1
|
Allgayer H, Mahapatra S, Mishra B, Swain B, Saha S, Khanra S, Kumari K, Panda VK, Malhotra D, Patil NS, Leupold JH, Kundu GC. Epithelial-to-mesenchymal transition (EMT) and cancer metastasis: the status quo of methods and experimental models 2025. Mol Cancer 2025; 24:167. [PMID: 40483504 PMCID: PMC12144846 DOI: 10.1186/s12943-025-02338-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/19/2025] [Indexed: 06/11/2025] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a crucial cellular process for embryogenesis, wound healing, and cancer progression. It involves a shift in cell interactions, leading to the detachment of epithelial cells and activation of gene programs promoting a mesenchymal state. EMT plays a significant role in cancer metastasis triggering tumor initiation and stemness, and activates metastatic cascades resulting in resistance to therapy. Moreover, reversal of EMT contributes to the formation of metastatic lesions. Metastasis still needs to be better understood functionally in its major but complex steps of migration, invasion, intravasation, dissemination, which contributes to the establishment of minimal residual disease (MRD), extravasation, and successful seeding and growth of metastatic lesions at microenvironmentally heterogeneous sites. Therefore, the current review article intends to present, and discuss comprehensively, the status quo of experimental models able to investigate EMT and metastasis in vitro and in vivo, for researchers planning to enter the field. We emphasize various methods to understand EMT function and the major steps of metastasis, including diverse migration, invasion and matrix degradation assays, microfluidics, 3D co-culture models, spheroids, organoids, or latest spatial and imaging methods to analyze complex compartments. In vivo models such as the chorionallantoic membrane (CAM) assay, cell line-derived and patient-derived xenografts, syngeneic, genetically modified, and humanized mice, are presented as a promising arsenal of tools to analyze intravasation, site specific metastasis, and treatment response. Furthermore, we give a brief overview on methods detecting dissemination and MRD in carcinomas, highlighting its significance in tracking the course of disease and response to treatment. Enhanced lineage tracking tools, dynamic in vivo imaging, and therapeutically useful in vivo models as powerful preclinical tools may still better reveal functional interdependencies between metastasis and EMT. Future directions are discussed in light of emerging views on the biology, diagnosis, and treatment of EMT and metastasis.
Collapse
Affiliation(s)
- Heike Allgayer
- Department of Experimental Surgery-Cancer Metastasis, Mannheim Medical Faculty, Ruprecht-Karls University of Heidelberg, Ludolf-Krehl-Str. 13-17, Mannheim, 68167, Germany.
| | - Samikshya Mahapatra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Barnalee Mishra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Biswajit Swain
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Suryendu Saha
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Sinjan Khanra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Kavita Kumari
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Venketesh K Panda
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Diksha Malhotra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Nitin S Patil
- Department of Experimental Surgery-Cancer Metastasis, Mannheim Medical Faculty, Ruprecht-Karls University of Heidelberg, Ludolf-Krehl-Str. 13-17, Mannheim, 68167, Germany
| | - Jörg H Leupold
- Department of Experimental Surgery-Cancer Metastasis, Mannheim Medical Faculty, Ruprecht-Karls University of Heidelberg, Ludolf-Krehl-Str. 13-17, Mannheim, 68167, Germany
| | - Gopal C Kundu
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751024, India.
- Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to Be University, Bhubaneswar, 751024, India.
| |
Collapse
|
2
|
Sethi A, Mishra S, Upadhyay V, Dubey P, Siddiqui S, Singh AK, Chowdhury S, Srivastava S, Srivastava P, Sahoo P, Bhatt MLB, Mishra A, Trivedi AK. USP10 deubiquitinates and stabilizes CD44 leading to enhanced breast cancer cell proliferation, stemness and metastasis. Biochem J 2024; 481:1877-1900. [PMID: 39564770 DOI: 10.1042/bcj20240611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/21/2024]
Abstract
Despite extensive research, strategies to effectively combat breast cancer stemness and achieve a definitive cure remains elusive. CD44, a well-defined cancer stem cell (CSC) marker is reported to promote breast cancer tumorigenesis, metastasis, and chemoresistance. However, mechanisms leading to its enhanced expression and function is poorly understood. Here, we demonstrate that USP10 positively regulates CD44 protein levels and its downstream actions. While USP10 depletion prominently down-regulates CD44 protein levels and functions, its overexpression significantly enhances CD44 protein levels, leading to enhanced cluster tumor cell formation, stemness, and metastasis in breast cancer cells both in vitro and ex vivo in primary human breast tumor cells. USP10 interacts with CD44 and stabilizes it through deubiquitination both in breast cancer cell lines and human breast cancer-derived primary tumor cells. Stabilized CD44 shows enhanced interaction with cytoskeleton proteins Ezrin/Radixin/Moesin and potently activates PDGFRβ/STAT3 signaling which are involved in promoting CSC traits. Using USP10 stably expressing 4T1 cells, we further demonstrate that the USP10-CD44 axis potently promotes tumorigenicity in vivo in mice, while simultaneous depletion of CD44 in these cells renders them ineffective. In line with these findings, we further showed that inhibition of USP10 either through RNAi or the pharmacological inhibitor Spautin-1 significantly mitigated CD44 levels and its downstream function ex vivo in primary breast tumor cells. Finally, we demonstrated that primary breast tumor cells are more susceptible to chemotherapy when co-treated with USP10 inhibitor indicating that the USP10-CD44 axis could be an attractive therapeutic target in combination with chemotherapy in CD44 expressing breast cancers.
Collapse
Affiliation(s)
- Arppita Sethi
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shivkant Mishra
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Vishal Upadhyay
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Parul Dubey
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Shumaila Siddiqui
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anil Kumar Singh
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sangita Chowdhury
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Swati Srivastava
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Pragya Srivastava
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Prasannajit Sahoo
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Anand Mishra
- King George's Medical University, Lucknow, India
| | - Arun Kumar Trivedi
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Jackson CE, Green NH, English WR, Claeyssens F. The use of microphysiological systems to model metastatic cancer. Biofabrication 2024; 16:032002. [PMID: 38579739 DOI: 10.1088/1758-5090/ad3b70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/05/2024] [Indexed: 04/07/2024]
Abstract
Cancer is one of the leading causes of death in the 21st century, with metastasis of cancer attributing to 90% of cancer-related deaths. Therefore, to improve patient outcomes there is a need for better preclinical models to increase the success of translating oncological therapies into the clinic. Current traditional staticin vitromodels lack a perfusable network which is critical to overcome the diffusional mass transfer limit to provide a mechanism for the exchange of essential nutrients and waste removal, and increase their physiological relevance. Furthermore, these models typically lack cellular heterogeneity and key components of the immune system and tumour microenvironment. This review explores rapidly developing strategies utilising perfusable microphysiological systems (MPS) for investigating cancer cell metastasis. In this review we initially outline the mechanisms of cancer metastasis, highlighting key steps and identifying the current gaps in our understanding of the metastatic cascade, exploring MPS focused on investigating the individual steps of the metastatic cascade before detailing the latest MPS which can investigate multiple components of the cascade. This review then focuses on the factors which can affect the performance of an MPS designed for cancer applications with a final discussion summarising the challenges and future directions for the use of MPS for cancer models.
Collapse
Affiliation(s)
- Caitlin E Jackson
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom
- Insigneo Institute for In Silico Medicine, The Pam Liversidge Building, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Nicola H Green
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom
- Insigneo Institute for In Silico Medicine, The Pam Liversidge Building, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - William R English
- Norwich Medical School, University of East Anglia, Norwich NR3 7TJ, United Kingdom
| | - Frederik Claeyssens
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom
- Insigneo Institute for In Silico Medicine, The Pam Liversidge Building, University of Sheffield, Sheffield S1 3JD, United Kingdom
| |
Collapse
|
4
|
Chen MB, Javanmardi Y, Shahreza S, Serwinski B, Aref A, Djordjevic B, Moeendarbary E. Mechanobiology in oncology: basic concepts and clinical prospects. Front Cell Dev Biol 2023; 11:1239749. [PMID: 38020912 PMCID: PMC10644154 DOI: 10.3389/fcell.2023.1239749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
The interplay between genetic transformations, biochemical communications, and physical interactions is crucial in cancer progression. Metastasis, a leading cause of cancer-related deaths, involves a series of steps, including invasion, intravasation, circulation survival, and extravasation. Mechanical alterations, such as changes in stiffness and morphology, play a significant role in all stages of cancer initiation and dissemination. Accordingly, a better understanding of cancer mechanobiology can help in the development of novel therapeutic strategies. Targeting the physical properties of tumours and their microenvironment presents opportunities for intervention. Advancements in imaging techniques and lab-on-a-chip systems enable personalized investigations of tumor biomechanics and drug screening. Investigation of the interplay between genetic, biochemical, and mechanical factors, which is of crucial importance in cancer progression, offers insights for personalized medicine and innovative treatment strategies.
Collapse
Affiliation(s)
- Michelle B. Chen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Yousef Javanmardi
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Somayeh Shahreza
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Bianca Serwinski
- Department of Mechanical Engineering, University College London, London, United Kingdom
- 199 Biotechnologies Ltd., London, United Kingdom
- Northeastern University London, London, United Kingdom
| | - Amir Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Boris Djordjevic
- Department of Mechanical Engineering, University College London, London, United Kingdom
- 199 Biotechnologies Ltd., London, United Kingdom
| | - Emad Moeendarbary
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Mechanical Engineering, University College London, London, United Kingdom
| |
Collapse
|
5
|
Kim MH, Tan SY, Yamahara K, Kino-Oka M. An in vitro culture platform to study the extracellular matrix remodeling potential of human mesenchymal stem cells. Acta Biomater 2023; 170:376-388. [PMID: 37619896 DOI: 10.1016/j.actbio.2023.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
The ability of mesenchymal stem cells (MSCs) to synthesize and degrade extracellular matrix (ECM) is important for MSC-based therapies. However, the therapeutic effects associated with ECM remodeling in cultured MSCs have been limited by the lack of a method to assess the ability of cultured cells to degrade ECM in vitro. Here, we describe a simple in vitro culture platform for studying the ECM remodeling potential of cultured MSCs using a high-density collagen (CL) surface. Cells on the CL surface have remarkable ability to degrade collagen fibrils by secreting matrix metalloproteinase (MMP); to study this, the marker collagen hybridizing peptide (CHP) was used. Confirming the ECM remodeling potential of MSCs with different population doublings (PDs), young and healthy γ-H2AX-negative cells, a marker of DNA damage and senescence, showed more extensive collagen degradation on the CL surface, whereas damaged cells of γ-H2AX-positive cells showed no collagen degradation. The frequency of γ-H2AX-/CHP + cells at PD = 0 was 49%, which was 4.9-fold higher than that at PD=13.07, whereas the frequency of γ-H2AX+/CHP- at PD=13.07 was 50%, which was 6.4-folds higher than that at PD=0. Further experimentation examining the in vitro priming effect of MSCs with the pro-inflammatory cytokine interferon-γ treatment showed increased frequency of cells with ECM remodeling potential with higher MMP secretion. Thus, this culture surface can be used for studying the ECM remodeling capacity of ex vivo-expanded MSCs in vitro and may serve as a platform for prediction in vivo ECM remodeling effect. STATEMENT OF SIGNIFICANCE: The extracellular matrix (ECM) remodeling potential of cultured mesenchymal stem cells (MSCs) is important for assessing the effectiveness of MSC-based therapy. However, methods to assess the ability of cultured cells to degrade ECM in vitro are still lacking. Here, we developed a simple in vitro culture platform to study the ECM remodeling potential of cultured MSCs using high-density collagen surfaces. This platform was used to evaluate the ECM remodeling potential of long-term ex vivo-expanded MSCs in vitro.
