1
|
Huang Y, Zhang J, Guo Z, Zang H, Zheng M, Hao T, Wei J. Bimetallic Fe-Mo modified N-doped carbon materials activating peroxymonosulfate for acetaminophen degradation: Synergistic effects of free radicals and electron transfer process. ENVIRONMENTAL RESEARCH 2025; 270:121013. [PMID: 39892811 DOI: 10.1016/j.envres.2025.121013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
This study aimed to synthesize a bimetallic Fe-Mo modified N-doped carbon material (FeMo@NCN) using a simple pyrolysis method. Structural and physical characterizations confirmed the successful incorporation of Fe and Mo into the catalyst. The FeMo@NCN/PMS system exhibited an excellent acetaminophen (ACE) degradation rate (kobs = 0.1232 min-1), which is 51 times higher than that of NCN/PMS system (kobs = 0.0024 min-1). Mechanistic analysis revealed that the Fe/Mo interaction, as well as the synergistic effects between Mo-N and Fe-N sites, facilitated the continuous generation of reactive oxygen species (ROS), including SO4•- and •OH. Specifically, Mo doping to promoted the regeneration of Fe2+, contributing to the recovery of catalytic activity and playing a key role in maintaining high degradation efficiency. Furthermore, electrochemical analysis demonstrated that the Fe and Mo doping significantly enhanced the electronic transfer properties of the material, revealing the existence of an electron transfer-based non-radical pathway. Additionally, FeMo@NCN exhibited remarkable stability across a wide pH range (3-9). The intermediate degradation products and degradation pathways of ACE were identified, and the toxicity of ACE and its degradation products were evaluated. This work provides new insights into improving the performance of carbon-based materials for efficient removal of refractory organic compounds in PMS systems.
Collapse
Affiliation(s)
- Yihan Huang
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jiali Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhuang Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Haochun Zang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Maosheng Zheng
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Tong Hao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jian Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
2
|
Cheng M, Li M, Zhang Y, Gu X, Gao W, Zhang S, Liu J. Exploring the mechanism of PPCPs on human metabolic diseases based on network toxicology and molecular docking. ENVIRONMENT INTERNATIONAL 2025; 196:109324. [PMID: 39952201 DOI: 10.1016/j.envint.2025.109324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/07/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
This research endeavor seeks to delve into the potential mechanisms by which pharmaceutical and personal care products (PPCPs), recognized as emerging pollutants, could contribute to the human metabolic disorders and then trigger metabolic diseases. Therefore, we have selected lipid and atherosclerosis, Alzheimer's disease, and type Ⅱ diabetes mellitus as representative metabolic diseases, aiming to systematically explore the critical molecular pathways that may be disrupted by PPCPs for the metabolic disease development. By employing advanced network toxicology and molecular docking techniques, we have successfully elucidated the molecular mechanisms that trigger the three diseases. We pinpointed the potential targets associated with the disease by leveraging databases including PubChem, ADEMTlab2.0, SwissADME, and GeneCards. We further employed STRING analysis and Cytoscape software to pinpoint the core targets that were most significantly associated with these metabolic diseases. In addition, enrichment analysis of these core targets was conducted using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways within the David database. To obtain the structural aspects of the target proteins, we also employed AlphaFold 3 for protein structure prediction. Finally, we validated the binding affinity of PPCPs to these target proteins using molecular docking with AutoDock Vina. Our findings suggested that PPCPs could potentially trigger metabolic diseases by modulating the expression of microRNAs, influencing cellular apoptosis and proliferation, and affecting signal transduction pathways. Interestingly, we also found the correlations among lipid and atherosclerosis, Alzheimer's disease, and type Ⅱ diabetes mellitus. Taken together, our study provides innovative insights into both the mechanisms of how environmental pollutants trigger human diseases and revealing the correlations among different diseases, thereby laying a theoretical foundation for disease prevention and treatment.
Collapse
Affiliation(s)
- Menghang Cheng
- School of Life Sciences, Hebei University, Baoding 071002, PR China
| | - Mengnan Li
- School of Life Sciences, Hebei University, Baoding 071002, PR China
| | - Yunmei Zhang
- School of Life Sciences, Hebei University, Baoding 071002, PR China
| | - Xuyang Gu
- School of Life Sciences, Hebei University, Baoding 071002, PR China
| | - Wenshan Gao
- School of Life Sciences, Hebei University, Baoding 071002, PR China
| | - Shuling Zhang
- School of Life Sciences, Hebei University, Baoding 071002, PR China; Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, PR China.
| | - Jianfeng Liu
- School of Life Sciences, Hebei University, Baoding 071002, PR China; Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, PR China.
| |
Collapse
|
3
|
Wang M, Li J, Zhou Y, Zhou W, Huang S. Spatial and temporal distribution and ecological risk assessment of typical antibiotics in natural and wastewater of Jinjiang River Basin. PLoS One 2024; 19:e0310865. [PMID: 39541361 PMCID: PMC11563446 DOI: 10.1371/journal.pone.0310865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/06/2024] [Indexed: 11/16/2024] Open
Abstract
Antibiotics are widely used in human medical, livestock, and aquaculture fields. Most antibiotics are water-soluble and cannot be fully absorbed by humans or animals. If feces or wastewater containing antibiotics are improperly treated or discharged directly into surface water or groundwater, it will undoubtedly have an impact on aquatic organisms. The Ganjiang River is the largest river in Jiangxi Province and the largest tributary of Poyang Lake Basin. Jinjiang River, a tributary of Ganjiang River, is a typical livestock and poultry breeding area in the Poyang Lake Basin, along which many townships and counties are distributed. Gao'an and Shanggao counties are important agricultural and animal husbandry production areas in Jiangxi Province. In this paper, automatic solid phase extraction-ultra high performance liquid chromatography-mass spectrometry (SPE-UPLC-MS/MS) technology was used to simultaneously detect 27 antibiotics in 5 categories of macrolides, tetracyclines, quinolones, nitroimidazoles and sulfonamides in water. Based on this method, the concentrations and distributions of these antibiotics were analyzed. Ecological risk assessment of the Jinjiang River Basin was conducted using the ecological risk quotient method, aiming to supplement antibiotic data in the Jinjiang River Basin and provide scientific basis for local ecological environment management. The research results indicate that from 2019 to 2021, two years later, there was an increase in the use of Sulfadiazine and Roxithromycin in the Jinjiang River Basin, while the usage of Ciprofloxacin and Oxytetracycline was relatively low. In 2021, out of the 27 antibiotics, 24 were detected in surface water, 20 in groundwater, and all in wastewater. Among them, Sulfamethoxazole was the most widely used antibiotic, primarily in livestock and poultry farming. Gao'an City, a key breeding area in the Jinjiang River Basin, exhibited the highest concentration of Sulfamethoxazole at 409.96 ng·L-1, which far exceeds other antibiotics and warrants significant attention. A comparison of surface water concentrations between the Jinjiang River and 12 other regions revealed higher overall pollution levels of Roxithromycin and Sulfamethoxazole. Furthermore, according to the ecological risk assessment results, only Sulfamethoxazole poses a moderate risk to aquatic organisms.
