1
|
Fernandes S, Ilyaskina D, Berg MP, Lamoree MH, Leonards PEG, van Gestel CAM. Exploring chitin metabolite profiles and sensitivity differences in Collembola species exposed to teflubenzuron. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117774. [PMID: 39847884 DOI: 10.1016/j.ecoenv.2025.117774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/14/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
Effective environmental risk assessments of chemical plant protection products, such as benzoylurea pesticides, are crucial for safeguarding ecosystems. These pesticides, including teflubenzuron, target chitin synthesis in arthropods but also pose risks to non-target soil fauna like Collembola, which play essential roles in decomposition and nutrient cycling. This study combines traditional toxicity tests with a metabolomic approach to examine the interspecies specific sensitivity of three Collembola species - Sinella curviseta, Ceratophysella denticulata, and Folsomia candida - to teflubenzuron. The investigation focused on reproduction, bioaccumulation, and changes in chitin-related metabolites as indicators of pesticide impacts. Results revealed significant interspecies specific variability in sensitivity, with F. candida showing higher susceptibility towards teflubenzuron, possibly due to greater bioaccumulation factors. Metabolomic analysis highlighted distinct patterns in chitin metabolite alterations among the species, correlating with their differential sensitivity. Notably, metabolites like trehalose and glucose, crucial for chitin synthesis, were significantly affected by teflubenzuron within seven days of exposure. Despite high soil concentrations of the pesticide, S. curviseta demonstrated resilience in traditional life-history endpoints, such as reproduction and survival. However, metabolomics indicated a biochemical response to even low internal concentrations of teflubenzuron, underscoring the complexity of their interactions with environmental stressors. This study emphasizes the importance of incorporating metabolomics to understand the differential responses of non-target organisms to pesticides and advocates for species-specific risk assessments in pesticide regulation. The distinct metabolic responses among Collembola species to chitin synthesis inhibitors provide critical insights into their ecological resilience or vulnerability, enhancing our understanding of ecosystem dynamics and the potential ramifications of chemical exposure.
Collapse
Affiliation(s)
- Saúl Fernandes
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam 1081Hz, the Netherlands
| | - Diana Ilyaskina
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam 1081Hz, the Netherlands
| | - Matty P Berg
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam 1081Hz, the Netherlands
| | - Marja H Lamoree
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam 1081Hz, the Netherlands
| | - Pim E G Leonards
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam 1081Hz, the Netherlands
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam 1081Hz, the Netherlands.
| |
Collapse
|
2
|
Martins GC, de Ferreira Reis FA, Dall'Agnol R, Ramos SJ, Gastauer M, Natal-da-Luz T, Sousa JP, Guilherme LRG. Assessment of the reproduction of six collembolan species in tropical soils naturally rich in potentially toxic elements. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25424-25436. [PMID: 38472582 DOI: 10.1007/s11356-024-32847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
Laboratory ecotoxicological tests are important tools for the management of environmental changes derived from anthropogenic activities. Folsomia candida is usually the model species used in some procedures. However, this species may not be sufficiently representative of the sensitivity of the other collembolan species. This study aimed to evaluate (i) the effects of soils naturally rich in potentially toxic elements (PTE) and soil characteristics on the reproduction and survival of different collembolan species, (ii) whether the habitat function of these soils is compromised, and (iii) to what extent F. candida is representative of the other collembolan species. For this, reproduction tests with six collembolan species were conducted in 14 different samples of soils. In general, collembolan reproduction was not completely inhibited in none of the natural tested soils. Even soils with high pollution load index values did not negatively affect collembolan reproduction for most of the species. In contrast, the lowest collembolan reproduction rates were found in a visually dense soil (lowest volume/weight ratio), highlighting that soil attributes other than total PTE concentration also interfere in the reproduction of collembolans. Our results support the idea that the F. candida species might not be representative of other collembolan species and that laboratory tests to assess soil contaminations should be conducted using diverse collembolan species.