Collapse
Affiliation(s)
- Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Shao Ying Tan
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kenichi Yamahara
- Laboratory of Molecular and Cellular Therapy, Institute for Advanced Medical Sciences, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Research Base for Cell Manufacturability, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
6
|
Jackson CE, Ramos-Rodriguez DH, Farr NTH, English WR, Green NH, Claeyssens F. Development of PCL PolyHIPE Substrates for 3D Breast Cancer Cell Culture. Bioengineering (Basel) 2023; 10:bioengineering10050522. [PMID: 37237592 DOI: 10.3390/bioengineering10050522] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/12/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Cancer is a becoming a huge social and economic burden on society, becoming one of the most significant barriers to life expectancy in the 21st century. In particular, breast cancer is one of the leading causes of death for women. One of the most significant difficulties to finding efficient therapies for specific cancers, such as breast cancer, is the efficiency and ease of drug development and testing. Tissue-engineered (TE) in vitro models are rapidly developing as an alternative to animal testing for pharmaceuticals. Additionally, porosity included within these structures overcomes the diffusional mass transfer limit whilst enabling cell infiltration and integration with surrounding tissue. Within this study, we investigated the use of high-molecular-weight polycaprolactone methacrylate (PCL-M) polymerised high-internal-phase emulsions (polyHIPEs) as a scaffold to support 3D breast cancer (MDA-MB-231) cell culture. We assessed the porosity, interconnectivity, and morphology of the polyHIPEs when varying mixing speed during formation of the emulsion, successfully demonstrating the tunability of these polyHIPEs. An ex ovo chick chorioallantoic membrane assay identified the scaffolds as bioinert, with biocompatible properties within a vascularised tissue. Furthermore, in vitro assessment of cell attachment and proliferation showed promising potential for the use of PCL polyHIPEs to support cell growth. Our results demonstrate that PCL polyHIPEs are a promising material to support cancer cell growth with tuneable porosity and interconnectivity for the fabrication of perfusable 3D cancer models.
Collapse
Affiliation(s)
- Caitlin E Jackson
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK
- Insigneo Institute for In Silico Medicine, The Pam Liversidge Building, University of Sheffield, Sheffield S1 3JD, UK
| | | | - Nicholas T H Farr
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK
- Insigneo Institute for In Silico Medicine, The Pam Liversidge Building, University of Sheffield, Sheffield S1 3JD, UK
| | - William R English
- Norwich Medical School, University of East Anglia, Norwich NR3 7TJ, UK
| | - Nicola H Green
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK
- Insigneo Institute for In Silico Medicine, The Pam Liversidge Building, University of Sheffield, Sheffield S1 3JD, UK
| | - Frederik Claeyssens
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK
- Insigneo Institute for In Silico Medicine, The Pam Liversidge Building, University of Sheffield, Sheffield S1 3JD, UK
| |
Collapse
|
7
|
Sorvina A, Antoniou M, Esmaeili Z, Kochetkova M. Unusual Suspects: Bone and Cartilage ECM Proteins as Carcinoma Facilitators. Cancers (Basel) 2023; 15:cancers15030791. [PMID: 36765749 PMCID: PMC9913341 DOI: 10.3390/cancers15030791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
The extracellular matrix (ECM) is the complex three-dimensional network of fibrous proteins and proteoglycans that constitutes an essential part of every tissue to provide support for normal tissue homeostasis. Tissue specificity of the ECM in its topology and structure supports unique biochemical and mechanical properties of each organ. Cancers, like normal tissues, require the ECM to maintain multiple processes governing tumor development, progression and spread. A large body of experimental and clinical evidence has now accumulated to demonstrate essential roles of numerous ECM components in all cancer types. Latest findings also suggest that multiple tumor types express, and use to their advantage, atypical ECM components that are not found in the cancer tissue of origin. However, the understanding of cancer-specific expression patterns of these ECM proteins and their exact roles in selected tumor types is still sketchy. In this review, we summarize the latest data on the aberrant expression of bone and cartilage ECM proteins in epithelial cancers and their specific functions in the pathogenesis of carcinomas and discuss future directions in exploring the utility of this selective group of ECM components as future drug targets.
Collapse
|
8
|
Mierke CT. The versatile roles of ADAM8 in cancer cell migration, mechanics, and extracellular matrix remodeling. Front Cell Dev Biol 2023; 11:1130823. [PMID: 36910158 PMCID: PMC9995898 DOI: 10.3389/fcell.2023.1130823] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
The posttranslational proteolytic cleavage is a unique and irreversible process that governs the function and half-life of numerous proteins. Thereby the role of the family of A disintegrin and metalloproteases (ADAMs) plays a leading part. A member of this family, ADAM8, has gained attention in regulating disorders, such as neurogenerative diseases, immune function and cancer, by attenuating the function of proteins nearby the extracellular membrane leaflet. This process of "ectodomain shedding" can alter the turnover rate of a number of transmembrane proteins that function in cell adhesion and receptor signal transduction. In the past, the major focus of research about ADAMs have been on neurogenerative diseases, such as Alzheimer, however, there seems to be evidence for a connection between ADAM8 and cancer. The role of ADAMs in the field of cancer research has gained recent attention, but it has been not yet been extensively addressed. Thus, this review article highlights the various roles of ADAM8 with particular emphasis on pathological conditions, such as cancer and malignant cancer progression. Here, the shedding function, direct and indirect matrix degradation, effects on cancer cell mobility and transmigration, and the interplay of ADAM8 with matrix-embedded neighboring cells are presented and discussed. Moreover, the most probable mechanical impact of ADAM8 on cancer cells and their matrix environment is addressed and debated. In summary, this review presents recent advances in substrates/ligands and functions of ADAM8 in its new role in cancer and its potential link to cell mechanical properties and discusses matrix mechanics modifying properties. A deeper comprehension of the regulatory mechanisms governing the expression, subcellular localization, and activity of ADAM8 is expected to reveal appropriate drug targets that will permit a more tailored and fine-tuned modification of its proteolytic activity in cancer development and metastasis.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Biological Physics Division, Peter Debye Institute of Soft Matter Physics, Leipzig University, Leipzig, Germany
| |
Collapse
|
9
|
Fromme JE, Zigrino P. The Role of Extracellular Matrix Remodeling in Skin Tumor Progression and Therapeutic Resistance. Front Mol Biosci 2022; 9:864302. [PMID: 35558554 PMCID: PMC9086898 DOI: 10.3389/fmolb.2022.864302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix remodeling in the skin results from a delicate balance of synthesis and degradation of matrix components, ensuring tissue homeostasis. These processes are altered during tumor invasion and growth, generating a microenvironment that supports growth, invasion, and metastasis. Apart from the cellular component, the tumor microenvironment is rich in extracellular matrix components and bound factors that provide structure and signals to the tumor and stromal cells. The continuous remodeling in the tissue compartment sustains the developing tumor during the various phases providing matrices and proteolytic enzymes. These are produced by cancer cells and stromal fibroblasts. In addition to fostering tumor growth, the expression of specific extracellular matrix proteins and proteinases supports tumor invasion after the initial therapeutic response. Lately, the expression and structural modification of matrices were also associated with therapeutic resistance. This review will focus on the significant alterations in the extracellular matrix components and the function of metalloproteinases that influence skin cancer progression and support the acquisition of therapeutic resistance.
Collapse
Affiliation(s)
- Julia E. Fromme
- Department of Dermatology and Venereology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Cologne, Germany
| | - Paola Zigrino
- Department of Dermatology and Venereology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- *Correspondence: Paola Zigrino,
| |
Collapse
|
10
|
Yu W, Sharma S, Rao E, Rowat AC, Gimzewski JK, Han D, Rao J. Cancer cell mechanobiology: a new frontier for cancer research. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:10-17. [PMID: 39035217 PMCID: PMC11256617 DOI: 10.1016/j.jncc.2021.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 12/12/2022] Open
Abstract
The study of physical and mechanical features of cancer cells, or cancer cell mechanobiology, is a new frontier in cancer research. Such studies may enhance our understanding of the disease process, especially mechanisms associated with cancer cell invasion and metastasis, and may help the effort of developing diagnostic biomarkers and therapeutic drug targets. Cancer cell mechanobiological changes are associated with the complex interplay of activation/inactivation of multiple signaling pathways, which can occur at both the genetic and epigenetic levels, and the interactions with the cancer microenvironment. It has been shown that metastatic tumor cells are more compliant than morphologically similar benign cells in actual human samples. Subsequent studies from us and others further demonstrated that cell mechanical properties are strongly associated with cancer cell invasive and metastatic potential, and thus may serve as a diagnostic marker of detecting cancer cells in human body fluid samples. In this review, we provide a brief narrative of the molecular mechanisms underlying cancer cell mechanobiology, the technological platforms utilized to study cancer cell mechanobiology, the status of cancer cell mechanobiological studies in various cancer types, and the potential clinical applications of cancer cell mechanobiological study in cancer early detection, diagnosis, and treatment.
Collapse
Affiliation(s)
- Weibo Yu
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, California, USA
| | - Shivani Sharma
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, California, USA
| | - Elizabeth Rao
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, California, USA
| | - Amy C. Rowat
- Department of Integrative Biology and Physiology, University of California at Los Angeles, California, USA
| | - James K. Gimzewski
- Department of Chemistry and Biochemistry, University of California at Los Angeles, California, USA
| | - Dong Han
- National Center for Nanoscience and Technology, Beijing, China
| | - Jianyu Rao
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, California, USA
| |
Collapse
|
11
|
Matrix Metalloproteinases Shape the Tumor Microenvironment in Cancer Progression. Int J Mol Sci 2021; 23:ijms23010146. [PMID: 35008569 PMCID: PMC8745566 DOI: 10.3390/ijms23010146] [Citation(s) in RCA: 225] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer progression with uncontrolled tumor growth, local invasion, and metastasis depends largely on the proteolytic activity of numerous matrix metalloproteinases (MMPs), which affect tissue integrity, immune cell recruitment, and tissue turnover by degrading extracellular matrix (ECM) components and by releasing matrikines, cell surface-bound cytokines, growth factors, or their receptors. Among the MMPs, MMP-14 is the driving force behind extracellular matrix and tissue destruction during cancer invasion and metastasis. MMP-14 also influences both intercellular as well as cell-matrix communication by regulating the activity of many plasma membrane-anchored and extracellular proteins. Cancer cells and other cells of the tumor stroma, embedded in a common extracellular matrix, interact with their matrix by means of various adhesive structures, of which particularly invadopodia are capable to remodel the matrix through spatially and temporally finely tuned proteolysis. As a deeper understanding of the underlying functional mechanisms is beneficial for the development of new prognostic and predictive markers and for targeted therapies, this review examined the current knowledge of the interplay of the various MMPs in the cancer context on the protein, subcellular, and cellular level with a focus on MMP14.
