1
|
Liu J, Yu Z, Liu Q, Dou C, Cao P, Xie X. A novel 5-differentially expressed gene (DEG) signature predicting the prognosis in patients with metastatic liver malignancies and the prognostic and therapeutic potential of SPP1. Int J Clin Oncol 2025; 30:956-973. [PMID: 40014188 DOI: 10.1007/s10147-025-02723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 02/04/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND This study aimed to identify differentially expressed genes (DEGs) that are associated with hepatocarcinogenesis and metastasis in hepatocellular carcinoma (HCC) and to explore their value in predicting overall survival (OS). The methods used included bioinformatics analysis of gene expression datasets and in vitro experiments using HCC cell lines. METHODS Gene expression profiles from metastatic and non-metastatic liver cancer specimens were analyzed using the limma R package. Functional enrichment was performed using Metascape. A prognostic 5-gene signature was constructed using the LASSO algorithm based on TCGA-LIHC data. Kaplan-Meier survival analysis assessed the association of these genes with clinical outcomes (DFI, DSS, OS, and PFS). In vitro, Huh7 and Hep3B cells were transfected with shRNA for SPP1 knockdown. Cell viability was measured with CCK-8 assays, and migration was assessed with Transwell and wound-healing assays. Protein expression was evaluated via western blotting. RESULTS The analysis of gene expression profiles led to the identification of 11 DEGs associated with immune response, phagocytosis, and cell migration. From these DEGs, the LASSO algorithm identified a 5-DEG signature (MASP1, MASP2, MUC1, TREM1, and SPP1) that was predictive of OS in liver cancer patients. Among the five genes, SPP1 was the most upregulated in cancer samples and was significantly associated with poorer outcomes, including DFI, DSS, OS, and PFS. In vitro experiments confirmed that SPP1 knockdown in Huh7 and Hep3B cells significantly inhibited cancer cell viability and migration. Western blot analysis showed alterations in key proteins, with a reduction in vimentin and Ki-67 and an increase in E-cadherin following SPP1 knockdown. CONCLUSION This study highlights the pivotal effect of SPP1 on HCC development and underscores its potential as a biomarker for the OS of liver cancer patients. The identified DEGs may serve as predictive markers for OS and potential therapeutic targets for HCC treatment.
Collapse
Affiliation(s)
- Jing Liu
- Department of Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zijian Yu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Qiong Liu
- Department of Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Chengyun Dou
- Department of Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Peng Cao
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Xia Xie
- Department of Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
2
|
Zhang Y, Tang J, Jiang C, Yi H, Guang S, Yin G, Wang M. Metabolic reprogramming in cancer and senescence. MedComm (Beijing) 2025; 6:e70055. [PMID: 40046406 PMCID: PMC11879902 DOI: 10.1002/mco2.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 04/01/2025] Open
Abstract
The rising trend in global cancer incidence has caused widespread concern, one of the main reasons being the aging of the global population. Statistical data show that cancer incidence and mortality rates show a clear upward trend with age. Although there is a commonality between dysregulated nutrient sensing, which is one of the main features of aging, and metabolic reprogramming of tumor cells, the specific regulatory relationship is not clear. This manuscript intends to comprehensively analyze the relationship between senescence and tumor metabolic reprogramming; as well as reveal the impact of key factors leading to cellular senescence on tumorigenesis. In addition, this review summarizes the current intervention strategies targeting nutrient sensing pathways, as well as the clinical cases of treating tumors targeting the characteristics of senescence with the existing nanodelivery research strategies. Finally, it also suggests sensible dietary habits for those who wish to combat aging. In conclusion, this review attempts to sort out the link between aging and metabolism and provide new ideas for cancer treatment.
Collapse
Affiliation(s)
- Yuzhu Zhang
- Department of PathologyXiangya HospitalSchool of Basic Medical SciencesCentral South UniversityChangshaChina
| | - Jiaxi Tang
- Department of PathologyXiangya HospitalSchool of Basic Medical SciencesCentral South UniversityChangshaChina
| | - Can Jiang
- Department of PathologyXiangya HospitalSchool of Basic Medical SciencesCentral South UniversityChangshaChina
| | - Hanxi Yi
- Department of PathologyXiangya HospitalSchool of Basic Medical SciencesCentral South UniversityChangshaChina
| | - Shu Guang
- Department of PathologyXiangya HospitalSchool of Basic Medical SciencesCentral South UniversityChangshaChina
| | - Gang Yin
- Department of PathologyXiangya HospitalSchool of Basic Medical SciencesCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| | - Maonan Wang
- Department of PathologyXiangya HospitalSchool of Basic Medical SciencesCentral South UniversityChangshaChina
| |
Collapse
|
3
|
Kennedy BB, Raza M, Mirza S, Rajan AR, Oruji F, Storck MM, Lele SM, Reznicek TE, Li L, Rowley MJ, Wan S, Mohapatra BC, Band H, Band V. ECD co-operates with ERBB2 to promote tumorigenesis through upregulation of unfolded protein response and glycolysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635284. [PMID: 39975123 PMCID: PMC11838291 DOI: 10.1101/2025.01.28.635284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The ecdysoneless (ECD) mRNA and protein are overexpressed in breast cancer (BC), and its overexpression correlates with poor prognosis and short patient survival, particularly in ERBB2/HER2-positive BC. This study investigates the co-operative oncogenic mechanism of ECD and ERBB2 by deriving transgenic mice overexpressing ECD and/or ERBB2 (huHER2) in mammary epithelium under MMTV promoter, as well as human mammary immortal epithelial cell lines (hMECs) overexpressing ECD and/or ERBB2. While huHER2 Tg mice developed more homogenous solid nodular carcinomas, double transgenic mice ( ECD;huHER2 Tg) developed heterogenous and histologically aggressive mammary tumors with basal-like phenotype and epithelial mesenchymal transition (EMT) features, like ECD Tg tumors, resembling more to patient tumors. Importantly, transcriptomic profile of ECD;huHER2 Tg tumors revealed upregulation of two major oncogenic pathways, unfolded protein response (UPR) and glycolysis. Similarly, hMECs expressing both ECD and ERBB2 as compared to single gene expressing cells showed increase in oncogenic traits, and RNA-seq analysis showed a significant upregulation of glycolysis and UPR pathways. ECD is an RNA binding protein, and directly associates with three key glycolytic enzymes ( LDHA , PKM2 and HK2 ) and mRNA of a major UPR regulated gene GRP78, that results in increased mRNA stability. Lastly, we show an increase in glucose uptake and enhanced glycolytic rate in ECD+ERBB2-overexpressing cells as compared to ECD- or ERBB2-overexpressing hMECs. Taken together, our findings support a co-operative role of ECD and ERBB2 in oncogenesis by enhancing two major oncogenic pathways, UPR and glycolysis. Significance This study provides mechanistic insights that overexpression of ECD in ERBB2+ breast cancer patients correlates with shorter patient survival, by identifying direct ECD binding to mRNAs for UPR and glycolysis pathways.
Collapse
|
4
|
Liu S, Zhang X, Wang W, Li X, Sun X, Zhao Y, Wang Q, Li Y, Hu F, Ren H. Metabolic reprogramming and therapeutic resistance in primary and metastatic breast cancer. Mol Cancer 2024; 23:261. [PMID: 39574178 PMCID: PMC11580516 DOI: 10.1186/s12943-024-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024] Open
Abstract
Metabolic alterations, a hallmark of cancer, enable tumor cells to adapt to their environment by modulating glucose, lipid, and amino acid metabolism, which fuels rapid growth and contributes to treatment resistance. In primary breast cancer, metabolic shifts such as the Warburg effect and enhanced lipid synthesis are closely linked to chemotherapy failure. Similarly, metastatic lesions often display distinct metabolic profiles that not only sustain tumor growth but also confer resistance to targeted therapies and immunotherapies. The review emphasizes two major aspects: the mechanisms driving metabolic resistance in both primary and metastatic breast cancer, and how the unique metabolic environments in metastatic sites further complicate treatment. By targeting distinct metabolic vulnerabilities at both the primary and metastatic stages, new strategies could improve the efficacy of existing therapies and provide better outcomes for breast cancer patients.
Collapse
Affiliation(s)
- Shan Liu
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xingda Zhang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenzheng Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Sun
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuqian Zhao
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qi Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingpu Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Fangjie Hu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - He Ren
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
5
|
Cano Á, Yubero ML, Millá C, Puerto-Belda V, Ruz JJ, Kosaka PM, Calleja M, Malumbres M, Tamayo J. Rapid mechanical phenotyping of breast cancer cells based on stochastic intracellular fluctuations. iScience 2024; 27:110960. [PMID: 39493877 PMCID: PMC11530848 DOI: 10.1016/j.isci.2024.110960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/16/2024] [Accepted: 09/11/2024] [Indexed: 11/05/2024] Open
Abstract
Predicting the phenotypic impact of genetic variants and treatments is crucial in cancer genetics and precision oncology. Here, we have developed a noise decorrelation method that enables quantitative phase imaging (QPI) with the capability for label-free noninvasive mapping of intracellular dry mass fluctuations within the millisecond-to-second timescale regime, previously inaccessible due to temporal phase noise. Applied to breast cancer cells, this method revealed regions driven by thermal forces and regions of intense activity fueled by ATP hydrolysis. Intriguingly, as malignancy increases, the cells strategically expand these active regions to satisfy increasing energy demands. We propose parameters encapsulating key information about the spatiotemporal distribution of intracellular fluctuations, enabling precise phenotyping. This technique addresses the need for accurate, rapid functional screening methods in cancer medicine.
Collapse
Affiliation(s)
- Álvaro Cano
- Bionanomechanics Lab, Instituto de Micro y Nanotecnología, IMN-CNM (CSIC), Tres Cantos, Madrid, Spain
| | - Marina L. Yubero
- Bionanomechanics Lab, Instituto de Micro y Nanotecnología, IMN-CNM (CSIC), Tres Cantos, Madrid, Spain
| | - Carmen Millá
- Bionanomechanics Lab, Instituto de Micro y Nanotecnología, IMN-CNM (CSIC), Tres Cantos, Madrid, Spain
| | - Verónica Puerto-Belda
- Bionanomechanics Lab, Instituto de Micro y Nanotecnología, IMN-CNM (CSIC), Tres Cantos, Madrid, Spain
| | - Jose J. Ruz
- Bionanomechanics Lab, Instituto de Micro y Nanotecnología, IMN-CNM (CSIC), Tres Cantos, Madrid, Spain
| | - Priscila M. Kosaka
- Bionanomechanics Lab, Instituto de Micro y Nanotecnología, IMN-CNM (CSIC), Tres Cantos, Madrid, Spain
| | - Montserrat Calleja
- Bionanomechanics Lab, Instituto de Micro y Nanotecnología, IMN-CNM (CSIC), Tres Cantos, Madrid, Spain
| | - Marcos Malumbres
- Cancer Cell Cycle Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Javier Tamayo
- Bionanomechanics Lab, Instituto de Micro y Nanotecnología, IMN-CNM (CSIC), Tres Cantos, Madrid, Spain
| |
Collapse
|
6
|
Jo GH, Jung SA, Yoon JS, Lee JH. Inhibition of Cancer Cell Migration and Invasion In Vitro by Recombinant Tyrosine-Sulfated Haemathrin, A Thrombin Inhibitor. Int J Mol Sci 2024; 25:11822. [PMID: 39519372 PMCID: PMC11546549 DOI: 10.3390/ijms252111822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 10/27/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Thrombin, a key enzyme in the regulation of hemostasis, has been implicated in cancer progression. This study explored the effect of recombinant tyrosine-sulfated haemathrin on cancer cell behavior and signaling pathways compared to wild-type (WT) haemathrin 2. The recombinant proteins, tyrosine-sulfated haemathrin 2 (haemathrin 2S), and WT haemathrin 2 were produced in Escherichia coli and subsequently purified and applied to SKOV3 and MDA-MB-231 cells with and without thrombin stimulation. Cell migration and invasion were assessed using wound healing and Transwell assays, respectively. Haemathrin 2S treatment significantly diminished cell migration and invasion promoted by thrombin in both SKOV3 and MDA-MB-231 cells (p < 0.05). Additionally, haemathrin 2S effectively inhibited thrombin-induced phosphorylation of serine/threonine kinase (Akt) in both cell lines (p < 0.05), while WT haemathrin 2 had this effect only in MDA-MB-231 cells. Furthermore, haemathrin 2S significantly reduced thrombin-activated phosphorylation of extracellular signal-regulated kinases (ERK) and p38 in both cell lines (p < 0.05) and reversed E/N-cadherin expression in thrombin-treated MDA-MB-231 cells (p < 0.05), which were not observed with WT haemathrin 2. Overall, haemathrin 2S was more effective than WT haemathrin 2 in reducing cancer cell migration and invasion, indicating that targeting thrombin with sulfated haemathrin is a promising strategy for cancer therapy. However, further in vivo studies are needed to confirm these results.