Collapse
Affiliation(s)
- Meng Wang
- School of Geological Engineering, Institute of Disaster Prevention, Sanhe, China
- Hebei Key Laboratory of Earthquake Disaster Prevention and Risk Assessment, China
| | - Jiale Li
- School of Water Resources and Environmental Engineering, East China Institute of Technology, China
| | - Yongkang Zhou
- School of Water Resources and Environmental Engineering, East China Institute of Technology, China
| | - Wenjia Zhou
- School of Geological Engineering, Institute of Disaster Prevention, Sanhe, China
- Hebei Key Laboratory of Earthquake Disaster Prevention and Risk Assessment, China
| | - Shuai Huang
- School of Geological Engineering, Institute of Disaster Prevention, Sanhe, China
- Hebei Key Laboratory of Earthquake Disaster Prevention and Risk Assessment, China
| |
Collapse
|
4
|
Lu Y, Han H, Jiang C, Liu H, Wang Z, Chai Y, Zhang X, Qiu J, Chen H. Uptake, accumulation, translocation and transformation of seneciphylline (Sp) and seneciphylline-N-oxide (SpNO) by Camellia sinensis L. ENVIRONMENT INTERNATIONAL 2024; 188:108765. [PMID: 38810495 DOI: 10.1016/j.envint.2024.108765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/05/2024] [Accepted: 05/19/2024] [Indexed: 05/31/2024]
Abstract
Pyrrolizidine alkaloids (PAs) and their N-oxide (PANOs), as emerging environmental pollutants and chemical hazards in food, have become the focus of global attention. PAs/PANOs enter crops from soil and reach edible parts, but knowledge about their uptake and transport behavior in crops is currently limited. In this study, we chose tea (Camellia sinensis L.) as a representative crop and Sp/SpNO as typical PAs/PANOs to analyze their root uptake and transport mechanism. Tea roots efficiently absorbed Sp/SpNO, utilizing both passive and active transmembrane pathways. Sp predominantly concentrated in roots and SpNO efficiently translocated to above-ground parts. The prevalence of SpNO in cell-soluble fractions facilitated its translocation from roots to stems and leaves. In soil experiment, tea plants exhibited weaker capabilities for the uptake and transport of Sp/SpNO compared to hydroponic conditions, likely due to the swift degradation of these compounds in the soil. Moreover, a noteworthy interconversion between Sp and SpNO in tea plants indicated a preference for reducing SpNO to Sp. These findings represent a significant stride in understanding the accumulation and movement mechanisms of Sp/SpNO in tea plants. The insights garnered from this study are pivotal for evaluating the associated risks of PAs/PANOs and formulating effective control strategies.
Collapse
Affiliation(s)
- Yuting Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haolei Han
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Changling Jiang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongxia Liu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ziqi Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yunfeng Chai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, China
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, China
| | - Jing Qiu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China.
| | - Hongping Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
5
|
Li X, Li L, Tang L, Mei J, Fu J. Unveiling combined ecotoxicity: Interactions and impacts of engineered nanoparticles and PPCPs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:170746. [PMID: 38342466 DOI: 10.1016/j.scitotenv.2024.170746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/27/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Emerging contaminants such as engineered nanoparticles (ENPs), pharmaceuticals and personal care products (PPCPs) are of great concern because of their wide distribution and incomplete removal in conventional wastewater and soil treatment processes. The production and usage of ENPs and PPCPs inevitably result in their coexistence in different environmental media, thus posing various risks to organisms in aquatic and terrestrial ecosystems. However, the existing literature on the physicochemical interactions between ENPs and PPCPs and their effects on organisms is rather limited. Therefore, this paper summarized the ecotoxicity of combined ENPs and PPCPs by discussing: (1) the interactions between ENPs and PPCPs, including processes such as aggregation, adsorption, transformation, and desorption, considering the influence of environmental factors like pH, ionic strength, dissolved organic matter, and temperature; (2) the effects of these interactions on bioaccumulation, bioavailability and biotoxicity in organisms at different trophic levels; (3) the impacted of ENPs and PPCPs on cellular-level biological process. This review elucidated the potential ecological hazards associated with the interaction of ENPs and PPCPs, and serves as a foundation for future investigations into the ecotoxicity and mode of action of ENPs, PPCPs, and their co-occurring metabolites.