Collapse
Affiliation(s)
- Gabriel Caixeta Martins
- Instituto Tecnológico Vale (ITV), Rua Boaventura da Silva, 955, Belém, PA, 66055-090, Brazil.
| | - Filipa Alexandra de Ferreira Reis
- CFE-Centre for Functional Ecology-Science for the People and the Planet, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Roberto Dall'Agnol
- Instituto Tecnológico Vale (ITV), Rua Boaventura da Silva, 955, Belém, PA, 66055-090, Brazil
| | - Sílvio Junio Ramos
- Instituto Tecnológico Vale (ITV), Rua Boaventura da Silva, 955, Belém, PA, 66055-090, Brazil
| | - Markus Gastauer
- Instituto Tecnológico Vale (ITV), Rua Boaventura da Silva, 955, Belém, PA, 66055-090, Brazil
| | - Tiago Natal-da-Luz
- CFE-Centre for Functional Ecology-Science for the People and the Planet, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - José Paulo Sousa
- CFE-Centre for Functional Ecology-Science for the People and the Planet, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | | |
Collapse
|
3
|
Lin X, Wang W, Ma J, Sun Z, Hou H, Zhao L. Study on molecular level toxicity of Sb(V) to soil springtails: using a combination of transcriptomics and metabolomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:144097. [PMID: 33360133 DOI: 10.1016/j.scitotenv.2020.144097] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
To date, numerous studies have focused on the toxicity of antimony (Sb) to soil-dwelling organisms at the individual level. However, little is known about Sb-caused molecular level toxicity. Here, an integrated transcriptomics and metabolomics approach was used to better reveal toxicity of Sb(V) to springtails Folsomia candida considering environmentally relevant speciation of Sb. No significant effects of Sb(V) on survival, reproduction and growth of springtails were observed using the ISO standard test. Transcriptomics analysis identified 1015 and 3367 differentially expressed genes (DEGs) after 2 and 7 d of exposure, indicating an increasing transcriptomal changes with time. Significantly enriched top GO (Gene Ontology) terms (chitin metabolic process, chitin binding and extracellular region) were shared between the two time exposure groups. However, no enriched KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway was shared, with fatty acid metabolism and apoptosis-fly being the most significant pathway, respectively. Metabolomics analysis identified 155 differential changed metabolites (DCMs) in springtails after 7 d of exposure. Antifolate resistance was the most significantly enriched pathway, in which dihydrofolic acid was up-regulated and three purine nucleotides (adenosine 5'-monophosphate, inosine 5'-monophosphate, guanosine 5'-monophosphate) were down-regulated. This indicated obvious repression of DNA replication, which was also observed by transcriptomics. Additionally, metabolites level related to chitin, oxidative stress, and protein metabolism significantly changed, and these metabolites could also support and confirm main transcriptomic results. Thus, the combination of multiomics facilitated better understanding of the molecular level of toxicity of Sb(V) in Collembola.
Collapse
Affiliation(s)
- Xianglong Lin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100000, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Weiran Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100000, China
| | - Jin Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100000, China
| | - Zaijin Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100000, China
| | - Hong Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100000, China.
| | - Long Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100000, China.
| |
Collapse
|
4
|
de Lima E Silva C, van Haren C, Mainardi G, de Rooij W, Ligtelijn M, van Straalen NM, van Gestel CAM. Bringing ecology into toxicology: Life-cycle toxicity of two neonicotinoids to four different species of springtails in LUFA 2.2 natural soil. CHEMOSPHERE 2021; 263:128245. [PMID: 33297192 DOI: 10.1016/j.chemosphere.2020.128245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 06/12/2023]
Abstract
Collembolans comprise one of the most abundant groups of soil invertebrates within the arthropods. The parthenogenetic species Folsomia candida (Willem, 1902) is the most well-studied representative, being used since the beginning of the 1960s as a model organism for assessing toxicity of chemicals in soil. In this paper we aimed at answering three questions by exposing four different species of springtails (F. candida, Folsomia fimetaria, Sinella curviseta and Heteromurus nitidus) to the neonicotinoids imidacloprid and thiacloprid: i) How representative as a model organism is F. candida for species of springtails that reproduce sexually? (ii) How suitable are other species of springtails to be used as model organisms for ecotoxicological testing? (iii) Is it possible to use the life history of these species to extrapolate the impact of neonicotinoids on the population level? Our results showed that F. candida is a good model organism, despite being the most sensitive species tested, when analysing both endpoints - survival and reproduction. The tests performed with S. curviseta and H. nitidus showed that they could be used as surrogates in ecotoxicity tests, and also to predict how their population might be affected after being exposed to chemicals. The adjustments made to the test performed with F. candida: introducing adults (20-22 days old) into the test jars and exposing them for 21 days instead of 28 days, proved to be as efficient as the standardized test guideline (OECD 232, 2009).
