1
|
Uher O, Hadrava Vanova K, Labitt R, Petrlakova K, Ye J, Wang H, Masarik M, Jakubek M, Zenka J, Zhuang Z, Pacak K. Neoadjuvant intratumoral MBT(A) immunotherapy prevents distant metastases and recurrence in murine models. Cancer Lett 2025; 612:217464. [PMID: 39809356 DOI: 10.1016/j.canlet.2025.217464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/15/2024] [Accepted: 01/11/2025] [Indexed: 01/16/2025]
Abstract
Neoadjuvant immunotherapy represents a pioneering approach in the preoperative treatment of cancer, providing new strategies for tumor reduction and improved patient outcomes by modulating the immune response. This study investigated neoadjuvant immunotherapy using intratumoral administration of mannan-BAM, Toll-like receptor ligands, and anti-CD40 antibody (MBTA therapy) followed by surgery in murine models of MTT pheochromocytoma, B16-F10 melanoma, and 4T1 and E0771.lmb mammary carcinomas. In the MTT pheochromocytoma model, it was found that neoadjuvant MBTA therapy followed by surgery could prevent the development of distant metastases in 100% of treated animals, compared to a 60% mortality rate in the control group due to metastatic disease after surgery. These outcomes were achieved even in tumors three times larger than those in the control group. In the aggressive 4T1 model, neoadjuvant MBTA therapy resulted in slower tumor progression and a significant prolongation of survival. In the B16-F10 and E0771.lmb models, neoadjuvant MBTA therapy also protected animals from metastases development and tumor recurrence upon rechallenge with tumor cells after surgery. Transcriptomic analysis revealed enhanced effector immune cell infiltration, cytotoxicity, and antigen presentation in retransplanted tumors from MBTA-treated mice, indicating robust immune memory. Notably, the exclusion of the anti-CD40 antibody from the neoadjuvant MBTA therapy (MBT therapy) yielded comparable outcomes in protection against metastases development. These findings advocate for further investigation of intratumoral neoadjuvant MBTA therapy for immunologically "cold" tumors, including those at high risk of metastases or recurrence.
Collapse
MESH Headings
- Animals
- Female
- Neoadjuvant Therapy/methods
- Mice
- Immunotherapy/methods
- Mice, Inbred C57BL
- Neoplasm Recurrence, Local/prevention & control
- Neoplasm Recurrence, Local/immunology
- Cell Line, Tumor
- Melanoma, Experimental/immunology
- Melanoma, Experimental/therapy
- Melanoma, Experimental/pathology
- Melanoma, Experimental/secondary
- CD40 Antigens/immunology
- CD40 Antigens/antagonists & inhibitors
- Mice, Inbred BALB C
- Disease Models, Animal
- Neoplasm Metastasis
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/therapy
Collapse
Affiliation(s)
- Ondrej Uher
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Katerina Hadrava Vanova
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Rachael Labitt
- Research Animal Management Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Katerina Petrlakova
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Juan Ye
- Neuro-Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Herui Wang
- Neuro-Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; BIOCEV (Biotechnology and Biomedicine Center in Vestec), First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Milan Jakubek
- BIOCEV (Biotechnology and Biomedicine Center in Vestec), First Faculty of Medicine, Charles University, Vestec, Czech Republic; Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jan Zenka
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Zhengping Zhuang
- Neuro-Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA; AKESO, Prague 5, Czech Republic.
| |
Collapse
|
2
|
Wang K, Fischer A, Maccio U, Hantel C, Beuschlein F, Grossman AB, Pacak K, Nölting S. Pre-clinical phaeochromocytoma and paraganglioma models: Cell lines, animal models, and a human primary culture model. Best Pract Res Clin Endocrinol Metab 2024; 38:101913. [PMID: 38972796 DOI: 10.1016/j.beem.2024.101913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
While the establishment of human phaeochromocytoma and paraganglioma (PPGL) cell lines has proven to be particularly difficult over several decades of research, there are other reliable pre-clinical PPGL models currently available. This review provides a summary of these models, together with our recently established personalised drug screening platform using patient-derived PPGL primary cultures. Such currently available PPGL models include murine and rat PPGL cell lines, of which only one cell line (PC12) is publicly accessible through a cell repository, and PPGL animal models, of which the patient-derived xenograft models are promising but complex to establish. We have developed next-generation implementation of human PPGL primary cultures, enabling reliable and personalised drug screening and an individualised analysis of tumour drug responsivity based on the tumour's unique genetic, biochemical, immunohistochemical and clinical profile. Overall, reliable PPGL models, including patient-derived primary culture models, are essential to advance pre-clinical research in the field of PPGLs.
Collapse
Affiliation(s)
- Katharina Wang
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Alessa Fischer
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), CH-8091 Zurich, Switzerland
| | - Umberto Maccio
- Department of Pathology and Molecular Pathology, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), CH-8091 Zurich, Switzerland; Department of Internal Medicine III, University Hospital Carl Gustav Carus Dresden, 01307 Dresden, Germany
| | - Felix Beuschlein
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), CH-8091 Zurich, Switzerland; The LOOP Zurich - Medical Research Center, 8044 Zurich, Switzerland
| | - Ashley B Grossman
- Green Templeton College, University of Oxford, Oxford OX2 6HG, UK; NET Unit, ENETS Centre of Excellence, Royal Free Hospital, London NW3 2QG, UK
| | - Karel Pacak
- Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD 20892, USA
| | - Svenja Nölting
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), CH-8091 Zurich, Switzerland.
| |
Collapse
|
3
|
Martinelli S, Cantini G, Propato AP, Bani D, Guasti D, Nardini P, Calosi L, Mello T, Bechmann N, Danza G, Villanelli F, Canu L, Maggi M, Mannelli M, Rapizzi E, Luconi M. The 3D in vitro Adrenoid cell model recapitulates the complexity of the adrenal gland. Sci Rep 2024; 14:8044. [PMID: 38580769 PMCID: PMC10997590 DOI: 10.1038/s41598-024-58664-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 04/02/2024] [Indexed: 04/07/2024] Open
Abstract
The crosstalk between the chromaffin and adrenocortical cells is essential for the endocrine activity of the adrenal glands. This interaction is also likely important for tumorigenesis and progression of adrenocortical cancer and pheochromocytoma. We developed a unique in vitro 3D model of the whole adrenal gland called Adrenoid consisting in adrenocortical carcinoma H295R and pheochromocytoma MTT cell lines. Adrenoids showed a round compact morphology with a growth rate significantly higher compared to MTT-spheroids. Confocal analysis of differential fluorescence staining of H295R and MTT cells demonstrated that H295R organized into small clusters inside Adrenoids dispersed in a core of MTT cells. Transmission electron microscopy confirmed the strict cell-cell interaction occurring between H295R and MTT cells in Adrenoids, which displayed ultrastructural features of more functional cells compared to the single cell type monolayer cultures. Adrenoid maintenance of the dual endocrine activity was demonstrated by the expression not only of cortical and chromaffin markers (steroidogenic factor 1, and chromogranin) but also by protein detection of the main enzymes involved in steroidogenesis (steroidogenic acute regulatory protein, and CYP11B1) and in catecholamine production (tyrosine hydroxylase and phenylethanolamine N-methyltransferase). Mass spectrometry detection of steroid hormones and liquid chromatography measurement of catecholamines confirmed Adrenoid functional activity. In conclusion, Adrenoids represent an innovative in vitro 3D-model that mimics the spatial and functional complexity of the adrenal gland, thus being a useful tool to investigate the crosstalk between the two endocrine components in the pathophysiology of this endocrine organ.
Collapse
Affiliation(s)
- Serena Martinelli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139, Florence, Italy.
- European Network for the Study of Adrenal Tumors (ENS@T) Center of Excellence, 50139, Florence, Italy.
- Centro Di Ricerca E Innovazione Sulle Patologie Surrenaliche, AOU Careggi, 50139, Florence, Italy.
| | - Giulia Cantini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139, Florence, Italy
- European Network for the Study of Adrenal Tumors (ENS@T) Center of Excellence, 50139, Florence, Italy
- Centro Di Ricerca E Innovazione Sulle Patologie Surrenaliche, AOU Careggi, 50139, Florence, Italy
| | - Arianna Pia Propato
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139, Florence, Italy
| | - Daniele Bani
- Department of Experimental and Clinical Medicine, Imaging Platform, University of Florence, 50139, Florence, Italy
| | - Daniele Guasti
- Department of Experimental and Clinical Medicine, Imaging Platform, University of Florence, 50139, Florence, Italy
| | - Patrizia Nardini
- Department of Experimental and Clinical Medicine, Imaging Platform, University of Florence, 50139, Florence, Italy
| | - Laura Calosi
- Department of Experimental and Clinical Medicine, Imaging Platform, University of Florence, 50139, Florence, Italy
| | - Tommaso Mello
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139, Florence, Italy
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Giovanna Danza
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139, Florence, Italy
| | - Fabio Villanelli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139, Florence, Italy
| | - Letizia Canu
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139, Florence, Italy
- European Network for the Study of Adrenal Tumors (ENS@T) Center of Excellence, 50139, Florence, Italy
- Centro Di Ricerca E Innovazione Sulle Patologie Surrenaliche, AOU Careggi, 50139, Florence, Italy
| | - Mario Maggi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139, Florence, Italy
- European Network for the Study of Adrenal Tumors (ENS@T) Center of Excellence, 50139, Florence, Italy
- Centro Di Ricerca E Innovazione Sulle Patologie Surrenaliche, AOU Careggi, 50139, Florence, Italy
| | - Massimo Mannelli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139, Florence, Italy
- European Network for the Study of Adrenal Tumors (ENS@T) Center of Excellence, 50139, Florence, Italy
- Centro Di Ricerca E Innovazione Sulle Patologie Surrenaliche, AOU Careggi, 50139, Florence, Italy
| | - Elena Rapizzi
- European Network for the Study of Adrenal Tumors (ENS@T) Center of Excellence, 50139, Florence, Italy
- Centro Di Ricerca E Innovazione Sulle Patologie Surrenaliche, AOU Careggi, 50139, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, 50139, Florence, Italy
| | - Michaela Luconi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139, Florence, Italy.
- European Network for the Study of Adrenal Tumors (ENS@T) Center of Excellence, 50139, Florence, Italy.
- Centro Di Ricerca E Innovazione Sulle Patologie Surrenaliche, AOU Careggi, 50139, Florence, Italy.
| |
Collapse
|
4
|
Luca E, Zitzmann K, Bornstein S, Kugelmeier P, Beuschlein F, Nölting S, Hantel C. Three Dimensional Models of Endocrine Organs and Target Tissues Regulated by the Endocrine System. Cancers (Basel) 2023; 15:4601. [PMID: 37760571 PMCID: PMC10526768 DOI: 10.3390/cancers15184601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/28/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Immortalized cell lines originating from tumors and cultured in monolayers in vitro display consistent behavior and response, and generate reproducible results across laboratories. However, for certain endpoints, these cell lines behave quite differently from the original solid tumors. Thereby, the homogeneity of immortalized cell lines and two-dimensionality of monolayer cultures deters from the development of new therapies and translatability of results to the more complex situation in vivo. Organoids originating from tissue biopsies and spheroids from cell lines mimic the heterogeneous and multidimensional characteristics of tumor cells in 3D structures in vitro. Thus, they have the advantage of recapitulating the more complex tissue architecture of solid tumors. In this review, we discuss recent efforts in basic and preclinical cancer research to establish methods to generate organoids/spheroids and living biobanks from endocrine tissues and target organs under endocrine control while striving to achieve solutions in personalized medicine.
Collapse
Affiliation(s)
- Edlira Luca
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Kathrin Zitzmann
- Department of Medicine IV, University Hospital, LMU Munich, 80336 München, Germany
| | - Stefan Bornstein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307 Dresden, Germany
| | | | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, 80336 Munich, Germany
| | - Svenja Nölting
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Department of Medicine IV, University Hospital, LMU Munich, 80336 München, Germany
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307 Dresden, Germany
| |
Collapse
|
5
|
Uher O, Hadrava Vanova K, Lencova R, Frejlachova A, Wang H, Zhuang Z, Zenka J, Pacak K. Intratumoral immunotherapy of murine pheochromocytoma shows no age-dependent differences in its efficacy. Front Endocrinol (Lausanne) 2023; 14:1030412. [PMID: 37342258 PMCID: PMC10277857 DOI: 10.3389/fendo.2023.1030412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 04/18/2023] [Indexed: 06/22/2023] Open
Abstract
Cancer immunotherapy has shown remarkable clinical progress in recent years. Although age is one of the biggest leading risk factors for cancer development and older adults represent a majority of cancer patients, only a few new cancer immunotherapeutic interventions have been preclinically tested in aged animals. Thus, the lack of preclinical studies focused on age-dependent effect during cancer immunotherapy could lead to different therapeutic outcomes in young and aged animals and future modifications of human clinical trials. Here, we compare the efficacy of previously developed and tested intratumoral immunotherapy, based on the combination of polysaccharide mannan, toll-like receptor ligands, and anti-CD40 antibody (MBTA immunotherapy), in young (6 weeks) and aged (71 weeks) mice bearing experimental pheochromocytoma (PHEO). The presented results point out that despite faster growth of PHEO in aged mice MBTA intratumoral immunotherapy is effective approach without age dependence and could be one of the possible therapeutic interventions to enhance immune response to pheochromocytoma and perhaps other tumor types in aged and young hosts.
Collapse
Affiliation(s)
- Ondrej Uher
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Katerina Hadrava Vanova
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Radka Lencova
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Andrea Frejlachova
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Herui Wang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Zhengping Zhuang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Jan Zenka
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
6
|
Ullrich M, Richter S, Liers J, Drukewitz S, Friedemann M, Kotzerke J, Ziegler CG, Nölting S, Kopka K, Pietzsch J. Epigenetic drugs in somatostatin type 2 receptor radionuclide theranostics and radiation transcriptomics in mouse pheochromocytoma models. Theranostics 2023; 13:278-294. [PMID: 36593963 PMCID: PMC9800739 DOI: 10.7150/thno.77918] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
Pheochromocytomas and paragangliomas (PCCs/PGLs) are catecholamine-producing tumors. In inoperable and metastatic cases, somatostatin type 2 receptor (SSTR2) expression allows for peptide receptor radionuclide therapy with [177Lu]Lu-DOTA-TATE. Insufficient receptor levels, however, limit treatment efficacy. This study evaluates whether the epigenetic drugs valproic acid (VPA) and 5-Aza-2'-deoxycytidine (DAC) modulate SSTR2 levels and sensitivity to [177Lu]Lu-DOTA-TATE in two mouse PCC models (MPC and MTT). Methods: Drug-effects on Sstr2/SSTR2 were investigated in terms of promoter methylation, mRNA and protein levels, and radiotracer binding. Radiotracer uptake was measured in subcutaneous allografts in mice using PET and SPECT imaging. Tumor growth and gene expression (RNAseq) were characterized after drug treatments. Results: DAC alone and in combination with VPA increased SSTR2 levels along with radiotracer uptake in vitro in MPC (high-SSTR2) and MTT cells (low-SSTR2). MTT but not MPC allografts responded to DAC and VPA combination with significantly elevated radiotracer uptake, although activity concentrations remained far below those in MPC tumors. In both models, combination of DAC, VPA and [177Lu]Lu-DOTA-TATE was associated with additive effects on tumor growth delay and specific transcriptional responses in gene sets involved in cancer and treatment resistance. Effects of epigenetic drugs were unrelated to CpG island methylation of the Sstr2 promoter. Conclusion: This study demonstrates that SSTR2 induction in mouse pheochromocytoma models has some therapeutic benefit that occurs via yet unknown mechanisms. Transcriptional changes in tumor allografts associated with epigenetic treatment and [177Lu]Lu-DOTA-TATE provide first insights into genetic responses of PCCs/PGLs, potentially useful for developing additional strategies to prevent tumor recurrence.