Collapse
Affiliation(s)
- Guk Heui Jo
- Department of Cell Biology, Myung-Gok Eye Research Institute, Konyang University College of Medicine, Daejeon 35365, Republic of Korea; (G.H.J.); (S.A.J.)
| | - Sun Ah Jung
- Department of Cell Biology, Myung-Gok Eye Research Institute, Konyang University College of Medicine, Daejeon 35365, Republic of Korea; (G.H.J.); (S.A.J.)
| | - Jin Sook Yoon
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Joon H. Lee
- Department of Cell Biology, Myung-Gok Eye Research Institute, Konyang University College of Medicine, Daejeon 35365, Republic of Korea; (G.H.J.); (S.A.J.)
| |
Collapse
|
7
|
Pujana-Vaquerizo M, Bozal-Basterra L, Carracedo A. Metabolic adaptations in prostate cancer. Br J Cancer 2024; 131:1250-1262. [PMID: 38969865 PMCID: PMC11473656 DOI: 10.1038/s41416-024-02762-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/07/2024] Open
Abstract
Prostate cancer is one of the most commonly diagnosed cancers in men and is a major cause of cancer-related deaths worldwide. Among the molecular processes that contribute to this disease, the weight of metabolism has been placed under the limelight in recent years. Tumours exhibit metabolic adaptations to comply with their biosynthetic needs. However, metabolites also play an important role in supporting cell survival in challenging environments or remodelling the tumour microenvironment, thus being recognized as a hallmark in cancer. Prostate cancer is uniquely driven by androgen receptor signalling, and this knowledge has also influenced the paths of cancer metabolism research. This review provides a comprehensive perspective on the metabolic adaptations that support prostate cancer progression beyond androgen signalling, with a particular focus on tumour cell intrinsic and extrinsic pathways.
Collapse
Affiliation(s)
- Mikel Pujana-Vaquerizo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Laura Bozal-Basterra
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain.
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain.
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain.
- Traslational Prostate Cancer Research Lab, CIC bioGUNE-Basurto, Biobizkaia Health Research Institute, Baracaldo, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
8
|
Singh T, Sharma K, Jena L, Kaur P, Singh S, Munshi A. Mitochondrial bioenergetics of breast cancer. Mitochondrion 2024; 79:101951. [PMID: 39218051 DOI: 10.1016/j.mito.2024.101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Breast cancer cells exhibit metabolic heterogeneity based on tumour aggressiveness. Glycolysis and mitochondrial respiration are two major metabolic pathways for ATP production. The oxygen flux, oxygen tension, proton leakage, protonmotive force, inner mitochondrial membrane potential, ECAR and electrochemical proton gradient maintain metabolic homeostasis, ATP production, ROS generation, heat dissipation, and carbon flow and are referred to as "sub-domains" of mitochondrial bioenergetics. Tumour aggressiveness is influenced by these mechanisms, especially when breast cancer cells undergo metastasis. These physiological parameters for healthy mitochondria are as crucial as energy demands for tumour growth and metastasis. The instant energy demands are already elucidated under Warburg effects, while these parameters may have dual functionality to maintain cellular bioenergetics and cellular health. The tumour cell might maintain these mitochondrial parameters for mitochondrial health or avoid apoptosis, while energy production could be a second priority. This review focuses explicitly on the crosstalk between metabolic domains and the utilisation of these parameters by breast cancer cells for their progression. Some major interventions are discussed based on mitochondrial bioenergetics that need further investigation. This review highlights the pathophysiological significance of mitochondrial bioenergetics and the regulation of its sub-domains by breast tumour cells for uncontrolled proliferation.
Collapse
Affiliation(s)
- Tashvinder Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Kangan Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Laxmipriya Jena
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Prabhsimran Kaur
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India.
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India.
| |
Collapse
|
9
|
Abbott KL, Subudhi S, Ferreira R, Gültekin Y, Steinbuch SC, Munim MB, Honeder SE, Kumar AS, Ramesh DL, Wu M, Hansen JA, Sivanand S, Riedmayr LM, Duquette M, Ali A, Henning N, Shevzov-Zebrun A, Gourgue F, Barbeau AM, Waite M, Kunchok T, Ferraro GB, Do BT, Spanoudaki V, Sánchez-Rivera FJ, Jin X, Church GM, Jain RK, Vander Heiden MG. Site of breast cancer metastasis is independent of single nutrient levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.616714. [PMID: 39484531 PMCID: PMC11527034 DOI: 10.1101/2024.10.24.616714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Cancer metastasis is a major contributor to patient morbidity and mortality1, yet the factors that determine the organs where cancers can metastasize are incompletely understood. In this study, we quantify the absolute levels of over 100 nutrients available across multiple tissues in mice and investigate how this relates to the ability of breast cancer cells to grow in different organs. We engineered breast cancer cells with broad metastatic potential to be auxotrophic for specific nutrients and assessed their ability to colonize different organs. We then asked how tumor growth in different tissues relates to nutrient availability and tumor biosynthetic activity. We find that single nutrients alone do not define the sites where breast cancer cells can grow as metastases. Additionally, we identify purine synthesis as a requirement for tumor growth and metastasis across many tissues and find that this phenotype is independent of tissue nucleotide availability or tumor de novo nucleotide synthesis activity. These data suggest that a complex interplay of multiple nutrients within the microenvironment dictates potential sites of metastatic cancer growth, and highlights the interdependence between extrinsic environmental factors and intrinsic cellular properties in influencing where breast cancer cells can grow as metastases.
Collapse
Affiliation(s)
- Keene L. Abbott
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sonu Subudhi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Raphael Ferreira
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Department of Genetics, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Yetiş Gültekin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sophie C. Steinbuch
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Muhammad Bin Munim
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sophie E. Honeder
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, Vienna, Austria
| | - Ashwin S. Kumar
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Diya L. Ramesh
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michelle Wu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jacob A. Hansen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sharanya Sivanand
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lisa M. Riedmayr
- Harvard Medical School, Department of Genetics, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Mark Duquette
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ahmed Ali
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicole Henning
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anna Shevzov-Zebrun
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Florian Gourgue
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anna M. Barbeau
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Millenia Waite
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Tenzin Kunchok
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Gino B. Ferraro
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Brian T. Do
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Virginia Spanoudaki
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Francisco J. Sánchez-Rivera
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xin Jin
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
| | - George M. Church
- Harvard Medical School, Department of Genetics, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
- Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Rakesh K. Jain
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Matthew G. Vander Heiden
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
10
|
Romero-Moreno R, Czowski BJ, Harris L, Kuehn JF, White KA. Intracellular pH differentially regulates transcription of metabolic and signaling pathways in normal epithelial cells. J Biol Chem 2024; 300:107658. [PMID: 39128712 PMCID: PMC11489351 DOI: 10.1016/j.jbc.2024.107658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024] Open
Abstract
Intracellular pH (pHi) dynamics regulate normal cell function, and dysregulated pHi dynamics is an emerging hallmark of cancer (constitutively increased pHi) and neurodegeneration (constitutively decreased pHi). However, the molecular mechanisms by which pHi dynamics regulate cell biology are poorly understood. Here, we discovered that altering pHi in normal human breast epithelial cells triggers global transcriptional changes. We identified 176 genes differentially regulated by pHi, with pHi-dependent genes clustering in signaling and glycolytic pathways. Using various normal epithelial cell models, we showed pH-dependent Notch homolog 1 protein expression, with increased protein abundance at high pHi. This resulted in pH-dependent downstream signaling, with increased Notch homolog 1 signaling at high pHi. We also found that high pHi increased the expression of glycolytic enzymes and regulators of pyruvate fate, including lactate dehydrogenase and pyruvate dehydrogenase kinase. These transcriptional changes were sufficient to alter lactate production, with high pHi shifting these normal epithelial cells toward a glycolytic metabolism and increasing lactate production. Thus, pHi dynamics transcriptionally regulate signaling and metabolic pathways in normal epithelial cells. Our data reveal new molecular regulators of pHi-dependent biology and a role for increased pHi in driving the acquisition of cancer-associated signaling and metabolic changes in normal human epithelial cells.
Collapse
Affiliation(s)
- Ricardo Romero-Moreno
- Harper Cancer Research Institute, South Bend, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Brandon J Czowski
- Harper Cancer Research Institute, South Bend, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Lindsey Harris
- Harper Cancer Research Institute, South Bend, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Jessamine F Kuehn
- Harper Cancer Research Institute, South Bend, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Katharine A White
- Harper Cancer Research Institute, South Bend, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA.
| |
Collapse
|
11
|
Wang X, Liu X, Xiao R, Fang Y, Zhou F, Gu M, Luo X, Jiang D, Tang Y, You L, Zhao Y. Histone lactylation dynamics: Unlocking the triad of metabolism, epigenetics, and immune regulation in metastatic cascade of pancreatic cancer. Cancer Lett 2024; 598:217117. [PMID: 39019144 DOI: 10.1016/j.canlet.2024.217117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/30/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Cancer cells rewire metabolism to sculpt the immune tumor microenvironment (TME) and propel tumor advancement, which intricately tied to post-translational modifications. Histone lactylation has emerged as a novel player in modulating protein functions, whereas little is known about its pathological role in pancreatic ductal adenocarcinoma (PDAC) progression. Employing a multi-omics approach encompassing bulk and single-cell RNA sequencing, metabolomics, ATAC-seq, and CUT&Tag methodologies, we unveiled the potential of histone lactylation in prognostic prediction, patient stratification and TME characterization. Notably, "LDHA-H4K12la-immuno-genes" axis has introduced a novel node into the regulatory framework of "metabolism-epigenetics-immunity," shedding new light on the landscape of PDAC progression. Furthermore, the heightened interplay between cancer cells and immune counterparts via Nectin-2 in liver metastasis with elevated HLS unraveled a positive feedback loop in driving immune evasion. Simultaneously, immune cells exhibited altered HLS and autonomous functionality across the metastatic cascade. Consequently, the exploration of innovative combination strategies targeting the metabolism-epigenetics-immunity axis holds promise in curbing distant metastasis and improving survival prospects for individuals grappling with challenges of PDAC.
Collapse
Affiliation(s)
- Xing Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| | - Xiaohong Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| | - Ruiling Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| | - Yuan Fang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| | - Feihan Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| | - Minzhi Gu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| | - Xiyuan Luo
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| | - Decheng Jiang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| | - Yuemeng Tang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, PR China.
| |
Collapse
|
12
|
Chen X, Liu W, Li T, Xia W, Chen D. Glucose-induced RYBP suppresses tumor cell aerobic glycolysis and migration. Biochem Biophys Res Commun 2024; 719:150089. [PMID: 38735205 DOI: 10.1016/j.bbrc.2024.150089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024]
Abstract
RYBP (Ring 1 and YY1 binding protein) has been frequently reported to play an important role during body development, stem cell differentiation, apoptosis and tumorigenesis, but whether RYBP carries out additional functions remains mysterious. Here, we demonstrated that RYBP protein levels elevate with increasing glucose concentration in cell culture medium in human tumorigenic cell lines, but an opposite trend was observed in non-tumorigenic cells. Mechanistic exploration disclosed that glucose inhibits polyubiquitination and proteasomal degradation, leading to RYBP stabilization in tumor cells. Further study showed that RYBP inhibits the glycolysis of tumor cells, as both extracellular acidification rate (ECAR) and lactate production increase when RYBP is knocked down, and decrease when RYBP is over-expressed, and this effect is unrelated to the glucose uptake ability of tumor cells. The functional study showed that RYBP is involved in the regulation of glucose on tumor cell migration. Compared to low glucose culture and their wildtypes, high glucose significantly enhanced tumor cell migration in RYBP knockdown or knockout tumor cells. Taken together, our current study uncovered a previously unknown function of RYBP in tumor metabolism, and this finding will enhance the exploration of the interplay between RYBP and nutrients during tumor cell metabolic reprogramming.
Collapse
Affiliation(s)
- Xiuyuan Chen
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Weijia Liu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Tangai Li
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Wanping Xia
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Deng Chen
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
13
|
Liu L, Chen J, Ye F, Chu F, Rao C, Wang Y, Yan Y, Wu J. Prognostic value of oxidative phosphorylation-related genes in hepatocellular carcinoma. Discov Oncol 2024; 15:258. [PMID: 38960931 PMCID: PMC11222354 DOI: 10.1007/s12672-024-01129-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024] Open
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is the most prevalent malignancies worldwide. Recently, oxidative phosphorylation (OXPHOS) has received extensive concern as an emerging target in antitumor therapy. However, the OXPHOS-involved underlying genes and clinical utilization in HCC remain worth exploring. The present research aimed to create an OXPHOS-relevant signature in HCC. PATIENTS AND METHODS In this study, the prognostic signature genes linked with OXPHOS were identified, and prognostic models were built using least absolute shrinkage and selection operator (LASSO) cox regression analysis. Furthermore, the combination study of immune microenvironment and signature genes looked into the involvement of immune cells in signature-based genes in HCC. Following that, chemotherapeutic drug sensitivity and immunotherapy analysis was implemented to predict clinical efficacy in HCC patients. Finally, clinical samples were collected to measure the expression of OXPHOS-related signature genes. RESULTS Following a series of screens, six prognostic signature genes related with OXPHOS were identified: MRPS23, MPV17, MAPK3, IGF2BP2, CDK5, and IDH2, on which a risk model was built. The findings revealed a significant drop in the survival rate of HCC patients as their risk score increased. Meanwhile, independent prognostic study demonstrated that the risk score could accurately identify HCC patients. Immuno-microenvironmental correlation research suggested that the prognostic characteristics could serve as a reference index for both immunotherapy and chemotherapy. Finally, RT-qPCR exhibited a trend in signature gene expression that was consistent with the results. CONCLUSION In this study, a total of six prognostic genes associated with OXPHOS were selected and a prognostic model was constructed, providing an essential reference for the study of OXPHOS in HCC.
