association of Reduced Immunohistochemical Expression of E-cadherin with a Poor Ovarian Cancer Prognosis - Results of a Meta-analysis. Asian Pac J Cancer Prev 2012; 13:2003-7. [DOI: 10.7314/apjcp.2012.13.5.2003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
38
|
Abstract
Ovarian cancer is the most lethal gynecological cancer. Due to few early symptoms and a lack of early detection strategies, most patients are diagnosed with advanced-stage disease. Most of these patients, although initially responsive, eventually develop drug resistance. In this chapter, epigenetic changes in ovarian cancer are described. Various epigenetic changes including CpG island methylation and histone modification have been identified in ovarian cancer. These aberrations are associated with distinct disease subtypes and present in circulating serum of ovarian cancer patients. Several epigenetic changes have shown promise for their diagnostic, prognostic, and predictive capacity but still need further validation.In contrast to DNA mutations and deletions, epigenetic modifications are potentially reversible by epigenetic therapies. Promising preclinical studies show epigenetic drugs to enhance gene re-expression and drug sensitivity in ovarian cancer cell lines and animal models.
Collapse
|
39
|
Ingersoll SB, Ahmad S, Stoltzfus GP, Patel S, Radi MJ, Finkler NJ, Edwards JR, Holloway RW. Functional characterization of a fluorescent highly tumorigenic ovarian cancer line to test cellular therapy in experimental models. Int J Gynecol Cancer 2011; 21:457-65. [PMID: 21430454 DOI: 10.1097/igc.0b013e31820f4ef0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVES The objective of this study was to functionally characterize a fluorescent highly tumorigenic ovarian cancer line to test cellular therapy in combination with cytokines or chemotherapies in experimental models. METHODS A fluorescent highly tumorigenic subline (SKOV3-AF2) was derived from the SKOV3 ovarian cancer cell line. Peripheral blood mononuclear cell (PBMC)-mediated cytotoxicity of SKOV3-AF2 in the presence of interleukin 2 (IL-2) and interferon α-2b (IFNα-2b) was assayed by lactate dehydrogenase release. Sensitivity of SKOV3-AF2 cells to polyethylene glycol-IFNα-2b and IL-2 was assayed in a xenograph nude mouse model. Histopathology was performed to determine necrosis and tumor-infiltrating lymphocytes in the solid tumors. Reverse transcriptase-polymerase chain reaction was used for gene expression analyses of E-cadherin and cysteine-rich 61 (CCN1). RESULTS The SKOV3-AF2 subline exhibits increased cytotoxicity (up to 70%), mediated by PBMCs, IL-2, and IFNα-2b, compared with parental SKOV3-red fluorescent protein (RFP) cells. SKOV3-AF2 cells are more tumorigenic in vivo as indicated by tumor incidence, time to sacrifice, tumor weight, and ascitic fluid production. SKOV3-AF2 tumor growth was inhibited by polyethylene glycol-IFNα-2b but not low-dose IL-2. Histopathology revealed that the tumors consisted of poorly differentiated surface epithelial carcinoma. SKOV3-RFP, and -AF2 cell lines as well as -AF2 tumors expressed E-cadherin. SKOV3-AF2 derived tumors expressed CCN1; however, the SKOV3-RFP and SKOV3-AF2 cell lines did not. CONCLUSIONS Characterization of SKOV3-AF2 cells revealed that it is more susceptible to PBMC-mediated cytotoxicity than SKOV3-RFP and highly tumorigenic in a xenograph model, and AF-2 tumors express genes that promote aggressive behavior. Collectively, our data suggest that the SKOV3-AF2 subline will be a useful tool to test cellular therapy for the treatment of ovarian cancer utilizing experimental models.