Collapse
|
12
|
Schwartz AD, Adusei A, Tsegaye S, Moskaluk CA, Schneider SS, Platt MO, Seifu D, Peyton SR, Babbitt CC. Genetic Mutations Associated with Hormone-Positive Breast Cancer in a Small Cohort of Ethiopian Women. Ann Biomed Eng 2021; 49:1900-1908. [PMID: 34142276 DOI: 10.1007/s10439-021-02800-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/24/2021] [Indexed: 12/23/2022]
Abstract
In Ethiopia, a breast cancer diagnosis is associated with a prognosis significantly worse than that of Europe and the US. Further, patients presenting with breast cancer in Ethiopia are far younger, on average, and patients are typically diagnosed at very late stages, relative to breast cancer patients of European descent. Emerging data suggest that a large proportion of Ethiopian patients have hormone-positive (ER+) breast cancer. This is surprising given (1) that patients have late-stage breast cancer at the time of diagnosis, (2) that African Americans with breast cancer frequently have triple negative breast cancer (TNBC), and (3) these patients typically receive chemotherapy, not hormone-targeting drugs. To further examine the similarity of Ethiopian breast tumors to those of African Americans or of those of European descent, we sequenced matched tumor and normal adjacent tissue from Ethiopian patients from a small pilot collection. We identified mutations in 615 genes across all three patients, unique to the tumor tissue. Across this analysis, we found far more mutations shared between Ethiopian patient tissue and that from white patients (103) than we did comparing to African Americans (3). Several mutations were found in extracellular matrix encoding genes with known roles in tumor cell growth and metastasis. We suggest future mechanistic studies on this disease focus on these genes first, toward finding new treatment strategies for breast cancer patients in Ethiopia.
Collapse
Affiliation(s)
- Alyssa D Schwartz
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Afua Adusei
- Molecular and Cell Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Solomon Tsegaye
- Department of Biochemistry, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Sallie S Schneider
- Molecular and Cell Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA.,Pioneer Valley Life Sciences Institute, Springfield, MA, USA
| | - Manu O Platt
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 950 Atlantic Drive, Suite 3015, Atlanta, GA, 30332, USA
| | - Daniel Seifu
- Department of Biochemistry, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia.,Department of Biochemistry, Division of Basic Sciences, University of Global Health Equity, Kigali, Rwanda
| | - Shelly R Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, USA. .,Molecular and Cell Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA. .,Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA.
| | - Courtney C Babbitt
- Molecular and Cell Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA. .,Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA. .,Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA.
| |
Collapse
|
13
|
Abstract
The physical microenvironment of cells plays a fundamental role in regulating cellular behavior and cell fate, especially in the context of cancer metastasis. For example, capillary deformation can destroy arrested circulating tumor cells while the dense extracellular matrix can form a physical barrier for invading cancer cells. Understanding how metastatic cancer cells overcome the challenges brought forth by physical confinement can help in developing better therapeutics that can put a stop to this migratory stage of the metastatic cascade. Numerous in vivo and in vitro assays have been developed to recapitulate the metastatic processes and study cancer cell migration in a confining microenvironment. In this review, we summarize some of the representative techniques and the exciting new findings. We critically review the advantages, as well as challenges associated with these tools and methodologies, and provide a guide on the applications that they are most suited for. We hope future efforts that push forward our current understanding on metastasis under confinement can lead to novel and more effective diagnostic and therapeutic strategies against this dreaded disease.
Collapse
Affiliation(s)
- Kuan Jiang
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Lanfeng Liang
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore
| |
Collapse
|
14
|
Chakraborty M, Asraf H, Sekler I, Hershfinkel M. ZnR/GPR39 controls cell migration by orchestrating recruitment of KCC3 into protrusions, re-organization of actin and activation of MMP. Cell Calcium 2021; 94:102330. [PMID: 33465674 DOI: 10.1016/j.ceca.2020.102330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 11/30/2020] [Indexed: 12/23/2022]
Abstract
Actin re-organization and degradation of extracellular matrix by metalloproteases (MMPs) facilitate formation of cellular protrusions that are required for cell proliferation and migration. We find that Zn2+ activation of the Gq-coupled receptor ZnR/GPR39 controls these processes by regulating K+/Cl- co-transporter KCC3, which modulates cell volume. Silencing of KCC3 expression or activity reverses ZnR/GPR39 enhancement of cell proliferation, migration and invasion through Matrigel. Activation of ZnR/GPR39 recruits KCC3 into F-actin rich membrane protrusions, suggesting that it can locally control volume changes. Immunofluorescence analysis indicates that Zn2+ activation of ZnR/GPR39 and KCC3 are required to enhance formation of F-actin stress fibers and cellular protrusions. In addition, ZnR/GPR39 upregulation of KCC3-dependent transport increases the activity of matrix metalloproteases MMP2 and MMP9. Our study establishes a mechanism in which ZnR/GPR39 orchestrates localization and activation of KCC3, formation of F-actin rich cell protrusions and activation of MMPs, and thereby controls cell proliferation and migration.
Collapse
Affiliation(s)
- Moumita Chakraborty
- Department of Physiology and Cell Biology and The Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hila Asraf
- Department of Physiology and Cell Biology and The Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Israel Sekler
- Department of Physiology and Cell Biology and The Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Michal Hershfinkel
- Department of Physiology and Cell Biology and The Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
15
|
de Beer MA, Giepmans BNG. Nanobody-Based Probes for Subcellular Protein Identification and Visualization. Front Cell Neurosci 2020; 14:573278. [PMID: 33240044 PMCID: PMC7667270 DOI: 10.3389/fncel.2020.573278] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022] Open
Abstract
Understanding how building blocks of life contribute to physiology is greatly aided by protein identification and cellular localization. The two main labeling approaches developed over the past decades are labeling with antibodies such as immunoglobulin G (IgGs) or use of genetically encoded tags such as fluorescent proteins. However, IgGs are large proteins (150 kDa), which limits penetration depth and uncertainty of target position caused by up to ∼25 nm distance of the label created by the chosen targeting approach. Additionally, IgGs cannot be easily recombinantly modulated and engineered as part of fusion proteins because they consist of multiple independent translated chains. In the last decade single domain antigen binding proteins are being explored in bioscience as a tool in revealing molecular identity and localization to overcome limitations by IgGs. These nanobodies have several potential benefits over routine applications. Because of their small size (15 kDa), nanobodies better penetrate during labeling procedures and improve resolution. Moreover, nanobodies cDNA can easily be fused with other cDNA. Multidomain proteins can thus be easily engineered consisting of domains for targeting (nanobodies) and visualization by fluorescence microscopy (fluorescent proteins) or electron microscopy (based on certain enzymes). Additional modules for e.g., purification are also easily added. These nanobody-based probes can be applied in cells for live-cell endogenous protein detection or may be purified prior to use on molecules, cells or tissues. Here, we present the current state of nanobody-based probes and their implementation in microscopy, including pitfalls and potential future opportunities.
Collapse
Affiliation(s)
- Marit A de Beer
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ben N G Giepmans
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
16
|
Padhi A, Singh K, Franco-Barraza J, Marston DJ, Cukierman E, Hahn KM, Kapania RK, Nain AS. Force-exerting perpendicular lateral protrusions in fibroblastic cell contraction. Commun Biol 2020; 3:390. [PMID: 32694539 PMCID: PMC7374753 DOI: 10.1038/s42003-020-01117-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
Aligned extracellular matrix fibers enable fibroblasts to undergo myofibroblastic activation and achieve elongated shapes. Activated fibroblasts are able to contract, perpetuating the alignment of these fibers. This poorly understood feedback process is critical in chronic fibrosis conditions, including cancer. Here, using fiber networks that serve as force sensors, we identify "3D perpendicular lateral protrusions" (3D-PLPs) that evolve from lateral cell extensions named twines. Twines originate from stratification of cyclic-actin waves traversing the cell and swing freely in 3D to engage neighboring fibers. Once engaged, a lamellum forms and extends multiple secondary twines, which fill in to form a sheet-like PLP, in a force-entailing process that transitions focal adhesions to activated (i.e., pathological) 3D-adhesions. The specific morphology of PLPs enables cells to increase contractility and force on parallel fibers. Controlling geometry of extracellular networks confirms that anisotropic fibrous environments support 3D-PLP formation and function, suggesting an explanation for cancer-associated desmoplastic expansion.
Collapse
Affiliation(s)
- Abinash Padhi
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Karanpreet Singh
- Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Janusz Franco-Barraza
- Cancer Biology Program, Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniel J Marston
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Edna Cukierman
- Cancer Biology Program, Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA.
| | - Klaus M Hahn
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rakesh K Kapania
- Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Amrinder S Nain
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
17
|
Alexandrova AY, Chikina AS, Svitkina TM. Actin cytoskeleton in mesenchymal-to-amoeboid transition of cancer cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:197-256. [PMID: 33066874 DOI: 10.1016/bs.ircmb.2020.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During development of metastasis, tumor cells migrate through different tissues and encounter different extracellular matrices. An ability of cells to adapt mechanisms of their migration to these diverse environmental conditions, called migration plasticity, gives tumor cells an advantage over normal cells for long distant dissemination. Different modes of individual cell motility-mesenchymal and amoeboid-are driven by different molecular mechanisms, which largely depend on functions of the actin cytoskeleton that can be modulated in a wide range by cellular signaling mechanisms in response to environmental conditions. Various triggers can switch one motility mode to another, but regulations of these transitions are incompletely understood. However, understanding of the mechanisms driving migration plasticity is instrumental for finding anti-cancer treatment capable to stop cancer metastasis. In this review, we discuss cytoskeletal features, which allow the individually migrating cells to switch between mesenchymal and amoeboid migrating modes, called mesenchymal-to-amoeboid transition (MAT). We briefly describe main characteristics of different cell migration modes, and then discuss the triggering factors that initiate MAT with special attention to cytoskeletal features essential for migration plasticity.
Collapse
Affiliation(s)
- Antonina Y Alexandrova
- Laboratory of Mechanisms of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia.
| | - Aleksandra S Chikina
- Cell Migration and Invasion and Spatio-Temporal Regulation of Antigen Presentation teams, UMR144/U932 Institut Curie, Paris, France
| | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
18
|
Small Ones to Fight a Big Problem-Intervention of Cancer Metastasis by Small Molecules. Cancers (Basel) 2020; 12:cancers12061454. [PMID: 32503267 PMCID: PMC7352875 DOI: 10.3390/cancers12061454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Metastasis represents the most lethal attribute of cancer and critically limits successful therapies in many tumor entities. The clinical need is defined by the fact that all cancer patients, who have or who will develop distant metastasis, will experience shorter survival. Thus, the ultimate goal in cancer therapy is the restriction of solid cancer metastasis by novel molecularly targeted small molecule based therapies. Biomarkers identifying cancer patients at high risk for metastasis and simultaneously acting as key drivers for metastasis are extremely desired. Clinical interventions targeting these key molecules will result in high efficiency in metastasis intervention. In result of this, personalized tailored interventions for restriction and prevention of cancer progression and metastasis will improve patient survival. This review defines crucial biological steps of the metastatic cascade, such as cell dissemination, migration and invasion as well as the action of metastasis suppressors. Targeting these biological steps with tailored therapeutic strategies of intervention or even prevention of metastasis using a wide range of small molecules will be discussed.