Collapse
Affiliation(s)
- Luzheng Liu
- Department of Interventional Radiology and Vascular Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan Province, China
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China
| | - Jiacheng Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China
| | - Fei Ye
- Department of Blood Cell Therapy, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan Province, China
| | - Fengran Chu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China
| | - Chaoluan Rao
- Department of Nursing, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan Province, China
| | - Yong Wang
- Department of Interventional Radiology and Vascular Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan Province, China
| | - Yanggang Yan
- Department of Interventional Radiology and Vascular Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan Province, China.
| | - Jincai Wu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China.
| |
Collapse
|
14
|
Filipe EC, Velayuthar S, Philp A, Nobis M, Latham SL, Parker AL, Murphy KJ, Wyllie K, Major GS, Contreras O, Mok ETY, Enriquez RF, McGowan S, Feher K, Quek L, Hancock SE, Yam M, Tran E, Setargew YFI, Skhinas JN, Chitty JL, Phimmachanh M, Han JZR, Cadell AL, Papanicolaou M, Mahmodi H, Kiedik B, Junankar S, Ross SE, Lam N, Coulson R, Yang J, Zaratzian A, Da Silva AM, Tayao M, Chin IL, Cazet A, Kansara M, Segara D, Parker A, Hoy AJ, Harvey RP, Bogdanovic O, Timpson P, Croucher DR, Lim E, Swarbrick A, Holst J, Turner N, Choi YS, Kabakova IV, Philp A, Cox TR. Tumor Biomechanics Alters Metastatic Dissemination of Triple Negative Breast Cancer via Rewiring Fatty Acid Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307963. [PMID: 38602451 PMCID: PMC11186052 DOI: 10.1002/advs.202307963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/11/2024] [Indexed: 04/12/2024]
Abstract
In recent decades, the role of tumor biomechanics on cancer cell behavior at the primary site has been increasingly appreciated. However, the effect of primary tumor biomechanics on the latter stages of the metastatic cascade, such as metastatic seeding of secondary sites and outgrowth remains underappreciated. This work sought to address this in the context of triple negative breast cancer (TNBC), a cancer type known to aggressively disseminate at all stages of disease progression. Using mechanically tuneable model systems, mimicking the range of stiffness's typically found within breast tumors, it is found that, contrary to expectations, cancer cells exposed to softer microenvironments are more able to colonize secondary tissues. It is shown that heightened cell survival is driven by enhanced metabolism of fatty acids within TNBC cells exposed to softer microenvironments. It is demonstrated that uncoupling cellular mechanosensing through integrin β1 blocking antibody effectively causes stiff primed TNBC cells to behave like their soft counterparts, both in vitro and in vivo. This work is the first to show that softer tumor microenvironments may be contributing to changes in disease outcome by imprinting on TNBC cells a greater metabolic flexibility and conferring discrete cell survival advantages.
Collapse
|
15
|
Abbott KL, Ali A, Reinfeld BI, Deik A, Subudhi S, Landis MD, Hongo RA, Young KL, Kunchok T, Nabel CS, Crowder KD, Kent JR, Madariaga MLL, Jain RK, Beckermann KE, Lewis CA, Clish CB, Muir A, Rathmell WK, Rathmell J, Vander Heiden MG. Metabolite profiling of human renal cell carcinoma reveals tissue-origin dominance in nutrient availability. eLife 2024; 13:RP95652. [PMID: 38787918 PMCID: PMC11126308 DOI: 10.7554/elife.95652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024] Open
Abstract
The tumor microenvironment is a determinant of cancer progression and therapeutic efficacy, with nutrient availability playing an important role. Although it is established that the local abundance of specific nutrients defines the metabolic parameters for tumor growth, the factors guiding nutrient availability in tumor compared to normal tissue and blood remain poorly understood. To define these factors in renal cell carcinoma (RCC), we performed quantitative metabolomic and comprehensive lipidomic analyses of tumor interstitial fluid (TIF), adjacent normal kidney interstitial fluid (KIF), and plasma samples collected from patients. TIF nutrient composition closely resembles KIF, suggesting that tissue-specific factors unrelated to the presence of cancer exert a stronger influence on nutrient levels than tumor-driven alterations. Notably, select metabolite changes consistent with known features of RCC metabolism are found in RCC TIF, while glucose levels in TIF are not depleted to levels that are lower than those found in KIF. These findings inform tissue nutrient dynamics in RCC, highlighting a dominant role of non-cancer-driven tissue factors in shaping nutrient availability in these tumors.
Collapse
Affiliation(s)
- Keene L Abbott
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Ahmed Ali
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Bradley I Reinfeld
- Medical Scientist Training Program, Vanderbilt UniversityNashvilleUnited States
- Department of Medicine, Vanderbilt University Medical Center (VUMC)NashvilleUnited States
- Graduate Program in Cancer Biology, Vanderbilt UniversityNashvilleUnited States
| | - Amy Deik
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Sonu Subudhi
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical SchoolBostonUnited States
| | - Madelyn D Landis
- Department of Medicine, Vanderbilt University Medical Center (VUMC)NashvilleUnited States
| | - Rachel A Hongo
- Department of Medicine, Vanderbilt University Medical Center (VUMC)NashvilleUnited States
| | - Kirsten L Young
- Department of Medicine, Vanderbilt University Medical Center (VUMC)NashvilleUnited States
| | - Tenzin Kunchok
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Christopher S Nabel
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Medicine, Massachusetts General HospitalBostonUnited States
- Harvard Medical SchoolBostonUnited States
| | - Kayla D Crowder
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Johnathan R Kent
- Department of Surgery, University of Chicago MedicineChicagoUnited States
| | | | - Rakesh K Jain
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical SchoolBostonUnited States
| | - Kathryn E Beckermann
- Department of Medicine, Vanderbilt University Medical Center (VUMC)NashvilleUnited States
| | - Caroline A Lewis
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Clary B Clish
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Alexander Muir
- Ben May Department of Cancer Research, University of ChicagoChicagoUnited States
| | - W Kimryn Rathmell
- Department of Medicine, Vanderbilt University Medical Center (VUMC)NashvilleUnited States
- Vanderbilt Center for Immunobiology and Vanderbilt-Ingram Cancer Center, VUMCNashvilleUnited States
| | - Jeffrey Rathmell
- Vanderbilt Center for Immunobiology and Vanderbilt-Ingram Cancer Center, VUMCNashvilleUnited States
- Department of Pathology, Microbiology and Immunology, VUMCNashvilleUnited States
| | - Matthew G Vander Heiden
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
- Dana-Farber Cancer InstituteBostonUnited States
| |
Collapse
|
16
|
Köktürk S, Doğan S, Yılmaz CE, Cetinkol Y, Mutlu O. Expression of brain-derived neurotrophic factor and formation of migrasome increases in the glioma cells induced by the adipokinetic hormone. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20231337. [PMID: 38775506 PMCID: PMC11110965 DOI: 10.1590/1806-9282.20231337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 01/28/2024] [Indexed: 05/24/2024]
Abstract
OBJECTIVE It has been previously shown that brain-derived neurotrophic factor is linked with various types of cancer. Brain-derived neurotrophic factor is found to be highly expressed in multiple human cancers and associated with tumor growth, invasion, and metastasis. Adipokinetic hormones are functionally related to the vertebrate glucagon, as they have similar functionalities that manage the nutrient-dependent secretion of these two hormones. Migrasomes are new organelles that contain numerous small vesicles, which aid in transmitting signals between the migrating cells. Therefore, the aim of this study was to investigate the effects of Anax imperator adipokinetic hormone on brain-derived neurotrophic factor expression and ultrastructure of cells in the C6 glioma cell line. METHODS The rat C6 glioma cells were treated with concentrations of 5 and 10 Anax imperator adipokinetic hormone for 24 h. The effects of the Anax imperator adipokinetic hormone on the migrasome formation and brain-derived neurotrophic factor expression were analyzed using immunocytochemistry and transmission electron microscope. RESULTS The rat C6 glioma cells of the 5 and 10 μM Anax imperator adipokinetic hormone groups showed significantly high expressions of brain-derived neurotrophic factor and migrasomes numbers, compared with the control group. CONCLUSION A positive correlation was found between the brain-derived neurotrophic factor expression level and the formation of migrasome, which indicates that the increased expression of brain-derived neurotrophic factor and the number of migrasomes may be involved to metastasis of the rat C6 glioma cell line induced by the Anax imperator adipokinetic hormone. Therefore, the expression of brain-derived neurotrophic factor and migrasome formation may be promising targets for preventing tumor proliferation, invasion, and metastasis in glioma.
Collapse
Affiliation(s)
- Sibel Köktürk
- Istanbul University, Faculty of Medicine, Department of Histology and Embryology – İstanbul, Turkey
| | - Sibel Doğan
- Istanbul University, Faculty of Medicine, Department of Histology and Embryology – İstanbul, Turkey
| | - Cansu Eda Yılmaz
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Pathology – İstanbul, Turkey
| | - Yeliz Cetinkol
- Afyonkarahisar Health Sciences University, Faculty of Medicine, Department of Medical Microbiology – Afyonkarahisar, Turkey
| | - Oğuz Mutlu
- Kocaeli University, Faculty of Medicine, Department of Pharmacology – İzmit, Turkey
| |
Collapse
|
17
|
Herst P, Carson G, Lewthwaite D, Eccles D, Schmidt A, Wilson A, Grasso C, O’Sullivan D, Neuzil J, McConnell M, Berridge M. Residual OXPHOS is required to drive primary and metastatic lung tumours in an orthotopic breast cancer model. Front Oncol 2024; 14:1362786. [PMID: 38751813 PMCID: PMC11094293 DOI: 10.3389/fonc.2024.1362786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/09/2024] [Indexed: 05/18/2024] Open
Abstract
Background Fast adaptation of glycolytic and mitochondrial energy pathways to changes in the tumour microenvironment is a hallmark of cancer. Purely glycolytic ρ0 tumour cells do not form primary tumours unless they acquire healthy mitochondria from their micro-environment. Here we explored the effects of severely compromised respiration on the metastatic capability of 4T1 mouse breast cancer cells. Methods 4T1 cell lines with different levels of respiratory capacity were generated; the Seahorse extracellular flux analyser was used to evaluate oxygen consumption rates, fluorescent confocal microscopy to assess the number of SYBR gold-stained mitochondrial DNA nucleoids, and the presence of the ATP5B protein in the cytoplasm and fluorescent in situ nuclear hybridization was used to establish ploidy. MinION nanopore RNA sequence analysis was used to compare mitochondrial DNA transcription between cell lines. Orthotopic injection was used to determine the ability of cells to metastasize to the lungs of female Balb/c mice. Results OXPHOS-deficient ATP5B-KO3.1 cells did not generate primary tumours. Severely OXPHOS compromised ρ0D5 cells generated both primary tumours and lung metastases. Cells generated from lung metastasis of both OXPHOS-competent and OXPHOS-compromised cells formed primary tumours but no metastases when re-injected into mice. OXPHOS-compromised cells significantly increased their mtDNA content, but this did not result in increased OXPHOS capacity, which was not due to decreased mtDNA transcription. Gene set enrichment analysis suggests that certain cells derived from lung metastases downregulate their epithelial-to-mesenchymal related pathways. Conclusion In summary, OXPHOS is required for tumorigenesis in this orthotopic mouse breast cancer model but even very low levels of OXPHOS are sufficient to generate both primary tumours and lung metastases.