Collapse
Affiliation(s)
- Susan Blaydes Ingersoll
- Florida Hospital Gynecologic Oncology, Florida Hospital Cancer Institute, Orlando, FL 32804, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Lau MT, Klausen C, Leung PCK. E-cadherin inhibits tumor cell growth by suppressing PI3K/Akt signaling via β-catenin-Egr1-mediated PTEN expression. Oncogene 2011; 30:2753-66. [DOI: 10.1038/onc.2011.6] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
41
|
Epigenetic regulation of cancer-associated genes in ovarian cancer. Int J Mol Sci 2011; 12:983-1008. [PMID: 21541038 PMCID: PMC3083685 DOI: 10.3390/ijms12020983] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 01/19/2011] [Accepted: 01/28/2011] [Indexed: 02/08/2023] Open
Abstract
The involvement of epigenetic aberrations in the development and progression of tumors is now well established. However, most studies have focused on the epigenetic inactivation of tumor suppressor genes during tumorigenesis and little is known about the epigenetic activation of cancer-associated genes, except for the DNA hypomethylation of some genes. Recently, we reported that the overexpression of cancer-promoting genes in ovarian cancer is associated with the loss of repressive histone modifications. This discovery suggested that epigenetic derepression may contribute to ovarian tumorigenesis by constituting a possible mechanism for the overexpression of oncogenes or cancer-promoting genes in tumors. The emerging importance of epigenetic aberrations in tumor initiation and in the regulation of cancer-initiating cells, suggests that epigenetically regulated genes may be promising therapeutic targets and biomarkers. Given that the current challenges in ovarian cancer include the identification of biomarkers for early cancer detection and the discovery of novel therapeutic targets for patients with recurrent malignancies undergoing chemotherapy, understanding the epigenetic changes that occur in ovarian cancer is crucial. This review looks at epigenetic mechanisms involved in the regulation of cancer-associated genes, including the contribution of epigenetic derepression to the activation of cancer-associated genes in ovarian cancer. In addition, possible epigenetic therapies targeting epigenetically dysregulated genes are discussed. A better understanding of the epigenetic changes in ovarian cancer will contribute to the improvement of patient outcomes.
Collapse
|
42
|
Abstract
Ovarian cancer is the leading cause of death among gynecological cancers. It is now recognized that in addition to genetic alterations, epigenetic mechanisms, such as DNA methylation, histone modifications and nucleosome remodeling, play an important role in the development and progression of ovarian cancer by modulating chromatin structure, and gene and miRNA expression. Furthermore, epigenetic alterations have been recognized as useful tools for the development of novel biomarkers for diagnosis, prognosis, therapeutic prediction and monitoring of diseases. Moreover, new epigenetic therapies, such as DNA methyltransferase inhibitors and histone deacetylase inhibitors, have been found to be a potential therapeutic option, especially when used in combination with other agents. Here we discuss current developments in ovarian carcinoma epigenome research, the importance of the ovarian carcinoma epigenome for development of diagnostic and prognostic biomarkers, and the current epigenetic therapies used in ovarian cancer.
Collapse
Affiliation(s)
- Leonel Maldonado
- Department of Otolaryngology & Head & Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland 21231, USA
| | | |
Collapse
|
43
|
Dian D, Brüning A, Mylonas I. E-cadherin as a prognostic marker in human serous carcinomas of the ovary: an immunohistochemical analysis. Arch Gynecol Obstet 2010; 284:437-43. [PMID: 20803206 DOI: 10.1007/s00404-010-1657-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 08/16/2010] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Ovarian cancer is a gynecologic cancer with a high mortality rate, demonstrating the need for effective and reliable tumor markers during the staging and treatment processes. METHODS Expression of E-cadherin was immunohistochemically analyzed in 100 ovarian cancer tissue samples. RESULTS A significant association of E-cadherin expression with histological grading (p = 0.001) and surgical stage (p = 0.020) could be demonstrated. However, the staining intensity of E-cadherin was not significantly associated with progression-free, cause-specific survival or overall survival in serous ovarian carcinomas. CONCLUSION The E-cadherin expression was associated with FIGO surgical staging and histological differentiation in serious ovarian carcinomas, suggesting a substantial role in the carcinogenesis of serous ovarian carcinomas. However, although patients with a strong E-cadherin staining intensity had a better prognosis, no statistical significant differences could be observed. Therefore, E-cadherin might not be a useful prognostic tumor marker in serous ovarian carcinomas.