Collapse
Affiliation(s)
- Cláudia de Lima E Silva
- Department of Ecological Science, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands.
| | - Claire van Haren
- Department of Ecological Science, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Giulia Mainardi
- Department of Ecological Science, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Winona de Rooij
- Department of Ecological Science, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Michella Ligtelijn
- Department of Ecological Science, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Nico M van Straalen
- Department of Ecological Science, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Cornelis A M van Gestel
- Department of Ecological Science, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| |
Collapse
|
5
|
Szabó B, Bálint B, Mézes M, Balogh K. Agricultural trichothecene mycotoxin contamination affects the life-history and reduced glutathione content of Folsomia candida Willem (Collembola). ACTA ZOOL ACAD SCI H 2020. [DOI: 10.17109/azh.66.4.379.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is limited data available concerning the effect of T-2/HT-2 toxin or deoxynivalenol (DON) on invertebrates such as springtails, and no data on their life history and oxidative stress. Control maize and DON or T-2 toxin contaminated maize were fed to Folsomia candida with a toxin content of 16324 mg DON kg–1 or 671 mg T-2 kg–1 maize. Ten to twelve days old animals were investigated in a life-history test and a stress protein test.T-2 toxin did not affect Folsomia candida in any measured parameters. The DON exposed group showed decreased growth and reproduction, and a higher survival rate. DON treatment resulted in lower protein content, while reduced glutathione content was higher than in control. It suggests that DON activated the glutathione-related detoxification pathway, which possibly causes a higher survival rate. The results also suggest that the oral toxicity of DON or T-2 is lower than through physical contact.For that reason, DON and T-2 toxin contaminated maize is not suggested to be used as green manure in the native state. Alternative solutions could be using mycotoxin contaminated maize for biogas production, or after decontamination by bacterial strains, it can be used as organic fertilizer.
Collapse
|
6
|
Abstract
Replant disease is a soil (micro-) biome-based, harmfully-disturbed physiological and morphological reaction of plants to replanting similar cultures on the same sites by demonstrating growth retardation and leading to economic losses especially in Rosaceae plant production. Commonly, replant disease is overcome by soil fumigation with toxic chemicals. With chemical soil fumigation being restricted in many countries, other strategies are needed. Biofumigation, which is characterized by the incorporation of Brassicaceae plant materials into soil, is a promising method. We review the potential of biofumigation in the fight against replant disease. Biofumigation using optimized Brassicaceae seed meal compositions in combination with replant disease tolerant plant genotypes shows promising results, but the efficacy is still soil and site-dependent. Therefore, future studies should address the optimal timing as well as amount and type of incorporated plant material and environmental conditions during incubation in dependence of the soil physical and chemical characteristics.