Collapse
Affiliation(s)
- Patries Herst
- Department of Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
- Department of Radiation Therapy, University of Otago, Wellington, New Zealand
| | - Georgia Carson
- Department of Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Danielle Lewthwaite
- Department of Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
- School of Biological Sciences , Victoria University of Wellington, Wellington, New Zealand
| | - David Eccles
- Department of Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Alfonso Schmidt
- Department of Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Andrew Wilson
- Department of Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Carole Grasso
- Department of Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - David O’Sullivan
- Department of Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Jiri Neuzil
- Institute of Biotechnology of the Czech Academy of Sciences, Prague-West, Czechia
- School of Pharmacy and Medical Science, Griffith University, Southport, QLD, Australia
| | - Melanie McConnell
- School of Biological Sciences , Victoria University of Wellington, Wellington, New Zealand
| | - Michael Berridge
- Department of Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
18
|
Abbott KL, Ali A, Reinfeld BI, Deik A, Subudhi S, Landis MD, Hongo RA, Young KL, Kunchok T, Nabel CS, Crowder KD, Kent JR, Madariaga MLL, Jain RK, Beckermann KE, Lewis CA, Clish CB, Muir A, Rathmell WK, Rathmell JC, Vander Heiden MG. Metabolite profiling of human renal cell carcinoma reveals tissue-origin dominance in nutrient availability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.24.573250. [PMID: 38187626 PMCID: PMC10769456 DOI: 10.1101/2023.12.24.573250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The tumor microenvironment is a determinant of cancer progression and therapeutic efficacy, with nutrient availability playing an important role. Although it is established that the local abundance of specific nutrients defines the metabolic parameters for tumor growth, the factors guiding nutrient availability in tumor compared to normal tissue and blood remain poorly understood. To define these factors in renal cell carcinoma (RCC), we performed quantitative metabolomic and comprehensive lipidomic analyses of tumor interstitial fluid (TIF), adjacent normal kidney interstitial fluid (KIF), and plasma samples collected from patients. TIF nutrient composition closely resembles KIF, suggesting that tissue-specific factors unrelated to the presence of cancer exert a stronger influence on nutrient levels than tumor-driven alterations. Notably, select metabolite changes consistent with known features of RCC metabolism are found in RCC TIF, while glucose levels in TIF are not depleted to levels that are lower than those found in KIF. These findings inform tissue nutrient dynamics in RCC, highlighting a dominant role of non-cancer driven tissue factors in shaping nutrient availability in these tumors.
Collapse
Affiliation(s)
- Keene L. Abbott
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ahmed Ali
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bradley I. Reinfeld
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - Amy Deik
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sonu Subudhi
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Madelyn D. Landis
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Rachel A. Hongo
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Kirsten L. Young
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Tenzin Kunchok
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Christopher S. Nabel
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Johnathan R. Kent
- Department of Surgery, University of Chicago Medicine, Chicago, IL, USA
| | | | - Rakesh K. Jain
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kathryn E. Beckermann
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Caroline A. Lewis
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Present address: UMass Chan Medical School, Program in Molecular Medicine, Worcester, MA, USA
| | | | - Alexander Muir
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL, USA
| | - W. Kimryn Rathmell
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
- Vanderbilt Center for Immunobiology and Vanderbilt-Ingram Cancer Center, VUMC, Nashville, TN, USA
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology and Immunology, VUMC, Nashville, TN, USA
- Vanderbilt Center for Immunobiology and Vanderbilt-Ingram Cancer Center, VUMC, Nashville, TN, USA
| | - Matthew G. Vander Heiden
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
19
|
Khorsand M, Mostafavi-Pour Z, Tahmasebi A, Omidvar Kordshouli S, Mousavi P. Construction of lncRNA/Pseudogene-miRNA Network Based on In Silico Approaches for Glycolysis Pathway to Identify Prostate Adenocarcinoma-Related Potential Biomarkers. Appl Biochem Biotechnol 2024; 196:2332-2355. [PMID: 37542606 DOI: 10.1007/s12010-023-04617-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 08/07/2023]
Abstract
LncRNAs, pseudogenes, and miRNAs participate a fundamental function in tumorigenesis, metabolism, and invasion of cancer cells, although their regulation of tumor glycolysis in prostate adenocarcinoma (PRAD) is thoroughly not well studied. In this study, we applied transcriptomic, proteomic, and medical information to identify glycolysis-related key genes and modules associated with PRAD. Then, the glycolysis-related lncRNA/lncRNAs/pseudogenes-miRNA-mRNA network was constructed. Analysis of DNA methylation status and expression data determined a DNA methylation-dysregulated three-DE-mRNAs signature for predicting diagnosis, ANGPTL4, GNE, and HSPA in PRAD patients and healthy control. Several lncRNAs/pseudogenes, significantly correlated with the overall survival PVT1, CA5BP1, MIRLET7BHG, SNHG12, and ZNF37BP and disease-free survival status, MALAT1, GUSBP11, MIRLET7BHG, and SNHG1, of patients with PRAD were determined. The methylation profile of DE-lncRNA/pseudogenes was significantly proper for predicting PRAD prognostic model. The transcription level of 6 DE-mRNA ANGPTL4, QSOX1, BIK, CLDN3, DDIT4, and TFF3 was correlated with cancer-related fibroblast infiltration in PRAD. The mutated form of 7 mRNAs, COL5A1, IDH1, HK2, DDIT4, GNE, and QSOX1, was associated with PRAD. In addition to the glycolysis pathway, DE-RNAs play regulatory roles on several pathways, including DNA damage, RTK, cell cycle, RAS/MAPK, TSC/mTOR and PI3K/AKT, AR hormone, and EMT. Overall, our study improves our knowledge of the relation between lncRNAs/pseudogenes and miRNA related to glycolysis and PRAD pathogenesis.
Collapse
Affiliation(s)
- Marjan Khorsand
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Laboratory Science, Paramedical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zohreh Mostafavi-Pour
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
20
|
Chang F, Liu H, Wan J, Gao Y, Wang Z, Zhang L, Feng Q. Construction and Validation of a Prognostic Risk Prediction Model for Lactate Metabolism-Related lncRNA in Endometrial Cancer. Biochem Genet 2024; 62:741-760. [PMID: 37423972 DOI: 10.1007/s10528-023-10443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
Endometrial cancer (EC) is a common group of malignant epithelial tumors that mainly occur in the female endometrium. Lactate is a key regulator of signal pathways in normal and malignant tissues. However, there is still no research on lactate metabolism-related lncRNA in EC. Here, we intended to establish a prognostic risk model for EC based on lactate metabolism-related lncRNA to forecast the prognosis of EC patients. First, we found that 38 lactate metabolism-associated lncRNAs were significantly overall survival through univariate Cox regression analysis. Using minimum absolute contraction and selection operator (LASSO) regression analysis and multivariate Cox regression analysis, six lactate metabolism-related lncRNAs were established as independent predictor in EC patients and were used to establish a prognostic risk signature. We next used multifactorial COX regression analysis and receiver operating characteristic (ROC) curve analysis to confirm that risk score was an independent prognostic factor of overall patient survival. The survival time of patients with EC in different high-risk populations was obviously related to clinicopathological factors. In addition, lactate metabolism-related lncRNA in high-risk population participated in multiple aspects of EC malignant progress through Gene Set Enrichment Analysis, Genomes pathway and Kyoto Encyclopedia of Genes and Gene Ontology. And risk scores were strongly associated with tumor mutation burden, immunotherapy response and microsatellite instability. Finally, we chose a lncRNA SRP14-AS1 to validate the model we have constructed. Interestingly, we observed that the expression degree of SRP14-AS1 was lower in tumor tissues of EC patients than in normal tissues, which was consistent with our findings in the TCGA database. In conclusion, our study constructed a prognostic risk model through lactate metabolism-related lncRNA and validated the model, confirming that the model can be used to predict the prognosis of EC patients and providing a molecular analysis of potential prognostic lncRNA for EC.
Collapse
Affiliation(s)
- Fenghua Chang
- Department of Obstetrics and Gynecology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Hongyang Liu
- Department of Obstetrics and Gynecology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Junhu Wan
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ya Gao
- Department of Obstetrics and Gynecology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhiting Wang
- Department of Obstetrics and Gynecology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Lindong Zhang
- Department of Obstetrics and Gynecology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Quanling Feng
- Department of Obstetrics and Gynecology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
21
|
Leineweber WD, Rowell MZ, Ranamukhaarachchi S, Walker A, Li Y, Villazon J, Farrera AM, Hu Z, Yang J, Shi L, Fraley SI. Divergent iron-regulatory states contribute to heterogeneity in breast cancer aggressiveness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.23.546216. [PMID: 37425829 PMCID: PMC10327122 DOI: 10.1101/2023.06.23.546216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Primary tumors with similar mutational profiles can progress to vastly different outcomes where transcriptional state, rather than mutational profile, predicts prognosis. A key challenge is to understand how distinct tumor cell states are induced and maintained. In triple negative breast cancer cells, invasive behaviors and aggressive transcriptional signatures linked to poor patient prognosis can emerge in response to contact with collagen type I. Herein, collagen-induced migration heterogeneity within a TNBC cell line was leveraged to identify transcriptional programs associated with invasive versus non-invasive phenotypes and implicate molecular switches. Phenotype-guided sequencing revealed that invasive cells upregulate iron uptake and utilization machinery, anapleurotic TCA cycle genes, actin polymerization promoters, and a distinct signature of Rho GTPase activity and contractility regulating genes. The non-invasive cell state is characterized by actin and iron sequestration modules along with glycolysis gene expression. These unique tumor cell states are evident in patient tumors and predict divergent outcomes for TNBC patients. Glucose tracing confirmed that non-invasive cells are more glycolytic than invasive cells, and functional studies in cell lines and PDO models demonstrated a causal relationship between phenotype and metabolic state. Mechanistically, the OXPHOS dependent invasive state resulted from transient HO-1 upregulation triggered by contact with dense collagen that reduced heme levels and mitochondrial chelatable iron levels. This induced expression of low cytoplasmic iron response genes regulated by ACO1/IRP1. Knockdown or inhibition of HO-1, ACO1/IRP1, MRCK, or OXPHOS abrogated invasion. These findings support an emerging theory that heme and iron flux serve as important regulators of TNBC aggressiveness.
Collapse
|
22
|
Yang J, Shay C, Saba NF, Teng Y. Cancer metabolism and carcinogenesis. Exp Hematol Oncol 2024; 13:10. [PMID: 38287402 PMCID: PMC10826200 DOI: 10.1186/s40164-024-00482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/22/2024] [Indexed: 01/31/2024] Open
Abstract
Metabolic reprogramming is an emerging hallmark of cancer cells, enabling them to meet increased nutrient and energy demands while withstanding the challenging microenvironment. Cancer cells can switch their metabolic pathways, allowing them to adapt to different microenvironments and therapeutic interventions. This refers to metabolic heterogeneity, in which different cell populations use different metabolic pathways to sustain their survival and proliferation and impact their response to conventional cancer therapies. Thus, targeting cancer metabolic heterogeneity represents an innovative therapeutic avenue with the potential to overcome treatment resistance and improve therapeutic outcomes. This review discusses the metabolic patterns of different cancer cell populations and developmental stages, summarizes the molecular mechanisms involved in the intricate interactions within cancer metabolism, and highlights the clinical potential of targeting metabolic vulnerabilities as a promising therapeutic regimen. We aim to unravel the complex of metabolic characteristics and develop personalized treatment approaches to address distinct metabolic traits, ultimately enhancing patient outcomes.
Collapse
Affiliation(s)
- Jianqiang Yang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Chloe Shay
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
23
|
Mosier JA, Fabiano ED, Ludolph CM, White AE, Reinhart-King CA. Confinement primes cells for faster migration by polarizing active mitochondria. NANOSCALE ADVANCES 2023; 6:209-220. [PMID: 38125598 PMCID: PMC10729874 DOI: 10.1039/d3na00478c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/07/2023] [Indexed: 12/23/2023]
Abstract
Mechanical cues in the tumor microenvironment interplay with internal cellular processes to control cancer cell migration. Microscale pores present in tumor tissue confer varying degrees of confinement on migrating cells, increasing matrix contact and inducing cytoskeletal rearrangement. Previously, we observed that increased collagen matrix contact significantly increased cell migration speed and cell-induced strains within the matrix. However, the effects of this confinement on future cell migration are not fully understood. Here, we use a collagen microtrack platform to determine the effect of confinement on priming MDA-MB-231 cancer cells for fast migration. We show that migration through a confined track results in increased speed and accumulation of migratory machinery, including actin and active mitochondria, in the front of migrating breast cancer cells. By designing microtracks that allow cells to first navigate a region of high confinement, then a region of low confinement, we assessed whether migration in high confinement changes future migratory behavior. Indeed, cells maintain their speed attained in high confinement even after exiting to a region of low confinement, indicating that cells maintain memory of previous matrix cues to fuel fast migration. Active mitochondria maintain their location at the front of the cell even after cells leave high confinement. Furthermore, knocking out vinculin to disrupt focal adhesions disrupts active mitochondrial localization and disrupts the fast migration seen upon release from confinement. Together, these data suggest that active mitochondrial localization in confinement may facilitate fast migration post-confinement. By better understanding how confinement contributes to future cancer cell migration, we can identify potential therapeutic targets to inhibit breast cancer metastasis.