Collapse
Affiliation(s)
- Darius Dian
- 1st Department of Obstetrics and Gynecology, Campus Innenstadt, Ludwig-Maximilians-University Munich, Maistrasse 11, 80337 Munich, Germany
| | | | | |
Collapse
|
44
|
Boettcher M, Kischkel F, Hoheisel JD. High-definition DNA methylation profiles from breast and ovarian carcinoma cell lines with differing doxorubicin resistance. PLoS One 2010; 5:e11002. [PMID: 20544021 PMCID: PMC2882327 DOI: 10.1371/journal.pone.0011002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 05/18/2010] [Indexed: 12/31/2022] Open
Abstract
Acquired drug resistance represents a frequent obstacle which hampers efficient chemotherapy of cancers. The contribution of aberrant DNA methylation to the development of drug resistant tumor cells has gained increasing attention over the past decades. Hence, the objective of the presented study was to characterize DNA methylation changes which arise from treatment of tumor cells with the chemotherapeutic drug doxorubicin. DNA methylation levels from CpG islands (CGIs) linked to twenty-eight genes, whose expression levels had previously been shown to contribute to resistance against DNA double strand break inducing drugs or tumor progression in different cancer types were analyzed. High-definition DNA methylation profiles which consisted of methylation levels from 800 CpG sites mapping to CGIs around the transcription start sites of the selected genes were determined. In order to investigate the influence of CGI methylation on the expression of associated genes, their mRNA levels were investigated via qRT-PCR. It was shown that the employed method is suitable for providing highly accurate methylation profiles, comparable to those obtained via clone sequencing, the gold standard for high-definition DNA methylation studies. In breast carcinoma cells with acquired resistance against the double strand break inducing drug doxorubicin, changes in methylation of specific cytosines from CGIs linked to thirteen genes were detected. Moreover, similarities between methylation profiles obtained from breast and ovarian carcinoma cell lines with acquired doxorubicin resistance were found. The expression levels of a subset of analyzed genes were shown to be linked to the methylation levels of the analyzed CGIs. Our results provide detailed DNA methylation information from two separate model systems for acquired doxorubicin resistance and suggest the occurrence of similar methylation changes in both systems upon exposure to the drug.
Collapse
Affiliation(s)
- Michael Boettcher
- Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum, Heidelberg, Germany.
| | | | | |
Collapse
|
45
|
Zhao X, Li P, Ma JF, Zhao JM, Yang HY, Dong ZM. Methylation and protein expression of the TIMP-3 and E-cadherin genes in human esophageal carcinoma cell lines EC1 and EC9706. Shijie Huaren Xiaohua Zazhi 2010; 18:379-383. [DOI: 10.11569/wcjd.v18.i4.379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the methylation and protein expression of the tissue inhibitor of metalloproteinase-3 (TIMP-3) and E-cadherin genes in human esophageal carcinoma cell lines EC1 and EC9706 untreated or treated with the demethylating agent 5-Aza-CdR.
METHODS: Methylation-specific PCR (MSP) and immunocytochemistry were used to detect the methylation and protein expression of TIMP-3 and E-cadherin genes in EC1 and EC9706 cells untreated or treated with 5 μmol/L of 5-Aza-CdR.
RESULTS: The TIMP-3 gene was not methylated, and the TIMP-3 protein was weakly expressed in both EC1 and EC9706 cells. The E-cadherin gene was hypermethylated in EC1 cells but semi-methylated in EC9706 cells. The E-cadherin protein expression was undetectable in both cell types. After treatment with 5-Aza-CdR, the TIMP-3 gene remained non-methylated, and the expression of the TIMP-3 protein was slightly upregulated in the two cell types. In contrast, E-cadherin gene methylation was reversed, and the protein expression was strongly upregulated in both cell types.
