1
|
Mills EL, Suptela SR, Key MK, Marriott I, Johnson MB. RIG-I and cGAS mediate antimicrobial and inflammatory responses of primary osteoblasts and osteoclasts to Staphylococcus aureus. mBio 2025:e0397124. [PMID: 40135931 DOI: 10.1128/mbio.03971-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Staphylococcus aureus is the primary causative agent of osteomyelitis, and it is now apparent that osteoblasts and osteoclasts play a significant role in the pathogenesis of such infections. Their responses can either be protective or exacerbate inflammatory bone loss and are mediated by the recognition of microbial motifs by various pattern recognition receptors. We have recently reported that osteoblasts can respond to S. aureus challenge with the production of the type I interferon, interferon-beta, which can reduce the number of viable bacteria harbored within infected cells. In the present study, we demonstrate that S. aureus viability and internalization are necessary for maximal inflammatory cytokine and type I interferon responses of primary bone cells to this pathogen. Importantly, we show that primary murine and human bone cells constitutively express the cytosolic nucleic acid sensors, retinoic acid inducible gene I (RIG-I) and cyclic GMP-AMP synthase (cGAS), and demonstrate that such expression is markedly upregulated following S. aureus infection. The functional status of RIG-I and cGAS in osteoblasts and osteoclasts was confirmed by showing that specific ligands for each can also elevate their expression and induce cytokine responses. We have verified the specificity of such responses using siRNA knockdown or pharmacological inhibition and used these approaches to demonstrate that both sensors play a pivotal role in bone cell responses to infection with clinically relevant strains of S. aureus. Finally, we have begun to establish the biological significance of RIG-I- and cGAS-mediated bone cell responses with the demonstration that their attenuation increases S. aureus burden in infected cells, suggesting a potentially protective role for these sensors in osteomyelitis.IMPORTANCEStaphylococcal osteomyelitis is a severe infection that is often recalcitrant to current treatment strategies. We and others have demonstrated that resident bone cells are not merely passive victims but can respond to bacteria with the production of an array of immune mediators, including type I interferons, that could serve to limit such infections. Here, we demonstrate the functional expression of two cytosolic nucleic acid sensors, retinoic acid inducible gene I and cyclic GMP-AMP synthase, in primary murine and human osteoblasts and murine osteoclasts. We show that these pattern recognition receptors mediate potentially protective bone cell type I interferon responses to Staphylococcus aureus infection.
Collapse
Affiliation(s)
- Erin L Mills
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Samantha R Suptela
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Mary-Kate Key
- Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia, USA
| | - Ian Marriott
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - M Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| |
Collapse
|
2
|
Tominari T, Matsumoto C, Tanaka Y, Shimizu K, Takatoya M, Sugasaki M, Karouji K, Kasuga U, Miyaura C, Miyata S, Itoh Y, Hirata M, Inada M. Roles of Toll-like Receptor Signaling in Inflammatory Bone Resorption. BIOLOGY 2024; 13:692. [PMID: 39336119 PMCID: PMC11429252 DOI: 10.3390/biology13090692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors expressed in immune cells, including neutrophils, macrophages, and dendritic cells. Microbe-associated molecular patterns, including bacterial components, membranes, nucleic acids, and flagella are recognized by TLRs in inflammatory immune responses. Periodontal disease is an inflammatory disease known to cause local infections associated with gingival inflammation, subsequently leading to alveolar bone resorption. Prostaglandin E2 (PGE2) is a key mediator of TLR-induced inflammatory bone resorption. We previously reported that membrane-bound PGE synthase (mPGES-1)-deficient mice failed to induce bone resorption by lipopolysaccharide (LPS), a major pathogenic factor involved in periodontal bone resorption. Further experiments exploring specific pathogen-promoting osteoclast differentiation revealed that various TLR ligands induced osteoclast differentiation in a co-culture model. The ligands for TLR2/1, TLR2/6, TLR3, and TLR5, as well as TLR4, induce osteoclast differentiation associated with the production of PGE2 and the receptor activator of nuclear factor-kappa B ligand (RANKL), an inevitable inducer of osteoclast differentiation in osteoblasts. In vivo, local injection of TLR ligands, including TLR2/1, TLR2/6, and TLR3, resulted in severe alveolar bone resorption. This review summarizes the latest findings on TLR-mediated osteoclast differentiation and bone resorption in inflammatory diseases, such as periodontal diseases.