Collapse
|
7
|
Shatilina Z, Drozdova P, Bedulina D, Rivarola-Duarte L, Schreiber S, Otto C, Jühling F, Aulhorn S, Busch W, Lubyaga Y, Kondrateva E, Pobezhimova T, Jakob L, Lucassen M, Sartoris FJ, Hackermüller J, Pörtner HO, Stadler PF, Luckenbach T, Timofeyev M. Transcriptome-level effects of the model organic pollutant phenanthrene and its solvent acetone in three amphipod species. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 33:100630. [PMID: 31710888 DOI: 10.1016/j.cbd.2019.100630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/19/2019] [Accepted: 09/29/2019] [Indexed: 12/11/2022]
Abstract
Polyaromatic hydrocarbons (PAH) are common pollutants of water ecosystems originating from incineration processes and contamination with mineral oil. Water solubility of PAHs is generally low; for toxicity tests with aquatic organisms, they are therefore usually dissolved in organic solvents. Here we examined the effects of a typical model PAH, phenanthrene, and a solvent, acetone, on amphipods as relevant aquatic invertebrate models. Two of these species, Eulimnogammarus verrucosus and Eulimnogammarus cyaneus, are common endemics of the oligotrophic and pristine Lake Baikal, while one, Gammarus lacustris, is widespread throughout the Holarctic and inhabits smaller and more eutrophic water bodies in the Baikal area. Neither solvent nor phenanthrene caused mortality at the applied concentrations, but both substances affected gene expression in all species. Differential gene expression was more profound in the species from Lake Baikal than in the Holarctic species. Moreover, in one of the Baikal species, E. cyaneus, we found that many known components of the cellular xenobiotic detoxification system reacted to the treatments. Finally, we detected a negative relationship between changes in transcript abundances in response to the solvent and phenanthrene. This mixture effect, weaker than the impact by a single mixture component, needs further exploration.
Collapse
Affiliation(s)
- Zhanna Shatilina
- Institute of Biology, Irkutsk State University, Lenin str. 3, RUS-664003 Irkutsk, Russia; Baikal Research Centre, Lenin str. 21, RUS-664003 Irkutsk, Russia
| | - Polina Drozdova
- Institute of Biology, Irkutsk State University, Lenin str. 3, RUS-664003 Irkutsk, Russia; Bioinformatics Group, Department of Computer Science, Universität Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany; Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany
| | - Daria Bedulina
- Institute of Biology, Irkutsk State University, Lenin str. 3, RUS-664003 Irkutsk, Russia; Baikal Research Centre, Lenin str. 21, RUS-664003 Irkutsk, Russia
| | - Lorena Rivarola-Duarte
- Bioinformatics Group, Department of Computer Science, Universität Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany; Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany
| | - Stephan Schreiber
- Young Investigator Group Bioinformatics & Transcriptomics, UFZ - Helmholtz Centre for Environmental Research, Permoserstraße 15, D-04318 Leipzig, Germany
| | - Christian Otto
- ecSeq Bioinformatics GmbH, Sternwartenstraße 29, D-04103 Leipzig, Germany
| | - Frank Jühling
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 3 Rue Koeberlé, F-67000 Strasbourg, France; Université de Strasbourg, 4 Rue Blaise Pascal, F-67000 Strasbourg, France
| | - Silke Aulhorn
- Department of Bioanalytical Ecotoxicology, UFZ - Helmholtz Centre for Environmental Research, Permoserstraße 15, D-04318 Leipzig, Germany
| | - Wibke Busch
- Department of Bioanalytical Ecotoxicology, UFZ - Helmholtz Centre for Environmental Research, Permoserstraße 15, D-04318 Leipzig, Germany
| | - Yulia Lubyaga
- Institute of Biology, Irkutsk State University, Lenin str. 3, RUS-664003 Irkutsk, Russia; Baikal Research Centre, Lenin str. 21, RUS-664003 Irkutsk, Russia
| | - Elizaveta Kondrateva
- Institute of Biology, Irkutsk State University, Lenin str. 3, RUS-664003 Irkutsk, Russia; Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, RAS, Lermontov str. 132, 664033 Irkutsk, Russia
| | - Tamara Pobezhimova
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, RAS, Lermontov str. 132, 664033 Irkutsk, Russia
| | - Lena Jakob
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Magnus Lucassen
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Franz J Sartoris
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Jörg Hackermüller
- Young Investigator Group Bioinformatics & Transcriptomics, UFZ - Helmholtz Centre for Environmental Research, Permoserstraße 15, D-04318 Leipzig, Germany
| | - Hans-Otto Pörtner
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, Universität Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany; Competence Center for Scalable Data Services and Solutions Dresden/Leipzig, Interdisciplinary Center for Bioinformatics, German Centre for Integrative Biodiversity Research (iDiv), Leipzig Research Center for Civilization Diseases, Universität Leipzig, Augustusplatz 12, D-04107 Leipzig, Germany; Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany; Department of Theoretical Chemistry, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria; Facultad de Ciencias, Universidad National de Colombia, Sede Bogotá, Ciudad Universitaria, COL-111321 Bogotá, D.C., Colombia; Santa Fe Institute, 1399 Hyde Park Rd., NM87501 Santa Fe, USA; Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany
| | - Till Luckenbach
- Department of Bioanalytical Ecotoxicology, UFZ - Helmholtz Centre for Environmental Research, Permoserstraße 15, D-04318 Leipzig, Germany
| | - Maxim Timofeyev
- Institute of Biology, Irkutsk State University, Lenin str. 3, RUS-664003 Irkutsk, Russia; Baikal Research Centre, Lenin str. 21, RUS-664003 Irkutsk, Russia.