Collapse
Affiliation(s)
- Martin Ullrich
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany.,✉ Corresponding author: Dr. Martin Ullrich, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany. Phone: +49-351-2604046, Fax: +49-351-26012622, E-mail:
| | - Susan Richter
- University Hospital Carl Gustav Carus at the Technische Universität Dresden, Institute of Clinical Chemistry and Laboratory Medicine, Dresden, Germany
| | - Josephine Liers
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany.,University Hospital Carl Gustav Carus at the Technische Universität Dresden, Institute of Clinical Chemistry and Laboratory Medicine, Dresden, Germany
| | - Stephan Drukewitz
- National Center for Tumor Diseases/University Cancer Center Dresden, Core Unit for Molecular Tumor Diagnostics, Dresden, Germany.,University of Leipzig Medical Center, Institute of Human Genetics, Leipzig, Germany
| | - Markus Friedemann
- University Hospital Carl Gustav Carus at the Technische Universität Dresden, Institute of Clinical Chemistry and Laboratory Medicine, Dresden, Germany
| | - Jörg Kotzerke
- University Hospital Carl Gustav Carus at the Technische Universität Dresden, Klinik und Poliklinik für Nuklearmedizin, Dresden, Germany
| | - Christian G. Ziegler
- University Hospital Carl Gustav Carus at the Technische Universität Dresden, Department of Medicine III, Dresden, Germany
| | - Svenja Nölting
- University Hospital Zurich (USZ) and University of Zurich (UZH), Department of Endocrinology, Diabetology and Clinical Nutrition, Zurich, Switzerland.,University Hospital, LMU Munich, Department of Medicine IV, Munich, Germany
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany.,Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, University Cancer Center (UCC), Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany.,Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Dresden, Germany
| |
Collapse
|
7
|
Bayley JP, Rebel HG, Scheurwater K, Duesman D, Zhang J, Schiavi F, Korpershoek E, Jansen JC, Schepers A, Devilee P. Long-term in vitro 2D-culture of SDHB and SDHD-related human paragangliomas and pheochromocytomas. PLoS One 2022; 17:e0274478. [PMID: 36178902 PMCID: PMC9524698 DOI: 10.1371/journal.pone.0274478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
The neuroendocrine tumours paraganglioma and pheochromocytoma (PPGLs) are commonly associated with succinate dehydrogenase (SDH) gene variants, but no human SDH-related PPGL-derived cell line has been developed to date. The aim of this study was to systematically explore practical issues related to the classical 2D-culture of SDH-related human paragangliomas and pheochromocytomas, with the ultimate goal of identifying a viable tumour-derived cell line. PPGL tumour tissue/cells (chromaffin cells) were cultured in a variety of media formulations and supplements. Tumour explants and dissociated primary tumour cells were cultured and stained with a range of antibodies to identify markers suitable for use in human PPGL culture. We cultured 62 PPGLs, including tumours with confirmed SDHB, SDHC and SDHD variants, as well as several metastatic tumours. Testing a wide range of basic cell culture media and supplements, we noted a marked decline in chromaffin cell numbers over a 4–8 week period but the persistence of small numbers of synaptophysin/tyrosine hydroxylase-positive chromaffin cells for up to 99 weeks. In cell culture, immunohistochemical staining for chromogranin A and neuron-specific enolase was generally negative in chromaffin cells, while staining for synaptophysin and tyrosine hydroxylase was generally positive. GFAP showed the most consistent staining of type II sustentacular cells. Of the media tested, low serum or serum-free media best sustained relative chromaffin cell numbers, while lactate enhanced the survival of synaptophysin-positive cells. Synaptophysin-positive PPGL tumour cells persist in culture for long periods but show little evidence of proliferation. Synaptophysin was the most consistent cell marker for chromaffin cells and GFAP the best marker for sustentacular cells in human PPGL cultures.
Collapse
Affiliation(s)
- Jean-Pierre Bayley
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
- * E-mail:
| | - Heggert G. Rebel
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Kimberly Scheurwater
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Dominique Duesman
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Juan Zhang
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Esther Korpershoek
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Jeroen C. Jansen
- Department of Otorhinolaryngology/Head and Neck Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Abbey Schepers
- Department of Internal Medicine, Leiden University Medical Centre, Leiden, The Netherlands
| | - Peter Devilee
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
8
|
Gupta P, Strange K, Telange R, Guo A, Hatch H, Sobh A, Elie J, Carter AM, Totenhagen J, Tan C, Sonawane YA, Neuzil J, Natarajan A, Ovens AJ, Oakhill JS, Wiederhold T, Pacak K, Ghayee HK, Meijer L, Reddy S, Bibb JA. Genetic impairment of succinate metabolism disrupts bioenergetic sensing in adrenal neuroendocrine cancer. Cell Rep 2022; 40:111218. [PMID: 35977518 DOI: 10.1016/j.celrep.2022.111218] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/24/2022] [Accepted: 07/19/2022] [Indexed: 01/11/2023] Open
Abstract
Metabolic dysfunction mutations can impair energy sensing and cause cancer. Loss of function of the mitochondrial tricarboxylic acid (TCA) cycle enzyme subunit succinate dehydrogenase B (SDHB) results in various forms of cancer typified by pheochromocytoma (PC). Here we delineate a signaling cascade where the loss of SDHB induces the Warburg effect, triggers dysregulation of [Ca2+]i, and aberrantly activates calpain and protein kinase Cdk5, through conversion of its cofactor from p35 to p25. Consequently, aberrant Cdk5 initiates a phospho-signaling cascade where GSK3 inhibition inactivates energy sensing by AMP kinase through dephosphorylation of the AMP kinase γ subunit, PRKAG2. Overexpression of p25-GFP in mouse adrenal chromaffin cells also elicits this phosphorylation signaling and causes PC. A potent Cdk5 inhibitor, MRT3-007, reverses this phospho-cascade, invoking a senescence-like phenotype. This therapeutic approach halted tumor progression in vivo. Thus, we reveal an important mechanistic feature of metabolic sensing and demonstrate that its dysregulation underlies tumor progression in PC and likely other cancers.
Collapse
Affiliation(s)
- Priyanka Gupta
- Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA
| | - Keehn Strange
- Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA
| | - Rahul Telange
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ailan Guo
- Cell Signaling Technology, Danvers, MA 01923, USA
| | - Heather Hatch
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Amin Sobh
- Department of Medicine, Division of Hematology and Oncology, University of Florida, Gainesville, FL 32608, USA
| | - Jonathan Elie
- Perha Pharmaceuticals, Hôtel de Recherche, Perharidy Peninsula, 29680 Roscoff, France
| | - Angela M Carter
- Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA
| | - John Totenhagen
- Department of Radiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA
| | - Chunfeng Tan
- UT Health Science Center at Houston, Department of Neurology, University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - Yogesh A Sonawane
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West 252 50, Czech Republic; School of Pharmacy Medical Science, Griffith University, Southport, QLD 4222, Australia
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ashley J Ovens
- Metabolic Signalling Laboratory, St Vincent's Institute of Medical Research, Fitzroy, VIC, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Jonathan S Oakhill
- Metabolic Signalling Laboratory, St Vincent's Institute of Medical Research, Fitzroy, VIC, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | | | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hans K Ghayee
- Department of Internal Medicine, Division of Endocrinology, University of Florida College of Medicine and Malcom Randall VA Medical Center, Gainesville, FL 32608, USA
| | - Laurent Meijer
- Perha Pharmaceuticals, Hôtel de Recherche, Perharidy Peninsula, 29680 Roscoff, France
| | - Sushanth Reddy
- Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA
| | - James A Bibb
- Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA; O'Neal Comprehensive Cancer Center and the Department of Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA.
| |
Collapse
|
9
|
Martinelli S, Amore F, Mello T, Mannelli M, Maggi M, Rapizzi E. Metformin Treatment Induces Different Response in Pheochromocytoma/Paraganglioma Tumour Cells and in Primary Fibroblasts. Cancers (Basel) 2022; 14:cancers14143471. [PMID: 35884532 PMCID: PMC9320533 DOI: 10.3390/cancers14143471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Pheochromocytoma/paragangliomas (PPGLs) are neuroendocrine tumours and are often non-metastatic. However, no effective treatment is available for their metastatic form. Recent studies have shown that metformin exhibits antiproliferative activity in many human cancers, including PPGLs. Nevertheless, no data are available concerning whether metformin is also able to inhibit PPGL metastatic spread. A tumour is a very complex system, comprising not only cancer cells, but also other cells that all together form the so-called tumour microenvironment. Cancer-associated fibroblasts are residential or recruited fibroblasts, transformed by cancer cells, to promote tumour growth and spread. Therefore, the interplay between tumour cells and cancer-associated fibroblasts has become an interesting target for cancer therapy. Here, we demonstrate that metformin has different effects on cancer cells and fibroblasts, providing evidence that metformin may hold promise for altering tumour microenvironment homeostasis. Improving our knowledge on malignant tumour microenvironment properties could lead to develop complementary strategies to target tumour spread and progression. Abstract Pheochromocytoma/paragangliomas (PPGLs) are neuroendocrine tumours, often non-metastatic, but without available effective treatment for their metastatic form. Recent studies have shown that metformin exhibits antiproliferative activity in many human cancers, including PPGLs. Nevertheless, no data are available on the role of metformin on PPGL cells (two-dimension, 2D) and spheroids (three-dimension, 3D) migration/invasion. In this study, we observed that metformin exerts an antiproliferative effect on 2D and 3D cultures of pheochromocytoma mouse tumour tissue (MTT), either silenced or not for the SDHB subunit. However, metformin did not affect MTT migration. On the other hand, metformin did not have a short-term effect on the proliferation of mouse primary fibroblasts, but significantly decreased their ability to migrate. Although the metabolic changes induced by metformin were similar between MTT and fibroblasts (i.e., an overall decrease of ATP production and an increase in intracellular lactate concentration) the activated signalling pathways were different. Indeed, after metformin administration, MTT showed a reduced phosphorylation of Akt and Erk1/2, while fibroblasts exhibited a downregulation of N-Cadherin and an upregulation of E-Cadherin. Herein, we demonstrated that metformin has different effects on cell growth and spread depending on the cell type nature, underlining the importance of the tumour microenvironment in dictating the drug response.
Collapse
Affiliation(s)
- Serena Martinelli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (S.M.); (F.A.); (T.M.); (M.M.); (M.M.)
- Centro di Ricerca e Innovazione Sulle Patologie Surrenaliche, AOU Careggi, 50134 Florence, Italy
- ENS@T Center of Excellence, 50134 Florence, Italy
| | - Francesca Amore
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (S.M.); (F.A.); (T.M.); (M.M.); (M.M.)
| | - Tommaso Mello
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (S.M.); (F.A.); (T.M.); (M.M.); (M.M.)
| | - Massimo Mannelli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (S.M.); (F.A.); (T.M.); (M.M.); (M.M.)
- Centro di Ricerca e Innovazione Sulle Patologie Surrenaliche, AOU Careggi, 50134 Florence, Italy
- ENS@T Center of Excellence, 50134 Florence, Italy
| | - Mario Maggi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (S.M.); (F.A.); (T.M.); (M.M.); (M.M.)
- Centro di Ricerca e Innovazione Sulle Patologie Surrenaliche, AOU Careggi, 50134 Florence, Italy
- ENS@T Center of Excellence, 50134 Florence, Italy
| | - Elena Rapizzi
- Centro di Ricerca e Innovazione Sulle Patologie Surrenaliche, AOU Careggi, 50134 Florence, Italy
- ENS@T Center of Excellence, 50134 Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Correspondence: ; Tel.: +39-055-2758245
| |
Collapse
|
10
|
Martinelli S, Riverso M, Mello T, Amore F, Parri M, Simeone I, Mannelli M, Maggi M, Rapizzi E. SDHB and SDHD silenced pheochromocytoma spheroids respond differently to tumour microenvironment and their aggressiveness is inhibited by impairing stroma metabolism. Mol Cell Endocrinol 2022; 547:111594. [PMID: 35149119 DOI: 10.1016/j.mce.2022.111594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 01/11/2022] [Accepted: 02/04/2022] [Indexed: 12/18/2022]
Abstract
Germline mutations in more than 20 genes, including those encoding for the succinate dehydrogenase (SDH), predispose to rare tumours, such as pheochromocytoma/paraganglioma (PPGL). Despite encoding for the same enzymatic complex, SDHC and SDHD mutated PHEO/PGLs are generally benign, while up to 80% of SDHB mutated ones are malignant. In this study, we evaluated the different effects of tumour microenvironment on tumour cell migration/invasion, by co-culturing SDHB or SDHD silenced tumour spheroids with primary cancer-associated fibroblasts (CAFs). We observed that SDHD silenced spheroids had an intermediate migration pattern, compared to the highest migration capability of SDHB and the lowest one of the wild type (Wt) spheroids. Interestingly, we noticed that co-culturing Wt, SDHB and SDHD silenced spheroids with CAFs in low glucose (1 g/l) medium, caused a decreased migration of all the spheroids, but only for SDHB silenced ones this reduction was significant. Moreover, the collective migration, observed in high glucose (4.5 g/l) and characteristic of the SDHB silenced cells, was completely lost in low glucose. Importantly, migration could not be recovered even adding glucose (3.5 g/l) to low glucose conditioned medium. When we investigated cell metabolism, we found that low glucose concentration led to a reduction of oxygen consumption rate (OCR), basal and maximal oxidative metabolism, and ATP production only in CAFs, but not in tumour cells. These results suggest that CAFs metabolism impairment was responsible for the decreased invasion process of tumour cells, most likely preventing the release of the pro-migratory factors produced by CAFs. In conclusion, the interplay between CAFs and tumour cells is distinctive depending on the gene involved, and highlights the possibility to inhibit CAF-induced migration by impairing CAFs metabolism, indicating new potential therapeutic scenarios for medical therapy.
Collapse
Affiliation(s)
- Serena Martinelli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Maria Riverso
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Tommaso Mello
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Francesca Amore
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Matteo Parri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Irene Simeone
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Massimo Mannelli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Mario Maggi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Elena Rapizzi
- Department of Experimental and Clinical Medicine, University of Florence, Italy.
| |
Collapse
|
11
|
Takács-Vellai K, Farkas Z, Ősz F, Stewart GW. Model systems in SDHx-related pheochromocytoma/paraganglioma. Cancer Metastasis Rev 2021; 40:1177-1201. [PMID: 34957538 PMCID: PMC8825606 DOI: 10.1007/s10555-021-10009-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/04/2021] [Indexed: 11/17/2022]
Abstract
Pheochromocytoma (PHEO) and paraganglioma (PGL) (together PPGL) are tumors with poor outcomes that arise from neuroendocrine cells in the adrenal gland, and sympathetic and parasympathetic ganglia outside the adrenal gland, respectively. Many follow germline mutations in genes coding for subunits of succinate dehydrogenase (SDH), a tetrameric enzyme in the tricarboxylic acid (TCA) cycle that both converts succinate to fumarate and participates in electron transport. Germline SDH subunit B (SDHB) mutations have a high metastatic potential. Herein, we review the spectrum of model organisms that have contributed hugely to our understanding of SDH dysfunction. In Saccharomyces cerevisiae (yeast), succinate accumulation inhibits alpha-ketoglutarate-dependent dioxygenase enzymes leading to DNA demethylation. In the worm Caenorhabditis elegans, mutated SDH creates developmental abnormalities, metabolic rewiring, an energy deficit and oxygen hypersensitivity (the latter is also found in Drosophila melanogaster). In the zebrafish Danio rerio, sdhb mutants display a shorter lifespan with defective energy metabolism. Recently, SDHB-deficient pheochromocytoma has been cultivated in xenografts and has generated cell lines, which can be traced back to a heterozygous SDHB-deficient rat. We propose that a combination of such models can be efficiently and effectively used in both pathophysiological studies and drug-screening projects in order to find novel strategies in PPGL treatment.
Collapse
Affiliation(s)
| | - Zsolt Farkas
- Department of Biological Anthropology, Eötvös Loránd University, Budapest, Hungary
| | - Fanni Ősz
- Department of Biological Anthropology, Eötvös Loránd University, Budapest, Hungary
| | - Gordon W Stewart
- Division of Medicine, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
12
|
Identification of Immune Cell Infiltration in Murine Pheochromocytoma during Combined Mannan-BAM, TLR Ligand, and Anti-CD40 Antibody-Based Immunotherapy. Cancers (Basel) 2021; 13:cancers13163942. [PMID: 34439097 PMCID: PMC8393500 DOI: 10.3390/cancers13163942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/24/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022] Open
Abstract
Immunotherapy has become an essential component in cancer treatment. However, the majority of solid metastatic cancers, such as pheochromocytoma, are resistant to this approach. Therefore, understanding immune cell composition in primary and distant metastatic tumors is important for therapeutic intervention and diagnostics. Combined mannan-BAM, TLR ligand, and anti-CD40 antibody-based intratumoral immunotherapy (MBTA therapy) previously resulted in the complete eradication of murine subcutaneous pheochromocytoma and demonstrated a systemic antitumor immune response in a metastatic model. Here, we further evaluated this systemic effect using a bilateral pheochromocytoma model, performing MBTA therapy through injection into the primary tumor and using distant (non-injected) tumors to monitor size changes and detailed immune cell infiltration. MBTA therapy suppressed the growth of not only injected but also distal tumors and prolonged MBTA-treated mice survival. Our flow cytometry analysis showed that MBTA therapy led to increased recruitment of innate and adaptive immune cells in both tumors and the spleen. Moreover, adoptive CD4+ T cell transfer from successfully MBTA-treated mice (i.e., subcutaneous pheochromocytoma) demonstrates the importance of these cells in long-term immunological memory. In summary, this study unravels further details on the systemic effect of MBTA therapy and its use for tumor and metastasis reduction or even elimination.