Collapse
|
19
|
Chen Y, Jiang B, Wang W, Su D, Xia F, Li X. Identifying the Transcriptional Regulatory Network Associated With Extrathyroidal Extension in Papillary Thyroid Carcinoma by Comprehensive Bioinformatics Analysis. Front Genet 2020; 11:453. [PMID: 32477405 PMCID: PMC7232969 DOI: 10.3389/fgene.2020.00453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/14/2020] [Indexed: 12/31/2022] Open
Abstract
Extrathyroidal extension (ETE) affects papillary thyroid cancer (PTC) prognosis. The objective of this study was to identify biomarkers for ETE and explore the mechanisms controlling its development in PTC. We performed a comprehensive bioinformatics analysis using several datasets. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) on 58 paired PTC samples from The Cancer Genome Atlas (TCGA) were used to detect ETE-related mRNA and long noncoding (lnc) RNA modules and construct an lncRNA/mRNA network. An independent TCGA dataset containing 438 samples was utilized to validate and characterize the WGCNA results. Functional annotation was used to identify the biological functions and related pathways of ETE modules. Two independent RNA sequencing datasets were combined to crossvalidate relationships between lncRNAs and mRNAs by Pearson correlation analysis. Transcription factors (TFs) for affected genes were predicted using the binding motif data from Ensembl Biomart to construct a TF/lncRNA/mRNA network. Other two independent datasets were used to crossvalidate TF-mRNA associations. Finally, receiver operating characteristic, survival analyses, and Cox proportional hazard regression model were performed to explore the significance of hub genes in ETE diagnosis and PTC prognosis. Three mRNA modules and two lncRNA modules were significantly associated with ETE. Enrichment analysis showed extracellular matrix changes was closely related to the development of ETE. A TF/lncRNA/mRNA regulatory network was constructed containing 33 validated hub genes, 64 lncRNAs, and 64 TFs, all differentially expressed between ETE and non-ETE samples. Unc-5 family C-terminal like [area under the curve (AUC): 0.711], sushi repeat containing protein X-linked 2 (AUC: 0.706), lysyl oxidase (AUC: 0.704), collagen type I alpha 1 chain (AUC: 0.704), and collagen type X alpha 1 chain (AUC: 0.704) were the most highly significant hub genes for ETE diagnosis. The Cox proportional hazard regression model constructed with hub genes showed significant survival differences between low- and high-risk groups (p = 0.00025) and performed good prediction for PTC prognosis(AUC = 0.794; C-index = 0.895). The identification of 33 biomarkers and TF/lncRNA/mRNA regulatory network would provide new insights into the molecular mechanisms of ETE besides the prognosis model may have important clinical implications in the improvement of PTC risk stratification, therapeutic decision-making, and prognosis prediction.
Collapse
Affiliation(s)
- Yong Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Jiang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wenlong Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Duntao Su
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Fada Xia
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xinying Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
20
|
Karamanou K, Franchi M, Vynios D, Brézillon S. Epithelial-to-mesenchymal transition and invadopodia markers in breast cancer: Lumican a key regulator. Semin Cancer Biol 2020; 62:125-133. [PMID: 31401293 DOI: 10.1016/j.semcancer.2019.08.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/02/2019] [Accepted: 08/04/2019] [Indexed: 12/30/2022]
Abstract
A great hallmark of breast cancer is the absence or presence of estrogen receptors ERα and ERβ, with a dominant role in cell proliferation, differentiation and cancer progression. Both receptors are related with Epithelial-to-Mesenchymal Transition (EMT) since there is a relation between ERs and extracellular matrix (ECM) macromolecules expression, and therefore, cell-cell and cell-ECM interactions. The endocrine resistance of ERα endows epithelial cells with increased aggressiveness and induces cell proliferation, resulting into a mesenchymal phenotype and an EMT status. ERα signaling may affect the transcriptional factors which govern EMT. Knockdown or silencing of ERα and ERβ in MCF-7 and MDA-MB-231 breast cancer cells respectively, provoked pivotal changes in phenotype, cellular functions, mRNA and protein levels of EMT markers, and consequently the EMT status. Mesenchymal cells owe their migratory and invasive properties to invadopodia, while in epithelial cells, lamellipodia and filopodia are mostly observed. Invadopodia, are actin-rich protrusions of plasma membrane, promoting proteolytic degradation of ECM and tumor invasion. Cortactin and MMP-14 govern the formation and principal functions of invadopodia. In vitro experiments proved that lumican inhibits cortactin and MMP-14 expression, alters the formation of lamellipodia and transforms mesenchymal cells into epithelial-like. Conclusively, lumican may inhibit or even reverse the several metastatic features that EMT endows in breast cancer cells. Therefore, a lumican-based anti-cancer therapy which will pharmacologically target and inhibit EMT might be interesting to be developed.
Collapse
Affiliation(s)
- Konstantina Karamanou
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, Reims, France; Université de Reims Champagne Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France; Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Demitrios Vynios
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Stéphane Brézillon
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, Reims, France; Université de Reims Champagne Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.
| |
Collapse
|
21
|
Characterization of 3D matrix conditions for cancer cell migration with elasticity/porosity-independent tunable microfiber gels. Polym J 2019. [DOI: 10.1038/s41428-019-0283-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Matrix promote mesenchymal stromal cell migration with improved deformation via nuclear stiffness decrease. Biomaterials 2019; 217:119300. [DOI: 10.1016/j.biomaterials.2019.119300] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 06/16/2019] [Accepted: 06/22/2019] [Indexed: 12/13/2022]
|
23
|
Role of prolyl hydroxylation in the molecular interactions of collagens. Essays Biochem 2019; 63:325-335. [PMID: 31350381 PMCID: PMC6744578 DOI: 10.1042/ebc20180053] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/25/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022]
Abstract
Co- and post-translational hydroxylation of proline residues is critical for the stability of the triple helical collagen structure. In this review, we summarise the biology of collagen prolyl 4-hydroxylases and collagen prolyl 3-hydroxylases, the enzymes responsible for proline hydroxylation. Furthermore, we describe the potential roles of hydroxyproline residues in the complex interplay between collagens and other proteins, especially integrin and discoidin domain receptor type cell adhesion receptors. Qualitative and quantitative regulation of collagen hydroxylation may have remarkable effects on the properties of the extracellular matrix and consequently on the cell behaviour.
Collapse
|
24
|
Mukherjee A, Behkam B, Nain AS. Cancer Cells Sense Fibers by Coiling on them in a Curvature-Dependent Manner. iScience 2019; 19:905-915. [PMID: 31513975 PMCID: PMC6742781 DOI: 10.1016/j.isci.2019.08.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/01/2019] [Accepted: 08/13/2019] [Indexed: 01/09/2023] Open
Abstract
Metastatic cancer cells sense the complex and heterogeneous fibrous extracellular matrix (ECM) by formation of protrusions, and our knowledge of how cells physically recognize these fibers remains in its infancy. Here, using suspended ECM-mimicking isodiameter fibers ranging from 135 to 1,000 nm, we show that metastatic breast cancer cells sense fiber diameters differentially by coiling (wrapping-around) on them in a curvature-dependent manner, whereas non-tumorigenic cells exhibit diminished coiling. We report that coiling occurs at the tip of growing protrusions and the coil width and coiling rate increase in a curvature-dependent manner, but time to maximum coil width occurs biphasically. Interestingly, bundles of 135-nm diameter fibers recover coiling width and rate on 1,000-nm-diameter fibers. Coiling also coincides with curvature-dependent persistent and ballistic transport of endogenous granules inside the protrusions. Altogether, our results lay the groundwork to link biophysical sensing with biological signaling to quantitate pro- and anti-invasive fibrous environments. Video Abstract
Cells sense ECM-mimicking suspended fibers by coiling (wrapping around) Coiling occurs at the tip of growing protrusions in a curvature-dependent manner Non-tumorigenic cells exhibit diminished coiling compared with metastatic cells A bundle of small-diameter fibers recover coiling observed on a large-diameter fiber
Collapse
Affiliation(s)
- Apratim Mukherjee
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Bahareh Behkam
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Amrinder S Nain
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
25
|
Ji L, Liu C, Yuan Y, Gao H, Tang Z, Yang Z, Liu Z, Jiang G. Key roles of Rho GTPases, YAP, and Mutant P53 in anti‐neoplastic effects of statins. Fundam Clin Pharmacol 2019; 34:4-10. [DOI: 10.1111/fcp.12495] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/19/2019] [Accepted: 06/24/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Lixia Ji
- Department of Pharmacology School of Pharmacy Qingdao University No. 38 Dengzhou Street Qingdao 266021 China
| | - Chaolong Liu
- Department of Pharmacology School of Pharmacy Qingdao University No. 38 Dengzhou Street Qingdao 266021 China
| | - Yanting Yuan
- Department of Pharmacology School of Pharmacy Qingdao University No. 38 Dengzhou Street Qingdao 266021 China
| | - Hui Gao
- Department of Pharmacology School of Pharmacy Qingdao University No. 38 Dengzhou Street Qingdao 266021 China
| | - Zhen‐xue Tang
- Department of Pharmacology School of Pharmacy Qingdao University No. 38 Dengzhou Street Qingdao 266021 China
| | - Zhihong Yang
- Department of Pharmacology School of Pharmacy Qingdao University No. 38 Dengzhou Street Qingdao 266021 China
| | - Zhan‐tao Liu
- Department of Pharmacology School of Pharmacy Qingdao University No. 38 Dengzhou Street Qingdao 266021 China
| | - Guo‐hui Jiang
- Department of Pharmacology School of Pharmacy Qingdao University No. 38 Dengzhou Street Qingdao 266021 China
| |
Collapse
|
26
|
Kunschmann T, Puder S, Fischer T, Steffen A, Rottner K, Mierke CT. The Small GTPase Rac1 Increases Cell Surface Stiffness and Enhances 3D Migration Into Extracellular Matrices. Sci Rep 2019; 9:7675. [PMID: 31118438 PMCID: PMC6531482 DOI: 10.1038/s41598-019-43975-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 05/07/2019] [Indexed: 01/21/2023] Open
Abstract
Membrane ruffling and lamellipodia formation promote the motility of adherent cells in two-dimensional motility assays by mechano-sensing of the microenvironment and initiation of focal adhesions towards their surroundings. Lamellipodium formation is stimulated by small Rho GTPases of the Rac subfamily, since genetic removal of these GTPases abolishes lamellipodium assembly. The relevance of lamellipodial or invadopodial structures for facilitating cellular mechanics and 3D cell motility is still unclear. Here, we hypothesized that Rac1 affects cell mechanics and facilitates 3D invasion. Thus, we explored whether fibroblasts that are genetically deficient for Rac1 (lacking Rac2 and Rac3) harbor altered mechanical properties, such as cellular deformability, intercellular adhesion forces and force exertion, and exhibit alterations in 3D motility. Rac1 knockout and control cells were analyzed for changes in deformability by applying an external force using an optical stretcher. Five Rac1 knockout cell lines were pronouncedly more deformable than Rac1 control cells upon stress application. Using AFM, we found that cell-cell adhesion forces are increased in Rac1 knockout compared to Rac1-expressing fibroblasts. Since mechanical deformability, cell-cell adhesion strength and 3D motility may be functionally connected, we investigated whether increased deformability of Rac1 knockout cells correlates with changes in 3D motility. All five Rac1 knockout clones displayed much lower 3D motility than Rac1-expressing controls. Moreover, force exertion was reduced in Rac1 knockout cells, as assessed by 3D fiber displacement analysis. Interference with cellular stiffness through blocking of actin polymerization by Latrunculin A could not further reduce invasion of Rac1 knockout cells. In contrast, Rac1-expressing controls treated with Latrunculin A were again more deformable and less invasive, suggesting actin polymerization is a major determinant of observed Rac1-dependent effects. Together, we propose that regulation of 3D motility by Rac1 partly involves cellular mechanics such as deformability and exertion of forces.