Collapse
Affiliation(s)
- Tsukasa Tominari
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan; (T.T.); (C.M.); (C.M.); (M.H.)
| | - Chiho Matsumoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan; (T.T.); (C.M.); (C.M.); (M.H.)
| | - Yuki Tanaka
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan (K.K.)
| | - Kensuke Shimizu
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan; (T.T.); (C.M.); (C.M.); (M.H.)
| | - Masaru Takatoya
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan (K.K.)
| | - Moe Sugasaki
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan (K.K.)
| | - Kento Karouji
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan (K.K.)
| | - Urara Kasuga
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan; (T.T.); (C.M.); (C.M.); (M.H.)
| | - Chisato Miyaura
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan; (T.T.); (C.M.); (C.M.); (M.H.)
| | - Shinji Miyata
- Inada Research Unit, Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan; (S.M.); (Y.I.)
| | - Yoshifumi Itoh
- Inada Research Unit, Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan; (S.M.); (Y.I.)
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK
| | - Michiko Hirata
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan; (T.T.); (C.M.); (C.M.); (M.H.)
| | - Masaki Inada
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan; (T.T.); (C.M.); (C.M.); (M.H.)
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan (K.K.)
- Inada Research Unit, Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan; (S.M.); (Y.I.)
| |
Collapse
|
3
|
Autologous Stem Cells for the Treatment of Chondral Injury and Disease. OPER TECHN SPORT MED 2022. [DOI: 10.1016/j.otsm.2022.150963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Anz AW, Torres J, Plummer HA, Siew-Yoke Jee C, Dekker TJ, Johnson KB, Saw KY. Mobilized Peripheral Blood Stem Cells are Pluripotent and Can Be Safely Harvested and Stored for Cartilage Repair. Arthroscopy 2021; 37:3347-3356. [PMID: 33940122 DOI: 10.1016/j.arthro.2021.04.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 04/06/2021] [Accepted: 04/15/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE The primary objective of this study was to reproduce and validate the harvest, processing and storage of peripheral blood stem cells for a subsequent cartilage repair trial, evaluating safety, reliability, and potential to produce viable, sterile stem cells. METHODS Ten healthy subjects (aged 19-44 years) received 3 consecutive daily doses of filgrastim followed by an apheresis harvest of mononuclear cells on a fourth day. In a clean room, the apheresis product was prepared for cryopreservation and processed into 4 mL aliquots. Sterility and qualification testing were performed pre-processing and post-processing at multiple time points out to 2 years. Eight samples were shipped internationally to validate cell transport potential. One sample from all participants was cultured to test proliferative potential with colony forming unit (CFU) assay. Five samples, from 5 participants were tested for differentiation potential, including chondrogenic, adipogenic, osteogenic, endoderm, and ectoderm assays. RESULTS Fresh aliquots contained an average of 532.9 ± 166. × 106 total viable cells/4 mL vial and 2.1 ± 1.0 × 106 CD34+ cells/4 mL vial. After processing for cryopreservation, the average cell count decreased to 331.3 ± 79. × 106 total viable cells /4 mL vial and 1.5 ± 0.7 × 106 CD34+ cells/4 mL vial CD34+ cells. Preprocessing viability averaged 99% and postprocessing 88%. Viability remained constant after cryopreservation at all subsequent time points. All sterility testing was negative. All samples showed proliferative potential, with average CFU count 301.4 ± 63.9. All samples were pluripotent. CONCLUSIONS Peripheral blood stem cells are pluripotent and can be safely harvested/stored with filgrastim, apheresis, clean-room processing, and cryopreservation. These cells can be stored for 2 years and shipped without loss of viability. CLINICAL RELEVANCE This method represents an accessible stem cell therapy in development to augment cartilage repair.