Collapse
|
13
|
Hadrava Vanova K, Yang C, Meuter L, Neuzil J, Pacak K. Reactive Oxygen Species: A Promising Therapeutic Target for SDHx-Mutated Pheochromocytoma and Paraganglioma. Cancers (Basel) 2021; 13:cancers13153769. [PMID: 34359671 PMCID: PMC8345159 DOI: 10.3390/cancers13153769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 11/26/2022] Open
Abstract
Simple Summary Pheochromocytoma and paraganglioma are rare neuroendocrine tumors that arise from chromaffin cells of the adrenal medulla or their neural crest progenitors located outside the adrenal gland, respectively. About 10–15% of patients develop metastatic disease for whom treatment options and availability are extremely limited. The risk of developing metastatic disease is increased for patients with mutations in succinate dehydrogenase subunit B, which leads to metabolic reprogramming and redox imbalance. From this perspective, we focus on redox imbalance caused by this mutation and explore potential opportunities to therapeutically target reactive oxygen species production in these rare tumors. Abstract Pheochromocytoma (PHEO) and paraganglioma (PGL) are rare neuroendocrine tumors derived from neural crest cells. Germline variants in approximately 20 PHEO/PGL susceptibility genes are found in about 40% of patients, half of which are found in the genes that encode succinate dehydrogenase (SDH). Patients with SDH subunit B (SDHB)-mutated PHEO/PGL exhibit a higher likelihood of developing metastatic disease, which can be partially explained by the metabolic cell reprogramming and redox imbalance caused by the mutation. Reactive oxygen species (ROS) are highly reactive molecules involved in a multitude of important signaling pathways. A moderate level of ROS production can help regulate cellular physiology; however, an excessive level of oxidative stress can lead to tumorigenic processes including stimulation of growth factor-dependent pathways and the induction of genetic instability. Tumor cells effectively exploit antioxidant enzymes in order to protect themselves against harmful intracellular ROS accumulation, which highlights the essential balance between ROS production and scavenging. Exploiting ROS accumulation can be used as a possible therapeutic strategy in ROS-scavenging tumor cells. Here, we focus on the role of ROS production in PHEO and PGL, predominantly in SDHB-mutated cases. We discuss potential strategies and approaches to anticancer therapies by enhancing ROS production in these difficult-to-treat tumors.
Collapse
Affiliation(s)
- Katerina Hadrava Vanova
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.V.); (L.M.)
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, 252 50 Prague West, Czech Republic; or
| | - Chunzhang Yang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Leah Meuter
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.V.); (L.M.)
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, 252 50 Prague West, Czech Republic; or
- School of Pharmacy and Medical Science, Griffith University, Southport, QLD 4222, Australia
| | - Karel Pacak
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (K.H.V.); (L.M.)
- Correspondence: ; Tel.: +1-(301)-402-4594
| |
Collapse
|
14
|
Martinelli S, Maggi M, Rapizzi E. Pheochromocytoma/paraganglioma preclinical models: which to use and why? Endocr Connect 2020; 9:R251-R260. [PMID: 33252357 PMCID: PMC7774759 DOI: 10.1530/ec-20-0472] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
Pheochromocytomas/paragangliomas (PPGLs) are rare neuroendocrine tumours linked to more than 15 susceptibility genes. PPGLs present with very different genotype/phenotype correlations. Certainly, depending on the mutated gene, and the activated intracellular signalling pathways, as well as their metastatic potential, each tumour is immensely different. One of the major challenges in in vitro research, whatever the study field, is to choose the best cellular model for that study. Unfortunately, most of the time there is not 'a best' cell model. Thus, in order to avoid observations that could be related to and/or dependent on a specific cell line, researchers often perform the same experiments using different cell lines simultaneously. The situation is even more complicated when there are only very few cell models obtained in different species for a disease. This is the case for PPGLs. In this review, we will describe the characteristics of the different cell lines and of mouse models, trying to understand if there is one that is more appropriate to use, depending on which aspect of the tumours one is trying to investigate.
Collapse
Affiliation(s)
- Serena Martinelli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Mario Maggi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Elena Rapizzi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Correspondence should be addressed to E Rapizzi:
| |
Collapse
|
15
|
Rapizzi E, Benvenuti S, Deledda C, Martinelli S, Sarchielli E, Fibbi B, Luciani P, Mazzanti B, Pantaleo M, Marroncini G, Vannelli GB, Maggi M, Mannelli M, Luconi M, Peri A. A unique neuroendocrine cell model derived from the human foetal neural crest. J Endocrinol Invest 2020; 43:1259-1269. [PMID: 32157664 DOI: 10.1007/s40618-020-01213-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 03/02/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Nowadays, no human neuroendocrine cell models derived from the neural crest are available. In this study, we present non-transformed long-term primary Neural Crest Cells (NCCs) isolated from the trunk region of the neural crest at VIII-XII gestational weeks of human foetuses obtained from voluntary legal abortion. METHODS AND RESULTS In NCC, quantitative real-time RT PCR demonstrated the expression of neural crest specifier genes, such as Snail1, Snail2/SLUG, Sox10, FoxD3, c-Myc, and p75NTR. Moreover, these cell populations expressed stemness markers (such as Nanog and nestin), as well as markers of motility and invasion (TAGLN, MMP9, CXCR4, and CXCR7), and of neuronal/glial differentiation (MAP2, GFAP, SYP, and TAU). Functional analysis demonstrated that these cells not only possessed high migration properties, but most importantly, they expressed markers of sympatho-adrenal lineage, such as ASCL1 and tyrosine hydroxylase (TH). Moreover, the expression of TH increased after the induction with two different protocols of differentiation towards neuronal and sympatho-adrenal phenotypes. Finally, exposure to conditioned culture media from NCC induced a mature phenotype in a neuronal cell model (namely SH-SY5Y), suggesting that NCC may also act like Schwann precursors. CONCLUSION This unique human cell model provides a solid tool for future studies addressing the bases of human neural crest-derived neuroendocrine tumours.
Collapse
Affiliation(s)
- E Rapizzi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - S Benvenuti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - C Deledda
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - S Martinelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - E Sarchielli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - B Fibbi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - P Luciani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - B Mazzanti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - M Pantaleo
- Genetics and Molecular Medicine Unit, Anna Meyer Children's University Hospital, Florence, Italy
| | - G Marroncini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - G B Vannelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - M Maggi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
- Istituto Nazionale Biostrutture e Biosistemi (INBB), viale delle Medaglie d'Oro 305, 00136, Rome, Italy
| | - M Mannelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - M Luconi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy.
- Istituto Nazionale Biostrutture e Biosistemi (INBB), viale delle Medaglie d'Oro 305, 00136, Rome, Italy.
| | - A Peri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| |
Collapse
|
16
|
Anti-Tumor Activity vs. Normal Cell Toxicity: Therapeutic Potential of the Bromotyrosines Aerothionin and Homoaerothionin In Vitro. Mar Drugs 2020; 18:md18050236. [PMID: 32369901 PMCID: PMC7281235 DOI: 10.3390/md18050236] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
Novel strategies to treat cancer effectively without adverse effects on the surrounding normal tissue are urgently needed. Marine sponges provide a natural and renewable source of promising anti-tumor agents. Here, we investigated the anti-tumor activity of Aerothionin and Homoaerothionin, two bromotyrosines isolated from the marine demosponge Aplysina cavernicola, on two mouse pheochromocytoma cells, MPC and MTT. To determine the therapeutic window of these metabolites, we furthermore explored their cytotoxicity on cells of the normal tissue. Both metabolites diminished the viability of the pheochromocytoma cell lines significantly from a concentration of 25 µM under normoxic and hypoxic conditions. Treatment of MPC cells leads moreover to a reduction in the number of proliferating cells. To confirm the anti-tumor activity of these bromotyrosines, 3D-pheochromocytoma cell spheroids were treated with 10 µM of either Aerothionin or Homoaerothionin, resulting in a significant reduction or even complete inhibition of the spheroid growth. Both metabolites reduced viability of normal endothelial cells to a comparable extent at higher micromolar concentration, while the viability of fibroblasts was increased. Our in vitro results show promise for the application of Aerothionin and Homoaerothionin as anti-tumor agents against pheochromocytomas and suggest acceptable toxicity on normal tissue cells.
Collapse
|
17
|
Fankhauser M, Bechmann N, Lauseker M, Goncalves J, Favier J, Klink B, William D, Gieldon L, Maurer J, Spöttl G, Rank P, Knösel T, Orth M, Ziegler CG, Aristizabal Prada ET, Rubinstein G, Fassnacht M, Spitzweg C, Grossman AB, Pacak K, Beuschlein F, Bornstein SR, Eisenhofer G, Auernhammer CJ, Reincke M, Nölting S. Synergistic Highly Potent Targeted Drug Combinations in Different Pheochromocytoma Models Including Human Tumor Cultures. Endocrinology 2019; 160:2600-2617. [PMID: 31322702 PMCID: PMC6795182 DOI: 10.1210/en.2019-00410] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/14/2019] [Indexed: 01/09/2023]
Abstract
There are no officially approved therapies for metastatic pheochromocytomas apart from ultratrace 131I-metaiodbenzylguanidine therapy, which is approved only in the United States. We have, therefore, investigated the antitumor potential of molecular-targeted approaches in murine pheochromocytoma cell lines [monocyte chemoattractant protein (MPC)/monocyte chemoattractant protein/3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)], immortalized mouse chromaffin Sdhb-/- cells, three-dimensional pheochromocytoma tumor models (MPC/MTT spheroids), and human pheochromocytoma primary cultures. We identified the specific phosphatidylinositol-3-kinase α inhibitor BYL719 and the mammalian target of rapamycin inhibitor everolimus as the most effective combination in all models. Single treatment with clinically relevant doses of BYL719 and everolimus significantly decreased MPC/MTT and Sdhb-/- cell viability. A targeted combination of both inhibitors synergistically reduced MPC and Sdhb-/- cell viability and showed an additive effect on MTT cells. In MPC/MTT spheroids, treatment with clinically relevant doses of BYL719 alone or in combination with everolimus was highly effective, leading to a significant shrinkage or even a complete collapse of the spheroids. We confirmed the synergism of clinically relevant doses of BYL719 plus everolimus in human pheochromocytoma primary cultures of individual patient tumors with BYL719 attenuating everolimus-induced AKT activation. We have thus established a method to assess molecular-targeted therapies in human pheochromocytoma cultures and identified a highly effective combination therapy. Our data pave the way to customized combination therapy to target individual patient tumors.
Collapse
Affiliation(s)
- Maria Fankhauser
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, LMU München, Munich, Germany
| | - Nicole Bechmann
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus at Technische Universität Dresden, Dresden, Germany
| | - Michael Lauseker
- Institute for Medical Information Sciences, Biometry, and Epidemiology, Campus Grosshadern, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Judith Goncalves
- Institut National de la Santé et de la Recherche Médicale, UMR970, Paris-Cardiovascular Research Center, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Judith Favier
- Institut National de la Santé et de la Recherche Médicale, UMR970, Paris-Cardiovascular Research Center, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Barbara Klink
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- National Center of Genetics, Laboratoire National de Santé, Dudelange, Luxembourg
- German Cancer Consortium, Dresden, Germany
| | | | - Laura Gieldon
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Cancer Consortium, Dresden, Germany
- German Cancer Research Center, Heidelberg, Germany
- Core Unit for Molecular Tumor Diagnostics, National Center for Tumor Diseases, Heidelberg, Germany
| | - Julian Maurer
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, LMU München, Munich, Germany
| | - Gerald Spöttl
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, LMU München, Munich, Germany
| | - Petra Rank
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, LMU München, Munich, Germany
| | - Thomas Knösel
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Michael Orth
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Christian G Ziegler
- Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | | | - German Rubinstein
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, LMU München, Munich, Germany
| | - Martin Fassnacht
- Department of Medicine I, Division of Endocrinology and Diabetology, University Hospital, University of Würzburg, Würzburg, Germany
| | - Christine Spitzweg
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, LMU München, Munich, Germany
| | - Ashley B Grossman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
- Royal Free Hospital ENETS Centre of Excellence, London, United Kingdom
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Felix Beuschlein
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, LMU München, Munich, Germany
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, Universitätsspital Zürich, Zurich, Switzerland
| | - Stefan R Bornstein
- Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Graeme Eisenhofer
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus at Technische Universität Dresden, Dresden, Germany
- Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Christoph J Auernhammer
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, LMU München, Munich, Germany
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, LMU München, Munich, Germany
| | - Svenja Nölting
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, LMU München, Munich, Germany
- Correspondence: Svenja Nölting, MD, Med. Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstraße 1, 80336 Munich, Germany. E-mail:
| |
Collapse
|
18
|
The Significant Reduction or Complete Eradication of Subcutaneous and Metastatic Lesions in a Pheochromocytoma Mouse Model after Immunotherapy Using Mannan-BAM, TLR Ligands, and Anti-CD40. Cancers (Basel) 2019; 11:cancers11050654. [PMID: 31083581 PMCID: PMC6562455 DOI: 10.3390/cancers11050654] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/04/2019] [Accepted: 05/06/2019] [Indexed: 12/16/2022] Open
Abstract
Therapeutic options for metastatic pheochromocytoma/paraganglioma (PHEO/PGL) are limited. Here, we tested an immunotherapeutic approach based on intratumoral injections of mannan-BAM with toll-like receptor ligands into subcutaneous PHEO in a mouse model. This therapy elicited a strong innate immunity-mediated antitumor response and resulted in a significantly lower PHEO volume compared to the phosphate buffered saline (PBS)-treated group and in a significant improvement in mice survival. The cytotoxic effect of neutrophils, as innate immune cells predominantly infiltrating treated tumors, was verified in vitro. Moreover, the combination of mannan-BAM and toll-like receptor ligands with agonistic anti-CD40 was associated with increased mice survival. Subsequent tumor re-challenge also supported adaptive immunity activation, reflected primarily by long-term tumor-specific memory. These results were further verified in metastatic PHEO, where the intratumoral injections of mannan-BAM, toll-like receptor ligands, and anti-CD40 into subcutaneous tumors resulted in significantly less intense bioluminescence signals of liver metastatic lesions induced by tail vein injection compared to the PBS-treated group. Subsequent experiments focusing on the depletion of T cell subpopulations confirmed the crucial role of CD8+ T cells in inhibition of bioluminescence signal intensity of liver metastatic lesions. These data call for a new therapeutic approach in patients with metastatic PHEO/PGL using immunotherapy that initially activates innate immunity followed by an adaptive immune response.
Collapse
|
19
|
Bechmann N, Poser I, Seifert V, Greunke C, Ullrich M, Qin N, Walch A, Peitzsch M, Robledo M, Pacak K, Pietzsch J, Richter S, Eisenhofer G. Impact of Extrinsic and Intrinsic Hypoxia on Catecholamine Biosynthesis in Absence or Presence of Hif2α in Pheochromocytoma Cells. Cancers (Basel) 2019; 11:cancers11050594. [PMID: 31035382 PMCID: PMC6562431 DOI: 10.3390/cancers11050594] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 01/10/2023] Open
Abstract
Pheochromocytomas and paragangliomas (PPGLs) with activated pseudohypoxic pathways are associated with an immature catecholamine phenotype and carry a higher risk for metastasis. For improved understanding of the underlying mechanisms we investigated the impact of hypoxia and pseudohypoxia on catecholamine biosynthesis in pheochromocytoma cells naturally lacking Hif2α (MPC and MTT) or expressing both Hif1α and Hif2α (PC12). Cultivation under extrinsic hypoxia or in spheroid culture (intrinsic hypoxia) increased cellular dopamine and norepinephrine contents in all cell lines. To distinguish further between Hif1α- and Hif2α-driven effects we expressed Hif2α in MTT and MPC-mCherry cells (naturally lacking Hif2α). Presence of Hif2α resulted in similarly increased cellular dopamine and norepinephrine under hypoxia as in the control cells. Furthermore, hypoxia resulted in enhanced phosphorylation of tyrosine hydroxylase (TH). A specific knockdown of Hif1α in PC12 diminished these effects. Pseudohypoxic conditions, simulated by expression of Hif2α under normoxia resulted in increased TH phosphorylation, further stimulated by extrinsic hypoxia. Correlations with PPGL tissue data led us to conclude that catecholamine biosynthesis under hypoxia is mainly mediated through increased phosphorylation of TH, regulated as a short-term response (24–48 h) by HIF1α. Continuous activation of hypoxia-related genes under pseudohypoxia leads to a HIF2α-mediated phosphorylation of TH (permanent status).
Collapse
Affiliation(s)
- Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| | - Isabel Poser
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| | - Verena Seifert
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Christian Greunke
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | - Martin Ullrich
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Nan Qin
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
- German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, 45147 Düsseldorf, Germany.
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, 40225 Düsseldorf, Germany.
- Department of Neuropathology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, CNIO, Madrid, Spain and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain.
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany.
- Department of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstrasse 9, 01062 Dresden, Germany.
| | - Susan Richter
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| |
Collapse
|
20
|
Primary fibroblast co-culture stimulates growth and metabolism in Sdhb-impaired mouse pheochromocytoma MTT cells. Cell Tissue Res 2018; 374:473-485. [PMID: 30159755 DOI: 10.1007/s00441-018-2907-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/07/2018] [Indexed: 12/28/2022]
Abstract
Pheochromocytomas and paragangliomas (PGLs) due to mutations of succinate dehydrogenase (SDH) B, a subunit of the SDH complex with a role in the Krebs cycle and the respiratory chain, tend to be larger at diagnosis and more prone to metastatic disease than other tumors. This presentation contrasts with the behavior of some cell line models of SDHB impairment, which show reduced growth compared to wild type. We hypothesize that reduced growth of SDHB-impaired monolayer culture models might reflect lack of support from sources within the tumor microenvironment. The present study therefore investigates how the microenvironment, modeled here by fibroblast co-culture, modulates cell metabolism, growth and invasion in an Sdhb-impaired mouse pheochromocytoma cell line. We employed two different constructs of short hairpin RNA to knockdown Sdhb and compared growth in a monolayer with and without fibroblast co-culture. Sdhb-silenced cells showed functional impairment of SDH with elevated succinate to fumarate ratio and decreased oxidative capacity. Cell growth was delayed with an increase in doubling time of 2 h or 20 h. Clonogenic cell survival and viability, on the other hand, were either unchanged or increased compared to control. In standard monolayer culture, no differences in pro-metastatic features were present. Co-culture with primary mouse fibroblast reversed the difference of proliferation between control and Sdhb knockdown but was unable to significantly influence invasiveness under these culture conditions. Metabolic studies identified that lactate secreted by fibroblasts was taken up preferentially by Sdhb-silenced cells. In summary, the present study identified a potential role for the tumor microenvironment in influencing phenotypic features of SDHB-mutated PGLs, providing a basis for the use of therapies targeted towards the tumor microenvironment.