Collapse
Affiliation(s)
- Tom Kunschmann
- University of Leipzig, Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Linnestr. 5, 04103, Leipzig, Germany
| | - Stefanie Puder
- University of Leipzig, Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Linnestr. 5, 04103, Leipzig, Germany
| | - Tony Fischer
- University of Leipzig, Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Linnestr. 5, 04103, Leipzig, Germany
| | - Anika Steffen
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Claudia Tanja Mierke
- University of Leipzig, Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Linnestr. 5, 04103, Leipzig, Germany.
| |
Collapse
|
27
|
Bennink LL, Li Y, Kim B, Shin IJ, San BH, Zangari M, Yoon D, Yu SM. Visualizing collagen proteolysis by peptide hybridization: From 3D cell culture to in vivo imaging. Biomaterials 2018; 183:67-76. [PMID: 30149231 DOI: 10.1016/j.biomaterials.2018.08.039] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/10/2018] [Accepted: 08/20/2018] [Indexed: 12/31/2022]
Abstract
Degradation of the extracellular matrix (ECM) is one of the fundamental factors contributing to a variety of life-threatening or disabling pathological conditions. However, a thorough understanding of the degradation mechanism and development of new ECM-targeting diagnostics are severely hindered by a lack of technologies for direct interrogation of the ECM structures at the molecular level. Previously we demonstrated that the collagen hybridizing peptide [CHP, sequence: (GPO)9, O: hydroxyproline] can specifically recognize the degraded and unfolded collagen chains through triple helix formation. Here we show that fluorescently labeled CHP robustly visualizes the pericellular matrix turnover caused by proteolytic migration of cancer cells within 3D collagen culture, without the use of synthetic fluorogenic matrices or genetically modified cells. To facilitate in vivo imaging, we modified the CHP sequence by replacing each proline with a (2S,4S)-4-fluoroproline (f) residue which interferes with the peptide's inherent propensity to self-assemble into homo-triple helices. We show that the new CHP, (GfO)9, tagged with a near-infrared fluorophore, enables in vivo imaging and semi-quantitative assessment of osteolytic bone lesions in mouse models of multiple myeloma. Compared to conventional techniques (e.g., micro-CT), CHP-based imaging is simple and versatile in vitro and in vivo. Therefore, we envision CHP's applications in broad biomedical contexts ranging from studies of ECM biology and drug efficiency to development of clinical molecular imaging.
Collapse
Affiliation(s)
- Lucas L Bennink
- Department of Bioengineering, University of Utah, Salt Lake City, United States
| | - Yang Li
- Department of Bioengineering, University of Utah, Salt Lake City, United States.
| | - Bumjin Kim
- Department of Bioengineering, University of Utah, Salt Lake City, United States
| | - Ik Jae Shin
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, United States
| | - Boi Hoa San
- Department of Bioengineering, University of Utah, Salt Lake City, United States
| | - Maurizio Zangari
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, United States
| | - Donghoon Yoon
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, United States
| | - S Michael Yu
- Department of Bioengineering, University of Utah, Salt Lake City, United States; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, United States.
| |
Collapse
|
28
|
Mierke CT, Sauer F, Grosser S, Puder S, Fischer T, Käs JA. The two faces of enhanced stroma: Stroma acts as a tumor promoter and a steric obstacle. NMR IN BIOMEDICINE 2018; 31:e3831. [PMID: 29215759 DOI: 10.1002/nbm.3831] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/24/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
In addition to genetic, morphological and biochemical alterations in cells, a key feature of the malignant progression of cancer is the stroma, including cancer cell motility as well as the emergence of metastases. Our current knowledge with regard to the biophysically driven experimental approaches of cancer progression indicates that mechanical aberrations are major contributors to the malignant progression of cancer. In particular, the mechanical probing of the stroma is of great interest. However, the impact of the tumor stroma on cellular motility, and hence the metastatic cascade leading to the malignant progression of cancer, is controversial as there are two different and opposing effects within the stroma. On the one hand, the stroma can promote and enhance the proliferation, survival and migration of cancer cells through mechanotransduction processes evoked by fiber alignment as a result of increased stroma rigidity. This enables all types of cancer to overcome restrictive biological capabilities. On the other hand, as a result of its structural constraints, the stroma acts as a steric obstacle for cancer cell motility in dense three-dimensional extracellular matrices, when the pore size is smaller than the cell's nucleus. The mechanical properties of the stroma, such as the tissue matrix stiffness and the entire architectural network of the stroma, are the major players in providing the optimal environment for cancer cell migration. Thus, biophysical methods determining the mechanical properties of the stroma, such as magnetic resonance elastography, are critical for the diagnosis and prediction of early cancer stages. Fibrogenesis and cancer are tightly connected, as there is an elevated risk of cancer on cystic fibrosis or, subsequently, cirrhosis. This also applies to the subsequent metastatic process.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| | - Frank Sauer
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Soft Matter Physics Division, University of Leipzig, Leipzig, Germany
| | - Steffen Grosser
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Soft Matter Physics Division, University of Leipzig, Leipzig, Germany
| | - Stefanie Puder
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| | - Tony Fischer
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| | - Josef Alfons Käs
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Soft Matter Physics Division, University of Leipzig, Leipzig, Germany
| |
Collapse
|
29
|
Zhang X, Feng H, Li Z, Li D, Liu S, Huang H, Li M. Application of weighted gene co-expression network analysis to identify key modules and hub genes in oral squamous cell carcinoma tumorigenesis. Onco Targets Ther 2018; 11:6001-6021. [PMID: 30275705 PMCID: PMC6157991 DOI: 10.2147/ott.s171791] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose Oral squamous cell carcinoma (OSCC) is one of the most common malignant diseases worldwide, yet its molecular mechanisms are largely unknown. We aimed to construct gene co-expression networks to identify key modules and hub genes involved in the pathogenesis of OSCC. Patients and methods We used dataset GSE30784 to construct co-expression networks by weighted gene co-expression network analysis (WGCNA). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed by Database for Annotation, Visualization and Integrated Discovery (DAVID). Hub genes were screened and validated by other datasets. Results Turquoise and brown modules were found to be the most significantly related to tumorigenesis. Functional enrichment analysis showed that the turquoise module was associated with cell–cell adhesion, extracellular matrix and collagen catabolic process. A total of 10 hub genes (MMP1, TNFRSF12A, PLAU, FSCN1, PDPN, KRT78, EVPL, GGT6, SMIM5 and CYSRT1) were identified and validated at transcriptional and translational levels. Their genetic alteration and survival analysis were also revealed. Conclusion We identified two modules and 10 hub genes, which were associated with the tumorigenesis of OSCC. The two modules provided references that will advance the understanding of mechanisms of tumorigenesis in OSCC. Moreover, the hub genes may serve as biomarkers and therapeutic targets for precise diagnosis and treatment of OSCC in the future.
Collapse
Affiliation(s)
- Xiaoqi Zhang
- Department of Bone Metabolism, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China, ;
| | - Hao Feng
- Department of Bone Metabolism, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China, ;
| | - Ziyu Li
- Department of Bone Metabolism, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China, ;
| | - Dongfang Li
- Department of Bone Metabolism, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China, ;
| | - Shanshan Liu
- Department of Bone Metabolism, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China, ;
| | - Haiyun Huang
- Department of Bone Metabolism, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China, ;
| | - Minqi Li
- Department of Bone Metabolism, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China, ;
| |
Collapse
|
30
|
Aspirin is Involved in the Cell Cycle Arrest, Apoptosis, Cell Migration, and Invasion of Oral Squamous Cell Carcinoma. Int J Mol Sci 2018; 19:ijms19072029. [PMID: 30002310 PMCID: PMC6073368 DOI: 10.3390/ijms19072029] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/05/2018] [Accepted: 07/07/2018] [Indexed: 01/04/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide. In China, its 5-year survival rate is roughly 50%, owing to acquired chemotherapeutic resistance and metastasis of the disease. Accumulating evidence demonstrates that aspirin (ASA) acts as a preventive or therapeutic agent in multiple cancers; however, anti-tumor activities induced by aspirin are unclear in OSCC. To investigate the possible role of aspirin in OSCC development, we first employed bioinformatics to analyze the anti-OSCC effects of aspirin. We performed a genetic oncology (GO) enrichment analysis using the Database for Annotation, Visualization, and Integrated Discovery (DAVID), and the protein⁻protein interaction (PPI) network analysis by Cytoscape for differentially expressed genes (DEGs). We also evaluated the potential effects of aspirin on cell proliferation, invasion, migration, and apoptosis in two well-characterized OSCC cell lines (TCA8113 and CAL27). The bioinformatic results revealed that aspirin could inhibit proliferation by blocking the cell cycle, and could reduce migration and invasion via the PI3K-Akt and focal adhesion pathways. We found that ASA could downregulate the OSCC cell proliferation colony formation, invasion, and migration, as well as upregulate apoptosis. Furthermore, we found that ASA suppressed the activation of the focal adhesion kinase (FAK) and the phosphorylation of Akt, NF-κB, and STAT3. Overall, our data suggested that ASA may be developed as a chemopreventive agent to effectively treat OSCC.
Collapse
|
31
|
MacDonald E, Brown L, Selvais A, Liu H, Waring T, Newman D, Bithell J, Grimes D, Urbé S, Clague MJ, Zech T. HRS-WASH axis governs actin-mediated endosomal recycling and cell invasion. J Cell Biol 2018; 217:2549-2564. [PMID: 29891722 PMCID: PMC6028553 DOI: 10.1083/jcb.201710051] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/29/2018] [Accepted: 04/26/2018] [Indexed: 12/31/2022] Open
Abstract
Transmembrane proteins in the sorting endosome are either recycled to their point of origin or destined for lysosomal degradation. Lysosomal sorting is mediated by interaction of ubiquitylated transmembrane proteins with the endosomal sorting complex required for transport (ESCRT) machinery. In this study, we uncover an alternative role for the ESCRT-0 component hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) in promoting the constitutive recycling of transmembrane proteins. We find that endosomal localization of the actin nucleating factor Wiscott-Aldrich syndrome protein and SCAR homologue (WASH) requires HRS, which occupies adjacent endosomal subdomains. Depletion of HRS results in defective constitutive recycling of epidermal growth factor receptor and the matrix metalloproteinase MT1-MMP, leading to their accumulation in internal compartments. We show that direct interactions with endosomal actin are required for efficient recycling and use a model system of chimeric transferrin receptor trafficking to show that an actin-binding motif can counteract an ubiquitin signal for lysosomal sorting. Directed receptor recycling is used by cancer cells to achieve invasive migration. Accordingly, abrogating HRS- and actin-dependent MT1-MMP recycling results in defective matrix degradation and invasion of triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Ewan MacDonald
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Louise Brown
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Arnaud Selvais
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Han Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Thomas Waring
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Daniel Newman
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Jessica Bithell
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Douglas Grimes
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Sylvie Urbé
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Michael J Clague
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Tobias Zech
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| |
Collapse
|
32
|
LINC complex-Lis1 interplay controls MT1-MMP matrix digest-on-demand response for confined tumor cell migration. Nat Commun 2018; 9:2443. [PMID: 29934494 PMCID: PMC6015082 DOI: 10.1038/s41467-018-04865-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/09/2018] [Indexed: 12/13/2022] Open
Abstract
Cancer cells’ ability to migrate through constricting pores in the tissue matrix is limited by nuclear stiffness. MT1-MMP contributes to metastasis by widening matrix pores, facilitating confined migration. Here, we show that modulation of matrix pore size or of lamin A expression known to modulate nuclear stiffness directly impinges on levels of MT1-MMP-mediated pericellular collagenolysis by cancer cells. A component of this adaptive response is the centrosome-centered distribution of MT1-MMP intracellular storage compartments ahead of the nucleus. We further show that this response, including invadopodia formation in association with confining matrix fibrils, requires an intact connection between the nucleus and the centrosome via the linker of nucleoskeleton and cytoskeleton (LINC) complex protein nesprin-2 and dynein adaptor Lis1. Our results uncover a digest-on-demand strategy for nuclear translocation through constricted spaces whereby confined migration triggers polarization of MT1-MMP storage compartments and matrix proteolysis in front of the nucleus depending on nucleus-microtubule linkage. The ability of cancer cells to migrate through small, constricted areas is limited by nuclear stiffness. Here the authors show that in turn nuclear stiffness stimulates the delivery of enzymes important for the degradation of the extracellular matrix and the formation of invadopodia in association with fibers thus opposing nuclear movement.