| |
Collapse
|
8
|
Population Genomics Insights into Adaptive Evolution and Ecological Differentiation in Streptomycetes. Appl Environ Microbiol 2019; 85:AEM.02555-18. [PMID: 30658977 DOI: 10.1128/aem.02555-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/14/2019] [Indexed: 12/20/2022] Open
Abstract
Deciphering the genomic variation that represents microevolutionary processes toward species divergence is key to understanding microbial speciation, which has long been under debate. Streptomycetes are filamentous bacteria that are ubiquitous in nature and the richest source of antibiotics; however, their speciation processes remain unknown. To tackle this issue, we performed a comprehensive population genomics analysis on Streptomyces albidoflavus residing in different habitats and with a worldwide distribution and identified and characterized the foundational changes within the species. We detected three well-defined phylogenomic clades, of which clades I and III mainly contained free-living (soil/marine) and insect-associated strains, respectively, and clade II had a mixed origin. By performing genome-wide association studies (GWAS), we identified a number of genetic variants associated with free-living or entomic (denoting or relating to insects) habitats in both the accessory and core genomes. These variants contributed collectively to the population structure and had annotated or confirmed functions that likely facilitate differential adaptation of the species. In addition, we detected higher levels of homologous recombination within each clade and in the free-living group than within the whole species and in the entomic group. A subset of the insect-associated strains (clade III) showed a relatively independent evolutionary trajectory with more symbiosis-favorable genes but little genetic interchange with the other lineages. Our results demonstrate that ecological adaptation promotes genetic differentiation in S. albidoflavus, suggesting a model of ecological speciation with gene flow in streptomycetes.IMPORTANCE Species are the fundamental units of ecology and evolution, and speciation leads to the astounding diversity of life on Earth. Studying speciation is thus of great significance to understand, protect, and exploit biodiversity, but it is a challenge in the microbial world. In this study, using population genomics, we placed Streptomyces albidoflavus strains in a spectrum of speciation and showed that the genetic differences between phylogenomic clusters evolved mainly by environmental selection and gene-specific sweeps. These findings highlight the role of ecology in structuring recombining bacterial species, making a step toward a deeper understanding of microbial speciation. Our results also raise concerns of an underrated microbial diversity at the intraspecies level, which can be utilized for mining of ecologically relevant natural products.
Collapse
|
9
|
Hanschen FS, Klopsch R, Oliviero T, Schreiner M, Verkerk R, Dekker M. Optimizing isothiocyanate formation during enzymatic glucosinolate breakdown by adjusting pH value, temperature and dilution in Brassica vegetables and Arabidopsis thaliana. Sci Rep 2017; 7:40807. [PMID: 28094342 PMCID: PMC5240131 DOI: 10.1038/srep40807] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/12/2016] [Indexed: 12/25/2022] Open
Abstract
Consumption of glucosinolate-rich Brassicales vegetables is associated with a decreased risk of cancer with enzymatic hydrolysis of glucosinolates playing a key role. However, formation of health-promoting isothiocyanates is inhibited by the epithiospecifier protein in favour of nitriles and epithionitriles. Domestic processing conditions, such as changes in pH value, temperature or dilution, might also affect isothiocyanate formation. Therefore, the influences of these three factors were evaluated in accessions of Brassica rapa, Brassica oleracea, and Arabidopsis thaliana. Mathematical modelling was performed to determine optimal isothiocyanate formation conditions and to obtain knowledge on the kinetics of the reactions. At 22 °C and endogenous plant pH, nearly all investigated plants formed nitriles and epithionitriles instead of health-promoting isothiocyanates. Response surface models, however, clearly demonstrated that upon change in pH to domestic acidic (pH 4) or basic pH values (pH 8), isothiocyanate formation considerably increases. While temperature also affects this process, the pH value has the greatest impact. Further, a kinetic model showed that isothiocyanate formation strongly increases due to dilution. Finally, the results show that isothiocyanate intake can be strongly increased by optimizing the conditions of preparation of Brassicales vegetables.