Collapse
|
21
|
Bechmann N, Ehrlich H, Eisenhofer G, Ehrlich A, Meschke S, Ziegler CG, Bornstein SR. Anti-Tumorigenic and Anti-Metastatic Activity of the Sponge-Derived Marine Drugs Aeroplysinin-1 and Isofistularin-3 against Pheochromocytoma In Vitro. Mar Drugs 2018; 16:E172. [PMID: 29783778 PMCID: PMC5983303 DOI: 10.3390/md16050172] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/12/2018] [Accepted: 05/15/2018] [Indexed: 01/07/2023] Open
Abstract
Over 10% of pheochromocytoma and paraganglioma (PPGL) patients have malignant disease at their first presentation in the clinic. Development of malignancy and the underlying molecular pathways in PPGLs are poorly understood and efficient treatment strategies are missing. Marine sponges provide a natural source of promising anti-tumorigenic and anti-metastatic agents. We evaluate the anti-tumorigenic and anti-metastatic potential of Aeroplysinin-1 and Isofistularin-3, two secondary metabolites isolated from the marine sponge Aplysina aerophoba, on pheochromocytoma cells. Aeroplysinin-1 diminished the number of proliferating cells and reduced spheroid growth significantly. Beside these anti-tumorigenic activity, Aeroplysinin-1 decreased the migration ability of the cells significantly (p = 0.01), whereas, the invasion capacity was not affected. Aeroplysinin-1 diminished the high adhesion capacity of the MTT cells to collagen (p < 0.001) and, furthermore, reduced the ability to form spheroids significantly. Western Blot and qRT-PCR analysis showed a downregulation of integrin β1 that might explain the lower adhesion and migration capacity after Aeroplysinin-1 treatment. Isofistularin-3 showed only a negligible influence on proliferative and pro-metastatic cell properties. These in vitro investigations show promise for the application of the sponge-derived marine drug, Aeroplysinin-1 as anti-tumorigenic and anti-metastatic agent against PPGLs for the first time.
Collapse
Affiliation(s)
- Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| | - Hermann Ehrlich
- Institute of Experimental Physics, TU Bergakademie Freiberg, Leipziger 23, 09599 Freiberg, Germany.
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
- Department of Medicine III, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| | - Andre Ehrlich
- BromMarin GmbH, Wernerstraße 1, 09599 Freiberg, Germany.
| | | | - Christian G Ziegler
- Department of Medicine III, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| | - Stefan R Bornstein
- Department of Medicine III, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
- Center for Regenerative Therapies Dresden, Technical University Dresden, Fetscherstrasse 105, 01307 Dresden, Germany.
| |
Collapse
|
22
|
Rodent models of pheochromocytoma, parallels in rodent and human tumorigenesis. Cell Tissue Res 2018; 372:379-392. [PMID: 29427052 DOI: 10.1007/s00441-018-2797-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/16/2018] [Indexed: 12/17/2022]
Abstract
Paragangliomas and pheochromocytomas are rare neuroendocrine tumors characterized by a large spectrum of hereditary predisposition. Based on gene expression profiling classification, they can be classically assigned to either a hypoxic/angiogenic cluster (cluster 1 including tumors with mutations in SDHx, VHL and FH genes) or a kinase-signaling cluster (cluster 2 consisting in tumors related to RET, NF1, TMEM127 and MAX genes mutations, as well as most of the sporadic tumors). The past 15 years have seen the emergence of an increasing number of genetically engineered and grafted models to investigate tumorigenesis and develop new therapeutic strategies. Among them, only cluster 2-related predisposed models have been successful but grafted models are however available to study cluster 1-related tumors. In this review, we present an overview of existing rodent models targeting predisposition genes involved or not in human pheochromocytoma/paraganglioma susceptibility and their contribution to the improvement of pheochromocytoma experimental research.
Collapse
|
23
|
D'Antongiovanni V, Martinelli S, Richter S, Canu L, Guasti D, Mello T, Romagnoli P, Pacak K, Eisenhofer G, Mannelli M, Rapizzi E. The microenvironment induces collective migration in SDHB-silenced mouse pheochromocytoma spheroids. Endocr Relat Cancer 2017; 24:555-564. [PMID: 28830936 PMCID: PMC7441822 DOI: 10.1530/erc-17-0212] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 07/25/2017] [Indexed: 12/22/2022]
Abstract
Pheochromocytomas (Pheos) and paragangliomas (PGLs) are neuroendocrine tumors. Approximately 30-40% of Pheos/PGLs are due to germline mutations in one of the susceptibility genes, including those encoding the succinate dehydrogenase subunits A-D (SDHA-D). Up to 2/3 of patients affected by SDHB mutated Pheo/PGL develop metastatic disease with no successful cure at present. Here, for the first time, we evaluated the effects of SDHB silencing in a three dimension (3D) culture using spheroids of a mouse Pheo cell line silenced or not (wild type/wt/control) for the SDHB subunit. We investigated the role of the microenvironment on spheroid growth and migration/invasion by co-culturing SDHB-silenced or wt spheroids with primary cancer-activated fibroblasts (CAFs). When spheroids were co-cultured with fibroblasts, SDHB-silenced cells showed a significant increase in matrigel invasion as demonstrated by the computation of the migratory areas (P < 0.001). Moreover, cells detaching from the SDHB-silenced spheroids moved collectively, unlike the cells of wt spheroids that moved individually. Additionally, SDHB-silenced spheroids developed long filamentous formations along which clusters of cells migrated far away from the spheroid, whereas these structures were not present in wt spheroids. We found that lactate, largely secreted by CAFs, plays a specific role in promoting migration only of SDHB-silenced cells. In this study, we demonstrated that SDHB silencing per se increases tumor cell migration/invasion and that microenvironment, as represented by CAFs, plays a pivotal role in enhancing collective migration/invasion in Pheo SDHB-silenced tumor cells, suggesting their role in increasing the tumor metastasizing potential.
Collapse
Affiliation(s)
- Vanessa D'Antongiovanni
- Department of Experimental and Clinical Biomedical SciencesUniversity of Florence, Florence, Italy
| | - Serena Martinelli
- Department of Experimental and Clinical Biomedical SciencesUniversity of Florence, Florence, Italy
| | - Susan Richter
- Institute of Clinical Chemistry and Laboratory MedicineUniversity Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Letizia Canu
- Department of Experimental and Clinical Biomedical SciencesUniversity of Florence, Florence, Italy
| | - Daniele Guasti
- Department of Experimental and Clinical MedicineUniversity of Florence, Florence, Italy
| | - Tommaso Mello
- Department of Experimental and Clinical Biomedical SciencesUniversity of Florence, Florence, Italy
| | - Paolo Romagnoli
- Department of Experimental and Clinical MedicineUniversity of Florence, Florence, Italy
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of Health, Bethesda, Maryland, USA
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory MedicineUniversity Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Massimo Mannelli
- Department of Experimental and Clinical Biomedical SciencesUniversity of Florence, Florence, Italy
| | - Elena Rapizzi
- Department of Experimental and Clinical MedicineUniversity of Florence, Florence, Italy
| |
Collapse
|
24
|
Abstract
A major impediment to the development of effective treatments for metastatic or unresectable pheochromocytomas and paragangliomas has been the absence of valid models for pre-clinical testing. Attempts to establish cell lines or xenografts from human pheochromocytomas and paragangliomas have previously been unsuccessful. NOD-scid gamma (NSG) mice are a recently developed strain lacking functional B-cells, T-cells, and NK cells. We report here that xenografts of primary human paragangliomas will take in NSG mice while maintaining their architectural and immunophenotypic characteristics as expressed in the patients. In contrast to grafts of cell lines and of most common types of primary tumors, the growth rate of grafted paragangliomas is very slow, accurately representing the growth rate of most pheochromocytomas and paragangliomas even in metastases in humans. Although the model is therefore technically challenging, primary patient-derived xenografts of paragangliomas in NSG mice provide a potentially valuable new tool that could prove especially valuable for testing treatments aimed at eradicating the small tumor deposits that are often numerous in patients with metastatic paraganglioma.
Collapse
Affiliation(s)
- James F Powers
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA.
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Arthur S Tischler
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| |
Collapse
|
25
|
Leinhäuser I, Richter A, Lee M, Höfig I, Anastasov N, Fend F, Ercolino T, Mannelli M, Gimenez-Roqueplo AP, Robledo M, de Krijger R, Beuschlein F, Atkinson MJ, Pellegata NS. Oncogenic features of the bone morphogenic protein 7 (BMP7) in pheochromocytoma. Oncotarget 2016; 6:39111-26. [PMID: 26337467 PMCID: PMC4770760 DOI: 10.18632/oncotarget.4912] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/07/2015] [Indexed: 12/29/2022] Open
Abstract
BMP7 is a growth factor playing pro- or anti-oncogenic roles in cancer in a cell type-dependent manner. We previously reported that the BMP7 gene is overexpressed in pheochromocytomas (PCCs) developing in MENX-affected rats and human patients. Here, analyzing a large cohort of PCC patients, we found that 72% of cases showed elevated levels of the BMP7 protein. To elucidate the role of BMP7 in PCC, we modulated its levels in PCC cell lines (overexpression in PC12, knockdown in MPC and MTT cells) and conducted functional assays. Active BMP signaling promoted cell proliferation, migration, and invasion, and sustained survival of MENX rat primary PCC cells. In PCC, BMP7 signals through the PI3K/AKT/mTOR pathway and causes integrin β1 up-regulation. Silencing integrin β1 in PC12 cells suppressed BMP7-mediated oncogenic features. Treatment of MTT cells with DMH1, a novel BMP antagonist, suppressed proliferation and migration. To verify the clinical applicability of our findings, we evaluated a dual PI3K/mTOR inhibitor (NVP-BEZ235) in MENX-affected rats in vivo. PCCs treated with NVP-BEZ235 had decreased proliferation and integrin β1 levels, and higher apoptosis. Altogether, BMP7 activates pro-oncogenic pathways in PCC. Downstream effectors of BMP7-mediated signaling may represent novel targets for treating progressive/inoperable PCC, still orphan of effective therapy.
Collapse
Affiliation(s)
- Ines Leinhäuser
- Institute of Pathology, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Radiation Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andrea Richter
- Institute of Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Misu Lee
- Institute of Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ines Höfig
- Institute of Radiation Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Nataša Anastasov
- Institute of Radiation Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Falko Fend
- Institute of Pathology and Neuropathology Comprehensive Cancer Center Tübingen and University of Tübingen, Tübingen, Germany
| | - Tonino Ercolino
- Azienda Ospedaliero-Universitaria di Careggi, Endocrine Unit, Florence, Italy
| | - Massimo Mannelli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Anne-Paule Gimenez-Roqueplo
- INSERM, UMR U970, Paris Cardiovascular Research Center-PARCC, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department of Genetics, Paris, France
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ronald de Krijger
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Felix Beuschlein
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, München, Germany
| | - Michael J Atkinson
- Institute of Radiation Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | | |
Collapse
|
26
|
Wiedemann T, Peitzsch M, Qin N, Neff F, Ehrhart-Bornstein M, Eisenhofer G, Pellegata NS. Morphology, Biochemistry, and Pathophysiology of MENX-Related Pheochromocytoma Recapitulate the Clinical Features. Endocrinology 2016; 157:3157-66. [PMID: 27254000 DOI: 10.1210/en.2016-1108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pheochromocytomas (PCCs) are tumors arising from neural crest-derived chromaffin cells. There are currently few animal models of PCC that recapitulate the key features of human tumors. Because such models may be useful for investigations of molecular pathomechanisms and development of novel therapeutic interventions, we characterized a spontaneous animal model (multiple endocrine neoplasia [MENX] rats) that develops endogenous PCCs with complete penetrance. Urine was longitudinally collected from wild-type (wt) and MENX-affected (mutant) rats and outputs of catecholamines and their O-methylated metabolites determined by mass spectrometry. Adrenal catecholamine contents, cellular ultrastructure, and expression of phenylethanolamine N-methyltransferase, which converts norepinephrine to epinephrine, were also determined in wt and mutant rats. Blood pressure was longitudinally measured and end-organ pathology assessed. Compared with wt rats, mutant animals showed age-dependent increases in urinary outputs of norepinephrine (P = .0079) and normetanephrine (P = .0014) that correlated in time with development of tumor nodules, increases in blood pressure, and development of hypertension-related end-organ pathology. Development of tumor nodules, which lacked expression of N-methyltransferase, occurred on a background of adrenal medullary morphological and biochemical changes occurring as early as 1 month of age and involving increased adrenal medullary concentrations of dense cored vesicles, tissue contents of both norepinephrine and epinephrine, and urinary outputs of metanephrine, the metabolite of epinephrine. Taken together, MENX-affected rats share several biochemical and pathophysiological features with PCC patients. This model thus provides a suitable platform to study the pathogenesis of PCC for preclinical translational studies aimed at the development of novel therapies for aggressive forms of human tumors.
Collapse
Affiliation(s)
- Tobias Wiedemann
- Institute for Diabetes and Cancer (T.W., N.S.P.) and Institute of Experimental Genetics (F.N.), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Clinical Chemistry and Laboratory Medicine (M.P., N.Q., G.E.), University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, and Department of Internal Medicine III (M.P., N.Q., G.E.), University Hospital Carl Gustav Carus, and Division of Molecular Endocrinology (M.E.-B., G.E.), Medical Clinic III, Technische Universität Dresden, 01307 Dresden, Germany
| | - Mirko Peitzsch
- Institute for Diabetes and Cancer (T.W., N.S.P.) and Institute of Experimental Genetics (F.N.), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Clinical Chemistry and Laboratory Medicine (M.P., N.Q., G.E.), University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, and Department of Internal Medicine III (M.P., N.Q., G.E.), University Hospital Carl Gustav Carus, and Division of Molecular Endocrinology (M.E.-B., G.E.), Medical Clinic III, Technische Universität Dresden, 01307 Dresden, Germany
| | - Nan Qin
- Institute for Diabetes and Cancer (T.W., N.S.P.) and Institute of Experimental Genetics (F.N.), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Clinical Chemistry and Laboratory Medicine (M.P., N.Q., G.E.), University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, and Department of Internal Medicine III (M.P., N.Q., G.E.), University Hospital Carl Gustav Carus, and Division of Molecular Endocrinology (M.E.-B., G.E.), Medical Clinic III, Technische Universität Dresden, 01307 Dresden, Germany
| | - Frauke Neff
- Institute for Diabetes and Cancer (T.W., N.S.P.) and Institute of Experimental Genetics (F.N.), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Clinical Chemistry and Laboratory Medicine (M.P., N.Q., G.E.), University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, and Department of Internal Medicine III (M.P., N.Q., G.E.), University Hospital Carl Gustav Carus, and Division of Molecular Endocrinology (M.E.-B., G.E.), Medical Clinic III, Technische Universität Dresden, 01307 Dresden, Germany
| | - Monika Ehrhart-Bornstein
- Institute for Diabetes and Cancer (T.W., N.S.P.) and Institute of Experimental Genetics (F.N.), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Clinical Chemistry and Laboratory Medicine (M.P., N.Q., G.E.), University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, and Department of Internal Medicine III (M.P., N.Q., G.E.), University Hospital Carl Gustav Carus, and Division of Molecular Endocrinology (M.E.-B., G.E.), Medical Clinic III, Technische Universität Dresden, 01307 Dresden, Germany
| | - Graeme Eisenhofer
- Institute for Diabetes and Cancer (T.W., N.S.P.) and Institute of Experimental Genetics (F.N.), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Clinical Chemistry and Laboratory Medicine (M.P., N.Q., G.E.), University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, and Department of Internal Medicine III (M.P., N.Q., G.E.), University Hospital Carl Gustav Carus, and Division of Molecular Endocrinology (M.E.-B., G.E.), Medical Clinic III, Technische Universität Dresden, 01307 Dresden, Germany
| | - Natalia S Pellegata
- Institute for Diabetes and Cancer (T.W., N.S.P.) and Institute of Experimental Genetics (F.N.), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Clinical Chemistry and Laboratory Medicine (M.P., N.Q., G.E.), University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, and Department of Internal Medicine III (M.P., N.Q., G.E.), University Hospital Carl Gustav Carus, and Division of Molecular Endocrinology (M.E.-B., G.E.), Medical Clinic III, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
27
|
Bullova P, Cougnoux A, Abunimer L, Kopacek J, Pastorekova S, Pacak K. Hypoxia potentiates the cytotoxic effect of piperlongumine in pheochromocytoma models. Oncotarget 2016; 7:40531-40545. [PMID: 27244895 PMCID: PMC5130026 DOI: 10.18632/oncotarget.9643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/23/2016] [Indexed: 01/05/2023] Open
Abstract
Hypoxia is a common feature of solid tumors that activates a plethora of pathways, resulting in proliferation and resistance of cancer cells to radio- and chemotherapy. Pheochromocytomas/paragangliomas (PHEOs/PGLs) with mutations in the gene coding for the subunit B of succinate dehydrogenase (SDHB) are the most aggressive forms of the disease, which is partially due to their pseudohypoxic character, metabolic abnormalities, and elevated reactive oxygen species (ROS) levels. We investigated the effect of piperlongumine (PL), a natural product with cytotoxic properties restricted to cancer cells by significantly increasing intracellular ROS levels, on PHEO cells. Here we report for the first time that PL mediates PHEO cell death by activating both apoptosis and necroptosis in vitro and in vivo. This effect is magnified in hypoxic conditions, making PL a promising potential candidate for use as a therapeutic option for patients with PHEO/PGL, including those with SDHB mutations.