Collapse
Affiliation(s)
- Xiang Li
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China
| | - Liyan Li
- Department of Civil and Environmental Engineering, College of Design and Engineering, National University of Singapore, Singapore
| | - Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China.
| | - Jingting Mei
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China
| | - Jing Fu
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China.
| |
Collapse
|
6
|
Sohn S, Kim MK, Lee YM, Sohn EJ, Choi GY, Chae SH, Zoh KD. Removal characteristics of 53 micropollutants during ozonation, chlorination, and UV/H 2O 2 processes used in drinking water treatment plant. CHEMOSPHERE 2024; 352:141360. [PMID: 38325620 DOI: 10.1016/j.chemosphere.2024.141360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
The removal of 53 emerging micropollutants (MPs), including 10 per- and polyfluorinated substances (PFASs), 25 pharmaceuticals and personal care products (PPCPs), 7 pesticides, 5 endocrine disrupters (EDCs), 3 nitrosamines, and 3 taste and odor compounds (T&Os), by chlorination, ozonation, and UV/H2O2 treatment was examined in deionized water and surface waters used as the raw waters in drinking water treatment plants (DWTPs) in South Korea. The UV/H2O2 treatment was effective in the removal of most MPs, whereas chlorination was selectively effective for 19 MPs, including EDCs (>70 %). MPs containing aromatic ring with electron-donating functional group, or primary and secondary amines were effectively removed by chlorination immediately upon reaction initiation. The removal of MPs by ozonation was generally lower than that of the other two processes at a low ozone dose (1 mg L-1), but higher than chlorination at a high ozone dose (3 mg L-1), particularly for 16 MPs, including T&Os. Compared in deionized water, the removals of MPs in the raw water samples were lower in all three processes. The regression models predicting the rate constants (kobs) of 53 MPs showed good agreement between modeled and measured value for UV/H2O2 treatment (R2 = 0.948) and chlorination (R2 = 0.973), despite using only dissolved organic carbon (DOC) and oxidant concentration as variables, whereas the ozonation model showed a variation (R2 = 0.943). Our results can provide the resources for determining which oxidative process is suitable for treating specific MPs present in the raw waters of DWTPs.
Collapse
Affiliation(s)
- Seungwoon Sohn
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Moon-Kyung Kim
- Institute of Health & Environment, Seoul National University, Seoul, South Korea
| | - Young-Min Lee
- Institute of Health & Environment, Seoul National University, Seoul, South Korea
| | - Erica Jungmin Sohn
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Grace Y Choi
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Seon-Ha Chae
- Korea Water Resources Corporation, K-water Institute, Deajeon, South Korea
| | - Kyung-Duk Zoh
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea.
| |
Collapse
|
7
|
Xu X, Xu Y, Xu N, Pan B, Shu F, Ni J. Bioaccumulation of pharmaceuticals and personal care products (PPCPs) in freshwater pearl mussels Hyriopsis cumingii in Poyang Lake. MARINE POLLUTION BULLETIN 2023; 193:115221. [PMID: 37390627 DOI: 10.1016/j.marpolbul.2023.115221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
Thirty-five PPCPs were measured in representative freshwater pearl mussels (Hyriopsis cumingii) in Poyang Lake, the largest lake of China, as well as their responses to sedimentary PPCPs. We observed 32 PPCPs in soft tissues of mussels at a total concentration of 2721.5 ± 929.3 ng·g-1 dry weight (dw), much higher than those in sediments (21 PPCPs, 273.2 ± 89.4 ng·g-1 dw). Anti-inflammatories were the primary contaminants detected in both sediments and mussels. PPCP concentrations in mussels exhibited significant organ-specific characteristics, and gonads were identified as a hotspot for these contaminants. Correlation analysis showed that gonads were more likely to assimilate triclosan from sediments. Biochemical analysis revealed a higher physiological sensitivity of glutathione synthesis in gonads to sedimentary PPCPs, suggesting the long-term oxidative damage. Our findings highlight the concern on the potential effects of sedimentary PPCPs to propagation of mussels, and emphasize the necessity to formulate strategies for sedimentary PPCPs control targeting a healthy lake.
Collapse
Affiliation(s)
- Xuming Xu
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Yaru Xu
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Nan Xu
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Baozhu Pan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Fengyue Shu
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Jinren Ni
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| |
Collapse
|
8
|
Zheng L, Zhang J, Wu Y, Li L, Ling J, Wang S, Yang W, Yin Y, Dong L, Zhang Y. A Tiered Ecological Risk Assessment of Caffeine by Using Species Sensitivity Distribution Method in the Nansi Lake Basin. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:72. [PMID: 36995456 DOI: 10.1007/s00128-023-03697-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/01/2023] [Indexed: 06/19/2023]
Abstract
Caffeine has been reported toxic to aquatic organisms, and it frequently occurs at relatively high concentrations in most of surface waters. However, it is difficult to control caffeine pollution because of the lack of Water Quality Criteria (WQC). In this study, species sensitivity distribution method and Log-normal model were applied to derive caffeine WQC as 83.7 ng/L. Meanwhile, concentrations of caffeine in the Nansi Lake basin were detected in 29 sampling sites, with the mean of 99.3 ng/L. The levels of caffeine in tributaries were higher than those in the lakes. In addition, a tied ecological risk assessment method was applied to assess the adverse effect of caffeine on aquatic system. The joint probability curve indicated that ecological risk might exist 3.1% of surface water in the study area, while 5% threshold (HC5) was set up to protect aquatic species. Generally, caffeine posted a low risk to aquatic organisms in the Nansi Lake basin.
Collapse
Affiliation(s)
- Lei Zheng
- State Environmental Protection Key laboratory of Dioxin Pollution, National Research Center of Environmental Analysis and Measurement, Beijing, 100029, China
- Sino-Japan Friendship Center for Environmental Protection, Beijing, 100029, China
| | - Juan Zhang
- Foreign Environmental Cooperation Center, Ministry of Ecology and Environment, Beijing, 100035, China
| | - Yinan Wu
- Sino-Japan Friendship Center for Environmental Protection, Beijing, 100029, China
| | - Linlin Li
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Junhong Ling
- PowerChina Beijing Engineering Corporation Limited, Beijing, 100024, China
| | - Sai Wang
- State Environmental Protection Key laboratory of Dioxin Pollution, National Research Center of Environmental Analysis and Measurement, Beijing, 100029, China
- Sino-Japan Friendship Center for Environmental Protection, Beijing, 100029, China
| | - Wenlong Yang
- State Environmental Protection Key laboratory of Dioxin Pollution, National Research Center of Environmental Analysis and Measurement, Beijing, 100029, China
- Sino-Japan Friendship Center for Environmental Protection, Beijing, 100029, China
| | - Yezhu Yin
- State Environmental Protection Key laboratory of Dioxin Pollution, National Research Center of Environmental Analysis and Measurement, Beijing, 100029, China
- Sino-Japan Friendship Center for Environmental Protection, Beijing, 100029, China
| | - Liang Dong
- State Environmental Protection Key laboratory of Dioxin Pollution, National Research Center of Environmental Analysis and Measurement, Beijing, 100029, China
- Sino-Japan Friendship Center for Environmental Protection, Beijing, 100029, China
| | - Yizhang Zhang
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
- Research Institute for Environmental Innovation (Tianjin Binhai), Tianjin, 300457, China.