Collapse
Affiliation(s)
- Franziska S Hanschen
- Department of Plant Quality, Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany
| | - Rebecca Klopsch
- Department of Plant Quality, Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany
| | - Teresa Oliviero
- Food Quality and Design Group, Wageningen University, PO Box 17, 6700 AA Wageningen, The Netherlands
| | - Monika Schreiner
- Department of Plant Quality, Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany
| | - Ruud Verkerk
- Food Quality and Design Group, Wageningen University, PO Box 17, 6700 AA Wageningen, The Netherlands
| | - Matthijs Dekker
- Food Quality and Design Group, Wageningen University, PO Box 17, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
10
|
de Boer TE, Janssens TKS, Legler J, van Straalen NM, Roelofs D. Combined Transcriptomics Analysis for Classification of Adverse Effects As a Potential End Point in Effect Based Screening. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:14274-14281. [PMID: 26523736 DOI: 10.1021/acs.est.5b03443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Environmental risk assessment relies on the use of bioassays to assess the environmental impact of chemicals. Gene expression is gaining acceptance as a valuable mechanistic end point in bioassays and effect-based screening. Data analysis and its results, however, are complex and often not directly applicable in risk assessment. Classifier analysis is a promising method to turn complex gene expression analysis results into answers suitable for risk assessment. We have assembled a large gene expression data set assembled from multiple studies and experiments in the springtail Folsomia candida, with the aim of selecting a set of genes that can be trained to classify general toxic stress. By performing differential expression analysis prior to classifier training, we were able to select a set of 135 genes which was enriched in stress related processes. Classifier models from this set were used to classify two test sets comprised of chemical spiked, polluted, and clean soils and compared to another, more traditional classifier feature selection. The gene set presented here outperformed the more traditionally selected gene set. This gene set has the potential to be used as a biomarker to test for adverse effects caused by chemicals in springtails to provide end points in environmental risk assessment.
Collapse
Affiliation(s)
- Tjalf E de Boer
- Amsterdam Global Change Institute, VU University Amsterdam , De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Department of Ecological Science, Faculty of Earth and Life Sciences, VU University Amsterdam , De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | | | - Juliette Legler
- Institute for Environmental Studies, Faculty of Earth and Life Sciences, VU University Amsterdam , De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Nico M van Straalen
- Department of Ecological Science, Faculty of Earth and Life Sciences, VU University Amsterdam , De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Dick Roelofs
- Department of Ecological Science, Faculty of Earth and Life Sciences, VU University Amsterdam , De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
11
|
Witzel K, Hanschen FS, Klopsch R, Ruppel S, Schreiner M, Grosch R. Verticillium longisporum infection induces organ-specific glucosinolate degradation in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2015; 6:508. [PMID: 26217360 PMCID: PMC4498036 DOI: 10.3389/fpls.2015.00508] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/25/2015] [Indexed: 05/03/2023]
Abstract
The species Verticillium represents a group of highly destructive fungal pathogens, responsible for vascular wilt in a number of crops. The host response to infection by Verticillium longisporum at the level of secondary plant metabolites has not been well explored. Natural variation in the glucosinolate (GLS) composition of four Arabidopsis thaliana accessions was characterized: the accessions Bur-0 and Hi-0 accumulated alkenyl GLS, while 3-hydroxypropyl GLS predominated in Kn-0 and Ler-0. With respect to GLS degradation products, Hi-0 and Kn-0 generated mainly isothiocyanates, whereas Bur-0 released epithionitriles and Ler-0 nitriles. An analysis of the effect on the composition of both GLS and its breakdown products in the leaf and root following the plants' exposure to V. longisporum revealed a number of organ- and accession-specific alterations. In the less disease susceptible accessions Bur-0 and Ler-0, colonization depressed the accumulation of GLS in the rosette leaves but accentuated it in the roots. In contrast, in the root, the level of GLS breakdown products in three of the four accessions fell, suggestive of their conjugation or binding to a fungal target molecule(s). The plant-pathogen interaction influenced both the organ- and accession-specific formation of GLS degradation products.