Collapse
Affiliation(s)
- Jenna A Mosier
- Department of Biomedical Engineering, Vanderbilt University Nashville TN USA
| | - Emily D Fabiano
- Department of Biomedical Engineering, Vanderbilt University Nashville TN USA
| | - Catherine M Ludolph
- Department of Chemical Engineering, University of Texas at Austin Austin TX USA
| | - Addison E White
- Department of Biomedical Engineering, Vanderbilt University Nashville TN USA
| | | |
Collapse
|
24
|
Lin J, Zhang P, Liu W, Liu G, Zhang J, Yan M, Duan Y, Yang N. A positive feedback loop between ZEB2 and ACSL4 regulates lipid metabolism to promote breast cancer metastasis. eLife 2023; 12:RP87510. [PMID: 38078907 PMCID: PMC10712958 DOI: 10.7554/elife.87510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Lipid metabolism plays a critical role in cancer metastasis. However, the mechanisms through which metastatic genes regulate lipid metabolism remain unclear. Here, we describe a new oncogenic-metabolic feedback loop between the epithelial-mesenchymal transition transcription factor ZEB2 and the key lipid enzyme ACSL4 (long-chain acyl-CoA synthetase 4), resulting in enhanced cellular lipid storage and fatty acid oxidation (FAO) to drive breast cancer metastasis. Functionally, depletion of ZEB2 or ACSL4 significantly reduced lipid droplets (LDs) abundance and cell migration. ACSL4 overexpression rescued the invasive capabilities of the ZEB2 knockdown cells, suggesting that ACSL4 is crucial for ZEB2-mediated metastasis. Mechanistically, ZEB2-activated ACSL4 expression by directly binding to the ACSL4 promoter. ACSL4 binds to and stabilizes ZEB2 by reducing ZEB2 ubiquitination. Notably, ACSL4 not only promotes the intracellular lipogenesis and LDs accumulation but also enhances FAO and adenosine triphosphate production by upregulating the FAO rate-limiting enzyme CPT1A (carnitine palmitoyltransferase 1 isoform A). Finally, we demonstrated that ACSL4 knockdown significantly reduced metastatic lung nodes in vivo. In conclusion, we reveal a novel positive regulatory loop between ZEB2 and ACSL4, which promotes LDs storage to meet the energy needs of breast cancer metastasis, and identify the ZEB2-ACSL4 signaling axis as an attractive therapeutic target for overcoming breast cancer metastasis.
Collapse
Affiliation(s)
- Jiamin Lin
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Pingping Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Wei Liu
- Department of Breast Surgery, Guangzhou Red Cross Hospital, Guangzhou Red Cross Hospital of Jinan UniversityGuangzhouChina
| | - Guorong Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Juan Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Min Yan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Yuyou Duan
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of TechnologyGuangzhouChina
| | - Na Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| |
Collapse
|
25
|
Zhou Y, Guo Y, Ran M, Shan W, Granchi C, Giovannetti E, Minutolo F, Peters GJ, Tam KY. Combined inhibition of pyruvate dehydrogenase kinase 1 and lactate dehydrogenase a induces metabolic and signaling reprogramming and enhances lung adenocarcinoma cell killing. Cancer Lett 2023; 577:216425. [PMID: 37805163 DOI: 10.1016/j.canlet.2023.216425] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/27/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
Lung adenocarcinoma (LUAD) is one of the most prevalent and aggressive types of lung cancer. Metabolic reprogramming plays a critical role in the development and progression of LUAD. Pyruvate dehydrogenase kinase 1 (PDK1) and lactate dehydrogenase A (LDHA) are two key enzymes involved in glucose metabolism, whilst their aberrant expressions are often associated with tumorigenesis. Herein, we investigated the anticancer effects of combined inhibition of PDK1 and LDHA in LUAD in vitro and in vivo and its underlying mechanisms of action. The combination of a PDK1 inhibitor, 64, and a LDHA inhibitor, NHI-Glc-2, led to a synergistic growth inhibition in 3 different LUAD cell lines and more than additively suppressed tumor growth in the LUAD xenograft H1975 model. This combination also inhibited cellular migration and colony formation, while it induced a metabolic shift from glycolysis to oxidative phosphorylation (OXPHOS) resulting in mitochondrial depolarization and apoptosis in LUAD cells. These effects were related to modulation of multiple cell signaling pathways, including AMPK, RAS/ERK, and AKT/mTOR. Our findings demonstrate that simultaneous inhibition of multiple glycolytic enzymes (PDK1 and LDHA) is a promising novel therapeutic approach for LUAD.
Collapse
Affiliation(s)
- Yan Zhou
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Yizhen Guo
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Maoxin Ran
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Wenying Shan
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Carlotta Granchi
- Dipartimento di Farmacia, Università di Pisa, 56126, Pisa, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUmc, Cancer Center Amsterdam, 1081, HV Amsterdam, the Netherlands; Fondazione Pisana per La Scienza, Pisa, Italy
| | - Filippo Minutolo
- Dipartimento di Farmacia, Università di Pisa, 56126, Pisa, Italy
| | - Godefridus J Peters
- Department of Biochemistry, Medical University of Gdansk, 80-210, Gdańsk, Poland; Department of Medical Oncology, Amsterdam University Medical Centers, Location VUmc, Cancer Center Amsterdam, 1081, HV Amsterdam, the Netherlands
| | - Kin Yip Tam
- Faculty of Health Sciences, University of Macau, Taipa, Macau.
| |
Collapse
|
26
|
Karno B, Edwards DN, Chen J. Metabolic control of cancer metastasis: role of amino acids at secondary organ sites. Oncogene 2023; 42:3447-3456. [PMID: 37848626 PMCID: PMC11323979 DOI: 10.1038/s41388-023-02868-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
Most cancer-related deaths are caused by the metastases, which commonly develop at multiple organ sites including the brain, bone, and lungs. Despite longstanding observations that the spread of cancer is not random, our understanding of the mechanisms that underlie metastatic spread to specific organs remains limited. However, metabolism has recently emerged as an important contributor to metastasis. Amino acids are a significant nutrient source to cancer cells and their metabolism which can serve to fuel biosynthetic pathways capable of facilitating cell survival and tumor expansion while also defending against oxidative stress. Compared to the primary tumor, each of the common metastatic sites exhibit vastly different nutrient compositions and environmental stressors, necessitating the need of cancer cells to metabolically thrive in their new environment during colonization and outgrowth. This review seeks to summarize the current literature on amino acid metabolism pathways that support metastasis to common secondary sites, including impacts on immune responses. Understanding the role of amino acids in secondary organ sites may offer opportunities for therapeutic inhibition of cancer metastasis.
Collapse
Affiliation(s)
- Breelyn Karno
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Deanna N Edwards
- Department of Medicine, Division of Rheumatology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jin Chen
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Medicine, Division of Rheumatology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA.
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
27
|
Zhou X, Wang S, Li Y, Zhao H, Han X, Yu Y, Chen Y, Yang Y, Ma X, Huo H, Zhang M, Zhao Y, Ma N. Monocarboxylate transporter 4 promotes the migration of non‑cancerous L929 fibroblast cells by activating the IGF1/IGF1R/PIK3R3/SGK1 axis. Oncol Lett 2023; 26:460. [PMID: 37745980 PMCID: PMC10512108 DOI: 10.3892/ol.2023.14047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/21/2023] [Indexed: 09/26/2023] Open
Abstract
The tumor microenvironment (TME) and Warburg effect are critical for the regulation of tumor metastasis. The monocarboxylate transporter (MCT) family members, particularly MCT4, which is encoded by the solute carrier family 16 member 3 gene, play an important role in the regulation of the TME and mediation of the Warburg effect by transporting lactate out of cancer cells. Migration and invasion are two key features of metastasis. Few studies have investigated the mechanism by which MCT4 promotes cell migration, and the suggested mechanisms by which MCT4 promotes migration vary in different tumor cell models. The purpose of the present study was to use non-cancerous cells as a research model to investigate the specific mechanism underlying the promotion of migration by MCT4. In a previous study, murine L929 cells overexpressing human MCT4 (MCT4-L929 cells) were generated and MCT4 was demonstrated to promote the migration and invasion of these non-cancerous cells. In the present study, MCT4-L929 cells and control-L929 cells were used to investigate the potential pathways and mechanisms through which MCT4 promotes cell migration. RNA sequencing analysis revealed 872 differentially expressed genes, comprising 337 and 535 upregulated and downregulated genes, respectively, in the MCT4-L929 cells. Reverse transcription-quantitative analysis and western blotting revealed that MCT4 overexpression increased the transcription and protein levels of insulin-like growth factor 1 (IGF1). In a wound healing assay, the migration of exogenous mouse IGF1-treated control-L929 cells was similar to that of MCT4-L929 cells. Additionally, the inhibition of IGF1 receptor (IGF1R) or serum/glucocorticoid regulated kinase 1 (SGK1), a downstream protein in the IGF1 and phosphoinositide 3-kinase PI3K regulatory subunit 3 (PIK3R3) pathways, in MCT4-L929 cells mitigated the cell migration-promoting effect of MCT4. These novel findings suggest that MCT4 may promote the migration of L929 fibroblast cells via activation of the IGF1/IGF1R/PIK3R3/SGK1 axis.
Collapse
Affiliation(s)
- Xiaoju Zhou
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Shuo Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Yanyan Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - He Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Xue Han
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Yue Yu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Yu Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Yu Yang
- Department of Biochemistry and Molecular Biology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Xiaonan Ma
- Department of Biochemistry and Molecular Biology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Hongjing Huo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Manting Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Yongshan Zhao
- Department of Biochemistry and Molecular Biology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Ningning Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| |
Collapse
|
28
|
Liu X, Qin J, Nie J, Gao R, Hu S, Sun H, Wang S, Pan Y. ANGPTL2+cancer-associated fibroblasts and SPP1+macrophages are metastasis accelerators of colorectal cancer. Front Immunol 2023; 14:1185208. [PMID: 37691929 PMCID: PMC10483401 DOI: 10.3389/fimmu.2023.1185208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
Background Liver metastasis (LM) is a leading cause of cancer-related deaths in CRC patients, whereas the associated mechanisms have not yet been fully elucidated. Therefore, it is urgently needed to deeply explore novel metastasis accelerators and therapeutic targets of LM-CRC. Methods The bulk RNA sequencing data and clinicopathological information of CRC patients were enrolled from the TCGA and GEO databases. The single-cell RNA sequencing (scRNA-seq) datasets of CRC were collected from and analyzed in the Tumor Immune Single-cell Hub (TISCH) database. The infiltration levels of cancer-associated fibroblasts (CAFs) and macrophages in CRC tissues were estimated by multiple immune deconvolution algorithms. The prognostic values of genes were identified by the Kaplan-Meier curve with a log-rank test. GSEA analysis was carried out to annotate the significantly enriched gene sets. The biological functions of cells were experimentally verified. Results In the present study, hundreds of differentially expressed genes (DEGs) were selected in LM-CRC compared to primary CRC, and these DEGs were significantly associated with the regulation of endopeptidase activity, blood coagulation, and metabolic processes. Then, SPP1, CAV1, ANGPTL2, and COLEC11 were identified as the characteristic DEGs of LM-CRC, and higher expression levels of SPP1 and ANGPTL2 were significantly associated with worse clinical outcomes of CRC patients. In addition, ANGPTL2 and SPP1 mainly distributed in the tumor microenvironment (TME) of CRC tissues. Subsequent scRNA-seq analysis demonstrated that ANGPTL2 and SPP1 were markedly enriched in the CAFs and macrophages of CRC tissues, respectively. Moreover, we identified the significantly enriched gene sets in LM-CRC, especially those in the SPP1+macrophages and ANGPTL2+CAFs, such as the HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION and the HALLMARK_COMPLEMENT. Finally, our in vitro experiments proved that ANGPTL2+CAFs and SPP1+macrophages promote the metastasis of CRC cells. Conclusion Our study selected four characteristic genes of LM-CRC and identified ANGPTL2+CAFs and SPP1+macrophages subtypes as metastasis accelerators of CRC which provided a potential therapeutic target for LM-CRC.
Collapse
Affiliation(s)
- Xiangxiang Liu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jian Qin
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junjie Nie
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Gao
- Division of Clinical Pharmacy, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Shangshang Hu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huiling Sun
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shukui Wang
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuqin Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
29
|
Cooper AJL, Dorai T, Pinto JT, Denton TT. Metabolic Heterogeneity, Plasticity, and Adaptation to "Glutamine Addiction" in Cancer Cells: The Role of Glutaminase and the GTωA [Glutamine Transaminase-ω-Amidase (Glutaminase II)] Pathway. BIOLOGY 2023; 12:1131. [PMID: 37627015 PMCID: PMC10452834 DOI: 10.3390/biology12081131] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023]
Abstract
Many cancers utilize l-glutamine as a major energy source. Often cited in the literature as "l-glutamine addiction", this well-characterized pathway involves hydrolysis of l-glutamine by a glutaminase to l-glutamate, followed by oxidative deamination, or transamination, to α-ketoglutarate, which enters the tricarboxylic acid cycle. However, mammalian tissues/cancers possess a rarely mentioned, alternative pathway (the glutaminase II pathway): l-glutamine is transaminated to α-ketoglutaramate (KGM), followed by ω-amidase (ωA)-catalyzed hydrolysis of KGM to α-ketoglutarate. The name glutaminase II may be confused with the glutaminase 2 (GLS2) isozyme. Thus, we recently renamed the glutaminase II pathway the "glutamine transaminase-ω-amidase (GTωA)" pathway. Herein, we summarize the metabolic importance of the GTωA pathway, including its role in closing the methionine salvage pathway, and as a source of anaplerotic α-ketoglutarate. An advantage of the GTωA pathway is that there is no net change in redox status, permitting α-ketoglutarate production during hypoxia, diminishing cellular energy demands. We suggest that the ability to coordinate control of both pathways bestows a metabolic advantage to cancer cells. Finally, we discuss possible benefits of GTωA pathway inhibitors, not only as aids to studying the normal biological roles of the pathway but also as possible useful anticancer agents.