Collapse
|
33
|
Malandrino A, Mak M, Kamm RD, Moeendarbary E. Complex mechanics of the heterogeneous extracellular matrix in cancer. EXTREME MECHANICS LETTERS 2018; 21:25-34. [PMID: 30135864 PMCID: PMC6097546 DOI: 10.1016/j.eml.2018.02.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/07/2018] [Accepted: 02/20/2018] [Indexed: 05/14/2023]
Abstract
The extracellular matrix (ECM) performs many critical functions, one of which is to provide structural and mechanical integrity, and many of the constituent proteins have clear mechanical roles. The composition and structural characteristics of the ECM are widely variable among different tissues, suiting diverse functional needs. In diseased tissues, particularly solid tumors, the ECM is complex and influences disease progression. Cancer and stromal cells can significantly influence the matrix composition and structure and thus the mechanical properties of the tumor microenvironment (TME). In this review, we describe the interactions that give rise to the structural heterogeneity of the ECM and present the techniques that are widely employed to measure ECM properties and remodeling dynamics. Furthermore, we review the tools for measuring the distinct nature of cell-ECM interactions within the TME.
Collapse
Affiliation(s)
- Andrea Malandrino
- Institute for Bioengineering of Catalonia, Barcelona, Spain
- European Molecular Biology Laboratory, Barcelona, Spain
| | - Michael Mak
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Roger D. Kamm
- Departments of Biological Engineering and Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emad Moeendarbary
- Departments of Biological Engineering and Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, University College London, London, UK
| |
Collapse
|
34
|
Dietrich M, Le Roy H, Brückner DB, Engelke H, Zantl R, Rädler JO, Broedersz CP. Guiding 3D cell migration in deformed synthetic hydrogel microstructures. SOFT MATTER 2018; 14:2816-2826. [PMID: 29595213 DOI: 10.1039/c8sm00018b] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The ability of cells to navigate through the extracellular matrix, a network of biopolymers, is controlled by an interplay of cellular activity and mechanical network properties. Synthetic hydrogels with highly tuneable compositions and elastic properties are convenient model systems for the investigation of cell migration in 3D polymer networks. To study the impact of macroscopic deformations on single cell migration, we present a novel method to introduce uniaxial strain in matrices by microstructuring photo-polymerizable hydrogel strips with embedded cells in a channel slide. We find that such confined swelling results in a strained matrix in which cells exhibit an anisotropic migration response parallel to the strain direction. Surprisingly, however, the anisotropy of migration reaches a maximum at intermediate strain levels and decreases strongly at higher strains. We account for this non-monotonic response in the migration anisotropy with a computational model, in which we describe a cell performing durotactic and proteolytic migration in a deformable elastic meshwork. Our simulations reveal that the macroscopically applied strain induces a local geometric anisotropic stiffening of the matrix. This local anisotropic stiffening acts as a guidance cue for directed cell migration, resulting in a non-monotonic dependence on strain, as observed in our experiments. Our findings provide a mechanism for mechanical guidance that connects network properties on the cellular scale to cell migration behaviour.
Collapse
Affiliation(s)
- Miriam Dietrich
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-University, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
35
|
Remacle AG, Cieplak P, Nam DH, Shiryaev SA, Ge X, Strongin AY. Selective function-blocking monoclonal human antibody highlights the important role of membrane type-1 matrix metalloproteinase (MT1-MMP) in metastasis. Oncotarget 2018; 8:2781-2799. [PMID: 27835863 PMCID: PMC5356841 DOI: 10.18632/oncotarget.13157] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/13/2016] [Indexed: 02/05/2023] Open
Abstract
The invasion-promoting MT1-MMP is a cell surface-associated collagenase with a plethora of critical cellular functions. There is a consensus that MT1-MMP is a key protease in aberrant pericellular proteolysis in migrating cancer cells and, accordingly, a promising drug target. Because of high homology in the MMP family and a limited success in the design of selective small-molecule inhibitors, it became evident that the inhibitor specificity is required for selective and successful MT1-MMP therapies. Using the human Fab antibody library (over 1.25×109 individual variants) that exhibited the extended, 23-27 residue long, VH CDR-H3 segments, we isolated a panel of the inhibitory antibody fragments, from which the 3A2 Fab outperformed others as a specific and potent, low nanomolar range, inhibitor of MT1-MMP. Here, we report the in-depth characterization of the 3A2 antibody. Our multiple in vitro and cell-based tests and assays, and extensive structural modeling of the antibody/protease interactions suggest that the antibody epitope involves the residues proximal to the protease catalytic site and that, in contrast with tissue inhibitor-2 of MMPs (TIMP-2), the 3A2 Fab inactivates the protease functionality by binding to the catalytic domain outside the active site cavity. In agreement with the studies in metastasis by others, our animal studies in acute pulmonary melanoma metastasis support a key role of MT1-MMP in metastatic process. Conversely, the selective anti-MT1-MMP monotherapy significantly alleviated melanoma metastatic burden. It is likely that further affinity maturation of the 3A2 Fab will result in the lead inhibitor and a proof-of-concept for MT1-MMP targeting in metastatic cancers.
Collapse
Affiliation(s)
- Albert G Remacle
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Piotr Cieplak
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Dong Hyun Nam
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92512, USA
| | - Sergey A Shiryaev
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92512, USA
| | - Alex Y Strongin
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
36
|
Koons B, Sharma P, Ye Z, Mukherjee A, Lee MH, Wirtz D, Behkam B, Nain AS. Cancer Protrusions on a Tightrope: Nanofiber Curvature Contrast Quantitates Single Protrusion Dynamics. ACS NANO 2017; 11:12037-12048. [PMID: 29144730 DOI: 10.1021/acsnano.7b04567] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cell migration is studied with the traditional focus on protrusion-driven cell body displacement, while less is known on morphodynamics of individual protrusions themselves, especially in fibrous environments mimicking extracellular matrix. Here, using suspended fibers, we report integrative and multiscale abilities to study protrusive behavior independent of cell body migration. By manipulating the diameter of fibers in orthogonal directions, we constrain cell migration along large diameter (2 μm) base fibers, while solely allowing cells to sense, initiate, and mature protrusions on orthogonally deposited high-curvature/low diameter (∼100, 200, and 600 nm) protrusive fibers and low-curvature (∼300 and 600 nm width) protrusive flat ribbons. In doing so, we report a set of morphodynamic metrics that precisely quantitate protrusion dynamics. Protrusion growth and maturation occur by rapid broadening at the base to achieve long lengths, a behavior dramatically influenced by curvature. While flat ribbons universally induce the formation of broad and long protrusions, we quantitatively protrutype protrusive behavior of two highly invasive cancer cell lines and find breast adenocarcinoma (MDA-MB-231) to exhibit sensitivity to fiber curvature higher than that of brain glioblastoma DBTRG-05MG. Furthermore, while actin and microtubules localize within protrusions of all sizes, we quantify protrusion size-driven localization of vimentin and, contrary to current understanding, report that vimentin is not required to form protrusions. Using multiple protrusive fibers, we quantify high coordination between hierarchical branches of individual protrusions and describe how the spatial configuration of multiple protrusions regulates cell migratory state. Finally, we describe protrusion-driven shedding and collection of cytoplasmic debris.
Collapse
Affiliation(s)
| | | | | | | | - Meng Horng Lee
- Engineering in Oncology Center, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Denis Wirtz
- Engineering in Oncology Center, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | | | | |
Collapse
|
37
|
Ji W, Li L, Eniola-Adefeso O, Wang Y, Liu C, Feng C. Non-invasively visualizing cell-matrix interactions in two-photon excited supramolecular hydrogels. J Mater Chem B 2017; 5:7790-7795. [PMID: 32264379 DOI: 10.1039/c7tb02274c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Visualizing the role of extracellular matrix (ECM) in cell bioactivities in three-dimensional (3D) view is highly important for in-depth understanding of fundamental physiological issues in various in vitro experiments. Using current designs it is difficult to produce 3D biomimetic ECM with intrinsic fluorescence under non-invasive near-infrared excitation. Herein, we have designed and synthesized a series of non-conventional coumarin-derived hydrogelators, which can self-assemble to form nanofibrous 3D supramolecular hydrogels through C-HO bonds and be excited by two-photon absorption, ensuring the direct and dynamic visualization of cell-matrix interactions with high resolution images in a 3D environment. Real-time monitoring of ECM-regulated dynamic cell behaviours is highly desirable for future basic and applied research.
Collapse
Affiliation(s)
- Wei Ji
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
| | | | | | | | | | | |
Collapse
|
38
|
Li S, Li H, Xu Y, Lv X. Identification of candidate biomarkers for epithelial ovarian cancer metastasis using microarray data. Oncol Lett 2017; 14:3967-3974. [PMID: 28943904 DOI: 10.3892/ol.2017.6707] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 05/08/2017] [Indexed: 11/05/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is a common cancer in women worldwide. The present study assessed effective biomarkers for the prognosis of EOC metastasis. The GSE30587 dataset, containing 9 EOC primary tumor samples and 9 matched omental metastasis samples, was analyzed. Following normalization, the differentially expressed genes (DEGs) between these samples were identified using the limma package for R. Subsequently, pathway enrichment analysis was performed using ClueGO, and a protein-protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes database. The microRNA (mRNA/miR)-target network was established using the multiMiR package. A set of 272 DEGs was identified in metastatic EOC samples, including 189 upregulated and 83 downregulated genes. Collagen type I α 1 chain (COL1A1), COL1A2, collagen type XI α 1 chain (COL11A1) and thrombospondin (THBS)1 were enriched in the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), focal adhesion and extracellular matrix (ECM)-receptor interaction signaling pathways. THBS1 and tissue inhibitor of metalloproteinase (TIMP)3 were two dominant nodes in the PPI network and were key in the miRNA-target network, being targeted by hsa-miR-1. Multiple DEGs and miRNAs were identified as potential biomarkers for the prognosis of EOC metastasis in the present study, which likely affected metastasis by regulating the PI3K/Akt, ECM-receptor interaction and cell adhesion signaling pathways. In addition, THBS1 and TIMP3 were identified as potential targets of hsa-miR-1.