Collapse
Affiliation(s)
- Adam W Anz
- Andrews Institute for Orthopedics & Sports Medicine, Gulf Breeze; Andrews Research & Education Foundation, Gulf Breeze.
| | - Johnny Torres
- Andrews Research & Education Foundation, Gulf Breeze
| | | | | | | | | | - Khay-Yong Saw
- Kuala Lumpur Sports Medicine Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Umar S, Palasiewicz K, Van Raemdonck K, Volin MV, Romay B, Amin MA, Zomorrodi RK, Arami S, Gonzalez M, Rao V, Zanotti B, Fox DA, Sweiss N, Shahrara S. IRAK4 inhibition: a promising strategy for treating RA joint inflammation and bone erosion. Cell Mol Immunol 2021; 18:2199-2210. [PMID: 32415262 PMCID: PMC8429735 DOI: 10.1038/s41423-020-0433-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/30/2020] [Indexed: 01/22/2023] Open
Abstract
Flares of joint inflammation and resistance to currently available biologic therapeutics in rheumatoid arthritis (RA) patients could reflect activation of innate immune mechanisms. Herein, we show that a TLR7 GU-rich endogenous ligand, miR-Let7b, potentiates synovitis by amplifying RA monocyte and fibroblast (FLS) trafficking. miR-Let7b ligation to TLR7 in macrophages (MΦs) and FLSs expanded the synovial inflammatory response. Moreover, secretion of M1 monokines triggered by miR-Let7b enhanced Th1/Th17 cell differentiation. We showed that IRAK4 inhibitor (i) therapy attenuated RA disease activity by blocking TLR7-induced M1 MΦ or FLS activation, as well as monokine-modulated Th1/Th17 cell polarization. IRAK4i therapy also disrupted RA osteoclastogenesis, which was amplified by miR-Let7b ligation to joint myeloid TLR7. Hence, the effectiveness of IRAK4i was compared with that of a TNF inhibitor (i) or anti-IL-6R treatment in collagen-induced arthritis (CIA) and miR-Let7b-mediated arthritis. We found that TNF or IL-6R blocking therapies mitigated CIA by reducing the infiltration of joint F480+iNOS+ MΦs, the expression of certain monokines, and Th1 cell differentiation. Unexpectedly, these biologic therapies were unable to alleviate miR-Let7b-induced arthritis. The superior efficacy of IRAK4i over anti-TNF or anti-IL-6R therapy in miR-Let7b-induced arthritis or CIA was due to the ability of IRAK4i therapy to restrain the migration of joint F480+iNOS+ MΦs, vimentin+ fibroblasts, and CD3+ T cells, in addition to negating the expression of a wide range of monokines, including IL-12, MIP2, and IRF5 and Th1/Th17 lymphokines. In conclusion, IRAK4i therapy may provide a promising strategy for RA therapy by disconnecting critical links between inflammatory joint cells.
Collapse
Affiliation(s)
- Sadiq Umar
- Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Karol Palasiewicz
- Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Katrien Van Raemdonck
- Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Michael V Volin
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, 60515, USA
| | - Bianca Romay
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - M Asif Amin
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, MI, 481096, USA
| | - Ryan K Zomorrodi
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Shiva Arami
- Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Mark Gonzalez
- Department of Orthopedic Surgery, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Vikram Rao
- Pfizer Research, Cambridge, MA, 02139, USA
| | - Brian Zanotti
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, 60515, USA
| | - David A Fox
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, MI, 481096, USA
| | - Nadera Sweiss
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Shiva Shahrara
- Jesse Brown VA Medical Center, Chicago, IL, 60612, USA.