CONCLUSION: E-cadherin gene methylation occurs in both EC1 and EC9706 cells, and 5-Aza-CdR can effectively reverse such methylation. TIMP-3 gene inactivation seems unrelated to methylation as 5-Aza-CdR can only slightly upregulate the expression of TIMP-3 protein.
Collapse
|
46
|
Matei DE, Nephew KP. Epigenetic therapies for chemoresensitization of epithelial ovarian cancer. Gynecol Oncol 2009; 116:195-201. [PMID: 19854495 DOI: 10.1016/j.ygyno.2009.09.043] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 09/27/2009] [Accepted: 09/30/2009] [Indexed: 01/03/2023]
Abstract
Epigenetic drugs have been shown to enhance gene expression and drug sensitivity in ovarian cancer cell lines and animal models. Based on promising preclinical studies, DNA methylation inhibitors in combination with existing chemotherapeutic agents have the potential for overcoming acquired drug resistance, laying the foundation for this specific class of epigenetic drug in ovarian cancer clinical trials. The recent completion of phase I trials of decitabine has yielded important information on dosing schedules and biological endpoints for evaluating patient responses. In addition, epigenetic drug effects on pharmacodyamic targets are beginning to emerge, and predictive epigenetic biomarkers and next generation epigenome therapeutics are being developed for application in clinical settings for ovarian cancer patients.
Collapse
Affiliation(s)
- Daniela E Matei
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
47
|
Abstract
Epigenetic aberrations, including DNA methylation, histone modifications, and micro-RNA dysregulation, are now well established in the development and progression of ovarian cancer, and their gradual accumulation is associated with advancing disease stage and grade. Epigenetic aberrations are relatively stable, associated with distinct disease subtypes, and present in circulating serum, representing promising diagnostic, prognostic, and pharmacodynamic biomarkers. In contrast to DNA mutations and deletions, aberrant gene-repressive epigenetic modifications are potentially reversible by epigenetic therapies, including inhibitors of DNA methylation or histone-modifying enzymes. Although epigenetic monotherapies have not shown activity against solid tumors, including ovarian cancer, preclinical studies suggest they will be effective when used in combination with one another or with conventional chemotherapeutics, and combinatorial epigenetic therapy regiments are being examined in cancer clinical trials. A greater understanding of the role of epigenetics in ovarian neoplasia will provide for improved interventions against this devastating malignancy.
Collapse
Affiliation(s)
- Curt Balch
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana 47405-4401, USA
| | | | | | | | | |
Collapse
|
48
|
Quinn MCJ, Filali-Mouhim A, Provencher DM, Mes-Masson AM, Tonin PN. Reprogramming of the transcriptome in a novel chromosome 3 transfer tumor suppressor ovarian cancer cell line model affected molecular networks that are characteristic of ovarian cancer. Mol Carcinog 2009; 48:648-61. [PMID: 19123201 DOI: 10.1002/mc.20511] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tumor suppression as a consequence of the transfer of chromosome 3p fragments was previously observed in a novel epithelial ovarian cancer (EOC) OV-90 cell line model harboring loss of 3p. Microarray analysis revealed that tumor suppression was associated with a modified transcriptome. To investigate the relevance of the altered transcriptome, the differentially expressed genes identified by Affymetrix analysis in the 3p transfer studies, were integrated with a comparative microarray analysis of normal ovarian surface epithelial (NOSE) cells and malignant ovarian (TOV) cancers. Data from 219 significantly differentially expressed genes exhibited patterns in the direction predicted by the analysis of 3p transfer study. The 30 genes with the highest statistically significant differences (P < 1 x 10(-8)) in expression were found consistently differentially expressed between NOSE and TOV samples. The investigation of these genes in benign serous ovarian tumors and EOC cell lines also exhibited predictable expression patterns. Within the group of differentially expressed genes were SPARC, DAB2, CP, EVI1, ELF3, and EHD2, known to play a role in ovarian cancer, genes implicated in other cancers, such as GREM1 and GLIPR1, as well as genes not previously reported in a cancer context such as AKAP2 and ATAD4. A number of the differentially expressed genes are implicated in the TGF-beta signaling pathway. These findings suggest that the reprogramming of the transcriptome that occurred as a consequence of the chromosome 3 transfer and tumor suppression affected molecular networks that are characteristic of ovarian carcinogenesis thus validating our novel ovarian cancer cell line model.