Collapse
Affiliation(s)
- Katja Witzel
- *Correspondence: Katja Witzel, Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany,
| | | | | | | | | | | |
Collapse
|
12
|
van Ommen Kloeke AEE, Gong P, Ellers J, Roelofs D. Effects of a natural toxin on life history and gene expression of Eisenia andrei. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:412-20. [PMID: 24395740 DOI: 10.1002/etc.2446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/20/2013] [Accepted: 10/16/2013] [Indexed: 05/27/2023]
Abstract
Earthworms perform key functions for a healthy soil ecosystem, such as bioturbation. The soil ecosystem can be challenged by natural toxins such as isothiocyanates (ITCs), produced by many commercial crops. Therefore, the effects of 2-phenylethyl ITC were investigated on the earthworm Eisenia andrei using an ecotoxicogenomics approach. Exposure to 2-phenylethyl ITC reduced both survival and reproduction of E. andrei in a dose-dependent manner (median effective concentration [EC50] = 556 nmol/g). Cross-species comparative genomic hybridization validated the applicability of an existing 4 × 44,000 Eisenia fetida microarray to E. andrei. Gene expression profiles revealed the importance of metallothionein (MT) as an early warning signal when E. andrei was exposed to low concentrations of 2-phenylethyl ITC. Alignment of these MT genes with the MT-2 gene of Lumbricus rubellus showed that at least 2 MT gene clusters are present in the Eisenia sp. genome. At high-exposure concentrations, gene expression was mainly affected by inhibiting chitinase activity, inducing an oxidative stress response, and stimulating energy metabolism. Furthermore, analysis by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway implied that the high concentration may have caused impaired light sensitivity, angiogenesis, olfactory perception, learning, and memory. Increased levels of ITCs may be found in the field in the near future. The results presented call for a careful investigation to quantify the risk of such compounds before allowing them to enter the soil on a large scale.
Collapse
|
13
|
Nota B, de Korte M, Ylstra B, van Straalen NM, Roelofs D. Genetic variation in parthenogenetic collembolans is associated with differences in fitness and cadmium-induced transcriptome responses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:1155-1162. [PMID: 23256528 DOI: 10.1021/es303983z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Ecotoxicological tests may be biased by the use of laboratory strains that usually contain very limited genetic diversity. It is therefore essential to study how genetic variation influences stress tolerance relevant for toxicity outcomes. To that end we studied sensitivity to cadmium in two distinct genotypes of the parthogenetic soil ecotoxicological model organism Folsomia candida. Clonal lines of both genotypes (TO1 and TO2) showed divergent fitness responses to cadmium exposure; TO2 reproduction was 20% less affected by cadmium. Statistical analyses revealed significant differences between the cadmium-affected transcriptomes: i) the number of genes affected by cadmium in TO2 was only minor (~22%) compared to TO1; ii) 97 genes showed a genotype × cadmium interaction and their response to cadmium showed globally larger fold changes in TO1 when compared to TO2; iii) the interaction genes showed a concerted manner of expression in TO1, while a less coordinated pattern was observed in TO2. We conclude that (1) there is genetic variation in parthenogenetic populations of F. candida, and (2) this variation affects life-history and molecular end points relative to cadmium toxicity. This sheds new light on the sources of biological variability in test results, even when the test organisms are thought to be genetically homogeneous because of their parthenogenetic reproduction.