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
6
|
Hegewald AB, Breitwieser K, Ottinger SM, Mobarrez F, Korotkova M, Rethi B, Jakobsson PJ, Catrina AI, Wähämaa H, Saul MJ. Extracellular miR-574-5p Induces Osteoclast Differentiation via TLR 7/8 in Rheumatoid Arthritis. Front Immunol 2020; 11:585282. [PMID: 33154755 PMCID: PMC7591713 DOI: 10.3389/fimmu.2020.585282] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/08/2020] [Indexed: 01/08/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial inflammation and joint destruction. Cell-derived small extracellular vesicles (sEV) mediate cell-to-cell communication in the synovial microenvironment by carrying microRNAs (miRs), a class of small non-coding RNAs. Herein, we report that sEV from synovial fluid promote osteoclast differentiation which is attributed to high levels of extracellular miR-574-5p. Moreover, we demonstrate for the first time that enhanced osteoclast maturation is mediated by Toll-like receptor (TLR) 7/8 signaling which is activated by miR-574-5p binding. This is a novel mechanism by which sEV and miRs contribute to RA pathogenesis and indicate that pharmacological inhibition of extracellular miR-574-5p might offer new therapeutic strategies to protect osteoclast-mediated bone destruction in RA.
Collapse
Affiliation(s)
- Anett B Hegewald
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Kai Breitwieser
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Sarah M Ottinger
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Fariborz Mobarrez
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Marina Korotkova
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Bence Rethi
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anca I Catrina
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Heidi Wähämaa
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Meike J Saul
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany.,Institute of Pharmaceutical Chemistry, Goethe Universität Frankfurt, Frankfurt, Germany
| |
Collapse
|
7
|
Kim KW, Kim BM, Won JY, Lee KA, Kim HR, Lee SH. Toll-like receptor 7 regulates osteoclastogenesis in rheumatoid arthritis. J Biochem 2019; 166:259-270. [PMID: 31086948 DOI: 10.1093/jb/mvz033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 05/07/2019] [Indexed: 12/21/2022] Open
Abstract
This study aimed to determine the regulatory role of toll-like receptor 7 (TLR7) in receptor activator of nuclear factor kappa-B ligand (RANKL) production and osteoclast differentiation in rheumatoid arthritis (RA). In confocal microscopy, the co-expression of TLR7, CD55 and RANKL was determined in RA synovial fibroblasts. After RA synovial fibroblasts were treated with imiquimod, the RANKL gene expression and protein production were determined by real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). Osteoclastogenesis from peripheral blood CD14+ monocytes which were cultured with imiquimod was assessed by determining the numbers of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells. The signal pathways mediating the TLR7-induced RANKL expression and osteoclastogenesis were analysed after inhibition of intracellular signal molecules and their phosphorylation. Imiquimod stimulated the expression of TLR7 and RANKL and production of RANKL in RA synovial fibroblasts, increasing the phosphorylation of TRAF6, IRF7, mitogen-activated protein kinases (MAPK), c-Jun and NFATc1. When CD14+ monocytes were cultured with imiquimod or co-cultured with imiquimod-pre-treated RA synovial fibroblasts, they were differentiated into TRAP+ multinucleated osteoclasts in the absence of RANKL. TLR7 activation-induced osteoclastogenesis in RA through direct induction of osteoclast differentiation from its precursors and up-regulation of RANKL production in RA synovial fibroblasts. Thus, the blockage of TLR7 pathway could be a promising therapeutic strategy for preventing bone destruction in RA.