| |
Collapse
|
9
|
Lin K, Wang R, Han T, Tan L, Yang X, Wan M, Chen Y, Zhao T, Jiang S, Wang J. Seasonal variation and ecological risk assessment of Pharmaceuticals and Personal Care Products (PPCPs) in a typical semi-enclosed bay - The Bohai Bay in northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159682. [PMID: 36302405 DOI: 10.1016/j.scitotenv.2022.159682] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/04/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The Bohai Bay as a typical semi-enclosed bay in northern China with poor water exchange capacity and significant coastal urbanization, is greatly influenced by land-based inputs and human activities. As a class of pseudo-persistent organic pollutants, the spatial and temporal distribution of Pharmaceuticals and Personal Care Products (PPCPs) is particularly important to the ecological environment, and it will be imperfect to assess the ecological risk of PPCPs for the lack of systematic investigation of their distribution in different season. 14 typical PPCPs were selected to analyze the spatial and temporal distribution in the Bohai Bay by combining online solid-phase extraction (SPE) and HPLC-MS/MS techniques in this study, and their ecological risks to aquatic organisms were assessed by risk quotients (RQs) and concentration addition (CA) model. It was found that PPCPs widely presented in the Bohai Bay with significant differences of spatial and seasonal distribution. The concentrations of ∑PPCPs were higher in autumn than in summer. The distribution of individual pollutants also showed significant seasonal differences. The high values were mainly distributed in estuaries and near-shore outfalls. Mariculture activities in the northern part of the Bohai Bay made a greater contribution to the input of PPCPs. Caffeine, florfenicol, enrofloxacin and norfloxacin were the main pollutants in the Bohai Bay, with detection frequencies exceeding 80 %. The ecological risk of PPCPs to algae was significantly higher than that to invertebrates and fish. CA model indicated that the potential mixture risk of total PPCPs was not negligible, with 34 % and 88 % of stations having mixture risk in summer and autumn, respectively. The temporary stagnation of productive life caused by Covid-19 weakened the input of PPCPs to the Bohai Bay, reducing the cumulative effects of the pollutants. This study was the first full-coverage investigation of PPCPs in the Bohai Bay for different seasons, providing an important basis for the ecological risk assessment and pollution prevention of PPCPs in the bay.
Collapse
Affiliation(s)
- Kun Lin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Rui Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Tongzhu Han
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Liju Tan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Xue Yang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Mengmeng Wan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yanshan Chen
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Ting Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Shan Jiang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
10
|
Xia Y, Dai J, Yan Y, Ma X, Feng H, Ding Y. Energy-efficient electrochemical treatment of paracetamol using a PbO 2 anode based on pulse electrodeposition strategy: Kinetics, energy consumption and mechanism. ENVIRONMENTAL RESEARCH 2023; 216:114673. [PMID: 36332673 DOI: 10.1016/j.envres.2022.114673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/06/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
The purpose of this research is to study the pulse electrochemical oxidation of paracetamol (PCT) using a novel PbO2 anode based on pulse electrodeposition strategy (PbO2-PE). The pulse electrodeposition strategy used to prepare a PbO2 anode resulted in rougher surface, higher directional specificity of β(101) and more redox couples of Pb4+/Pb2+. Additionally, the oxygen evolution potential (OEP) and charge transfer resistance were also improved. When compared to direct current electrochemical oxidation process, pulse electrolysis in had a slightly higher PCT removal efficiency and active species (·OH and active chlorine) production, while 72.04% of energy consumption was saved. The effects of operating parameters on PCT degradation efficiency and specific energy consumption were studied. The findings suggested that the pulse electrochemical oxidation of PCT followed a pseudo-first-order kinetic model, with PCT removal reaching 98.63% after 60 min of electrolysis under optimal conditions. Possible mechanisms describing reaction pathways for PCT were also proposed. Finally, combinating with the economic feasibility and safety evaluation, we could conclude that pulse electrolysis with a PbO2-PE electrode was a promising option for improving the practicability of electrochemical treatment for refractory organic wastewater.
Collapse
Affiliation(s)
- Yijing Xia
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Jingsong Dai
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yan Yan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xiangjuan Ma
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yangcheng Ding
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
11
|
Xie J, Liu Y, Wu Y, Li L, Fang J, Lu X. Occurrence, distribution and risk of pharmaceutical and personal care products in the Haihe River sediments, China. CHEMOSPHERE 2022; 302:134874. [PMID: 35537627 DOI: 10.1016/j.chemosphere.2022.134874] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
In the aquatic environment, pharmaceuticals and personal care products (PPCPs) detected in sediments are rising health concerns to human and aquatic ecosystem. The migration of PPCPs in the sediments poses a potential risk to surface water and groundwater environment. Insight on the spatial distribution and vertical profile of PPCPs in sediments at the regional scale is valuable for comprehensive prevention of PPCP risk. The Haihe River is one of the major water systems for the rapid development of urbanization, industrialization and agriculture in Northern China. The study aimed to characterize the occurrence, distribution and ecological risks of PPCPs in the sediments of the Haihe River, especially to investigate the vertical distribution of PPCPs using core sediments. High performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was used to analyze 24 selected PPCPs in sediment samples. In total, 11 PPCPs were detected, and the detected concentrations (0-1.26 ng g-1) were, lower than in other water bodies in literature (0-24.4 ng g-1). The sediments of the Haihe River located in the Tianjin downtown were most-severely polluted, with the highest cumulative concentration of PPCPs of 9.45 ng g-1, indicating the relatively high contribution of human consumption of PPCPs for the megacity. Spearman correlation analysis shows that both of the TOC contents and particle size distribution can influence the migration and deposition of PPCPs. The risk assessment results showed that the current level of PPCPs has no severe adverse effects on aquatic organisms in the Haihe River. However, special attention should be paid to the environmental risks caused by the migration of PPCPs with high loading and mobility (such as sulfamethoxazole).