Collapse
Affiliation(s)
- Arthur J. L. Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA; (T.D.); (J.T.P.)
| | - Thambi Dorai
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA; (T.D.); (J.T.P.)
- Department of Urology, New York Medical College, Valhalla, NY 10595, USA
| | - John T. Pinto
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA; (T.D.); (J.T.P.)
| | - Travis T. Denton
- Department Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, Washington State University Health Sciences Spokane, Spokane, WA 99202, USA
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University Health Sciences Spokane, Spokane, WA 99164, USA
- Steve Gleason Institute for Neuroscience, Washington State University Health Sciences Spokane, Spokane, WA 99164, USA
| |
Collapse
|
30
|
Gnocchi D, Nikolic D, Paparella RR, Sabbà C, Mazzocca A. Cellular Adaptation Takes Advantage of Atavistic Regression Programs during Carcinogenesis. Cancers (Basel) 2023; 15:3942. [PMID: 37568758 PMCID: PMC10416974 DOI: 10.3390/cancers15153942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Adaptation of cancer cells to extreme microenvironmental conditions (i.e., hypoxia, high acidity, and reduced nutrient availability) contributes to cancer resilience. Furthermore, neoplastic transformation can be envisioned as an extreme adaptive response to tissue damage or chronic injury. The recent Systemic-Evolutionary Theory of the Origin of Cancer (SETOC) hypothesizes that cancer cells "revert" to "primitive" characteristics either ontogenically (embryo-like) or phylogenetically (single-celled organisms). This regression may confer robustness and maintain the disordered state of the tissue, which is a hallmark of malignancy. Changes in cancer cell metabolism during adaptation may also be the consequence of altered microenvironmental conditions, often resulting in a shift toward lactic acid fermentation. However, the mechanisms underlying the robust adaptive capacity of cancer cells remain largely unknown. In recent years, cancer cells' metabolic flexibility has received increasing attention among researchers. Here, we focus on how changes in the microenvironment can affect cancer cell energy production and drug sensitivity. Indeed, changes in the cellular microenvironment may lead to a "shift" toward "atavistic" biologic features, such as the switch from oxidative phosphorylation (OXPHOS) to lactic acid fermentation, which can also sustain drug resistance. Finally, we point out new integrative metabolism-based pharmacological approaches and potential biomarkers for early detection.
Collapse
Affiliation(s)
| | | | | | | | - Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124 Bari, Italy; (D.G.); (D.N.); (R.R.P.); (C.S.)
| |
Collapse
|
31
|
Su CY, Wu A, Dong Z, Miller CP, Suarez A, Ewald AJ, Ahn EH, Kim DH. Tumor stromal topography promotes chemoresistance in migrating breast cancer cell clusters. Biomaterials 2023; 298:122128. [PMID: 37121102 PMCID: PMC10291492 DOI: 10.1016/j.biomaterials.2023.122128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/30/2023] [Accepted: 04/15/2023] [Indexed: 05/02/2023]
Abstract
Multicellular clustering provides cancer cells with survival advantages and facilitates metastasis. At the tumor migration front, cancer cell clusters are surrounded by an aligned stromal topography. It remains unknown whether aligned stromal topography regulates the resistance of migrating cancer cell clusters to therapeutics. Using a hybrid nanopatterned model to characterize breast cancer cell clusters at the migration front with aligned stromal topography, we demonstrate that topography-induced migrating cancer cell clusters exhibit upregulated cytochrome P450 family 1 (CYP1) drug metabolism and downregulated glycolysis gene signatures, which correlates with unfavorable prognosis. Screening on approved oncology drugs shows that cancer cell clusters on aligned stromal topography are more resistant to diverse chemotherapeutics. Full-dose drug testings further indicate that topography induces drug resistance of hormone receptor-positive breast cancer cell clusters to doxorubicin and tamoxifen and triple-negative breast cancer cell clusters to doxorubicin by activating the aryl hydrocarbon receptor (AhR)/CYP1 pathways. Inhibiting the AhR/CYP1 pathway restores reactive oxygen species-mediated drug sensitivity to migrating cancer cell clusters, suggesting a plausible therapeutic direction for preventing metastatic recurrence.
Collapse
Affiliation(s)
- Chia-Yi Su
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Alex Wu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Zhipeng Dong
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Chris P Miller
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Allister Suarez
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Andrew J Ewald
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Eun Hyun Ahn
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States.
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States; Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
32
|
Parida PK, Marquez-Palencia M, Ghosh S, Khandelwal N, Kim K, Nair V, Liu XZ, Vu HS, Zacharias LG, Gonzalez-Ericsson PI, Sanders ME, Mobley BC, McDonald JG, Lemoff A, Peng Y, Lewis C, Vale G, Halberg N, Arteaga CL, Hanker AB, DeBerardinis RJ, Malladi S. Limiting mitochondrial plasticity by targeting DRP1 induces metabolic reprogramming and reduces breast cancer brain metastases. NATURE CANCER 2023; 4:893-907. [PMID: 37248394 PMCID: PMC11290463 DOI: 10.1038/s43018-023-00563-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 04/17/2023] [Indexed: 05/31/2023]
Abstract
Disseminated tumor cells with metabolic flexibility to utilize available nutrients in distal organs persist, but the precise mechanisms that facilitate metabolic adaptations remain unclear. Here we show fragmented mitochondrial puncta in latent brain metastatic (Lat) cells enable fatty acid oxidation (FAO) to sustain cellular bioenergetics and maintain redox homeostasis. Depleting the enriched dynamin-related protein 1 (DRP1) and limiting mitochondrial plasticity in Lat cells results in increased lipid droplet accumulation, impaired FAO and attenuated metastasis. Likewise, pharmacological inhibition of DRP1 using a small-molecule brain-permeable inhibitor attenuated metastatic burden in preclinical models. In agreement with these findings, increased phospho-DRP1 expression was observed in metachronous brain metastasis compared with patient-matched primary tumors. Overall, our findings reveal the pivotal role of mitochondrial plasticity in supporting the survival of Lat cells and highlight the therapeutic potential of targeting cellular plasticity programs in combination with tumor-specific alterations to prevent metastatic recurrences.
Collapse
Affiliation(s)
- Pravat Kumar Parida
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mauricio Marquez-Palencia
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Suvranil Ghosh
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nitin Khandelwal
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kangsan Kim
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vidhya Nair
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiao-Zheng Liu
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Hieu S Vu
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lauren G Zacharias
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Melinda E Sanders
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bret C Mobley
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey G McDonald
- Center for Human Nutrition and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andrew Lemoff
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yan Peng
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cheryl Lewis
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gonçalo Vale
- Center for Human Nutrition and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nils Halberg
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Carlos L Arteaga
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ariella B Hanker
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ralph J DeBerardinis
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Srinivas Malladi
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
33
|
Pandey P, Khan F, Choi M, Singh SK, Kang HN, Park MN, Ko SG, Sahu SK, Mazumder R, Kim B. Review deciphering potent therapeutic approaches targeting Notch signaling pathway in breast cancer. Biomed Pharmacother 2023; 164:114938. [PMID: 37267635 DOI: 10.1016/j.biopha.2023.114938] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023] Open
Abstract
In the current period of drug development, natural products have provided an unrivaled supply of anticancer medications. By modifying the cancer microenvironment and various signaling pathways, natural products and their derivatives and analogs play a significant role in cancer treatment. These substances are effective against several signaling pathways, particularly the cell death pathways (apoptosis and autophagy) and embryonic developmental pathways (Notch, Wnt, and Hedgehog pathways). Natural products have a long history, but more research is needed to understand their current function in the research and development of cancer treatments and the potential for natural products to serve as a significant source of therapeutic agents in the future. Several target-specific anticancer medications failed to treat cancer, necessitating research into natural compounds with multiple target properties. To help develop a better treatment plan for managing breast cancer, this review has outlined the anticancerous potential of several therapeutic approaches targeting the notch signaling system in breast tumors.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, India.
| | - Min Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Sujeet Kumar Singh
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, India
| | - Han Na Kang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, the Republic of Korea
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Sanjeev Kumar Sahu
- School of pharmaceutical sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rupa Mazumder
- Noida Institute of Engineering & Technology (Pharmacy Institute), Greater Noida 201306, India
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, the Republic of Korea.
| |
Collapse
|
34
|
Urciuolo A, Giobbe GG, Dong Y, Michielin F, Brandolino L, Magnussen M, Gagliano O, Selmin G, Scattolini V, Raffa P, Caccin P, Shibuya S, Scaglioni D, Wang X, Qu J, Nikolic M, Montagner M, Galea GL, Clevers H, Giomo M, De Coppi P, Elvassore N. Hydrogel-in-hydrogel live bioprinting for guidance and control of organoids and organotypic cultures. Nat Commun 2023; 14:3128. [PMID: 37253730 PMCID: PMC10229611 DOI: 10.1038/s41467-023-37953-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/06/2023] [Indexed: 06/01/2023] Open
Abstract
Three-dimensional hydrogel-based organ-like cultures can be applied to study development, regeneration, and disease in vitro. However, the control of engineered hydrogel composition, mechanical properties and geometrical constraints tends to be restricted to the initial time of fabrication. Modulation of hydrogel characteristics over time and according to culture evolution is often not possible. Here, we overcome these limitations by developing a hydrogel-in-hydrogel live bioprinting approach that enables the dynamic fabrication of instructive hydrogel elements within pre-existing hydrogel-based organ-like cultures. This can be achieved by crosslinking photosensitive hydrogels via two-photon absorption at any time during culture. We show that instructive hydrogels guide neural axon directionality in growing organotypic spinal cords, and that hydrogel geometry and mechanical properties control differential cell migration in developing cancer organoids. Finally, we show that hydrogel constraints promote cell polarity in liver organoids, guide small intestinal organoid morphogenesis and control lung tip bifurcation according to the hydrogel composition and shape.
Collapse
Affiliation(s)
- Anna Urciuolo
- Dept. of Molecular Medicine, University of Padova, Padova, Italy.
- Istituto di Ricerca Pediatrica, Città della Speranza, Padova, Italy.
| | - Giovanni Giuseppe Giobbe
- GOSICH Zayed Centre for Research into Rare Disease in Children, University College London, London, UK
| | - Yixiao Dong
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China
| | - Federica Michielin
- GOSICH Zayed Centre for Research into Rare Disease in Children, University College London, London, UK
| | - Luca Brandolino
- Dept. of Industrial Engineering, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Michael Magnussen
- GOSICH Zayed Centre for Research into Rare Disease in Children, University College London, London, UK
| | - Onelia Gagliano
- Dept. of Industrial Engineering, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Giulia Selmin
- GOSICH Zayed Centre for Research into Rare Disease in Children, University College London, London, UK
| | | | - Paolo Raffa
- Istituto di Ricerca Pediatrica, Città della Speranza, Padova, Italy
| | - Paola Caccin
- Dept. of Biomedical Science, University of Padova, Padova, Italy
| | - Soichi Shibuya
- GOSICH Zayed Centre for Research into Rare Disease in Children, University College London, London, UK
| | - Dominic Scaglioni
- GOSICH Zayed Centre for Research into Rare Disease in Children, University College London, London, UK
| | - Xuechun Wang
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China
| | - Ju Qu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China
| | - Marko Nikolic
- GOSICH Zayed Centre for Research into Rare Disease in Children, University College London, London, UK
| | - Marco Montagner
- Dept. of Molecular Medicine, University of Padova, Padova, Italy
| | - Gabriel L Galea
- GOSICH Zayed Centre for Research into Rare Disease in Children, University College London, London, UK
| | - Hans Clevers
- Hubrecht Institute, KNAW and University Medical Center, Utrecht, The Netherlands
- Pharma Research and Early Development (pRED) of Roche, Basel, Switzerland
| | - Monica Giomo
- Dept. of Industrial Engineering, University of Padova, Padova, Italy
| | - Paolo De Coppi
- GOSICH Zayed Centre for Research into Rare Disease in Children, University College London, London, UK
- Dept. of Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital, London, UK
| | - Nicola Elvassore
- GOSICH Zayed Centre for Research into Rare Disease in Children, University College London, London, UK.
- Dept. of Industrial Engineering, University of Padova, Padova, Italy.