Collapse
Affiliation(s)
- Petra Bullova
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD, 20892, USA
- Department of Molecular Medicine, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Antony Cougnoux
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD, 20892, USA
| | - Luma Abunimer
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD, 20892, USA
| | - Juraj Kopacek
- Department of Molecular Medicine, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Silvia Pastorekova
- Department of Molecular Medicine, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
28
|
Lepoutre-Lussey C, Thibault C, Buffet A, Morin A, Badoual C, Bénit P, Rustin P, Ottolenghi C, Janin M, Castro-Vega LJ, Trapman J, Gimenez-Roqueplo AP, Favier J. From Nf1 to Sdhb knockout: Successes and failures in the quest for animal models of pheochromocytoma. Mol Cell Endocrinol 2016; 421:40-8. [PMID: 26123588 DOI: 10.1016/j.mce.2015.06.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/02/2015] [Accepted: 06/02/2015] [Indexed: 01/19/2023]
Abstract
Pheochromocytomas and paragangliomas (PPGL) are rare neuroendocrine tumors characterized by a high frequency of hereditary forms. Based on transcriptome classification, PPGL can be classified in two different clusters. Cluster 1 tumors are caused by mutations in SDHx, VHL and FH genes and are characterized by a pseudohypoxic signature. Cluster 2 PPGL carry mutations in RET, NF1, MAX or TMEM127 genes and display an activation of the MAPK and mTOR signaling pathways. Many genetically engineered and allografted mouse models have been generated these past 30 years to investigate the mechanisms of PPGL tumorigenesis and test new therapeutic strategies. Among them, only Cluster 2-related models have been successful while no Cluster 1-related knockout mouse was so far reported to develop a PPGL. In this review, we present an overview of existing, successful or not, PPGL models, and a description of our own experience on the quest of Sdhb knockout mouse models of PPGL.
Collapse
Affiliation(s)
- Charlotte Lepoutre-Lussey
- INSERM, UMR970, Paris-Cardiovascular Research Center, F-75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France
| | - Constance Thibault
- INSERM, UMR970, Paris-Cardiovascular Research Center, F-75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France
| | - Alexandre Buffet
- INSERM, UMR970, Paris-Cardiovascular Research Center, F-75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France
| | - Aurélie Morin
- INSERM, UMR970, Paris-Cardiovascular Research Center, F-75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France
| | - Cécile Badoual
- INSERM, UMR970, Paris-Cardiovascular Research Center, F-75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service d'anatomo-pathologie, F-75015 Paris, France
| | - Paule Bénit
- INSERM, UMR1141, Hôpital Robert Debré, F-75019 Paris, France; Université Paris 7, Faculté de Médecine Denis Diderot, Paris, France
| | - Pierre Rustin
- INSERM, UMR1141, Hôpital Robert Debré, F-75019 Paris, France; Université Paris 7, Faculté de Médecine Denis Diderot, Paris, France
| | - Chris Ottolenghi
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France; Metabolic Biochemistry, Hôpital Necker-Enfants Malades, Paris, France; INSERM, Unit 1124, Paris, France
| | - Maxime Janin
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France; Metabolic Biochemistry, Hôpital Necker-Enfants Malades, Paris, France; INSERM, Unit 1124, Paris, France
| | - Luis-Jaime Castro-Vega
- INSERM, UMR970, Paris-Cardiovascular Research Center, F-75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France
| | - Jan Trapman
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Anne-Paule Gimenez-Roqueplo
- INSERM, UMR970, Paris-Cardiovascular Research Center, F-75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, F-75015 Paris, France
| | - Judith Favier
- INSERM, UMR970, Paris-Cardiovascular Research Center, F-75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, F-75006 Paris, France.
| |
Collapse
|
29
|
Du J, Tong A, Wang F, Cui Y, Li C, Zhang Y, Yan Z. The Roles of PI3K/AKT/mTOR and MAPK/ERK Signaling Pathways in Human Pheochromocytomas. Int J Endocrinol 2016; 2016:5286972. [PMID: 27990160 PMCID: PMC5136400 DOI: 10.1155/2016/5286972] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 10/02/2016] [Accepted: 10/27/2016] [Indexed: 11/17/2022] Open
Abstract
Objectives. The roles of PI3K/AKT/mTOR and MAPK/ERK pathways involved in the pathogenesis of pheochromocytoma and paraganglioma (PPGL) were demonstrated mostly by in vitro studies with rat or mouse cells and were mainly studied at transcriptional level. This study aimed to investigate the effect of these pathways on the proliferation of human PPGL cells and the activation of these pathways in PPGLs. Methods. Human PPGL cells were treated with sunitinib and inhibitors of PI3K (LY294002), MEK1/2 (U0126), and mTORC1/2 (AZD8055). Cell proliferation was detected by MTT assay. Protein phosphorylation was detected by Western blotting. Results. In most PPGLs, AKT, ERK1/2, and mTOR were activated. LY294002 (10 μM), U0126 (10 μM), AZD8055 (1 μM), and sunitinib (1 μM) inhibited PPGL cell proliferation in ten primary cultures of tissues, including four from patients with gene mutations. MEK1/2 inhibitor decreased mTOR phosphorylation. Inhibition of mTOR reduced phosphorylation of AKT and ERK1/2. Sunitinib inhibited phospho-ERK1/2 and phospho-mTOR. Conclusion. Our study suggested that PI3K/AKT/mTOR and MAPK/ERK signaling pathways play vital roles in human PPGL and are activated in most PPGLs. Inhibiting multiple pathways might be a novel therapeutic approach for PPGLs.
Collapse
Affiliation(s)
- Juan Du
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China
| | - Anli Tong
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China
- *Anli Tong:
| | - Fen Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China
| | - Yunying Cui
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China
| | - Chunyan Li
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China
| | - Yushi Zhang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhaoli Yan
- Department of Endocrinology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| |
Collapse
|
30
|
Nölting S, Maurer J, Spöttl G, Aristizabal Prada ET, Reuther C, Young K, Korbonits M, Göke B, Grossman A, Auernhammer CJ. Additive Anti-Tumor Effects of Lovastatin and Everolimus In Vitro through Simultaneous Inhibition of Signaling Pathways. PLoS One 2015; 10:e0143830. [PMID: 26636335 PMCID: PMC4670204 DOI: 10.1371/journal.pone.0143830] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/10/2015] [Indexed: 12/23/2022] Open
Abstract
Background The mTORC1-inhibitor everolimus shows limited efficacy in treating patients with gastro-entero-pancreatic or pulmonary neuroendocrine tumors (NETs), and poor outcome in patients with malignant pheochromocytoma or hepatic carcinoma. We speculated that any effect may be enhanced by antogonising other signaling pathways. Methods Therefore, we tested the effect of lovastatin—known to inhibit both ERK and AKT signaling—and everolimus, separately and in combination, on cell viability and signaling pathways in human midgut (GOT), pancreatic (BON1), and pulmonary (H727) NET, hepatocellular carcinoma (HepG2, Huh7), and mouse pheochromocytoma (MPC, MTT) cell lines. Results Lovastatin and everolimus separately significantly reduced cell viability in H727, HepG2, Huh7, MPC and MTT cells at clinically relevant doses (P ≤ 0.05). However, high doses of lovastatin were necessary to affect GOT or BON1 cell viability. Clinically relevant doses of both drugs showed additive anti-tumor effects in H727, HepG2, Huh7, MPC and MTT cells (P ≤ 0.05), but not in BON1 or GOT cells. In all cell lines investigated, lovastatin inhibited EGFR and AKT signaling. Subsequently, combination treatment more strongly inhibited EGFR and AKT signaling than everolimus alone, or at least attenuated everolimus-induced EGFR or AKT activation. Vice versa, everolimus constantly decreased pp70S6K and combination treatment more strongly decreased pp70S6K than lovastatin alone, or attenuated lovastatin-induced p70S6K activation: in BON1 cells lovastatin-induced EGFR inhibition was least pronounced, possibly explaining the low efficacy and consequent absent additive effect. Conclusion In summary, clinically relevant doses of lovastatin and everolimus were effective separately and showed additive effects in 5 out of 7 cell lines. Our findings emphasize the importance of targeting several interacting signaling pathways simultaneously when attempting to attenuate tumor growth. However, the variable reactions of the different cell lines highlight the necessity to understand the unique molecular aberrations in any tumor. Nevertheless, this combination seems worthy of being tested in vivo.
Collapse
Affiliation(s)
- Svenja Nölting
- Department of Internal Medicine II, Campus Grosshadern, University-Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
- * E-mail:
| | - Julian Maurer
- Department of Internal Medicine II, Campus Grosshadern, University-Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Gerald Spöttl
- Department of Internal Medicine II, Campus Grosshadern, University-Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Elke Tatjana Aristizabal Prada
- Department of Internal Medicine II, Campus Grosshadern, University-Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Clemens Reuther
- Department of Internal Medicine II, Campus Grosshadern, University-Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Karen Young
- Department of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Márta Korbonits
- Department of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Burkhard Göke
- Department of Internal Medicine II, Campus Grosshadern, University-Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
- University-Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Ashley Grossman
- Department of Endocrinology, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| | - Christoph J. Auernhammer
- Department of Internal Medicine II, Campus Grosshadern, University-Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
31
|
Schovanek J, Bullova P, Tayem Y, Giubellino A, Wesley R, Lendvai N, Nölting S, Kopacek J, Frysak Z, Pommier Y, Kummar S, Pacak K. Inhibitory Effect of the Noncamptothecin Topoisomerase I Inhibitor LMP-400 on Female Mice Models and Human Pheochromocytoma Cells. Endocrinology 2015; 156:4094-104. [PMID: 26267380 PMCID: PMC4606751 DOI: 10.1210/en.2015-1476] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Metastatic pheochromocytoma continues to be an incurable disease, and treatment with conventional cytotoxic chemotherapy offers limited efficacy. In the present study, we evaluated a novel topoisomerase I inhibitor, LMP-400, as a potential treatment for this devastating disease. We found a high expression of topoisomerase I in human metastatic pheochromocytoma, providing a basis for the evaluation of a topoisomerase 1 inhibitor as a therapeutic strategy. LMP-400 inhibited the cell growth of established mouse pheochromocytoma cell lines and primary human tumor tissue cultures. In a study performed in athymic female mice, LMP-400 demonstrated a significant inhibitory effect on tumor growth with two drug administration regimens. Furthermore, low doses of LMP-400 decreased the protein levels of hypoxia-inducible factor 1 (HIF-1α), one of a family of factors studied as potential metastatic drivers in these tumors. The HIF-1α decrease resulted in changes in the mRNA levels of HIF-1 transcriptional targets. In vitro, LMP-400 showed an increase in the growth-inhibitory effects in combination with other chemotherapeutic drugs that are currently used for the treatment of pheochromocytoma. We conclude that LMP-400 has promising antitumor activity in preclinical models of metastatic pheochromocytoma and its use should be considered in future clinical trials.
Collapse
MESH Headings
- Adrenal Gland Neoplasms/drug therapy
- Adrenal Gland Neoplasms/enzymology
- Adrenal Gland Neoplasms/pathology
- Animals
- Antineoplastic Agents/pharmacology
- Benzodioxoles/administration & dosage
- Benzodioxoles/pharmacology
- Blotting, Western
- Cell Hypoxia
- Cell Line, Tumor
- Cell Proliferation/drug effects
- DNA Topoisomerases, Type I/metabolism
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drug Synergism
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Isoquinolines/administration & dosage
- Isoquinolines/pharmacology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/enzymology
- Liver Neoplasms/secondary
- Lung Neoplasms/drug therapy
- Lung Neoplasms/enzymology
- Lung Neoplasms/secondary
- Mice, Nude
- PC12 Cells
- Pheochromocytoma/drug therapy
- Pheochromocytoma/enzymology
- Pheochromocytoma/pathology
- Rats
- Reverse Transcriptase Polymerase Chain Reaction
- Topoisomerase I Inhibitors/administration & dosage
- Topoisomerase I Inhibitors/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Jan Schovanek
- Program in Reproductive and Adult Endocrinology (J.S., P.B., Y.T., A.G., N.L., S.N., K.P.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, Warren G. Magnuson Clinical Center (R.W.), and National Cancer Institute (Y.P., S.K.), National Institutes of Health, Bethesda, Maryland 20892-1109; Department of Internal Medicine III-Nephrology, Rheumatology, and Endocrinology (J.S., Z.F.), Faculty of Medicine and Dentistry, Palacky University, 771 47 Olomouc, Czech Republic; Department of Molecular Medicine (P.B., J.K.), Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic; and Department of Internal Medicine II (S.N.), Campus Grosshadern, University-Hospital of the Ludwig-Maximilians-University of Munich, 80539 Munich, Germany
| | - Petra Bullova
- Program in Reproductive and Adult Endocrinology (J.S., P.B., Y.T., A.G., N.L., S.N., K.P.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, Warren G. Magnuson Clinical Center (R.W.), and National Cancer Institute (Y.P., S.K.), National Institutes of Health, Bethesda, Maryland 20892-1109; Department of Internal Medicine III-Nephrology, Rheumatology, and Endocrinology (J.S., Z.F.), Faculty of Medicine and Dentistry, Palacky University, 771 47 Olomouc, Czech Republic; Department of Molecular Medicine (P.B., J.K.), Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic; and Department of Internal Medicine II (S.N.), Campus Grosshadern, University-Hospital of the Ludwig-Maximilians-University of Munich, 80539 Munich, Germany
| | - Yasin Tayem
- Program in Reproductive and Adult Endocrinology (J.S., P.B., Y.T., A.G., N.L., S.N., K.P.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, Warren G. Magnuson Clinical Center (R.W.), and National Cancer Institute (Y.P., S.K.), National Institutes of Health, Bethesda, Maryland 20892-1109; Department of Internal Medicine III-Nephrology, Rheumatology, and Endocrinology (J.S., Z.F.), Faculty of Medicine and Dentistry, Palacky University, 771 47 Olomouc, Czech Republic; Department of Molecular Medicine (P.B., J.K.), Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic; and Department of Internal Medicine II (S.N.), Campus Grosshadern, University-Hospital of the Ludwig-Maximilians-University of Munich, 80539 Munich, Germany
| | - Alessio Giubellino
- Program in Reproductive and Adult Endocrinology (J.S., P.B., Y.T., A.G., N.L., S.N., K.P.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, Warren G. Magnuson Clinical Center (R.W.), and National Cancer Institute (Y.P., S.K.), National Institutes of Health, Bethesda, Maryland 20892-1109; Department of Internal Medicine III-Nephrology, Rheumatology, and Endocrinology (J.S., Z.F.), Faculty of Medicine and Dentistry, Palacky University, 771 47 Olomouc, Czech Republic; Department of Molecular Medicine (P.B., J.K.), Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic; and Department of Internal Medicine II (S.N.), Campus Grosshadern, University-Hospital of the Ludwig-Maximilians-University of Munich, 80539 Munich, Germany
| | - Robert Wesley
- Program in Reproductive and Adult Endocrinology (J.S., P.B., Y.T., A.G., N.L., S.N., K.P.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, Warren G. Magnuson Clinical Center (R.W.), and National Cancer Institute (Y.P., S.K.), National Institutes of Health, Bethesda, Maryland 20892-1109; Department of Internal Medicine III-Nephrology, Rheumatology, and Endocrinology (J.S., Z.F.), Faculty of Medicine and Dentistry, Palacky University, 771 47 Olomouc, Czech Republic; Department of Molecular Medicine (P.B., J.K.), Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic; and Department of Internal Medicine II (S.N.), Campus Grosshadern, University-Hospital of the Ludwig-Maximilians-University of Munich, 80539 Munich, Germany
| | - Nikoletta Lendvai
- Program in Reproductive and Adult Endocrinology (J.S., P.B., Y.T., A.G., N.L., S.N., K.P.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, Warren G. Magnuson Clinical Center (R.W.), and National Cancer Institute (Y.P., S.K.), National Institutes of Health, Bethesda, Maryland 20892-1109; Department of Internal Medicine III-Nephrology, Rheumatology, and Endocrinology (J.S., Z.F.), Faculty of Medicine and Dentistry, Palacky University, 771 47 Olomouc, Czech Republic; Department of Molecular Medicine (P.B., J.K.), Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic; and Department of Internal Medicine II (S.N.), Campus Grosshadern, University-Hospital of the Ludwig-Maximilians-University of Munich, 80539 Munich, Germany
| | - Svenja Nölting
- Program in Reproductive and Adult Endocrinology (J.S., P.B., Y.T., A.G., N.L., S.N., K.P.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, Warren G. Magnuson Clinical Center (R.W.), and National Cancer Institute (Y.P., S.K.), National Institutes of Health, Bethesda, Maryland 20892-1109; Department of Internal Medicine III-Nephrology, Rheumatology, and Endocrinology (J.S., Z.F.), Faculty of Medicine and Dentistry, Palacky University, 771 47 Olomouc, Czech Republic; Department of Molecular Medicine (P.B., J.K.), Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic; and Department of Internal Medicine II (S.N.), Campus Grosshadern, University-Hospital of the Ludwig-Maximilians-University of Munich, 80539 Munich, Germany