Collapse
Affiliation(s)
- Jingyi Xie
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-media Pollution and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yufei Liu
- College of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Yufeng Wu
- Tianjin Eco-Environmental Monitoring Center, Tianjin, 300191, China
| | - Lirong Li
- Tianjin Eco-Environmental Monitoring Center, Tianjin, 300191, China
| | - Jing Fang
- College of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin, 300387, China.
| | - Xueqiang Lu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-media Pollution and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
12
|
Zakari-Jiya A, Frazzoli C, Obasi CN, Babatunde BB, Patrick-Iwuanyanwu KC, Orisakwe OE. Pharmaceutical and personal care products as emerging environmental contaminants in Nigeria: A systematic review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103914. [PMID: 35738461 DOI: 10.1016/j.etap.2022.103914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/26/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The increasingly broad and massive use of pharmaceuticals (human, veterinary) and personal care products in industrially developing nations makes their uncontrolled environmental and ecological impact a true concern. Focusing on Nigeria, this systematic literature search (databases: PubMed, ScienceDirect, Google Scholar, EMBASE, Scopus, Cochrane library and African Journals Online) aims to increase visibility to the issue. Among 275 articles identified, 7 were included in this systematic review. Studies indicated the presence of 11 personal care products (15.94 %) and 58 pharmaceutical products (84.06 %) in surface and ground water, leachates, runoffs, sludge, and sediments. The 42.86% (3/7) of reviewed studies reported 17 analgesics; 71.42 % (5/7) reported 16 antibiotics; 28.57 % (2/7) reported 5 lipid lowering drugs; 28.57% reported anti-malaria and fungal drugs; 14.29 % (1/7) reported estrogen drugs. Different studies report on sunscreen products, hormone, phytosterol, insect repellent, and β1 receptor. Gemfibrozil (<4-730 ng/L), Triclosan (55.1-297.7 ng/L), Triclocarban (35.6-232.4 ng/L), Trimethoprim (<1-388 ng/L) and Tramadol (<2-883 ng/L) had the highest range of concentrations. Findings confirm the need of i) legislation for environmental monitoring, including biota, ii) toxicological profiling of new market products, and iii) sensitization on appropriate use and disposal of pharmaceuticals and personal care products.
Collapse
Affiliation(s)
- Aliyu Zakari-Jiya
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria
| | - Chiara Frazzoli
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Ageing, Istituto Superiore di Sanità (Italian National Institute of Health), Rome, Italy
| | - Cecilia Nwadiuto Obasi
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port-Harcourt, Port-Harcourt, Rivers State, Nigeria
| | - Bolaji Bernard Babatunde
- Department of Animal and Environmental Biology, Faculty of Science, University of Port-Harcourt, Port-Harcourt, Rivers State, Nigeria
| | - Kingsley C Patrick-Iwuanyanwu
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria; Department of Biochemistry, Faculty of Science, University of Port-Harcourt, Port-Harcourt, Rivers State, Nigeria
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria; Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port-Harcourt, Port-Harcourt, Rivers State, Nigeria.
| |
Collapse
|
13
|
Bao Q, Wang Y, Tang S, Ye F, Yu Z, Ye Q, Wang W. Uptake and accumulation of erythromycin in leafy vegetables and induced phytotoxicity and dietary risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154785. [PMID: 35346705 DOI: 10.1016/j.scitotenv.2022.154785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Erythromycin (ERY), a widely used macrolide antibiotic, is omnipresent in soil and aquatic environments, which may potentially contaminate food crops but remains to be explored. Two leafy vegetables, pakchoi (Brassica rapa subsp. chinensis) and water spinach (Ipomoea aquatica Forsk.), were grown in laboratory-constructed soil or hydroponic systems to investigate the dynamic accumulation of ERY in edible plants. Results indicate 14C-ERY could be absorbed by water spinach and pakchoi in both systems. Autoradiographic imaging and concentration data of plant tissues suggested that ERY had limited translocation from roots to shoots in these two vegetables. The accumulation level of ERY was similar between the two vegetables in the soil system; but in the hydroponic system, pakchoi had a higher ERY accumulation than water spinach, with the bioconcentration factor of 2.74-25.98 and 3.65-11.67 L kg-1, respectively. The ERY intake via vegetable consumption was 0.01-2.17 ng kg-1 day-1, which was much lower than the maximum acceptable daily intake (700 ng kg-1 day-1), indicating negligible risks of consuming vegetables with roots exposed to ERY at environmentally relevant levels. In addition, ERY was found to cause growth inhibition and oxidative stress to pakchoi, even at low concentrations (7 and 22 μg L-1). This work contributes to a better understanding of plant uptake and translocation of ERY in soils and water, and has important implications for the reasonable evaluation of the implied risks of ERY to vegetables and human health.