Collapse
Affiliation(s)
- Su Li
- Department of Obstetrics and Gynecology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China
| | - Hua Li
- Department of Obstetrics and Gynecology, The People's Hospital of Zhangqiu, Zhangqiu, Shandong 250014, P.R. China
| | - Ying Xu
- Department of Obstetrics and Gynecology, Shandong Coal Taishan Sanatorium, Taian, Shandong 271000, P.R. China
| | - Xiaomei Lv
- Department of Obstetrics and Gynecology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
39
|
Pandya P, Orgaz JL, Sanz-Moreno V. Actomyosin contractility and collective migration: may the force be with you. Curr Opin Cell Biol 2017; 48:87-96. [PMID: 28715714 PMCID: PMC6137077 DOI: 10.1016/j.ceb.2017.06.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/01/2017] [Accepted: 06/23/2017] [Indexed: 01/21/2023]
Abstract
Collective migration relies on the ability of a multicellular co-ordinated unit to efficiently respond to physical changes in their surrounding matrix. Conversely, migrating cohorts physically alter their microenvironment using mechanical forces. During collective migration, actomyosin contractility acts as a central hub coordinating mechanosensing and mechanotransduction responses.
Collective cell migration is essential during physiological processes such as development or wound healing and in pathological conditions such as cancer dissemination. Cells migrating within multicellular tissues experiment different forces which play an intricate role during tissue formation, development and maintenance. How cells are able to respond to these forces depends largely on how they interact with the extracellular matrix. In this review, we focus on mechanics and mechanotransduction in collective migration. In particular, we discuss current knowledge on how cells integrate mechanical signals during collective migration and we highlight actomyosin contractility as a central hub coordinating mechanosensing and mechanotransduction responses.
Collapse
Affiliation(s)
- Pahini Pandya
- Tumour Plasticity Team, Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Jose L Orgaz
- Tumour Plasticity Team, Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Victoria Sanz-Moreno
- Tumour Plasticity Team, Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK.
| |
Collapse
|
40
|
Bronger H, Karge A, Dreyer T, Zech D, Kraeft S, Avril S, Kiechle M, Schmitt M. Induction of cathepsin B by the CXCR3 chemokines CXCL9 and CXCL10 in human breast cancer cells. Oncol Lett 2017; 13:4224-4230. [PMID: 28599423 PMCID: PMC5453043 DOI: 10.3892/ol.2017.5994] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/31/2017] [Indexed: 12/25/2022] Open
Abstract
Cathepsin B (CTSB) is a lysosomal cysteine protease that has been linked to the progression of breast cancer, for example by activation of other proteases and tumor-promoting cytokines, thereby supporting tumor invasion and metastasis. Previously, it was shown that CTSB cleaves and inactivates C-X-C motif chemokine receptor 3 (CXCR3) chemokines. As CXCR3 ligands have been demonstrated to induce proteases in cancer cells, the present study hypothesized that they may also affect CTSB in breast cancer cells. The results demonstrated that the human breast cancer tumor cell lines MCF-7 and MDA-MB-231 express the CXCR3 splice variants A and B and CTSB. Upon binding to CXCR3, the two chemokine ligands C-X-C motif chemokine ligand (CXCL) 9 and CXCL10 trigger upregulation of CTSB in these breast cancer cells, whereas the CXCR3-B-specific ligand CXCL4 has no such effect, suggesting the involvement of CXCR3-A in the regulation of CTSB. In early-stage human breast cancer specimens (n=81), overexpression of CXCR3 is associated with statistically significant poorer overall survival, independent of lymph node status, tumor size and nuclear grading (hazard ratio=1.99; 95% confidence interval=1.00–3.97; P=0.050). In conclusion, the data from the current study propose a so far unknown mechanism by which breast cancer cells may exploit tumor-suppressive chemokines to enhance their invasiveness and reduce immune cell infiltration by the degradation of these chemokines. This mechanism may support the established unfavorable prognostic feature of CXCR3 expression in breast cancer.
Collapse
Affiliation(s)
- Holger Bronger
- Department of Gynecology and Obstetrics, Technical University of Munich, D-81675 Munich, Germany
| | - Anne Karge
- Department of Gynecology and Obstetrics, Technical University of Munich, D-81675 Munich, Germany
| | - Tobias Dreyer
- Department of Gynecology and Obstetrics, Technical University of Munich, D-81675 Munich, Germany
| | - Daniela Zech
- Department of Gynecology and Obstetrics, Technical University of Munich, D-81675 Munich, Germany
| | - Sara Kraeft
- Department of Gynecology and Obstetrics, Technical University of Munich, D-81675 Munich, Germany
| | - Stefanie Avril
- Department of Pathology, Technical University of Munich, D-81675 Munich, Germany.,Department of Pathology, Case Western Reserve University School of Medicine, University Hospital Case Medical Center, Cleveland, Ohio 44106-7288, USA
| | - Marion Kiechle
- Department of Gynecology and Obstetrics, Technical University of Munich, D-81675 Munich, Germany
| | - Manfred Schmitt
- Department of Gynecology and Obstetrics, Technical University of Munich, D-81675 Munich, Germany
| |
Collapse
|
41
|
Turunen SP, Tatti-Bugaeva O, Lehti K. Membrane-type matrix metalloproteases as diverse effectors of cancer progression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1974-1988. [PMID: 28390905 DOI: 10.1016/j.bbamcr.2017.04.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/02/2017] [Accepted: 04/03/2017] [Indexed: 12/12/2022]
Abstract
Membrane-type matrix metalloproteases (MT-MMP) are pivotal regulators of cell invasion, growth and survival. Tethered to the cell membranes by a transmembrane domain or GPI-anchor, the six MT-MMPs can exert these functions via cell surface-associated extracellular matrix degradation or proteolytic protein processing, including shedding or release of signaling receptors, adhesion molecules, growth factors and other pericellular proteins. By interactions with signaling scaffold or cytoskeleton, the C-terminal cytoplasmic tail of the transmembrane MT-MMPs further extends their functionality to signaling or structural relay. MT-MMPs are differentially expressed in cancer. The most extensively studied MMP14/MT1-MMP is induced in various cancers along malignant transformation via pathways activated by mutations in tumor suppressors or proto-oncogenes and changes in tumor microenvironment including cellular heterogeneity, extracellular matrix composition, tissue oxygenation, and inflammation. Classically such induction involves transcriptional programs related to epithelial-to-mesenchymal transition. Besides inhibition by endogenous tissue inhibitors, MT-MMP activities are spatially and timely regulated at multiple levels by microtubular vesicular trafficking, dimerization/oligomerization, other interactions and localization in the actin-based invadosomes, in both tumor and the stroma. The functions of MT-MMPs are multifaceted within reciprocal cellular responses in the evolving tumor microenvironment, which poses the importance of these proteases beyond the central function as matrix scissors, and necessitates us to rethink MT-MMPs as dynamic signaling proteases of cancer. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.
Collapse
Affiliation(s)
- S Pauliina Turunen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Nobels väg 16, SE-17177 Stockholm, Sweden
| | - Olga Tatti-Bugaeva
- Research Programs Unit, Genome-Scale Biology and Haartman Institute, University of Helsinki, and Helsinki University Hospital, P.O. Box 63, FI-00014 Helsinki, Finland
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Nobels väg 16, SE-17177 Stockholm, Sweden; Research Programs Unit, Genome-Scale Biology and Haartman Institute, University of Helsinki, and Helsinki University Hospital, P.O. Box 63, FI-00014 Helsinki, Finland; K. Albin Johansson Foundation, Finnish Cancer Institute, P.O. Box 63, FI-00014, Helsinki, Finland.
| |
Collapse
|
42
|
Kim D, Jung J, You E, Ko P, Oh S, Rhee S. mDia1 regulates breast cancer invasion by controlling membrane type 1-matrix metalloproteinase localization. Oncotarget 2017; 7:17829-43. [PMID: 26893363 PMCID: PMC4951253 DOI: 10.18632/oncotarget.7429] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 02/11/2016] [Indexed: 11/25/2022] Open
Abstract
Mammalian diaphanous-related formin 1 (mDia1) expression has been linked with progression of malignant cancers in various tissues. However, the precise molecular mechanism underlying mDia1-mediated invasion in cancer cells has not been fully elucidated. In this study, we found that mDia1 is upregulated in invasive breast cancer cells. Knockdown of mDia1 in invasive breast cancer profoundly reduced invasive activity by controlling cellular localization of membrane type 1-matrix metalloproteinase (MT1-MMP) through interaction with microtubule tracks. Gene silencing and ectopic expression of the active form of mDia1 showed that mDia1 plays a key role in the intracellular trafficking of MT1-MMP to the plasma membrane through microtubules. We also demonstrated that highly invasive breast cancer cells possessed invasive activity in a 3D culture system, which was significantly reduced upon silencing mDia1 or MT1-MMP. Furthermore, mDia1-deficient cells cultured in 3D matrix showed impaired expression of the cancer stem cell marker genes, CD44 and CD133. Collectively, our findings suggest that regulation of cellular trafficking and microtubule-mediated localization of MT1-MMP by mDia1 is likely important in breast cancer invasion through the expression of cancer stem cell genes.
Collapse
Affiliation(s)
- Daehwan Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Jangho Jung
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Eunae You
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Panseon Ko
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Somi Oh
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Sangmyung Rhee
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
43
|
Fine Tuning Cell Migration by a Disintegrin and Metalloproteinases. Mediators Inflamm 2017; 2017:9621724. [PMID: 28260841 PMCID: PMC5316459 DOI: 10.1155/2017/9621724] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/22/2016] [Indexed: 02/07/2023] Open
Abstract
Cell migration is an instrumental process involved in organ development, tissue homeostasis, and various physiological processes and also in numerous pathologies. Both basic cell migration and migration towards chemotactic stimulus consist of changes in cell polarity and cytoskeletal rearrangement, cell detachment from, invasion through, and reattachment to their neighboring cells, and numerous interactions with the extracellular matrix. The different steps of immune cell, tissue cell, or cancer cell migration are tightly coordinated in time and place by growth factors, cytokines/chemokines, adhesion molecules, and receptors for these ligands. This review describes how a disintegrin and metalloproteinases interfere with several steps of cell migration, either by proteolytic cleavage of such molecules or by functions independent of proteolytic activity.