| | - Juraj Kopacek
- Program in Reproductive and Adult Endocrinology (J.S., P.B., Y.T., A.G., N.L., S.N., K.P.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, Warren G. Magnuson Clinical Center (R.W.), and National Cancer Institute (Y.P., S.K.), National Institutes of Health, Bethesda, Maryland 20892-1109; Department of Internal Medicine III-Nephrology, Rheumatology, and Endocrinology (J.S., Z.F.), Faculty of Medicine and Dentistry, Palacky University, 771 47 Olomouc, Czech Republic; Department of Molecular Medicine (P.B., J.K.), Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic; and Department of Internal Medicine II (S.N.), Campus Grosshadern, University-Hospital of the Ludwig-Maximilians-University of Munich, 80539 Munich, Germany
| | - Zdenek Frysak
- Program in Reproductive and Adult Endocrinology (J.S., P.B., Y.T., A.G., N.L., S.N., K.P.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, Warren G. Magnuson Clinical Center (R.W.), and National Cancer Institute (Y.P., S.K.), National Institutes of Health, Bethesda, Maryland 20892-1109; Department of Internal Medicine III-Nephrology, Rheumatology, and Endocrinology (J.S., Z.F.), Faculty of Medicine and Dentistry, Palacky University, 771 47 Olomouc, Czech Republic; Department of Molecular Medicine (P.B., J.K.), Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic; and Department of Internal Medicine II (S.N.), Campus Grosshadern, University-Hospital of the Ludwig-Maximilians-University of Munich, 80539 Munich, Germany
| | - Yves Pommier
- Program in Reproductive and Adult Endocrinology (J.S., P.B., Y.T., A.G., N.L., S.N., K.P.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, Warren G. Magnuson Clinical Center (R.W.), and National Cancer Institute (Y.P., S.K.), National Institutes of Health, Bethesda, Maryland 20892-1109; Department of Internal Medicine III-Nephrology, Rheumatology, and Endocrinology (J.S., Z.F.), Faculty of Medicine and Dentistry, Palacky University, 771 47 Olomouc, Czech Republic; Department of Molecular Medicine (P.B., J.K.), Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic; and Department of Internal Medicine II (S.N.), Campus Grosshadern, University-Hospital of the Ludwig-Maximilians-University of Munich, 80539 Munich, Germany
| | - Shivaani Kummar
- Program in Reproductive and Adult Endocrinology (J.S., P.B., Y.T., A.G., N.L., S.N., K.P.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, Warren G. Magnuson Clinical Center (R.W.), and National Cancer Institute (Y.P., S.K.), National Institutes of Health, Bethesda, Maryland 20892-1109; Department of Internal Medicine III-Nephrology, Rheumatology, and Endocrinology (J.S., Z.F.), Faculty of Medicine and Dentistry, Palacky University, 771 47 Olomouc, Czech Republic; Department of Molecular Medicine (P.B., J.K.), Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic; and Department of Internal Medicine II (S.N.), Campus Grosshadern, University-Hospital of the Ludwig-Maximilians-University of Munich, 80539 Munich, Germany
| | - Karel Pacak
- Program in Reproductive and Adult Endocrinology (J.S., P.B., Y.T., A.G., N.L., S.N., K.P.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, Warren G. Magnuson Clinical Center (R.W.), and National Cancer Institute (Y.P., S.K.), National Institutes of Health, Bethesda, Maryland 20892-1109; Department of Internal Medicine III-Nephrology, Rheumatology, and Endocrinology (J.S., Z.F.), Faculty of Medicine and Dentistry, Palacky University, 771 47 Olomouc, Czech Republic; Department of Molecular Medicine (P.B., J.K.), Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic; and Department of Internal Medicine II (S.N.), Campus Grosshadern, University-Hospital of the Ludwig-Maximilians-University of Munich, 80539 Munich, Germany
| |
Collapse
|
32
|
Tischler AS, Favier J. Models of pheochromocytoma: what's on the horizon? INTERNATIONAL JOURNAL OF ENDOCRINE ONCOLOGY 2015. [DOI: 10.2217/ije.15.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Arthur S Tischler
- Department of Pathology & Laboratory Medicine, Tufts Medical Center, 800 Washington St, Boston, MA 02111, USA
| | - Judith Favier
- DR2 Inserm, INSERM UMR970 – PARCC, Team 13 -Pheochromocytomas and Paragangliomas, 56 rue Leblanc, 75737 Paris Cedex 15, France
| |
Collapse
|
33
|
Rapizzi E, Fucci R, Giannoni E, Canu L, Richter S, Cirri P, Mannelli M. Role of microenvironment on neuroblastoma SK-N-AS SDHB-silenced cell metabolism and function. Endocr Relat Cancer 2015; 22:409-17. [PMID: 25808177 DOI: 10.1530/erc-14-0479] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/25/2015] [Indexed: 12/29/2022]
Abstract
In solid tumors, neoplastic cells grow in contact with the so-called tumor microenvironment. The interaction between tumor cells and the microenvironment causes reciprocal metabolic reprogramming and favorable conditions for tumor growth and metastatic spread. To obtain an experimental model resembling the in vivo conditions of the succinate dehydrogenase B subunit (SDHB)-mutated paragangliomas (PGLs), we evaluated the effects of SDHB silencing on metabolism and proliferation in the human neuroblastoma cell line (SK-N-AS), cultured alone or in association with human fibroblasts. Silencing caused a 70% decrease in protein expression, an almost complete loss of the complex specific enzymatic activity, and a significant increase in HIF1α and HIF2α expression; it thus resembled the in vivo tumor cell phenotype. When compared with WT SK-N-AS cells, SDHB-silenced cells showed an altered metabolism characterized by an unexpected significant decrease in glucose uptake and an increase in lactate uptake. Moreover, silenced cells exhibited a significant increase in cell proliferation and metalloproteinase activity. When co-cultured with human fibroblasts, control cells displayed a significant decrease in glucose uptake and a significant increase in cell proliferation as compared with their mono-cultured counterparts. These effects were even more evident in co-cultured silenced cells, with a 70% decrease in glucose uptake and a 92% increase in cell proliferation as compared to their mono-cultured counterparts. The present data indicate for the first time, to our knowledge, that SDHB impairment causes metabolic and functional derangement of neural-crest-derived tumor cells and that the microenvironment, here represented by fibroblasts, strongly affects their tumor metabolism and growth capacity.
Collapse
Affiliation(s)
- Elena Rapizzi
- Endocrinology UnitBiochemistry UnitDepartment of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Viale Pieraccini 6, 50139 Florence, ItalyInstitute of Clinical Chemistry and Laboratory MedicineUniversity Hospital Carl Gustav Carus, Technische Universität, Dresden, GermanyIstituto Toscano TumoriFlorence, Italy
| | - Rossella Fucci
- Endocrinology UnitBiochemistry UnitDepartment of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Viale Pieraccini 6, 50139 Florence, ItalyInstitute of Clinical Chemistry and Laboratory MedicineUniversity Hospital Carl Gustav Carus, Technische Universität, Dresden, GermanyIstituto Toscano TumoriFlorence, Italy
| | - Elisa Giannoni
- Endocrinology UnitBiochemistry UnitDepartment of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Viale Pieraccini 6, 50139 Florence, ItalyInstitute of Clinical Chemistry and Laboratory MedicineUniversity Hospital Carl Gustav Carus, Technische Universität, Dresden, GermanyIstituto Toscano TumoriFlorence, Italy
| | - Letizia Canu
- Endocrinology UnitBiochemistry UnitDepartment of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Viale Pieraccini 6, 50139 Florence, ItalyInstitute of Clinical Chemistry and Laboratory MedicineUniversity Hospital Carl Gustav Carus, Technische Universität, Dresden, GermanyIstituto Toscano TumoriFlorence, Italy
| | - Susan Richter
- Endocrinology UnitBiochemistry UnitDepartment of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Viale Pieraccini 6, 50139 Florence, ItalyInstitute of Clinical Chemistry and Laboratory MedicineUniversity Hospital Carl Gustav Carus, Technische Universität, Dresden, GermanyIstituto Toscano TumoriFlorence, Italy
| | - Paolo Cirri
- Endocrinology UnitBiochemistry UnitDepartment of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Viale Pieraccini 6, 50139 Florence, ItalyInstitute of Clinical Chemistry and Laboratory MedicineUniversity Hospital Carl Gustav Carus, Technische Universität, Dresden, GermanyIstituto Toscano TumoriFlorence, Italy
| | - Massimo Mannelli
- Endocrinology UnitBiochemistry UnitDepartment of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Viale Pieraccini 6, 50139 Florence, ItalyInstitute of Clinical Chemistry and Laboratory MedicineUniversity Hospital Carl Gustav Carus, Technische Universität, Dresden, GermanyIstituto Toscano TumoriFlorence, Italy Endocrinology UnitBiochemistry UnitDepartment of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Viale Pieraccini 6, 50139 Florence, ItalyInstitute of Clinical Chemistry and Laboratory MedicineUniversity Hospital Carl Gustav Carus, Technische Universität, Dresden, GermanyIstituto Toscano TumoriFlorence, Italy
| |
Collapse
|
34
|
Fliedner SMJ, Yang C, Thompson E, Abu-Asab M, Hsu CM, Lampert G, Eiden L, Tischler AS, Wesley R, Zhuang Z, Lehnert H, Pacak K. Potential therapeutic target for malignant paragangliomas: ATP synthase on the surface of paraganglioma cells. Am J Cancer Res 2015; 5:1558-1570. [PMID: 26101719 PMCID: PMC4473332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/15/2015] [Indexed: 06/04/2023] Open
Abstract
F1FoATP synthase (ATP synthase) is a ubiquitous enzyme complex in eukaryotes. In general it is localized to the mitochondrial inner membrane and serves as the last step in the mitochondrial oxidative phosphorylation of ADP to ATP, utilizing a proton gradient across the inner mitochondrial membrane built by the complexes of the electron transfer chain. However some cell types, including tumors, carry ATP synthase on the cell surface. It was suggested that cell surface ATP synthase helps tumor cells thriving on glycolysis to survive their high acid generation. Angiostatin, aurovertin, resveratrol, and antibodies against the α and β subunits of ATP synthase were shown to bind and selectively inhibit cell surface ATP synthase, promoting tumor cell death. Here we show that ATP synthase β (ATP5B) is present on the cell surface of mouse pheochromocytoma cells as well as tumor cells of human SDHB-derived paragangliomas (PGLs), while being virtually absent on chromaffin primary cells from bovine adrenal medulla by confocal microscopy. The cell surface location of ATP5B was verified in the tissue of an SDHB-derived PGL by immunoelectron microscopy. Treatment of mouse pheochromocytoma cells with resveratrol as well as ATP5B antibody led to statistically significant proliferation inhibition. Our data suggest that PGLs carry ATP synthase on their surface that promotes cell survival or proliferation. Thus, cell surface ATP synthase may present a novel therapeutic target in treating metastatic or inoperable PGLs.
Collapse
Affiliation(s)
- Stephanie MJ Fliedner
- Program on Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesda, MD 20892, USA
- 1 Department of Medicine, University Medical Center Schleswig-Holstein, Campus LübeckRatzeburger Allee 160, 23538 Lübeck, Germany
| | - Chunzhang Yang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesda, MD 20892, USA
| | - Eli Thompson
- Program on Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesda, MD 20892, USA
| | - Mones Abu-Asab
- Section of Immunopathology, National Eye Institute, NIH, National Institutes of HealthBethesda, MD 20892, USA
| | - Chang-Mei Hsu
- Section on Molecular Neuroscience, National Institute of Mental Health, National Institutes of HealthBethesda, Maryland 20892, USA
| | | | - Lee Eiden
- Section on Molecular Neuroscience, National Institute of Mental Health, National Institutes of HealthBethesda, Maryland 20892, USA
| | - Arthur S Tischler
- Department of Pathology and Laboratory Medicine, Tufts Medical CenterBoston, MA 02111, USA
| | - Robert Wesley
- Department of Health and Human Services, Clinical Center, National Institutes of HealthBethesda, MD 20892, USA
| | - Zhengping Zhuang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesda, MD 20892, USA
| | - Hendrik Lehnert
- 1 Department of Medicine, University Medical Center Schleswig-Holstein, Campus LübeckRatzeburger Allee 160, 23538 Lübeck, Germany
| | - Karel Pacak
- Program on Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesda, MD 20892, USA
| |
Collapse
|
35
|
Ullrich M, Bergmann R, Peitzsch M, Cartellieri M, Qin N, Ehrhart-Bornstein M, Block NL, Schally AV, Pietzsch J, Eisenhofer G, Bornstein SR, Ziegler CG. In vivo fluorescence imaging and urinary monoamines as surrogate biomarkers of disease progression in a mouse model of pheochromocytoma. Endocrinology 2014; 155:4149-56. [PMID: 25137029 PMCID: PMC4256828 DOI: 10.1210/en.2014-1431] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pheochromocytoma (PHEO) is a rare but potentially lethal neuroendocrine tumor arising from catecholamine-producing chromaffin cells. Especially for metastatic PHEO, the availability of animal models is essential for developing novel therapies. For evaluating therapeutic outcome in rodent PHEO models, reliable quantification of multiple organ lesions depends on dedicated small-animal in vivo imaging, which is still challenging and only available at specialized research facilities. Here, we investigated whether whole-body fluorescence imaging and monitoring of urinary free monoamines provide suitable parameters for measuring tumor progression in a murine allograft model of PHEO. We generated an mCherry-expressing mouse PHEO cell line by lentiviral gene transfer. These cells were injected subcutaneously into nude mice to perform whole-body fluorescence imaging of tumor development. Urinary free monoamines were measured by liquid chromatography with tandem mass spectrometry. Tumor fluorescence intensity and urinary outputs of monoamines showed tumor growth-dependent increases (P < .001) over the 30 days of monitoring post-tumor engraftment. Concomitantly, systolic blood pressure was increased significantly during tumor growth. Tumor volume correlated significantly (P < .001) and strongly with tumor fluorescence intensity (rs = 0.946), and urinary outputs of dopamine (rs = 0.952), methoxytyramine (rs = 0.947), norepinephrine (rs = 0.756), and normetanephrine (rs = 0.949). Dopamine and methoxytyramine outputs allowed for detection of lesions at diameters below 2.3 mm. Our results demonstrate that mouse pheochromocytoma (MPC)-mCherry cell tumors are functionally similar to human PHEO. Both tumor fluorescence intensity and urinary outputs of free monoamines provide precise parameters of tumor progression in this sc mouse model of PHEO. This animal model will allow for testing new treatment strategies for chromaffin cell tumors.
Collapse
Affiliation(s)
- Martin Ullrich
- Department of Radiopharmaceutical and Chemical Biology (M.U., R.B., J.P.), Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Medicine III (M.U., N.Q., M.E.-B., G.E., S.R.B., C.G.Z.), University Hospital Carl Gustav Carus, 01307 Dresden, Germany; Institute for Clinical Chemistry and Laboratory Medicine (M.P., N.Q., G.E.), Technische Universität Dresden, Germany; Department of Radioimmunology (M.C.), Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; Department of Chemistry and Food Chemistry (J.P.), Technische Universität Dresden, Dresden, Germany; and VA Medical Center Miami FL and Department of Pathology and Medicine (N.L.B., A.V.S.), Division of Endocrinology and Hematology-Oncology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Denorme M, Yon L, Roux C, Gonzalez BJ, Baudin E, Anouar Y, Dubessy C. Both sunitinib and sorafenib are effective treatments for pheochromocytoma in a xenograft model. Cancer Lett 2014; 352:236-44. [PMID: 25016061 DOI: 10.1016/j.canlet.2014.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/01/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022]
Abstract
Pheochromocytomas and paragangliomas are rare neuroendocrine tumors which develop from chromaffin cells of the adrenal medulla and extra-adrenal sites, leading to excess catecholamine release and hypertension. Many of the tumors are characterized by a high vascularity, suggesting the possible implementation of anti-angiogenic therapies for patients. Here, the efficacy of the tyrosine kinase inhibitors sunitinib and sorafenib was investigated in vivo and in vitro. Oral treatment with either sunitinib or sorafenib (40mg/kg/day) for 14days induced a marked reduction in the volume and weight of PC12 pheochromocytoma cell tumor xenografts in mice. Assessment of tumoral neo-angiogenesis, assessed by morphometric analysis of the vascular network after CD31 immunolabeling, showed that both sunitinib and sorafenib reduced the microvessel area (-85% and -80%, respectively) and length (-80% and -78%, respectively) in treated compared to control tumors. In addition, the number of vessel nodes was significantly lower in treated tumors (-95% and -84%, respectively). Furthermore, cleaved caspase 3 immunolabeling revealed a marked increase in the number of apoptotic cells in tumors from treated animals. Sunitinib and sorafenib could exert a direct effect on PC12 cell viability in vitro. While sunitinib induced a rapid (4h) and pronounced (5-fold) increase in caspase-3/7-dependent apoptosis, sorafenib seems to exert its cytotoxic activity through a different mechanism. Altogether, our data demonstrate that sunitinib and sorafenib have the ability to impair pheochromocytoma development by inhibiting angiogenesis and reducing tumor cell viability. These results strongly suggest that both sunitinib and sorafenib could represent valuable therapeutic tools for pheochromocytoma.