Collapse
Affiliation(s)
- Kyoung-Woon Kim
- Convergent Research Consortium in Immunologic Disease, Seoul St. Mary's Hospital College of Medicine, The Catholic University, 222 Banpo-daero, Seocho-gu, Seoul, Korea
| | - Bo-Mi Kim
- Convergent Research Consortium in Immunologic Disease, Seoul St. Mary's Hospital College of Medicine, The Catholic University, 222 Banpo-daero, Seocho-gu, Seoul, Korea
| | - Ji-Yeon Won
- Department of Rheumatology, Research Institute of Medical Science, Konkuk University School of Medicine, 120-1 Neungdong-ro (Hwayang-dong), Gwangjin-gu, Seoul, Korea
| | - Kyung-Ann Lee
- Department of Rheumatology, Research Institute of Medical Science, Konkuk University School of Medicine, 120-1 Neungdong-ro (Hwayang-dong), Gwangjin-gu, Seoul, Korea
| | - Hae-Rim Kim
- Department of Rheumatology, Research Institute of Medical Science, Konkuk University School of Medicine, 120-1 Neungdong-ro (Hwayang-dong), Gwangjin-gu, Seoul, Korea
| | - Sang-Heon Lee
- Department of Rheumatology, Research Institute of Medical Science, Konkuk University School of Medicine, 120-1 Neungdong-ro (Hwayang-dong), Gwangjin-gu, Seoul, Korea
| |
Collapse
|
8
|
Fischer A, Abdollahi‐Roodsaz S, Böhm C, Niederreiter B, Meyer B, Yau ACY, Lönnblom E, Joosten LAB, Koenders M, Lehmann CHK, Dudziak D, Krönke G, Holmdahl R, Steiner G. The involvement of Toll-like receptor 9 in the pathogenesis of erosive autoimmune arthritis. J Cell Mol Med 2018; 22:4399-4409. [PMID: 29992753 PMCID: PMC6111819 DOI: 10.1111/jcmm.13735] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/18/2018] [Indexed: 11/28/2022] Open
Abstract
Endogenous nucleic acids and their receptors may be involved in the initiation of systemic autoimmune diseases including rheumatoid arthritis (RA). As the role of the DNA sensing Toll-like receptor (TLR) 9 in RA is unclear, we aimed to investigate its involvement in the pathogenesis of autoimmune arthritis using three different experimental models of RA. The data obtained revealed involvement of TLR9 in the T cell-dependent phase of inflammatory arthritis. In rats with pristane-induced arthritis (PIA), TLR9 inhibition before disease onset reduced arthritis significantly and almost completely abolished bone erosion. Accordingly, serum levels of IL-6, α-1-acid-glycoprotein and rheumatoid factor were reduced. Moreover, in TLR9-/- mice, streptococcal cell wall (SCW)-induced arthritis was reduced in the T cell-dependent phase, whereas T cell-independent serum-transfer arthritis was not affected. Remarkably, while TLR7 expression did not change during in vitro osteoclastogenesis, TLR9 expression was higher in precursor cells than in mature osteoclasts and partial inhibition of osteoclastogenesis was achieved only by the TLR9 antagonist. These results demonstrate a pivotal role for TLR9 in the T cell-dependent phases of inflammatory arthritis and additionally suggest some role during osteoclastogenesis. Hence, endogenous DNA seems to be crucially involved in the pathophysiology of inflammatory autoimmune arthritis.
Collapse
Affiliation(s)
- Anita Fischer
- Division of RheumatologyInternal Medicine IIIMedical University of ViennaViennaAustria
| | - Shahla Abdollahi‐Roodsaz
- Department of RheumatologyRadboud University Nijmegen Medical CentreNijmegenThe Netherlands
- Division of RheumatologyDepartment of MedicineNew York University School of MedicineNew YorkNYUSA
| | - Christina Böhm
- Division of RheumatologyInternal Medicine IIIMedical University of ViennaViennaAustria
| | - Birgit Niederreiter
- Division of RheumatologyInternal Medicine IIIMedical University of ViennaViennaAustria
| | - Brigitte Meyer
- Division of RheumatologyInternal Medicine IIIMedical University of ViennaViennaAustria
| | - Anthony C. Y. Yau
- Medical Inflammation ResearchDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| | - Erik Lönnblom
- Medical Inflammation ResearchDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| | - Leo A. B. Joosten
- Department of RheumatologyRadboud University Nijmegen Medical CentreNijmegenThe Netherlands
| | - Marije Koenders
- Department of RheumatologyRadboud University Nijmegen Medical CentreNijmegenThe Netherlands
| | - Christian H. K. Lehmann
- Department of DermatologyUniversity Hospital ErlangenFriedrich‐Alexander University of Erlangen‐NürnbergErlangenGermany
| | - Diana Dudziak
- Department of DermatologyUniversity Hospital ErlangenFriedrich‐Alexander University of Erlangen‐NürnbergErlangenGermany
| | - Gerhard Krönke
- Department of Internal Medicine 3 ‐ Rheumatology and ImmunologyFriedrich‐Alexander‐University Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Rikard Holmdahl
- Medical Inflammation ResearchDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| | - Günter Steiner
- Division of RheumatologyInternal Medicine IIIMedical University of ViennaViennaAustria
- Ludwig Boltzmann Cluster for Arthritis and RehabilitationViennaAustria
| |
Collapse
|
9
|