- Veneto Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
35
|
Liu X, Zhao Z, Sun X, Wang J, Yi W, Wang D, Li Y. Blocking Cholesterol Metabolism with Tumor-Penetrable Nanovesicles to Improve Photodynamic Cancer Immunotherapy. SMALL METHODS 2023; 7:e2200898. [PMID: 36307388 DOI: 10.1002/smtd.202200898] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/23/2022] [Indexed: 05/17/2023]
Abstract
Photodynamic therapy (PDT)-mediated cancer immunotherapy is attenuated due to the dysfunction of T cells in immunosuppressive tumor microenvironment (TME). Cholesterol metabolism plays a vital role in T cell signaling and effector. While the metabolic fitness of tumor infiltrating CD8+ T cells is impaired by nutrition restriction in TME and accumulated metabolites by tumor cells. Here a matrix metalloproteinase-2-sensitive tumor-penetrable nanovesicle is designed to regulate cholesterol metabolism pathway for enhancing photodynamic cancer immunotherapy. The nanovesicles accumulate in tumor and release internalizing RGD to promote deep penetration. Released avasimibe from the nanovesicles simultaneously blocks cholesterol metabolism in CD8+ T and tumor cells, thus reinvigorating the functions of T cells and suppressing the migration of tumor cells. Immune responses induced by PDT-triggered immunogenic cell death are further improved with cholesterol metabolism blockage. Compared with PDT alone, the designed nanovesicles display enhanced tumor growth inhibition in B16-F10 mouse tumor model. The approach provides an alternative strategy to improve photodynamic cancer immunotherapy by cholesterol metabolism intervention.
Collapse
Affiliation(s)
- Xiaochen Liu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong, 264000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zitong Zhao
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiangshi Sun
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jue Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wenzhe Yi
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Dangge Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong, 264000, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Shandong, 264000, China
| |
Collapse
|
36
|
Warrier NM, Kelkar N, Johnson CT, Govindarajan T, Prabhu V, Kumar P. Understanding cancer stem cells and plasticity: Towards better therapeutics. Eur J Cell Biol 2023; 102:151321. [PMID: 37137199 DOI: 10.1016/j.ejcb.2023.151321] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/05/2023] Open
Abstract
The ability of cancer cells to finally overcome various lines of treatment in due course has always baffled the scientific community. Even with the most promising therapies, relapse is ultimately seen, and this resilience has proved to be a major hurdle in the management of cancer. Accumulating evidence now attributes this resilience to plasticity. Plasticity is the ability of cells to change their properties and is substantial as it helps in normal tissue regeneration or post-injury repair processes. It also helps in the overall maintenance of homeostasis. Unfortunately, this critical ability of cells, when activated incorrectly, can lead to numerous diseases, including cancer. Therefore, in this review, we focus on the plasticity aspect with an emphasis on cancer stem cells (CSCs). We discuss the various forms of plasticity that provide survival advantages to CSCs. Moreover, we explore various factors that affect plasticity. Furthermore, we provide the therapeutic implications of plasticity. Finally, we provide an insight into the future targeted therapies involving plasticity for better clinical outcomes.
Collapse
Affiliation(s)
- Neerada Meenakshi Warrier
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Nachiket Kelkar
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Carol Tresa Johnson
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | | | - Vijendra Prabhu
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Praveen Kumar
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
37
|
Zhao G, Ren Y, Yan J, Zhang T, Lu P, Lei J, Rao H, Kang X, Cao Z, Peng F, Peng C, Rao C, Li Y. Neoprzewaquinone A Inhibits Breast Cancer Cell Migration and Promotes Smooth Muscle Relaxation by Targeting PIM1 to Block ROCK2/STAT3 Pathway. Int J Mol Sci 2023; 24:ijms24065464. [PMID: 36982538 PMCID: PMC10051292 DOI: 10.3390/ijms24065464] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Salvia miltiorrhiza Bunge (Danshen) has been widely used to treat cancer and cardiovascular diseases in Chinese traditional medicine. Here, we found that Neoprzewaquinone A (NEO), an active component of S. miltiorrhiza, selectively inhibits PIM1. We showed that NEO potently inhibits PIM1 kinase at nanomolar concentrations and significantly suppresses the growth, migration, and Epithelial-Mesenchymal Transition (EMT) in the triple-negative breast cancer cell line, MDA-MB-231 in vitro. Molecular docking simulations revealed that NEO enters the PIM1 pocket, thereby triggering multiple interaction effects. Western blot analysis revealed that both NEO and SGI-1776 (a specific PIM1 inhibitor), inhibited ROCK2/STAT3 signaling in MDA-MB-231 cells, indicating that PIM1 kinase modulates cell migration and EMT via ROCK2 signaling. Recent studies indicated that ROCK2 plays a key role in smooth muscle contraction, and that ROCK2 inhibitors effectively control the symptoms of high intraocular pressure (IOP) in glaucoma patients. Here, we showed that NEO and SGI-1776 significantly reduce IOP in normal rabbits and relax pre-restrained thoracic aortic rings in rats. Taken together, our findings indicated that NEO inhibits TNBC cell migration and relaxes smooth muscles mainly by targeting PIM1 and inhibiting ROCK2/STAT3 signaling, and that PIM1 may be an effective target for IOP and other circulatory diseases.
Collapse
Affiliation(s)
- Guiying Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yali Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jie Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tingrui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Peng Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jieting Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huanan Rao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin Kang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhixing Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fu Peng
- West China School of Pharmacy, Sichuan University, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chaolong Rao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Correspondence: (C.R.); (Y.L.)
| | - Yuzhi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Correspondence: (C.R.); (Y.L.)
| |
Collapse
|
38
|
Unraveling the Peculiar Features of Mitochondrial Metabolism and Dynamics in Prostate Cancer. Cancers (Basel) 2023; 15:cancers15041192. [PMID: 36831534 PMCID: PMC9953833 DOI: 10.3390/cancers15041192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer deaths among men in Western countries. Mitochondria, the "powerhouse" of cells, undergo distinctive metabolic and structural dynamics in different types of cancer. PCa cells experience peculiar metabolic changes during their progression from normal epithelial cells to early-stage and, progressively, to late-stage cancer cells. Specifically, healthy cells display a truncated tricarboxylic acid (TCA) cycle and inefficient oxidative phosphorylation (OXPHOS) due to the high accumulation of zinc that impairs the activity of m-aconitase, the enzyme of the TCA cycle responsible for the oxidation of citrate. During the early phase of cancer development, intracellular zinc levels decrease leading to the reactivation of m-aconitase, TCA cycle and OXPHOS. PCa cells change their metabolic features again when progressing to the late stage of cancer. In particular, the Warburg effect was consistently shown to be the main metabolic feature of late-stage PCa cells. However, accumulating evidence sustains that both the TCA cycle and the OXPHOS pathway are still present and active in these cells. The androgen receptor axis as well as mutations in mitochondrial genes involved in metabolic rewiring were shown to play a key role in PCa cell metabolic reprogramming. Mitochondrial structural dynamics, such as biogenesis, fusion/fission and mitophagy, were also observed in PCa cells. In this review, we focus on the mitochondrial metabolic and structural dynamics occurring in PCa during tumor development and progression; their role as effective molecular targets for novel therapeutic strategies in PCa patients is also discussed.
Collapse
|
39
|
Shieu MK, Ho HY, Lin CC, Lo YS, Chuang YC, Hsieh MJ, Chen MK. Narciclasine suppresses oral cancer metastasis by modulating cathepsin B and extracellular signal-related kinase pathways. Biomed Pharmacother 2023; 158:114159. [PMID: 36577331 DOI: 10.1016/j.biopha.2022.114159] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Oral cancer is a malignancy with unfavorable prognosis due to its high rates of recurrence and lymph node metastasis. Narciclasine is extracted from Narcissus species (Amaryllidaceae), which have antitumor and anti-inflammatory properties. However, the antitumor properties of narciclasine toward oral cancer remain unclear. The present study explored the antimetastatic effects of narciclasine in oral cancer as well as the underlying molecular mechanisms. We treated three oral cancer cell lines with noncytotoxic concentrations of narciclasine and discovered a dose-dependent antimetastatic effect. Mitogen-activated protein kinase (MAPK) pathways, including extracellular signal-related kinase (ERK), p38, and c-Jun N-terminal kinase (JNK), were regulated by narciclasine. We further discovered the ERK pathway to directly affect narciclasine-induced metastasis inhibition by combining treatment with narciclasine and ERK inhibitor. Furthermore, downregulation of cathepsin B (CTSB) in the SAS and SCC-47 cell lines revealed the critical role of CTSB in the antimetastatic effect of narciclasine. Our findings indicate that narciclasine inhibits oral cancer metastasis by regulating the ERK pathway and CTSB. This study provides evidence of the mechanism of narciclasine-induced inhibition oral cancer metastasis and suggests potential targets for use in oral cancer treatment.
Collapse
Affiliation(s)
- Mu-Kuei Shieu
- Division of General Practice, Department of Medical Education, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Hsin-Yu Ho
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Chia-Chieh Lin
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yu-Sheng Lo
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yi-Ching Chuang
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan; Ph.D. Program in Tissue Engineering and Regenerative Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan.
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua 500, Taiwan.
| |
Collapse
|
40
|
Lactate Rewrites the Metabolic Reprogramming of Uveal Melanoma Cells and Induces Quiescence Phenotype. Int J Mol Sci 2022; 24:ijms24010024. [PMID: 36613471 PMCID: PMC9820521 DOI: 10.3390/ijms24010024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Uveal melanoma (UM), the most common primary intraocular cancer in adults, is among the tumors with poorer prognosis. Recently, the role of the oncometabolite lactate has become attractive due to its role as hydroxycarboxylic acid receptor 1 (HCAR1) activator, as an epigenetic modulator inducing lysine residues lactylation and, of course, as a glycolysis end-product, bridging the gap between glycolysis and oxidative phosphorylation. The aim of the present study was to dissect in UM cell line (92.1) the role of lactate as either a metabolite or a signaling molecule, using the known modulators of HCAR1 and of lactate transporters. Our results show that lactate (20 mM) resulted in a significant decrease in cell proliferation and migration, acting and switching cell metabolism toward oxidative phosphorylation. These results were coupled with increased euchromatin content and quiescence in UM cells. We further showed, in a clinical setting, that an increase in lactate transporters MCT4 and HCAR1 is associated with a spindle-shape histological type in UM. In conclusion, our results suggest that lactate metabolism may serve as a prognostic marker of UM progression and may be exploited as a potential therapeutic target.
Collapse
|
41
|
Schwager SC, Mosier JA, Padmanabhan RS, White A, Xing Q, Hapach LA, Taufalele PV, Ortiz I, Reinhart-King CA. Link between glucose metabolism and epithelial-to-mesenchymal transition drives triple-negative breast cancer migratory heterogeneity. iScience 2022; 25:105190. [PMID: 36274934 PMCID: PMC9579510 DOI: 10.1016/j.isci.2022.105190] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/07/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022] Open
Abstract
Intracellular and environmental cues result in heterogeneous cancer cell populations with different metabolic and migratory behaviors. Although glucose metabolism and epithelial-to-mesenchymal transition have previously been linked, we aim to understand how this relationship fuels cancer cell migration. We show that while glycolysis drives single-cell migration in confining microtracks, fast and slow cells display different migratory sensitivities to glycolysis and oxidative phosphorylation inhibition. Phenotypic sorting of highly and weakly migratory subpopulations (MDA+, MDA-) reveals that more mesenchymal, highly migratory MDA+ preferentially use glycolysis while more epithelial, weakly migratory MDA- utilize mitochondrial respiration. These phenotypes are plastic and MDA+ can be made less glycolytic, mesenchymal, and migratory and MDA- can be made more glycolytic, mesenchymal, and migratory via modulation of glucose metabolism or EMT. These findings reveal an intrinsic link between EMT and glucose metabolism that controls migration. Identifying mechanisms fueling phenotypic heterogeneity is essential to develop targeted metastatic therapeutics.
Collapse
Affiliation(s)
- Samantha C. Schwager
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | - Jenna A. Mosier
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | - Reethi S. Padmanabhan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | - Addison White
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | - Qinzhe Xing
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | - Lauren A. Hapach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Paul V. Taufalele
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | - Ismael Ortiz
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | | |
Collapse
|
42
|
Dialysis as a Novel Adjuvant Treatment for Malignant Cancers. Cancers (Basel) 2022; 14:cancers14205054. [PMID: 36291840 PMCID: PMC9600214 DOI: 10.3390/cancers14205054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary There is a clear need for new cancer therapies as many cancers have a very short long-term survival rate. For most advanced cancers, therapy resistance limits the benefit of any single-agent chemotherapy, radiotherapy, or immunotherapy. Cancer cells show a greater dependence on glucose and glutamine as fuel than healthy cells do. In this article, we propose using 4- to 8-h dialysis treatments to change the blood composition, i.e., lowering glucose and glutamine levels, and elevating ketone levels—thereby disrupting major metabolic pathways important for cancer cell survival. The dialysis’ impact on cancer cells include not only metabolic effects, but also redox balance, immunological, and epigenetic effects. These pleiotropic effects could potentially enhance the effectiveness of traditional cancer treatments, such as radiotherapies, chemotherapies, and immunotherapies—resulting in improved outcomes and longer survival rates for cancer patients. Abstract Cancer metabolism is characterized by an increased utilization of fermentable fuels, such as glucose and glutamine, which support cancer cell survival by increasing resistance to both oxidative stress and the inherent immune system in humans. Dialysis has the power to shift the patient from a state dependent on glucose and glutamine to a ketogenic condition (KC) combined with low glutamine levels—thereby forcing ATP production through the Krebs cycle. By the force of dialysis, the cancer cells will be deprived of their preferred fermentable fuels, disrupting major metabolic pathways important for the ability of the cancer cells to survive. Dialysis has the potential to reduce glucose levels below physiological levels, concurrently increase blood ketone body levels and reduce glutamine levels, which may further reinforce the impact of the KC. Importantly, ketones also induce epigenetic changes imposed by histone deacetylates (HDAC) activity (Class I and Class IIa) known to play an important role in cancer metabolism. Thus, dialysis could be an impactful and safe adjuvant treatment, sensitizing cancer cells to traditional cancer treatments (TCTs), potentially making these significantly more efficient.