Collapse
Affiliation(s)
- M Denorme
- Institut National de la Santé et de la Recherche Médicale (INSERM), U982, Mont-Saint-Aignan, France; Normandie Univ, Caen, France; University of Rouen, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine (IRIB), Mont-Saint-Aignan, France
| | - L Yon
- Institut National de la Santé et de la Recherche Médicale (INSERM), U982, Mont-Saint-Aignan, France; Normandie Univ, Caen, France; University of Rouen, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine (IRIB), Mont-Saint-Aignan, France
| | - C Roux
- Normandie Univ, Caen, France; Haute-Normandie-INSERM ERI28, Rouen, France; University of Rouen, Laboratory of Microvascular Endothelium and Neonate Brain Lesion, Institute for Research and Innovation in Biomedicine, Rouen, France
| | - B J Gonzalez
- Normandie Univ, Caen, France; Haute-Normandie-INSERM ERI28, Rouen, France; University of Rouen, Laboratory of Microvascular Endothelium and Neonate Brain Lesion, Institute for Research and Innovation in Biomedicine, Rouen, France
| | - E Baudin
- Departments of Nuclear Medicine and Endocrine Tumors, Institut Gustave-Roussy, Villejuif, France
| | - Y Anouar
- Institut National de la Santé et de la Recherche Médicale (INSERM), U982, Mont-Saint-Aignan, France; Normandie Univ, Caen, France; University of Rouen, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine (IRIB), Mont-Saint-Aignan, France.
| | - C Dubessy
- Institut National de la Santé et de la Recherche Médicale (INSERM), U982, Mont-Saint-Aignan, France; Normandie Univ, Caen, France; University of Rouen, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine (IRIB), Mont-Saint-Aignan, France
| |
Collapse
|
37
|
Nölting S, Giubellino A, Tayem Y, Young K, Lauseker M, Bullova P, Schovanek J, Anver M, Fliedner S, Korbonits M, Göke B, Vlotides G, Grossman A, Pacak K. Combination of 13-Cis retinoic acid and lovastatin: marked antitumor potential in vivo in a pheochromocytoma allograft model in female athymic nude mice. Endocrinology 2014; 155:2377-90. [PMID: 24762141 PMCID: PMC4060189 DOI: 10.1210/en.2014-1027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Currently, there are no reliably effective therapeutic options for metastatic pheochromocytoma (PCC) and paraganglioma. Moreover, there are no therapies that may prevent the onset or progression of tumors in patients with succinate dehydrogenase type B mutations, which are associated with very aggressive tumors. Therefore, we tested the approved and well-tolerated drugs lovastatin and 13-cis-retinoic acid (13cRA) in vitro in an aggressive PCC mouse cell line, mouse tumor tissue-derived (MTT) cells, and in vivo in a PCC allograft nude mouse model, in therapeutically relevant doses. Treatment was started 24 hours before sc tumor cell injection and continued for 30 more days. Tumor sizes were measured from outside by caliper and sizes of viable tumor mass by bioluminescence imaging. Lovastatin showed antiproliferative effects in vitro and led to significantly smaller tumor sizes in vivo compared with vehicle treatment. 13cRA promoted tumor cell growth in vitro and led to significantly larger viable tumor mass and significantly faster increase of viable tumor mass in vivo over time compared with vehicle, lovastatin, and combination treatment. However, when combined with lovastatin, 13cRA enhanced the antiproliferative effect of lovastatin in vivo. The combination-treated mice showed slowest tumor growth of all groups with significantly slower tumor growth compared with the vehicle-treated mice and significantly smaller tumor sizes. Moreover, the combination-treated group displayed the smallest size of viable tumor mass and the slowest increase in viable tumor mass over time of all groups, with a significant difference compared with the vehicle- and 13cRA-treated group. The combination-treated tumors showed highest extent of necrosis, lowest median microvessel density and highest expression of α-smooth muscle actin. The combination of high microvessel density and low α-smooth muscle actin is a predictor of poor prognosis in other tumor entities. Therefore, this drug combination may be a well-tolerated novel therapeutic or preventive option for malignant PCC.
Collapse
|
38
|
Fliedner SMJ, Engel T, Lendvai NK, Shankavaram U, Nölting S, Wesley R, Elkahloun AG, Ungefroren H, Oldoerp A, Lampert G, Lehnert H, Timmers H, Pacak K. Anti-cancer potential of MAPK pathway inhibition in paragangliomas-effect of different statins on mouse pheochromocytoma cells. PLoS One 2014; 9:e97712. [PMID: 24846270 PMCID: PMC4028222 DOI: 10.1371/journal.pone.0097712] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/22/2014] [Indexed: 12/11/2022] Open
Abstract
To date, malignant pheochromocytomas and paragangliomas (PHEOs/PGLs) cannot be effectively cured and thus novel treatment strategies are urgently needed. Lovastatin has been shown to effectively induce apoptosis in mouse PHEO cells (MPC) and the more aggressive mouse tumor tissue-derived cells (MTT), which was accompanied by decreased phosphorylation of mitogen-activated kinase (MAPK) pathway players. The MAPK pathway plays a role in numerous aggressive tumors and has been associated with a subgroup of PHEOs/PGLs, including K-RAS-, RET-, and NF1-mutated tumors. Our aim was to establish whether MAPK signaling may also play a role in aggressive, succinate dehydrogenase (SDH) B mutation-derived PHEOs/PGLs. Expression profiling and western blot analysis indicated that specific aspects of MAPK-signaling are active in SDHB PHEOs/PGLs, suggesting that inhibition by statin treatment could be beneficial. Moreover, we aimed to assess whether the anti-proliferative effect of lovastatin on MPC and MTT differed from that exerted by fluvastatin, simvastatin, atorvastatin, pravastatin, or rosuvastatin. Simvastatin and fluvastatin decreased cell proliferation most effectively and the more aggressive MTT cells appeared more sensitive in this respect. Inhibition of MAPK1 and 3 phosphorylation following treatment with fluvastatin, simvastatin, and lovastatin was confirmed by western blot. Increased levels of CASP-3 and PARP cleavage confirmed induction of apoptosis following the treatment. At a concentration low enough not to affect cell proliferation, spontaneous migration of MPC and MTT was significantly inhibited within 24 hours of treatment. In conclusion, lipophilic statins may present a promising therapeutic option for treatment of aggressive human paragangliomas by inducing apoptosis and inhibiting tumor spread.
Collapse
Affiliation(s)
- Stephanie M. J. Fliedner
- Section on Medical Neuroendocrinology, Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- 1st Department of Medicine, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Tobias Engel
- Section on Medical Neuroendocrinology, Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Endocrinology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Nikoletta K. Lendvai
- Section on Medical Neuroendocrinology, Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Uma Shankavaram
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Svenja Nölting
- Section on Medical Neuroendocrinology, Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Endocrinology, William Harvey Research Institute and Barts Cancer Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Robert Wesley
- Warren G. Magnuson Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Abdel G. Elkahloun
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hendrik Ungefroren
- 1st Department of Medicine, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Angela Oldoerp
- 1st Department of Medicine, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Gary Lampert
- Pompano Beach, Florida, United States of America
| | - Hendrik Lehnert
- 1st Department of Medicine, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Henri Timmers
- Department of Endocrinology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
39
|
Abstract
Pheochromocytomas and paragangliomas are neural crest cell tumors of the adrenal medulla and parasympathetic/sympathetic ganglia, respectively, that are often associated with catecholamine production. Genetic research over the years has led to our current understanding of the association 13 susceptibility genes with the development of these tumors. Most of the susceptibility genes are now associated with specific clinical presentations, biochemical makeup, tumor location, and associated neoplasms. Recent scientific advances have highlighted the role of somatic mutations in the development of pheochromocytoma/paraganglioma as well as the usefulness of immunohistochemistry in triaging genetic testing. We can now approach genetic testing in pheochromocytoma/paraganglioma patients in a very organized scientific way allowing for the reduction of both the financial and emotional burden on the patient. The discovery of genetic predispositions to the development of pheochromocytoma/paraganglioma not only facilitates better understanding of these tumors but will also lead to improved diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Kathryn S King
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Karel Pacak
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
40
|
High-throughput screening for the identification of new therapeutic options for metastatic pheochromocytoma and paraganglioma. PLoS One 2014; 9:e90458. [PMID: 24699253 PMCID: PMC3974653 DOI: 10.1371/journal.pone.0090458] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/30/2014] [Indexed: 11/19/2022] Open
Abstract
Drug repurposing or repositioning is an important part of drug discovery that has been growing in the last few years for the development of therapeutic options in oncology. We applied this paradigm in a screening of a library of about 3,800 compounds (including FDA-approved drugs and pharmacologically active compounds) employing a model of metastatic pheochromocytoma, the most common tumor of the adrenal medulla in children and adults. The collection of approved drugs was screened in quantitative mode, testing the compounds in compound-titration series (dose-response curves). Analysis of the dose-response screening data facilitated the selection of 50 molecules with potential bioactivity in pheochromocytoma cells. These drugs were classified based on molecular/cellular targets and signaling pathways affected, and selected drugs were further validated in a proliferation assay and by flow cytometric cell death analysis. Using meta-analysis information from molecular targets of the top drugs identified by our screening with gene expression data from human and murine microarrays, we identified potential drugs to be used as single drugs or in combination. An example of a combination with a synergistic effect is presented. Our study exemplifies a promising model to identify potential drugs from a group of clinically approved compounds that can more rapidly be implemented into clinical trials in patients with metastatic pheochromocytoma or paraganglioma.
Collapse
|
41
|
Powers JF, Korgaonkar PG, Fliedner S, Giubellino A, Sahagian KPGG, Tischler AS. Cytocidal activities of topoisomerase 1 inhibitors and 5-azacytidine against pheochromocytoma/paraganglioma cells in primary human tumor cultures and mouse cell lines. PLoS One 2014; 9:e87807. [PMID: 24516563 PMCID: PMC3917832 DOI: 10.1371/journal.pone.0087807] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/30/2013] [Indexed: 12/21/2022] Open
Abstract
There is currently no effective treatment for metastatic pheochromocytomas and paragangliomas. A deficiency in current chemotherapy regimens is that the metastases usually grow very slowly. Drugs that target dividing tumor cells have therefore had limited success. To improve treatment, new strategies and valid experimental models are required for pre-clinical testing. However, development of models has itself been hampered by the absence of human pheochromocytoma/paraganglioma cell lines for cultures or xenografts. Topoisomerase 1 (TOP1) inhibitors are drugs that interfere with mechanisms that maintain DNA integrity during transcription in both quiescent and dividing cells. We used primary cultures of representative human tumors to establish the cytotoxicity of camptothecin, a prototypical TOP1 inhibitor, against non-dividing pheochromocytoma/paraganglioma cells, and then employed a mouse pheochromocytoma model (MPC) to show that efficacy of low concentrations of camptothecin and other TOP1 inhibitors is increased by intermittent coadministration of sub-toxic concentrations of 5-azacytidine, a DNA methylation inhibitor that modulates transcription. We then tested the same drugs against a clonal MPC derivative that expresses CMV reporter-driven luciferase and GFP, intended for in vivo drug testing. Unexpectedly, luciferase expression, bioluminescence and GFP expression were paradoxically increased by both camptothecin and SN38, the active metabolite of irinotecan, thereby masking cell death. Expression of chromogranin A, a marker for neuroendocrine secretory granules, was not increased, indicating that the drug effects on levels of luciferase and GFP are specific to the GFP-luciferase construct rather than generalized cellular responses. Our findings provide proof of principle for use of TOP1 inhibitors against pheochromocytoma/paraganglioma and suggest novel strategies for enhancing efficacy and reducing toxicity by optimizing the combination and timing of their use in conjunction with other drugs. The paradoxical effects of TOP1 inhibitors on luciferase and GFP dictate a need for caution in the use of CMV promoter-regulated constructs for cancer-related imaging studies.
Collapse
Affiliation(s)
- James F. Powers
- Department of Pathology, Tufts Medical Center, Boston, Massachusetts, United States of America
- * E-mail:
| | - Parimal G. Korgaonkar
- Small Animal Imaging/Preclinical Testing Facility, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Stephanie Fliedner
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- 1 Department of Medicine, University Medical Center Schleswig-Holstein Lübeck, Lübeck, Germany
| | - Alessio Giubellino
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Arthur S. Tischler
- Department of Pathology, Tufts Medical Center, Boston, Massachusetts, United States of America
| |
Collapse
|
42
|
Lendvai N, Pawlosky R, Bullova P, Eisenhofer G, Patocs A, Veech RL, Pacak K. Succinate-to-fumarate ratio as a new metabolic marker to detect the presence of SDHB/D-related paraganglioma: initial experimental and ex vivo findings. Endocrinology 2014; 155:27-32. [PMID: 24189137 PMCID: PMC5398636 DOI: 10.1210/en.2013-1549] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pheochromocytomas (PHEOs) and paragangliomas (PGLs; extra-adrenal tumors) are rare neuroendocrine chromaffin cell tumors with a hereditary background in about 30%-35%. Those caused by succinate dehydrogenase subunit B (SDHB) germline mutations are associated with a high metastatic potential and ultimately higher patient mortality. Succinate dehydrogenase converts succinate to fumarate, uniquely linking the Krebs cycle and oxidative phosphorylation. SDH mutations result in the accumulation of succinate associated with various metabolic disturbances and the shift to aerobic glycolysis in tumor tissue. In the present study, we measured succinate and fumarate levels in mouse pheochromocytoma (MPC) and mouse tumor tissue (MTT) cells and in 10 apparently sporadic, 10 SDHB-, 5 SDHD-, and 2 neurofibromatosis 1-related PHEOs/PGLs and plasma samples using mass spectrometry. We found that the succinate-to-fumarate ratio was significantly higher in the SDHB- and SDHD-related PGLs than in apparently sporadic and neurofibromatosis 1-related PHEOs/PGLs (P = .0376). To further support our data, we silenced SDHB expression in MPC and MTT cells and evaluated the succinate and fumarate levels. Compared with control samples, SDHB-silenced MTT cells also showed an increase in the succinate-to-fumarate ratio (MTT cells: 2.45 vs 7.53), similar to the findings in SDHB-related PGLs. The present findings for the first time demonstrate a significantly increased succinate-to-fumarate ratio in SDHB/D-related PGLs and thus suggest this ratio may be used as a new metabolic marker for the detection of SDHB/D-related PHEOs/PGLs.
Collapse
Affiliation(s)
- Nikoletta Lendvai
- Program in Reproductive and Adult Endocrinology (N.L., P.B., K.P.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; Second Department of Medicine (N.L.), Semmelweis University, Budapest, Hungary 1088; Section on Metabolic Control Analysis (R.P., R.L.V.), National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20852; Department of Molecular Medicine (P.B.), Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovak Republic 84505; Institute of Clinical Chemistry and Laboratory Medicine (G.E.), University Hospital Carl Gustav Carus at the TU Dresden, Dresden, Germany; Department of Medicine III (G.E.), University Hospital Carl Gustav Carus at the TU Dresden, Dresden, Germany 01307; Molecular Medicine Research Group (A.P.), Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary; and Department of Laboratory Medicine Institute (A.P.), Central Isotope Laboratory, Semmelweis University, Budapest, Hungary 1088
| | | | | | | | | | | | | |
Collapse
|
43
|
Progenitor cell line (hPheo1) derived from a human pheochromocytoma tumor. PLoS One 2013; 8:e65624. [PMID: 23785438 PMCID: PMC3681983 DOI: 10.1371/journal.pone.0065624] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 05/02/2013] [Indexed: 12/11/2022] Open
Abstract
Background Pheochromocytomas are rare tumors generally arising in the medullary region of the adrenal gland. These tumors release excessive epinephrine and norepinephrine resulting in hypertension and cardiovascular crises for which surgery is the only definitive treatment. Molecular mechanisms that control tumor development and hormone production are poorly understood, and progress has been hampered by the lack of human cellular model systems. To study pheochromocytomas, we developed a stable progenitor pheochromocytoma cell line derived from a primary human tumor. Methods After IRB approval and written informed consent, human pheochromocytoma tissue was excised, minced, dispersed enzymatically, and cultured in vitro. Primary pheochromocytoma cells were infected with a lentivirus vector carrying the catalytic subunit of human telomerase reverse transcriptase (hTERT). The hTERT immortalized cells (hPheo1) have been passaged >300 population doublings. The resulting cell line was characterized morphologically, biochemically and for expression of neuroendocrine properties. The expression of marker enzymes and proteins was assessed by immunofluorescence staining and immunoblotting. Telomerase activity was determined by using the telomeric repeat amplification protocol (TRAP) assay. Results We have established a human pheochromocytoma precursor cell line that expresses the neuroendocrine marker, chromogranin A, when differentiated in the presence of bone morphogenic protein 4 (BMP4), nerve growth factor (NGF), and dexamethasone. Phenylethanolamine N-methyltransferase (PNMT) expression is also detected with this differentiation regimen. CD-56 (also known as NCAM, neural cell adhesion molecule) is expressed in these cells, but CD31 (also known as PECAM-1, a marker of endothelial cells) is negative. Conclusions We have maintained hTERT-immortalized progenitor cells derived from a pheochromocytoma (hPheo1) in culture for over 300 population doublings. This progenitor human cell line is normal diploid except for a deletion in the p16 region and has inducible neuroendocrine biomarkers. These cells should be a valuable reagent for studying mechanisms of tumor development and for testing novel therapeutic approaches.