Manome Y, Suzuki D, Mochizuki A, Saito E, Sasa K, Yoshimura K, Inoue T, Takami M, Inagaki K, Funatsu T, Kamijo R. The inhibition of malignant melanoma cell invasion of bone by the TLR7 agonist R848 is dependent upon pro-inflammatory cytokines produced by bone marrow macrophages. Oncotarget 2018; 9:29934-29943. [PMID: 30042824 PMCID: PMC6057452 DOI: 10.18632/oncotarget.25711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 06/12/2018] [Indexed: 12/22/2022] Open
Abstract
Distant metastasis remarkably worsens the prognoses of malignant melanoma patients. Toll-like receptors (TLRs) recognize molecules derived from many types of pathogens and activate the innate intravital immune system. In this study, we examined the effects of R848, a TLR7 ligand, on bone invasion by malignant melanoma cells. Mice underwent transplantation with cells of a malignant melanoma cell line B16F10, and were also administered R848 every three days. Hindlimbs were obtained 13 days after transplantation and invasion of bone marrow by B16F10 cells was evaluated. ELISA was used to determine the concentrations of cytokines in mouse serum and in the culture medium from bone marrow macrophages (BMMs) in the presence or absence of R848. In addition, MTS assays were used to examine the effects of media from BMM cultures on the proliferation of B16F10 cells. The rate of infiltration by B16F10 cells and the area of invasion were significantly reduced with R848 administration. Furthermore, serum levels of IL-6, IL-12, and IFN-γ were significantly increased in mice administered R848, with the same trend observed in the culture medium of BMMs treated with R848. In addition, B16F10 cell proliferation was suppressed by the addition of medium from cultured BMMs treated with R848. Neutralization by antibodies against IL-6, IL-12, and IFN-γ abrogated the suppression of proliferation of B16F10 cells by culture medium from BMMs treated with R848. Our results suggest that R848 drives the production of IL-6, IL-12, and IFN-γ in BMMs, which reduces proliferation and bone invasion by B16F10 cells.
Collapse
Affiliation(s)
- Yoko Manome
- Departments of Biochemistry School of Dentistry, Showa University, Shinagawa, Tokyo, Japan.,Department of Special Needs Dentistry, Division of Dentistry for Persons with Disabilities, Showa University Dental Hospital, Shinagawa, Tokyo, Japan
| | - Dai Suzuki
- Departments of Biochemistry School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Ayako Mochizuki
- Departments of Oral Physiology School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Emi Saito
- Departments of Biochemistry School of Dentistry, Showa University, Shinagawa, Tokyo, Japan.,Department of Orthopedic Surgery School of Medicine, Showa University, Shinagawa, Tokyo, Japan
| | - Kiyohito Sasa
- Departments of Biochemistry School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Kentaro Yoshimura
- Departments of Biochemistry School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Tomio Inoue
- Departments of Oral Physiology School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Masamichi Takami
- Departments of Pharmacology School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Katsunori Inagaki
- Department of Orthopedic Surgery School of Medicine, Showa University, Shinagawa, Tokyo, Japan
| | - Takahiro Funatsu
- Department of Special Needs Dentistry, Division of Dentistry for Persons with Disabilities, Showa University Dental Hospital, Shinagawa, Tokyo, Japan
| | - Ryutaro Kamijo
- Departments of Biochemistry School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| |
Collapse
|
10
|
Elshabrawy HA, Essani AE, Szekanecz Z, Fox DA, Shahrara S. TLRs, future potential therapeutic targets for RA. Autoimmun Rev 2016; 16:103-113. [PMID: 27988432 DOI: 10.1016/j.autrev.2016.12.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 01/27/2023]
Abstract
Toll like receptors (TLR)s have a central role in regulating innate immunity and in the last decade studies have begun to reveal their significance in potentiating autoimmune diseases such as rheumatoid arthritis (RA). Earlier investigations have highlighted the importance of TLR2 and TLR4 function in RA pathogenesis. In this review, we discuss the newer data that indicate roles for TLR5 and TLR7 in RA and its preclinical models. We evaluate the pathogenicity of TLRs in RA myeloid cells, synovial tissue fibroblasts, T cells, osteoclast progenitor cells and endothelial cells. These observations establish that ligation of TLRs can transform RA myeloid cells into M1 macrophages and that the inflammatory factors secreted from M1 and RA synovial tissue fibroblasts participate in TH-17 cell development. From the investigations conducted in RA preclinical models, we conclude that TLR-mediated inflammation can result in osteoclastic bone erosion by interconnecting the myeloid and TH-17 cell response to joint vascularization. In light of emerging unique aspects of TLR function, we summarize the novel approaches that are being tested to impair TLR activation in RA patients.