Collapse
Affiliation(s)
- Qian Bao
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Yichen Wang
- Hangzhou Botanical Garden, Hangzhou 310013, China
| | - Shenghua Tang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Feiyang Ye
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Zhiyang Yu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Wei Wang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
14
|
Distribution and Ecological Risk Assessment of Pharmaceuticals and Personal Care Products in Sediments of North Canal, China. WATER 2022. [DOI: 10.3390/w14131999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The pollution of water bodies by pharmaceuticals and personal care products (PPCPs) has attracted widespread concern due to their widespread use and pseudo-persistence, but their effects on sediments are less known. In this study, solid-phase extraction-high performance liquid chromatography–tandem mass spectrometry (SPE-LC/MSMS) was used to investigate the occurrence and ecological risks of five typical pharmaceuticals and personal care products (PPCPs) in thirteen key reservoirs, sluices, dams, and estuaries in the Haihe River Basin. At the same time, the PPCP exchanges of surface water, groundwater, and sediments in three typical sections were studied. Finally, the PPCP’s environmental risk is evaluated through the environmental risk quotient. The results showed that the five PPCPs were tri-methoprazine (TMP), sinolamine (SMX), ibuprofen (IBU), triclosan (TCS), and caffeine (CAF). The average concentration of these PPCPs ranged from 0 to 481.19 μg/kg, with relatively high concentrations of TCS and CAF. The relationship between PPCPs in the surface sediments was analyzed to reveal correlations between SMX and TMP, CAF and IBU, CAF and TCS. The risk quotients (RQ) method was used to evaluate the ecological risk of the five detected PPCPs. The major contributors of potential environmental risks were IBU, TCS and CAF, among which all the potential environmental risks at the TCS samples were high risk. This study supplemented the research on the ecological risk of PPCPs in sediments of important reaches of the North Canal to reveal the importance of PPCP control in the North Canal and provided a scientific basis for pollution control and risk prevention of PPCPs.
Collapse
|
15
|
Chronic Effects of Fluoxetine on Danio rerio: A Biochemical and Behavioral Perspective. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042256] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fluoxetine is an antidepressant widely used to treat depressive and anxiety states. Due to its mode of action in the central nervous system (selective serotonin reuptake inhibitor (SSRI)), it becomes toxic to non-target organisms, leading to changes that are harmful to their survival. In this work, the effects of fluoxetine on juvenile zebrafish (Danio rerio) were evaluated, assessing biochemical (phase II biotransformation—glutathione S-transferase (GST), neurotransmission—acetylcholinesterase (ChE), energy metabolism—lactate dehydrogenase (LDH), and oxidative stress—glutathione peroxidase (GPx)) and behavior endpoints (swimming behavior, social behavior, and thigmotaxis) after 21 days exposure to 0 (control), 0.1, 1 and 10 µg/L. Biochemically, although chronic exposure did not induce significant effects on neurotransmission and energy metabolism, GPx activity was decreased after exposure to 10 µg/L of fluoxetine. At a behavioral level, exploratory and social behavior was not affected. However, changes in the swimming pattern of exposed fish were observed in light and dark periods (decreased locomotor activity). Overall, the data show that juvenile fish chronically exposed to fluoxetine may exhibit behavioral changes, affecting their ability to respond to environmental stressors and the interaction with other fish.
Collapse
|
16
|
Nie E, Wang H, Chen Y, Lu Y, Akhtar K, Riaz M, Zhang S, Yu Z, Ye Q. Distinct uptake and accumulation profiles of triclosan in youdonger (Brassica campestris subsp. Chinensis var. communis) under two planting systems: Evidence from 14C tracing techniques. CHEMOSPHERE 2022; 288:132651. [PMID: 34699880 DOI: 10.1016/j.chemosphere.2021.132651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/16/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Triclosan is a widely used biocide against microorganisms and is ubiquitously distributed in the environment. Triclosan can be accumulated into plants from soil and hydroponic media. However, little information is currently available on the comparative fate of triclosan in plants under soil and hydroponics cultivation conditions and factors governing uptake. Therefore, this study was designed to comparatively elucidate the uptake mechanism of 14C-triclosan in youdonger (Brassica campestris subsp. Chinensis var. communis) grown under different soils and hydroponics and clarify dominant uptake factors. Results showed that 77.2% of 14C were accumulated in youdonger grown in a hydroponic system, while only 1.24%-2.33% were accumulated in the two soil-planting systems. In addition, the bioconcentration factor (BCF) of 14C-triclosan in soil-plant systems was approximately 400-fold smaller than that in the hydroponics. In the soil-planting system, a strong linear correlation was found between concentrations of triclosan in soil pore water and youdonger plant (R2 > 0.85, p < 0.01) at different incubation times. Therefore, triclosan in pore water might be a good indicator to estimate its accumulation in plants and is significantly affected by soil pH, clay, and organic matter contents. The estimated average dietary intakes of triclosan for youdonger grown in hydroponic and soil-planting systems were estimated to be 1.31 ng day-1 kg-1 and 0.05-0.12 ng day-1 kg-1, respectively, much lower than the acceptable dietary intakes of triclosan (83 μg day-1 kg-1), indicating no significant human health risks from youdonger consumption. This study provided insights into uptake routes of triclosan into youdonger plants from both soil and hydroponic systems, bioavailability of triclosan in different soils, and further assessment of human exposure to triclosan from youdonger.
Collapse
Affiliation(s)
- Enguang Nie
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Haiyan Wang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China.