Collapse
|
44
|
Ziegler CG, Ullrich M, Schally AV, Bergmann R, Pietzsch J, Gebauer L, Gondek K, Qin N, Pacak K, Ehrhart-Bornstein M, Eisenhofer G, Bornstein SR. Anti-tumor effects of peptide analogs targeting neuropeptide hormone receptors on mouse pheochromocytoma cells. Mol Cell Endocrinol 2013; 371:189-94. [PMID: 23267837 PMCID: PMC3690370 DOI: 10.1016/j.mce.2012.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 12/12/2012] [Accepted: 12/14/2012] [Indexed: 01/31/2023]
Abstract
Pheochromocytoma is a rare but potentially lethal chromaffin cell tumor with currently no effective treatment. Peptide hormone receptors are frequently overexpressed on endocrine tumor cells and can be specifically targeted by various anti-tumor peptide analogs. The present study carried out on mouse pheochromocytoma cells (MPCs) and a more aggressive mouse tumor tissue-derived (MTT) cell line revealed that these cells are characterized by pronounced expression of the somatostatin receptor 2 (sst2), growth hormone-releasing hormone (GHRH) receptor and the luteinizing hormone-releasing hormone (LHRH) receptor. We further demonstrated significant anti-tumor effects mediated by cytotoxic somatostatin analogs, AN-162 and AN-238, by LHRH antagonist, Cetrorelix, by the cytotoxic LHRH analog, AN-152, and by recently developed GHRH antagonist, MIA-602, on MPC and for AN-152 and MIA-602 on MTT cells. Studies of novel anti-tumor compounds on these mouse cell lines serve as an important basis for mouse models of metastatic pheochromocytoma, which we are currently establishing.
Collapse
MESH Headings
- 2-Hydroxyphenethylamine/analogs & derivatives
- 2-Hydroxyphenethylamine/pharmacology
- Adrenal Gland Neoplasms/drug therapy
- Aniline Compounds/pharmacology
- Animals
- Apoptosis/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Doxorubicin/analogs & derivatives
- Doxorubicin/pharmacology
- Gonadotropin-Releasing Hormone/analogs & derivatives
- Gonadotropin-Releasing Hormone/antagonists & inhibitors
- Gonadotropin-Releasing Hormone/pharmacology
- Growth Hormone-Releasing Hormone/antagonists & inhibitors
- Mice
- Pheochromocytoma/drug therapy
- Pyrroles/pharmacology
- Receptors, LHRH/biosynthesis
- Receptors, LHRH/drug effects
- Receptors, LHRH/metabolism
- Receptors, Neuropeptide/biosynthesis
- Receptors, Neuropeptide/drug effects
- Receptors, Neuropeptide/metabolism
- Receptors, Pituitary Hormone-Regulating Hormone/biosynthesis
- Receptors, Pituitary Hormone-Regulating Hormone/drug effects
- Receptors, Pituitary Hormone-Regulating Hormone/metabolism
- Receptors, Somatostatin/biosynthesis
- Receptors, Somatostatin/drug effects
- Receptors, Somatostatin/metabolism
- Sermorelin/analogs & derivatives
- Sermorelin/pharmacology
- Somatostatin/analogs & derivatives
Collapse
Affiliation(s)
- C G Ziegler
- University Hospital Carl Gustav Carus, Department of Medicine III, Dresden, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Giubellino A, Sourbier C, Lee MJ, Scroggins B, Bullova P, Landau M, Ying W, Neckers L, Trepel JB, Pacak K. Targeting heat shock protein 90 for the treatment of malignant pheochromocytoma. PLoS One 2013; 8:e56083. [PMID: 23457505 PMCID: PMC3573066 DOI: 10.1371/journal.pone.0056083] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 01/04/2013] [Indexed: 11/19/2022] Open
Abstract
Metastatic pheochromocytoma represents one of the major clinical challenges in the field of neuroendocrine oncology. Recent molecular characterization of pheochromocytoma suggests new treatment options with targeted therapies. In this study we investigated the 90 kDa heat shock protein (Hsp90) as a potential therapeutic target for advanced pheochromocytoma. Both the first generation, natural product Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG, tanespimycin), and the second-generation synthetic Hsp90 inhibitor STA-9090 (ganetespib) demonstrated potent inhibition of proliferation and migration of pheochromocytoma cell lines and induced degradation of key Hsp90 clients. Furthermore, ganetespib induced dose-dependent cytotoxicity in primary pheochromocytoma cells. Using metastatic models of pheochromocytoma, we demonstrate the efficacy of 17-AAG and ganetespib in reducing metastatic burden and increasing survival. Levels of Hsp70 in plasma from the xenograft studies served as a proximal biomarker of drug treatment. Our study suggests that targeting Hsp90 may benefit patients with advanced pheochromocytoma.
Collapse
Affiliation(s)
- Alessio Giubellino
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (AG); (KP)
| | - Carole Sourbier
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Min-Jung Lee
- Medical Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Brad Scroggins
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Petra Bullova
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael Landau
- Medical Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Weiwen Ying
- Synta Pharmaceuticals, Lexington, Massachusetts, United States of America
| | - Len Neckers
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jane B. Trepel
- Medical Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Karel Pacak
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (AG); (KP)
| |
Collapse
|
46
|
Giubellino A, Bullova P, Nölting S, Turkova H, Powers JF, Liu Q, Guichard S, Tischler AS, Grossman AB, Pacak K. Combined inhibition of mTORC1 and mTORC2 signaling pathways is a promising therapeutic option in inhibiting pheochromocytoma tumor growth: in vitro and in vivo studies in female athymic nude mice. Endocrinology 2013; 154:646-55. [PMID: 23307788 PMCID: PMC3548182 DOI: 10.1210/en.2012-1854] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Several lines of evidence, including the recent discovery of novel susceptibility genes, point out an important role for the mammalian target of rapamycin (mTOR) signaling pathway in the development of pheochromocytoma. Analyzing a set of pheochromocytomas from patients with different genetic backgrounds, we observed and confirmed a significant overexpression of key mTOR complex (mTORC) signaling mediators. Using selective ATP-competitive inhibitors targeting both mTORC1 and mTORC2, we significantly arrested the in vitro cell proliferation and blocked migration of pheochromocytoma cells as a result of the pharmacological suppression of the Akt/mTOR signaling pathway. Moreover, AZD8055, a selective ATP-competitive dual mTORC1/2 small molecular inhibitor, significantly reduced the tumor burden in a model of metastatic pheochromocytoma using female athymic nude mice. This study suggests that targeting both mTORC1 and mTORC2 is a potentially rewarding strategy and supports the application of selective inhibitors in combinatorial drug regimens for metastatic pheochromocytoma.
Collapse
Affiliation(s)
- Alessio Giubellino
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Nölting S, Garcia E, Alusi G, Giubellino A, Pacak K, Korbonits M, Grossman AB. Combined blockade of signalling pathways shows marked anti-tumour potential in phaeochromocytoma cell lines. J Mol Endocrinol 2012; 49:79-96. [PMID: 22715163 PMCID: PMC4714579 DOI: 10.1530/jme-12-0028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Currently, there is no completely effective therapy available for metastatic phaeochromocytomas (PCCs) and paragangliomas. In this study, we explore new molecular targeted therapies for these tumours, using one more benign (mouse phaeochromocytoma cell (MPC)) and one more malignant (mouse tumour tissue (MTT)) mouse PCC cell line - both generated from heterozygous neurofibromin 1 knockout mice. Several PCC-promoting gene mutations have been associated with aberrant activation of PI3K/AKT, mTORC1 and RAS/RAF/ERK signalling. We therefore investigated different agents that interfere specifically with these pathways, including antagonism of the IGF1 receptor by NVP-AEW541. We found that NVP-AEW541 significantly reduced MPC and MTT cell viability at relatively high doses but led to a compensatory up-regulation of ERK and mTORC1 signalling at suboptimal doses while PI3K/AKT inhibition remained stable. We subsequently investigated the effect of the dual PI3K/mTORC1/2 inhibitor NVP-BEZ235, which led to a significant decrease of MPC and MTT cell viability at doses below 50 nM but again increased ERK signalling. Accordingly, we next examined the combination of NVP-BEZ235 with the established agent lovastatin, as this has been described to inhibit ERK signalling. Lovastatin alone significantly reduced MPC and MTT cell viability at therapeutically relevant doses and inhibited both ERK and AKT signalling, but increased mTORC1/p70S6K signalling. Combination treatment with NVP-BEZ235 and lovastatin showed a significant additive effect in MPC and MTT cells and resulted in inhibition of both AKT and mTORC1/p70S6K signalling without ERK up-regulation. Simultaneous inhibition of PI3K/AKT, mTORC1/2 and ERK signalling suggests a novel therapeutic approach for malignant PCCs.
Collapse
Affiliation(s)
- Svenja Nölting
- Department of Endocrinology, William Harvey Research Institute and Barts Cancer Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | | | | | | | | | | | | |
Collapse
|
48
|
Pacak K, Sirova M, Giubellino A, Lencesova L, Csaderova L, Laukova M, Hudecova S, Krizanova O. NF-κB inhibition significantly upregulates the norepinephrine transporter system, causes apoptosis in pheochromocytoma cell lines and prevents metastasis in an animal model. Int J Cancer 2012; 131:2445-55. [PMID: 22407736 DOI: 10.1002/ijc.27524] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 02/27/2012] [Indexed: 11/07/2022]
Abstract
Pheochromocytomas (PHEOs) and paragangliomas (PGLs) are specific types of neuroendocrine tumors that originate in the adrenal medulla or sympathetic/parasympathetic paraganglia, respectively. Although these tumors are intensively studied, a very effective treatment for metastatic PHEO or PGL has not yet been established. Preclinical evaluations of novel therapies for these tumors are very much required. Therefore, in this study we tested the effect of triptolide (TTL), a potent nuclear factor-kappaB (NF-κB) inhibitor, on the cell membrane norepinephrine transporter (NET) system, considered to be the gatekeeper for the radiotherapeutic agent 131I-metaiodobenzylguanidine (131I-MIBG). We measured changes in the mRNA and protein levels of NET and correlated them with proapoptotic factors and metastasis inhibition. The study was performed on three different stable PHEO cell lines. We found that blocking NF-κB with TTL or capsaicin increased both NET mRNA and protein levels. Involvement of NF-κB in the upregulation of NET was verified by mRNA silencing of this site and also by using NF-κB antipeptide. Moreover, in vivo treatment with TTL significantly reduced metastatic burden in an animal model of metastatic PHEO. The present study for the first time shows how NF-κB inhibitors could be successfully used in the treatment of metastatic PHEO/PGL by a significant upregulation of NET to increase the efficacy of 131I-MIBG and by the induction of apoptosis.
Collapse
Affiliation(s)
- Karel Pacak
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Fliedner SMJ, Kaludercic N, Jiang XS, Hansikova H, Hajkova Z, Sladkova J, Limpuangthip A, Backlund PS, Wesley R, Martiniova L, Jochmanova I, Lendvai NK, Breza J, Yergey AL, Paolocci N, Tischler AS, Zeman J, Porter FD, Lehnert H, Pacak K. Warburg effect's manifestation in aggressive pheochromocytomas and paragangliomas: insights from a mouse cell model applied to human tumor tissue. PLoS One 2012; 7:e40949. [PMID: 22859959 PMCID: PMC3409208 DOI: 10.1371/journal.pone.0040949] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 06/19/2012] [Indexed: 12/17/2022] Open
Abstract
A glycolytic profile unifies a group of pheochromocytomas and paragangliomas (PHEOs/PGLs) with distinct underlying gene defects, including von Hippel-Lindau (VHL) and succinate dehydrogenase B (SDHB) mutations. Nevertheless, their tumor aggressiveness is distinct: PHEOs/PGLs metastasize rarely in VHL-, but frequently in SDHB-patients. To date, the molecular mechanisms causing the more aggressive phenotype in SDHB-PHEOs/PGLs remain largely unknown. Recently, however, an excellent model to study aggressive PHEOs (mouse tumor tissue (MTT) cells) has been developed from mouse PHEO cells (MPC). We employed this model for a proteomics based approach to identify changes characteristic for tumor aggressiveness, which we then explored in a homogeneous set of human SDHB- and VHL-PHEOs/PGLs. The increase of glucose transporter 1 in VHL, and of hexokinase 2 in VHL and SDHB, confirmed their glycolytic profile. In agreement with the cell model and in support of decoupling of glycolysis, the Krebs cycle and oxidative phosphorylation (OXPHOS), SDHB tumors showed increased lactate dehydrogenase levels. In SDHB-PGLs OXPHOS complex activity was increased at complex III and, as expected, decreased at complex II. Moreover, protein and mRNA expression of all tested OXPHOS-related genes were higher in SDHB- than in VHL-derived tumors. Although there was no direct evidence for increased reactive oxygen species production, elevated superoxide dismutase 2 expression may reflect elevated oxidative stress in SDHB-derived PHEOs/PGLs. For the first time, we show that despite dysfunction in complex II and evidence for a glycolytic phenotype, the Warburg effect does not seem to fully apply to SDHB-PHEOs/PGLs with respect to decreased OXPHOS. In addition, we present evidence for increased LDHA and SOD2 expression in SDHB-PHEOs/PGLs, proteins that have been proposed as promising therapeutic targets in other cancers. This study provides new insight into pathogenic mechanisms in aggressive human PHEOs/PGLs, which may lead to identifying new diagnostic and prognostic markers in the near future.
Collapse
Affiliation(s)
- Stephanie M. J. Fliedner
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- 1 Department of Medicine, University Hospitals of Schleswig-Holstein, Lübeck, Germany
| | - Nina Kaludercic
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Xiao-Sheng Jiang
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hana Hansikova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Zuzana Hajkova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jana Sladkova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Andrea Limpuangthip
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter S. Backlund
- Section on Mass Spectrometry and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert Wesley
- Warren G. Magnuson Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lucia Martiniova
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ivana Jochmanova
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- 1st Department of Internal Medicine Medical Faculty, P.J.Šafárik University, Košice, Slovakia
| | - Nikoletta K. Lendvai
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jan Breza
- Department of Urology, School of Medicine, Comenius University, Bratislava, Slovakia
| | - Alfred L. Yergey
- Section on Mass Spectrometry and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- Department of Clinical Medicine, Section of Pathology, University of Perugia, Perugia, Italy
| | - Arthur S. Tischler
- Department of Pathology, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Jiri Zeman
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Forbes D. Porter
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hendrik Lehnert
- 1 Department of Medicine, University Hospitals of Schleswig-Holstein, Lübeck, Germany
| | - Karel Pacak
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
50
|
Shah U, Giubellino A, Pacak K. Pheochromocytoma: implications in tumorigenesis and the actual management. MINERVA ENDOCRINOL 2012; 37:141-156. [PMID: 22691888 PMCID: PMC3409463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Pheochromocytomas and paragangliomas are rare neuroendocrine catecholamine producing tumors with varied clinical presentations, biochemistries and genetic makeup. These features outline the complexity and the difficulties in studying and understanding the oncogenesis of these tumors. The study of families with genetically inherited mutations in pheochromocytoma susceptibility genes has greatly enhanced our understanding of the pathophysiology and mechanisms of oncogenesis of the disease, and consequently changed our clinical approach. Several molecular pathways and mutations in their important regulatory proteins have been identified. Such mutations are responsible for the dysregulation of metabolic pathways involved in oxygen and nutrient sensing, apoptosis regulation, cell proliferation, migration and invasion. The knowledge derived from the study of these pathways will be fundamental in the future clinical management of these patients. As a rare disease that often masks its clinical presentation, the diagnosis is frequently missed and a high level of suspicion is required. Management of this disease requires a multidisciplinary team approach and will be discussed along with advances in its treatment.
Collapse
Affiliation(s)
- Urvi Shah
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institues of Health, Bethesda, Maryland 20892, USA
| | - Alessio Giubellino
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institues of Health, Bethesda, Maryland 20892, USA
| | - Karel Pacak
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institues of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|