Collapse
Affiliation(s)
- Benjamin Nota
- Department of Animal Ecology, Institute of Ecological Science, VU University, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
14
|
Saini SS, Kaur A. Molecularly Imprinted Polymers for the Detection of Food Toxins: A Minireview. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/anp.2013.21011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
van Ommen Kloeke AEE, Jager T, van Gestel CAM, Ellers J, van Pomeren M, Krommenhoek T, Styrishave B, Hansen M, Roelofs D. Time-related survival effects of two gluconasturtiin hydrolysis products on the terrestrial isopod Porcellio scaber. CHEMOSPHERE 2012; 89:1084-1090. [PMID: 22698371 DOI: 10.1016/j.chemosphere.2012.05.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 05/08/2012] [Accepted: 05/16/2012] [Indexed: 06/01/2023]
Abstract
Glucosinolates are compounds produced by commercial crops which can hydrolyse in a range of natural toxins that may exert detrimental effects on beneficial soil organisms. This study examined the effects of 2-phenylethyl isothiocyanate and 3-phenylpropionitrile on the survival and growth of the woodlouse Porcellio scaber exposed for 28 d. 2-Phenylethyl isothiocyanate dissipated from the soil with half-lives ranging from 19 to 96 h. Exposure through soil showed toxic effects only on survival. The LC50s after 28 d were significantly different at 65.3 mg kg(-1) for 2-phenylethyl isothiocyanate and 155 mg kg(-1) for 3-phenylpropionitrile. A toxicokinetic-toxicodynamic (TKTD) approach, however, revealed that both compounds in fact have very similar effect patterns. The TKTD model was better suited to interpret the survival data than descriptive dose-response analysis (LC(x)), accounting for the fast dissipation of the compounds in the soil. Found effects were within environmentally relevant concentrations. Care should therefore be taken before allowing these natural toxins to enter soil ecosystems in large quantities.
Collapse
Affiliation(s)
- A E Elaine van Ommen Kloeke
- VU University Amsterdam, Faculty of Earth and Life Sciences, Department of Ecological Science, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Whiteman NK, Gloss AD, Sackton TB, Groen SC, Humphrey PT, Lapoint RT, Sønderby IE, Halkier BA, Kocks C, Ausubel FM, Pierce NE. Genes involved in the evolution of herbivory by a leaf-mining, Drosophilid fly. Genome Biol Evol 2012; 4:900-16. [PMID: 22813779 PMCID: PMC3516228 DOI: 10.1093/gbe/evs063] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2012] [Indexed: 01/22/2023] Open
Abstract
Herbivorous insects are among the most successful radiations of life. However, we know little about the processes underpinning the evolution of herbivory. We examined the evolution of herbivory in the fly, Scaptomyza flava, whose larvae are leaf miners on species of Brassicaceae, including the widely studied reference plant, Arabidopsis thaliana (Arabidopsis). Scaptomyza flava is phylogenetically nested within the paraphyletic genus Drosophila, and the whole genome sequences available for 12 species of Drosophila facilitated phylogenetic analysis and assembly of a transcriptome for S. flava. A time-calibrated phylogeny indicated that leaf mining in Scaptomyza evolved between 6 and 16 million years ago. Feeding assays showed that biosynthesis of glucosinolates, the major class of antiherbivore chemical defense compounds in mustard leaves, was upregulated by S. flava larval feeding. The presence of glucosinolates in wild-type (WT) Arabidopsis plants reduced S. flava larval weight gain and increased egg-adult development time relative to flies reared in glucosinolate knockout (GKO) plants. An analysis of gene expression differences in 5-day-old larvae reared on WT versus GKO plants showed a total of 341 transcripts that were differentially regulated by glucosinolate uptake in larval S. flava. Of these, approximately a third corresponded to homologs of Drosophila melanogaster genes associated with starvation, dietary toxin-, heat-, oxidation-, and aging-related stress. The upregulated transcripts exhibited elevated rates of protein evolution compared with unregulated transcripts. The remaining differentially regulated transcripts also contained a higher proportion of novel genes than the unregulated transcripts. Thus, the transition to herbivory in Scaptomyza appears to be coupled with the evolution of novel genes and the co-option of conserved stress-related genes.
Collapse
Affiliation(s)
- Noah K Whiteman
- Department of Ecology and Evolutionary Biology, University of Arizona, AZ, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|