Collapse
Affiliation(s)
- Hatem A Elshabrawy
- Division of Rheumatology, Jesse Brown VA, Medical Center, Chicago, IL 60612, USA; Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, IL 60612, USA
| | - Abdul E Essani
- Division of Rheumatology, Jesse Brown VA, Medical Center, Chicago, IL 60612, USA; Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, IL 60612, USA
| | - Zoltán Szekanecz
- Department of Rheumatology, Institute of Medicine, University of Debrecen Faculty of Medicine, Nagyerdei Str 98, Debrecen H-4004, Hungary
| | - David A Fox
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shiva Shahrara
- Division of Rheumatology, Jesse Brown VA, Medical Center, Chicago, IL 60612, USA; Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, IL 60612, USA.
| |
Collapse
|
11
|
Suzuki H, Mochizuki A, Yoshimura K, Miyamoto Y, Kaneko K, Inoue T, Chikazu D, Takami M, Kamijo R. Bropirimine inhibits osteoclast differentiation through production of interferon-β. Biochem Biophys Res Commun 2015; 467:146-51. [PMID: 26399683 DOI: 10.1016/j.bbrc.2015.09.092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/17/2015] [Indexed: 01/17/2023]
Abstract
Bropirimine is a synthetic agonist for toll-like receptor 7 (TLR7). In this study, we investigated the effects of bropirimine on differentiation and bone-resorbing activity of osteoclasts in vitro. Bropirimine inhibited osteoclast differentiation of mouse bone marrow-derived macrophages (BMMs) induced by receptor activator of nuclear factor κB ligand (RANKL) in a concentration-dependent manner. Furthermore, it suppressed the mRNA expression of nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1), a master transcription factor for osteoclast differentiation, without affecting BMM viability. Bropirimine also inhibited osteoclast differentiation induced in co-cultures of mouse bone marrow cells (BMCs) and mouse osteoblastic UAMS-32 cells in the presence of activated vitamin D3. Bropirimine partially suppressed the expression of RANKL mRNA in UAMS-32 cells induced by activated vitamin D3. Finally, the anti-interferon-β (IFN-β) antibody restored RANKL-dependent differentiation of BMMs into osteoclasts suppressed by bropirimine. These results suggest that bropirimine inhibits differentiation of osteoclast precursor cells into osteoclasts via TLR7-mediated production of IFN-β.