Collapse
|
44
|
Meng DF, Xie P, Peng LX, Sun R, Luo DH, Chen QY, Lv X, Wang L, Chen MY, Mai HQ, Guo L, Guo X, Zheng LS, Cao L, Yang JP, Wang MY, Mei Y, Qiang YY, Zhang ZM, Yun JP, Huang BJ, Qian CN. CDC42-interacting protein 4 promotes metastasis of nasopharyngeal carcinoma by mediating invadopodia formation and activating EGFR signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:21. [PMID: 28129778 PMCID: PMC5273811 DOI: 10.1186/s13046-016-0483-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/23/2016] [Indexed: 01/08/2023]
Abstract
Background Nasopharyngeal carcinoma (NPC) is a common malignancy in Southern China and Southeast Asia. In this study, we investigated the functional and molecular mechanisms by which CDC42-interacting protein 4 (CIP4) influences NPC. Methods The expression levels of CIP4 were examined by Western blot, qRT-PCR or IHC. MTT assay was used to detect the proliferative rate of NPC cells. The invasive abilities were examined by matrigel and transwell assay. The metastatic abilities of NPC cells were revealed in BALB/c nude mice. Results We report that CIP4 is required for NPC cell motility and invasion. CIP4 promotes the activation of N-WASP that controls invadopodia formation and activates EGFR signaling, which induces downstream MMP2 (matrix metalloproteinase 2) upregulation. In addition, CIP4 could promote NPC metastasis by activating the EGFR pathway. In nude mouse models, distant metastasis was significantly inhibited in CIP4-silenced groups. High CIP4 expression is an independent adverse prognostic factor of overall survival (OS) and distant metastasis-free survival (DMFS). Conclusion We identify the critical role of CIP4 in metastasis of NPC which suggest that CIP4 may be a potential therapeutic target of NPC patients.
Collapse
Affiliation(s)
- Dong-Fang Meng
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Ping Xie
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Li-Xia Peng
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Rui Sun
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Dong-Hua Luo
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Qiu-Yan Chen
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Xing Lv
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Lin Wang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Ming-Yuan Chen
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Hai-Qiang Mai
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Ling Guo
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Xiang Guo
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Li-Sheng Zheng
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Li Cao
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Jun-Ping Yang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Meng-Yao Wang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Radiotherapy Department, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, 510095, China
| | - Yan Mei
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yuan-Yuan Qiang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Zi-Meng Zhang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Jing-Ping Yun
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Bi-Jun Huang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Chao-Nan Qian
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China. .,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
45
|
He L, Chen W, Wu PH, Jimenez A, Wong BS, San A, Konstantopoulos K, Wirtz D. Local 3D matrix confinement determines division axis through cell shape. Oncotarget 2016; 7:6994-7011. [PMID: 26515603 PMCID: PMC4872764 DOI: 10.18632/oncotarget.5848] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/03/2015] [Indexed: 12/24/2022] Open
Abstract
How the division axis is determined in mammalian cells embedded in three-dimensional (3D) matrices remains elusive, despite that many types of cells divide in 3D environments. Cells on two-dimensional (2D) substrates typically round up completely to divide. Here, we show that in 3D collagen matrices, mammalian cells such as HT1080 human fibrosarcoma and MDA-MB-231 breast cancer cells exhibit division modes distinct from their Counterparts on 2D substrates, with a markedly higher fraction of cells remaining highly elongated through mitosis in 3D matrices. The long axis of elongated mitotic cells accurately predicts the division axis, independently of matrix density and cell-matrix interactions. This 3D-specific elongated division mode is determined by the local confinement produced by the matrix and the ability of cells to protrude and locally remodel the matrix via β1 integrin. Elongated division is readily recapitulated using collagen-coated microfabricated channels. Cells depleted of β1 integrin still divide in the elongated mode in microchannels, suggesting that 3D confinement is sufficient to induce the elongated cell-division phenotype.
Collapse
Affiliation(s)
- Lijuan He
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA.,Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Weitong Chen
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA.,Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Angela Jimenez
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA.,Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Bin Sheng Wong
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA.,Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Angela San
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA.,Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA.,Departments of Oncology and Pathology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA.,Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA.,Departments of Oncology and Pathology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
46
|
Mak M, Spill F, Kamm RD, Zaman MH. Single-Cell Migration in Complex Microenvironments: Mechanics and Signaling Dynamics. J Biomech Eng 2016; 138:021004. [PMID: 26639083 DOI: 10.1115/1.4032188] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Indexed: 12/21/2022]
Abstract
Cells are highly dynamic and mechanical automata powered by molecular motors that respond to external cues. Intracellular signaling pathways, either chemical or mechanical, can be activated and spatially coordinated to induce polarized cell states and directional migration. Physiologically, cells navigate through complex microenvironments, typically in three-dimensional (3D) fibrillar networks. In diseases, such as metastatic cancer, they invade across physiological barriers and remodel their local environments through force, matrix degradation, synthesis, and reorganization. Important external factors such as dimensionality, confinement, topographical cues, stiffness, and flow impact the behavior of migrating cells and can each regulate motility. Here, we review recent progress in our understanding of single-cell migration in complex microenvironments.
Collapse
|
47
|
Gupta T, Kumar A, Cattenoz PB, VijayRaghavan K, Giangrande A. The Glide/Gcm fate determinant controls initiation of collective cell migration by regulating Frazzled. eLife 2016; 5. [PMID: 27740455 PMCID: PMC5114015 DOI: 10.7554/elife.15983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 10/12/2016] [Indexed: 12/16/2022] Open
Abstract
Collective migration is a complex process that contributes to build precise tissue and organ architecture. Several molecules implicated in cell interactions also control collective migration, but their precise role and the finely tuned expression that orchestrates this complex developmental process are poorly understood. Here, we show that the timely and threshold expression of the Netrin receptor Frazzled triggers the initiation of glia migration in the developing Drosophila wing. Frazzled expression is induced by the transcription factor Glide/Gcm in a dose-dependent manner. Thus, the glial determinant also regulates the efficiency of collective migration. NetrinB but not NetrinA serves as a chemoattractant and Unc5 contributes as a repellant Netrin receptor for glia migration. Our model includes strict spatial localization of a ligand, a cell autonomously acting receptor and a fate determinant that act coordinately to direct glia toward their final destination. DOI:http://dx.doi.org/10.7554/eLife.15983.001
Collapse
Affiliation(s)
- Tripti Gupta
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Arun Kumar
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Pierre B Cattenoz
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - K VijayRaghavan
- Department of Developmental Biology and Genetics, Tata Institute for Fundamental Research, Bangalore, India.,National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
| | - Angela Giangrande
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
48
|
Abstract
Cell migration results from stepwise mechanical and chemical interactions between cells and their extracellular environment. Mechanistic principles that determine single-cell and collective migration modes and their interconversions depend upon the polarization, adhesion, deformability, contractility, and proteolytic ability of cells. Cellular determinants of cell migration respond to extracellular cues, including tissue composition, topography, alignment, and tissue-associated growth factors and cytokines. Both cellular determinants and tissue determinants are interdependent; undergo reciprocal adjustment; and jointly impact cell decision making, navigation, and migration outcome in complex environments. We here review the variability, decision making, and adaptation of cell migration approached by live-cell, in vivo, and in silico strategies, with a focus on cell movements in morphogenesis, repair, immune surveillance, and cancer metastasis.
Collapse
Affiliation(s)
- Veronika Te Boekhorst
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030;
| | - Luigi Preziosi
- Department of Mathematical Sciences, Politecnico di Torino, 10129 Torino, Italy
| | - Peter Friedl
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030; .,Department of Cell Biology, Radboud University Medical Centre, 6525GA Nijmegen, The Netherlands; .,Cancer Genomics Center, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
49
|
Duran CL, Lee DW, Jung JU, Ravi S, Pogue CB, Toussaint LG, Bayless KJ, Sitcheran R. NIK regulates MT1-MMP activity and promotes glioma cell invasion independently of the canonical NF-κB pathway. Oncogenesis 2016; 5:e231. [PMID: 27270613 PMCID: PMC4945740 DOI: 10.1038/oncsis.2016.39] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 05/03/2016] [Indexed: 12/25/2022] Open
Abstract
A growing body of evidence implicates the noncanonical NF-κB pathway as a key driver of glioma invasiveness and a major factor underlying poor patient prognoses. Here, we show that NF-κB-inducing kinase (NIK/MAP3K14), a critical upstream regulator of the noncanonical NF-κB pathway, is both necessary and sufficient for cell-intrinsic invasion, as well as invasion induced by the cytokine TWEAK, which is strongly associated with tumor pathogenicity. NIK promotes dramatic alterations in glioma cell morphology that are characterized by extensive membrane branching and elongated pseudopodial protrusions. Correspondingly, NIK increases the phosphorylation, enzymatic activity and pseudopodial localization of membrane type-1 matrix metalloproteinase (MT1-MMP/MMP14), which is associated with enhanced tumor cell invasion of three-dimensional collagen matrices. Moreover, NIK regulates MT1-MMP activity in cells lacking the canonical NF-κB p65 and cRel proteins. Finally, increased expression of NIK is associated with elevated MT1-MMP phosphorylation in orthotopic xenografts and co-expression of NIK and MT1-MMP in human tumors is associated with poor glioma patient survival. These data reveal a novel role of NIK to enhance pseudopodia formation, MT1-MMP enzymatic activity and tumor cell invasion independently of p65. Collectively, our findings underscore the therapeutic potential of approaches targeting NIK in highly invasive tumors.
Collapse
Affiliation(s)
- C L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, USA
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA
| | - D W Lee
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - J-U Jung
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, USA
- Medical Sciences Graduate Program, Texas A&M Health Science Center, College Station, TX, USA
| | - S Ravi
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - C B Pogue
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - L G Toussaint
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College Station, TX, USA
- The Texas Brain and Spine Institute, Bryan, TX, USA
| | - K J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, USA
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA
- Medical Sciences Graduate Program, Texas A&M Health Science Center, College Station, TX, USA
| | - R Sitcheran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, USA
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA
- Medical Sciences Graduate Program, Texas A&M Health Science Center, College Station, TX, USA
- The Texas Brain and Spine Institute, Bryan, TX, USA
| |
Collapse
|
50
|
Katti KS, Molla MS, Karandish F, Haldar MK, Mallik S, Katti DR. Sequential culture on biomimetic nanoclay scaffolds forms three-dimensional tumoroids. J Biomed Mater Res A 2016; 104:1591-602. [PMID: 26873510 DOI: 10.1002/jbm.a.35685] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/09/2016] [Indexed: 01/17/2023]
Abstract
In recent times, the limitation of two-dimensional cultures and complexity of in vivo models has paved the way for the development of three-dimensional models for studying cancer. Here we report the development of a new tumor model using PCL/HAPClay scaffolds seeded with a sequential culture of human mesenchymal stem cells (hMSCs) followed by human prostate cancer cells (HPCCs). This nanocomposite system is used as a test-bed for studying cancer metastasis and efficacy of anti-cancer drugs using a polymersome delivery method. A novel sequential cell culture system in three-dimensional in vitro bone model provides a unique bone mimetic environment. The hMSCs seeded scaffolds are seeded with prostate cancer cells after the hMSCs have differentiated into osteoblasts. Sequential culture on the scaffolds has shown formation of tumoroids or microtissue consisting of organized, densely packed round cells with hypoxic core regions similar to in vivo tumors. Such tumoroids are not observed on HPCC seeded scaffolds or when HPCCs sequentially cultured with human osteoblast cells. Clearly, the newly differentiated hMSCs play a vital role in the ability of cancer cells to grow into tumoroids and cause disease. The PCL/HAPclay scaffold system seeded with the sequential culture of hMSCs, and HPCCs presents a good model system for study of the interactions between prostate cancer cells and bone microenvironment. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1591-1602, 2016.
Collapse
Affiliation(s)
- Kalpana S Katti
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota, 58105
| | - Md Shahjahan Molla
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota, 58105
| | - Fataneh Karandish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, 58105
| | - Manas K Haldar
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, 58105
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, 58105
| | - Dinesh R Katti
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota, 58105
| |
Collapse
|