Collapse
|
43
|
The role of metabolic reprogramming in cancer metastasis and potential mechanism of traditional Chinese medicine intervention. Biomed Pharmacother 2022; 153:113376. [DOI: 10.1016/j.biopha.2022.113376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 11/22/2022] Open
|
44
|
Onwudiwe K, Burchett AA, Datta M. Mechanical and metabolic interplay in the brain metastatic microenvironment. Front Oncol 2022; 12:932285. [PMID: 36059679 PMCID: PMC9436395 DOI: 10.3389/fonc.2022.932285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
In this Perspective, we provide our insights and opinions about the contribution-and potential co-regulation-of mechanics and metabolism in incurable breast cancer brain metastasis. Altered metabolic activity can affect cancer metastasis as high glucose supply and demand in the brain microenvironment favors aerobic glycolysis. Similarly, the altered mechanical properties of disseminating cancer cells facilitate migration to and metastatic seeding of the brain, where local metabolites support their progression. Cancer cells in the brain and the brain tumor microenvironment often possess opposing mechanical and metabolic properties compared to extracranial cancer cells and their microenvironment, which inhibit the ease of extravasation and metastasis of these cells outside the central nervous system. We posit that the brain provides a metabolic microenvironment that mechanically reinforces the cellular structure of cancer cells and supports their metastatic growth while restricting their spread from the brain to external organs.
Collapse
Affiliation(s)
| | | | - Meenal Datta
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
45
|
Franceschi S, Lessi F, Morelli M, Menicagli M, Pasqualetti F, Aretini P, Mazzanti CM. Sedoheptulose Kinase SHPK Expression in Glioblastoma: Emerging Role of the Nonoxidative Pentose Phosphate Pathway in Tumor Proliferation. Int J Mol Sci 2022; 23:5978. [PMID: 35682658 PMCID: PMC9180619 DOI: 10.3390/ijms23115978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/26/2022] Open
Abstract
Glioblastoma (GBM) is the most common form of malignant brain cancer and is considered the deadliest human cancer. Because of poor outcomes in this disease, there is an urgent need for progress in understanding the molecular mechanisms of GBM therapeutic resistance, as well as novel and innovative therapies for cancer prevention and treatment. The pentose phosphate pathway (PPP) is a metabolic pathway complementary to glycolysis, and several PPP enzymes have already been demonstrated as potential targets in cancer therapy. In this work, we aimed to evaluate the role of sedoheptulose kinase (SHPK), a key regulator of carbon flux that catalyzes the phosphorylation of sedoheptulose in the nonoxidative arm of the PPP. SHPK expression was investigated in patients with GBM using microarray data. SHPK was also overexpressed in GBM cells, and functional studies were conducted. SHPK expression in GBM shows a significant correlation with histology, prognosis, and survival. In particular, its increased expression is associated with a worse prognosis. Furthermore, its overexpression in GBM cells confirms an increase in cell proliferation. This work highlights for the first time the importance of SHPK in GBM for tumor progression and proposes this enzyme and the nonoxidative PPP as possible therapeutic targets.
Collapse
Affiliation(s)
- Sara Franceschi
- Fondazione Pisana per la Scienza, 56017 Pisa, Italy; (F.L.); (M.M.); (M.M.); (P.A.); (C.M.M.)
| | - Francesca Lessi
- Fondazione Pisana per la Scienza, 56017 Pisa, Italy; (F.L.); (M.M.); (M.M.); (P.A.); (C.M.M.)
| | - Mariangela Morelli
- Fondazione Pisana per la Scienza, 56017 Pisa, Italy; (F.L.); (M.M.); (M.M.); (P.A.); (C.M.M.)
| | - Michele Menicagli
- Fondazione Pisana per la Scienza, 56017 Pisa, Italy; (F.L.); (M.M.); (M.M.); (P.A.); (C.M.M.)
| | - Francesco Pasqualetti
- Department of Radiation Oncology, Azienda Ospedaliera Universitaria Pisana, University of Pisa, 56126 Pisa, Italy;
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Paolo Aretini
- Fondazione Pisana per la Scienza, 56017 Pisa, Italy; (F.L.); (M.M.); (M.M.); (P.A.); (C.M.M.)
| | - Chiara Maria Mazzanti
- Fondazione Pisana per la Scienza, 56017 Pisa, Italy; (F.L.); (M.M.); (M.M.); (P.A.); (C.M.M.)
| |
Collapse
|
46
|
Han X, Chen J. KAT2A affects tumor metabolic reprogramming in colon cancer progression through epigenetic activation of E2F1. Hum Cell 2022; 35:1140-1158. [PMID: 35581525 DOI: 10.1007/s13577-022-00707-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/15/2022] [Indexed: 12/24/2022]
Abstract
Lysine acetyltransferase 2 A (KAT2A) has been implicated in tumorigenesis; nevertheless, the mechanism underlying its tumor-initiating effect remains elusive. In the present study, we aimed to identify the possible role of KAT2A in regulating metabolic reprogramming, a hallmark of cancer, in colon cancer (CC). KAT2A was found to be overexpressed in CC and correlated with metastases. KAT2A induced proliferation, migration, invasion, and epithelial-mesenchymal transition of CC cells, along with elevated cellular glycolytic capacity and mitochondrial stress. Functional enrichment analyses predicted and ChIP assays verified that KAT2A activated E2F transcription factor 1 (E2F1) by modifying the acetylation of H3K9. Rescue experiments revealed that E2F1 downregulation inhibited cellular activity, aerobic glycolysis and mitochondrial respiration in CC in the presence of KAT2A. Moreover, KAT2A/E2F1 promoted tumorigenic activity and lung metastases of CC cells in mice. Taken together, our findings demonstrate the substantial role of KAT2A in the modulation of post-translational modifications of E2F1 in CC, suggesting that knockdown of KAT2A may be a potential strategy for CC treatment.
Collapse
Affiliation(s)
- Xiaofeng Han
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100043, People's Republic of China
| | - Jie Chen
- Department of Hernia and Abdominal Wall Surgery, Beijing Chao-Yang Hospital, Capital Medical University, No. 5 Jingyuan Road, Shijingshan District, Beijing, 100043, People's Republic of China.
| |
Collapse
|
47
|
Bai H, Yang J, Meng S, Liu C. Oral Microbiota-Driven Cell Migration in Carcinogenesis and Metastasis. Front Cell Infect Microbiol 2022; 12:864479. [PMID: 35573798 PMCID: PMC9103474 DOI: 10.3389/fcimb.2022.864479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/04/2022] [Indexed: 12/20/2022] Open
Abstract
The oral cavity harbors approximately 1,000 microbial species, and both pathogenic and commensal strains are involved in the development of carcinogenesis by stimulating chronic inflammation, affecting cell proliferation, and inhibiting cell apoptosis. Moreover, some substances produced by oral bacteria can also act in a carcinogenic manner. The link between oral microbiota and chronic inflammation as well as cell proliferation has been well established. Recently, increasing evidence has indicated the association of the oral microbiota with cell migration, which is crucial in regulating devastating diseases such as cancer. For instance, increased cell migration induced the spread of highly malignant cancer cells. Due to advanced technologies, the mechanistic understanding of cell migration in carcinogenesis and cancer metastasis is undergoing rapid progress. Thus, this review addressed the complexities of cell migration in carcinogenesis and cancer metastasis. We also integrate recent findings on the molecular mechanisms by which the oral microbiota regulates cell migration, with emphasis on the effect of the oral microbiota on adhesion, polarization, and guidance. Finally, we also highlight critical techniques, such as intravital microscopy and superresolution microscopy, for studies in this field.
Collapse
Affiliation(s)
- Huimin Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shu Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Shu Meng, ; Chengcheng Liu,
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Shu Meng, ; Chengcheng Liu,
| |
Collapse
|
48
|
Understanding metabolic alterations and heterogeneity in cancer progression through validated immunodetection of key molecular components: a case of carbonic anhydrase IX. Cancer Metastasis Rev 2022; 40:1035-1053. [PMID: 35080763 PMCID: PMC8825433 DOI: 10.1007/s10555-021-10011-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/08/2021] [Indexed: 12/22/2022]
Abstract
Cancer metabolic heterogeneity develops in response to both intrinsic factors (mutations leading to activation of oncogenic pathways) and extrinsic factors (physiological and molecular signals from the extracellular milieu). Here we review causes and consequences of metabolic alterations in cancer cells with focus on hypoxia and acidosis, and with particular attention to carbonic anhydrase IX (CA IX). CA IX is a cancer-associated enzyme induced and activated by hypoxia in a broad range of tumor types, where it participates in pH regulation as well as in molecular mechanisms supporting cancer cells’ invasion and metastasis. CA IX catalyzes reversible conversion of carbon dioxide to bicarbonate ion plus proton and cooperates with a spectrum of molecules transporting ions or metabolites across the plasma membrane. Thereby CA IX contributes to extracellular acidosis as well as to buffering intracellular pH, which is essential for cell survival, metabolic performance, and proliferation of cancer cells. Since CA IX expression pattern reflects gradients of oxygen, pH, and other intratumoral factors, we use it as a paradigm to discuss an impact of antibody quality and research material on investigating metabolic reprogramming of tumor tissue. Based on the validation, we propose the most reliable CA IX-specific antibodies and suggest conditions for faithful immunohistochemical analysis of molecules contributing to heterogeneity in cancer progression.
Collapse
|
49
|
Tumor metabolism: metabolic alterations and heterogeneity in cancer progression. Cancer Metastasis Rev 2021; 40:987-988. [PMID: 34914023 DOI: 10.1007/s10555-021-10008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
Liu J, Chen T, Yang M, Zhong Z, Ni S, Yang S, Shao F, Cai L, Bai J, Yu H. Development of an Oxidative Phosphorylation-Related and Immune Microenvironment Prognostic Signature in Uterine Corpus Endometrial Carcinoma. Front Cell Dev Biol 2021; 9:753004. [PMID: 34901000 PMCID: PMC8655987 DOI: 10.3389/fcell.2021.753004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
Background: As the fourth most common malignant tumors in women, uterine corpus endometrial carcinoma (UCEC) requires novel and reliable biomarkers for prognosis prediction to improve the overall survival. Oxidative phosphorylation (OXPHOS) is found to be strongly correlated with the progression of tumor. Here, we aimed to construct an OXPHOS-related and immune microenvironment prognostic signature to stratify UCEC patients for optimization of treatment strategies. Method: Prognosis-associated OXPHOS-related differentially expressed genes were identified by multivariable Cox regression from TCGA–UCEC cohort. Based on the candidate genes, an OXPHOS-related prognostic signature was constructed by the train set data and verified by the entire set. When integrated with relevant clinical characteristics, a nomogram was also created for clinical application. Through comparison of tumor microenvironment between different risk groups, the underlying mechanism of the model and the inner correlation between immune microenvironment and energy metabolism were further investigated. Results: An OXPHOS-related signature containing ATP5IF1, COX6B1, FOXP3, and NDUFB11 was constructed and had better predictive ability compared with other recently published signatures in UCEC. Patients with lower risk score showed higher immune cell infiltration, higher ESTIMATE score (p = 2.808E−18), lower tumor purity (p = 2.808E−18), higher immunophenoscores (IPSs) (p < 0.05), lower expression of mismatch repair (MMR) proteins (p < 0.05), higher microsatellite instability (MSI), lower expression of markers of N6-methyladenosine (m6A) mRNA methylation regulators, higher tumor mutation burden (TMB) (p = 1.278E−9), and more sensitivity to immune checkpoint blockade (ICB) (p < 0.001) and chemotherapy drugs, thus, possessing improved prognosis. Conclusion: An OXPHOS-related and immune microenvironment prognostic signature classifying EC patients into different risk subsets was constructed in our study, which could be used to predict the prognosis of patients and help to select a specific subset of patients who might benefit from immunotherapy and chemotherapy, thus, improving the overall survival rate of UCEC. These findings may contribute to the discovery of novel and robust biomarkers or target therapy in UCEC and give new insights into the molecular mechanism of tumorigenesis and progression of UCEC.
Collapse
Affiliation(s)
- Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tian Chen
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Yang
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, Nanjing, China
| | - Zihang Zhong
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, Nanjing, China
| | - Senmiao Ni
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, Nanjing, China
| | - Sheng Yang
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, Nanjing, China
| | - Fang Shao
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, Nanjing, China
| | - Lixin Cai
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, Nanjing, China
| | - Jianling Bai
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, Nanjing, China
| | - Hao Yu
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, Nanjing, China
| |
Collapse
|