Collapse
Affiliation(s)
- Hiroaki Suzuki
- Department of Biochemistry, Showa University School of Dentistry, Tokyo 142-8555, Japan
| | - Ayako Mochizuki
- Department of Oral Physiology, Showa University School of Dentistry, Tokyo 142-8555, Japan
| | - Kentaro Yoshimura
- Department of Biochemistry, Showa University School of Dentistry, Tokyo 142-8555, Japan
| | - Yoichi Miyamoto
- Department of Biochemistry, Showa University School of Dentistry, Tokyo 142-8555, Japan
| | - Kotaro Kaneko
- Department of Biochemistry, Showa University School of Dentistry, Tokyo 142-8555, Japan; Department of Oral and Maxillofacial Surgery, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Tomio Inoue
- Department of Oral Physiology, Showa University School of Dentistry, Tokyo 142-8555, Japan
| | - Daichi Chikazu
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Masamichi Takami
- Department of Pharmacology, Showa University School of Dentistry, Tokyo 142-8555, Japan
| | - Ryutaro Kamijo
- Department of Biochemistry, Showa University School of Dentistry, Tokyo 142-8555, Japan.
| |
Collapse
|
12
|
Hopper N, Wardale J, Brooks R, Power J, Rushton N, Henson F. Peripheral Blood Mononuclear Cells Enhance Cartilage Repair in in vivo Osteochondral Defect Model. PLoS One 2015; 10:e0133937. [PMID: 26252391 PMCID: PMC4529143 DOI: 10.1371/journal.pone.0133937] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/02/2015] [Indexed: 02/07/2023] Open
Abstract
This study characterized peripheral blood mononuclear cells (PBMC) in terms of their potential in cartilage repair and investigated their ability to improve the healing in a pre-clinical large animal model. Human PBMCs were isolated with gradient centrifugation and adherent PBMC’s were evaluated for their ability to differentiate into adipogenic, chondrogenic and osteogenic lineages and also for their expression of musculoskeletal genes. The phenotype of the PBMCs was evaluated using Stro-1, CD34, CD44, CD45, CD90, CD106, CD105, CD146 and CD166 cell surface markers. Osteochondral defects were created in the medial femoral condyle (MFC) of 24 Welsh mountain sheep and evaluated at a six month time point. Four cell treatment groups were evaluated in combination with collagen-GAG-scaffold: (1) MSC alone; (2) MSCs and PBMCs at a ratio of 20:1; (3) MSCs and PBMC at a ratio of 2:1 and (4) PBMCs alone. Samples from the surgical site were evaluated for mechanical properties, ICRS score and histological repair. Fresh PBMC samples were 90% positive for hematopoietic cell surface markers and negative for the MSC antibody panel (<1%, p = 0.006). However, the adherent PBMC population expressed mesenchymal stem cell markers in hypoxic culture and lacked CD34/45 positive cells (<0.2%). This finding demonstrated that the adherent cells had acquired an MSC-like phenotype and transformed in hypoxia from their original hematopoietic lineage. Four key genes in muskuloskeletal biology were significantly upregulated in adherent PBMCs by hypoxia: BMP2 4.2-fold (p = 0.0007), BMP6 10.7-fold (p = 0.0004), GDF5 2.0-fold (p = 0.002) and COL1 5.0-fold (p = 0.046). The monolayer multilineage analysis confirmed the trilineage mesenchymal potential of the adherent PBMCs. PBMC cell therapy was equally good as bone marrow MSC therapy for defects in the ovine large animal model. Our results show that PBMCs support cartilage healing and oxygen tension of the environment was found to have a key effect on the derivation of a novel adherent cell population with an MSC-like phenotype. This study presents a novel and easily attainable point-of-care cell therapy with PBMCs to treat osteochondral defects in the knee avoiding any cell manipulations outside the surgical room.
Collapse
Affiliation(s)
- Niina Hopper
- Division of Trauma and Orthopaedic Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge, BC2 0QQ, the United Kingdom
- * E-mail:
| | - John Wardale
- Division of Trauma and Orthopaedic Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge, BC2 0QQ, the United Kingdom
| | - Roger Brooks
- Division of Trauma and Orthopaedic Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge, BC2 0QQ, the United Kingdom
| | - Jonathan Power
- Department of Biological Sciences, University of Chester, Chester, CH1 4BJ, the United Kingdom
| | - Neil Rushton
- Division of Trauma and Orthopaedic Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge, BC2 0QQ, the United Kingdom
| | - Frances Henson
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, the United Kingdom
| |
Collapse
|