Collapse
|
49
|
Yoshida J, Horiuchi A, Kikuchi N, Hayashi A, Osada R, Ohira S, Shiozawa T, Konishi I. Changes in the expression of E-cadherin repressors, Snail, Slug, SIP1, and Twist, in the development and progression of ovarian carcinoma: the important role of Snail in ovarian tumorigenesis and progression. Med Mol Morphol 2009; 42:82-91. [PMID: 19536615 DOI: 10.1007/s00795-008-0436-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 12/25/2008] [Indexed: 11/25/2022]
Abstract
Changes in the expression of E-cadherin have been reported to be important in the tumorigenesis and progression of epithelial ovarian carcinoma. To further examine the mechanisms regulating E-cadherin expression in ovarian tumorigenesis, we investigated the immunohistochemical expression of transcriptional repressors for E-cadherin, such as Snail, Slug, SIP1, and Twist, in the ovarian surface epithelium (OSE) and 95 cases of epithelial ovarian tumors. OSE cells were negative for SIP1 and Slug, whereas weak expression of Snail and Twist was observed in 8 (73%) and 3 (27%) cases, respectively. Of 95 ovarian tumors, the expression of Snail, Slug, SIP1, and Twist increased stepwise in benign, borderline, and malignant tumors. Among them, the expression of Snail showed significantly inverse correlation with that of E-cadherin. Regarding the FIGO stage classification, the expressions of Snail and Twist were significantly increased in advanced cases. The prognosis of ovarian carcinoma patients positive for Snail expression was poorer than that of negative patients. Our results indicate that the expression of E-cadherin transcriptional repressors increased with malignancy in ovarian epithelial neoplasms and that the expression of E-cadherin and its negative regulators is altered during ovarian cancer development and peritoneal dissemination.
Collapse
Affiliation(s)
- Junko Yoshida
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
[Promoter hypermethylation gene patterns in gynecological tumors]. Med Clin (Barc) 2009; 132:371-6. [PMID: 19268989 DOI: 10.1016/j.medcli.2008.05.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 05/15/2008] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND OBJECTIVE Gene silencing mediated by the aberrant methylation of the promoter region of DNA is involved in the inactivation of genes implicated in various metabolic pathways. Such a gene hypermethylation has become a useful molecular marker for the diagnosis, treatment and follow-up of cancer patients. Our objective is to analyze the patterns of gene hypermethylation in patients with gynecological tumors. PATIENTS AND METHODS We selected 115 patients with gynecological cancers: 22 ovarian; 13 endometrial, 11 cervical-uterine and 69 breast cancers. By testing methylation-specific PCR, we studied the methylation status of genes CDNK2A (p16), APC1A, FHIT, CDH1 and hMLH1. RESULTS The frequencies of gene methylation in genes p16, APC1A, FHIT, hMLH1 and CDH1 were 29.2%, 34%, 60.4%, 10.9% and 79.8%, respectively. 70% of cases showed at least two methylated genes, which means a rate of methylation >0.4. The lowest frequency of methylation was seen in ovarian cancer, while the highest one was observed in endometrial cancer. CONCLUSIONS The results indicate that the aberrant methylation of the promoter region is an important event in carcinogenesis of gynecological tumors and that the pattern of gene methylation is associated with the nature of the tumor. These particular characteristics can deliver relevant information on the major metabolic pathways altered in each tumor type. In addition to complementary studies (ie, loss of expression and/or function), this represents a clinical tool for the proper management of the disease.
Collapse
|