| | - Yan Chen
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Yuhui Lu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Kashif Akhtar
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Riaz
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Allama Iqbal Road, Faisalabad, 38000, Punjab, Pakistan
| | - Sufen Zhang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Zhiyang Yu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
17
|
Pai CW, Wang GS. Treatment of PPCPs and disinfection by-product formation in drinking water through advanced oxidation processes: Comparison of UV, UV/Chlorine, and UV/H 2O 2. CHEMOSPHERE 2022; 287:132171. [PMID: 34537457 DOI: 10.1016/j.chemosphere.2021.132171] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/16/2021] [Accepted: 09/03/2021] [Indexed: 05/20/2023]
Abstract
The presence of pharmaceutical and personal care products (PPCPs) in water is concerning because of their potential threat to ecosystems and human health. Studies have indicated that these emerging contaminants cannot be effectively removed through conventional water treatment. In this study, the efficacy of various treatments - chlorination, ultraviolet (UV), UV/Chlorine, and UV/H2O2 processes - in PPCP removal from water was compared. The effects of reaction time, oxidant concentration, pH, and water matrix and the generation of disinfection by-products (DBPs) were also assessed. The removal of PPCPs was discovered to be superior when the concentration of oxidants was higher. In addition, pH affected the reactivity of chlorine with some of the investigated chemicals. Chorine itself plays a minor role in the UV/Chlorine process because it serves as a reactant for the generation of free radicals rather than oxidants. Matrix had a weak effect on the removal of PPCPs in the various treatment processes (mostly within 10%). UV could not effectively remove acetylsalicylic acid, ibuprofen, benzophenone, oxybenzone, caffeine, N,N-diethyl-meta-toluamide, or most estrogens. When chlorine or hydrogen peroxide (H2O2) was used with UV, the efficiency of removal of all selected PPCPs was greatly improved (≥56.5% for UV/Chlorine and ≥27.6% for UV/H2O2) within 5 min. Although the PPCP removal efficiency of UV/Chlorine was higher than that of UV/H2O2, UV/H2O2 resulted in smaller amounts of DBP formation in the treated water. By contrast, UV/Chlorine resulted in higher concentrations of trihalomethanes (21.6%), haloacetonitriles (29.4%), and haloketones (147.2%).
Collapse
Affiliation(s)
- Chih-Wei Pai
- Institute of Environmental and Occupational Health Science, National Taiwan University, Taiwan
| | - Gen-Shuh Wang
- Institute of Environmental and Occupational Health Science, National Taiwan University, Taiwan; Institute of Food Safety and Health, National Taiwan University, Taiwan.
| |
Collapse
|
18
|
Cui H, Zhou W, Deng Y, Zheng B, Zhang Q, Zhang Z, Lu T, Qian H. Meta-transcriptomic profiling of functional variation of freshwater microbial communities induced by an antidepressant sertraline hydrochloride. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147434. [PMID: 33964776 DOI: 10.1016/j.scitotenv.2021.147434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Sertraline hydrochloride (Ser-HCl) is an effective and commonly used antidepressant drug, which is also frequently detected in aquatic environments. Our previous research showed that Ser-HCl changes the community composition of aquatic microbiome, but the understanding of the expression of functional pathways in microbial communities is still incomplete; to address this knowledge gap, we used meta-transcriptomics analysis to evaluate the toxicity of Ser-HCl to natural aquatic microbial communities cultured in laboratory microcosms. Meta-transcriptomic results show that a 15-day exposure to 50 μg/L Ser-HCl significantly changed the functional expression activity of aquatic microbial communities. Pathways related to lipid metabolism, energy metabolism, membrane transport function, and genetic information processing in the aquatic microbial community were severely inhibited under Ser-HCl treatment, but metabolism of cofactors and vitamins to alleviate biological toxicity after Ser-HCl exposure was enhanced. Our study thus reveals details of the effects of sertraline on the functioning of aquatic microbiome. Due to the extensive use of Ser-HCl and its strong biological activity, it should not continue to be an overlooked pollutant. Therefore, more attention should be paid to the negative effects of such biologically active drugs on the expression of aquatic microbiome.
Collapse
Affiliation(s)
- Hengzheng Cui
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Wenya Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yu Deng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Binyu Zheng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
19
|
Elamin MR, Abdulkhair BY, Algethami FK, Khezami L. Linear and nonlinear investigations for the adsorption of paracetamol and metformin from water on acid-treated clay. Sci Rep 2021; 11:13606. [PMID: 34193935 PMCID: PMC8245496 DOI: 10.1038/s41598-021-93040-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Natural clays are considered a safe, low-cost, and sound sorbent for some pharmaceutical and body care products from water. Metformin (MF) and paracetamol (PA) are of the most consumable drugs worldwide. A portion of natural clay was treated with distilled water, and another part was treated with hydrochloric acid. The water-treated clay (WTC) and the acid-treated clay (ATC) were characterized by scanning electron microscopy-energy dispersive spectroscopy, X-ray diffraction, Fourier transforms infrared spectroscopy, and nitrogen adsorption isotherm. Batch experiments were employed to investigate the influence of contact time and solution parameters on the adsorption of PA and MF on WTC and ATC. 30 min attained the equilibrium for all sorbent-sorbate systems. Both sorbents fitted the pseudo-second-order kinetic model with a preference to the nonlinear fitting, and the mechanism of adsorption partially fitted the liquid-film diffusion model. The PA and MF adsorption on WTC and ATC fitted the Freundlich model in preference to nonlinear fitting. The adsorption of pollutants on both sorbents was spontaneous, exothermic, and physisorption in nature. Even at low concentrations, both WTC and ATC showed efficiency above 80% in removing PA and MF from tab water, groundwater, and Red seawater. These findings nominated natural clay as an alternative to the costly nanomaterials as sorbents for removing pharmaceutical contaminants from water.
Collapse
Affiliation(s)
- Mohamed R Elamin
- College of Science, Chemistry Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90905, Riyadh, 11623, Kingdom of Saudi Arabia
- Industrial Research and Consultancy Center (IRCC), Khartoum North, Sudan
| | - Babiker Y Abdulkhair
- College of Science, Chemistry Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90905, Riyadh, 11623, Kingdom of Saudi Arabia.
- College of Science, Chemistry Department, Sudan University of Science and Technology (SUST), Khartoum, Sudan.
| | - Faisal K Algethami
- College of Science, Chemistry Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90905, Riyadh, 11623, Kingdom of Saudi Arabia
| | - L Khezami
- College of Science, Chemistry Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90905, Riyadh, 11623, Kingdom of Saudi Arabia
| |
Collapse
|
20
|
Hong X, Zhao G, Zhou Y, Chen R, Li J, Zha J. Risks to aquatic environments posed by 14 pharmaceuticals as illustrated by their effects on zebrafish behaviour. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145450. [PMID: 33545463 DOI: 10.1016/j.scitotenv.2021.145450] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/18/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
The presence of pharmaceutical residues in aquatic ecosystems is a worldwide problem that may pose serious threats and challenges to the environment, especially to the safety of aquatic biota. In the present study, we investigated the effects of 14 environmentally relevant pharmaceutical compounds on individual and collective-related behaviours in juvenile zebrafish (Danio rerio) for 21 days. The tested concentrations of the compounds spanned three orders of magnitude. This study also compared the potential risks of these compounds in Chinese surface waters based on the data on their toxic effects or only on behavioural effects. In the case of individual behaviours, most antidepressants, but not anti-inflammatory agents or blood lipid-lowering agents, decreased fish locomotor activity (LMA) and individual social activity (IDS); however, all three classes of compounds induced significant disruptions in the light/dark transition locomotor response (LMR-L/D) performance, even at lower treatment levels (0.1-1 μg/L). Furthermore, collective behaviour (CLB) analysis suggested that most of the compounds significantly altered the group sociability of fish and frequently occurred at environmentally relevant concentrations. Finally, a risk assessment suggested that the presence of ibuprofen, fluoxetine, and venlafaxine in the surface waters of China poses a relatively high risk to fish, regardless of the risk ranking based on the data of the toxic or behavioural effects.
Collapse
Affiliation(s)
- Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Gaofeng Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yiqi Zhou
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Rui Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiasu Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
21
|
Chen H, Chen W, Guo H, Lin H, Zhang Y. Pharmaceuticals and personal care products in the seawater around a typical subtropical tourist city of China and associated ecological risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:22716-22728. [PMID: 33423193 PMCID: PMC7797026 DOI: 10.1007/s11356-020-12335-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/30/2020] [Indexed: 05/12/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) in the sea area surrounding a densely populated tourist city in southeastern China were investigated. In total, 32 PPCP pollutants classified into 23 categories were detected. Different spatial distribution patterns of PPCPs indicated possible contamination from runoff and multiple local sources. The labile-to-conservative ratios of PPCPs showed the influence of untreated domestic sewage. In addition, increased concentrations of ciprofloxacin, enrofloxacin, and erythromycin around aquaculture farms imply that aquaculture cannot be neglected as a source. The concentrations of oxytetracycline, ranitidine, ciprofloxacin, miconazole, and sulfamethizole were higher in the wet season than those in the dry season, and the difference in pharmaceutical consumption was suspected to be the main driving factor of this seasonal variation. The risk quotients calculated with the maximum concentrations of miconazole, triclosan, dehydronifedipine, and triclocarban exceeded 0.1, indicating potential moderate or high risks. Antibacterial agents in daily chemicals and azole broad-spectrum antifungals were associated with the highest risks in this study; this might be another significant pollution characteristic in the sea area around this subtropical tourist city.
Collapse
Affiliation(s)
- Hongzhe Chen
- Ministry of Natural Resources of China, Third Institute of Oceanography, No. 178, Daxue Road, Siming District, Xiamen, 361005 Fujian China
| | - Wenfeng Chen
- Ministry of Natural Resources of China, Third Institute of Oceanography, No. 178, Daxue Road, Siming District, Xiamen, 361005 Fujian China
| | - Huige Guo
- Ministry of Natural Resources of China, Third Institute of Oceanography, No. 178, Daxue Road, Siming District, Xiamen, 361005 Fujian China
| | - Hui Lin
- Ministry of Natural Resources of China, Third Institute of Oceanography, No. 178, Daxue Road, Siming District, Xiamen, 361005 Fujian China
| | - Yuanbiao Zhang
- Ministry of Natural Resources of China, Third Institute of Oceanography, No. 178, Daxue Road, Siming District, Xiamen, 361005 Fujian China
| |
Collapse
|
22
|
Xiang Y, Wu H, Li L, Ren M, Qie H, Lin A. A review of distribution and risk of pharmaceuticals and personal care products in the aquatic environment in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112044. [PMID: 33601171 DOI: 10.1016/j.ecoenv.2021.112044] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 05/08/2023]
Abstract
Due to the extensive use and pseudo-persistence of pharmaceuticals and personal care products (PPCPs), they are frequently detected in the aqueous environment, which has attracted global attention. In this paper, accumulation data of 81 PPCPs in surface water or sediment in China were reported. In addition, 20 kinds of PPCPs with high frequency were selected and their ecological risk assessment was conducted by risk quotient (RQs). The results indicated that the concentration detected in surface water and sediment ranged from ng/L (ng/kg) to μg/L (μg/kg) in China, which was similar to concentrations reported globally. However, contamination by certain PPCPs, such as caffeine, oxytetracycline, and erythromycin, was relatively high with a maximum concentration of more than 2000 ng/L in surface water. RQs revealed that 14 kinds of PPCPs pose no significant risk or low risk to aquatic organisms, while 6 kinds of PPCPs pose a high risk. Additionally, the pollution characteristics of PPCPs in each watershed are different. The Haihe River watershed and the central and lower Yangtze River were the regions of high concern for erythromycin. Triclosan has potential risks in the Pearl River watershed. This study determined the occurrence and risk of PPCPs in China in the past decade, providing a scientific basis for PPCPs pollution control and risk prevention.
Collapse
Affiliation(s)
- Ying Xiang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Huihui Wu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Lu Li
- Chinese Academy for Environmental Planning, Beijing 100012, PR China
| | - Meng Ren
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Hantong Qie
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
23
|
Yang L, Wang T, Zhou Y, Shi B, Bi R, Meng J. Contamination, source and potential risks of pharmaceuticals and personal products (PPCPs) in Baiyangdian Basin, an intensive human intervention area, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:144080. [PMID: 33348152 DOI: 10.1016/j.scitotenv.2020.144080] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/08/2020] [Accepted: 11/20/2020] [Indexed: 05/13/2023]
Abstract
The presence of pharmaceuticals and personal care products (PPCPs) has become a global concern, as it poses a threat to the environment, especially to the aquatic ecosystem. This study focused on 30 PPCPs found in the Baiyangdian basin of the Xiong'an New Area, in the core of Beijing-Tianjin-Hebei region, with intensive human interventions during two seasons. In general, 30 PPCPs were all frequently detected, ranging from 42.3 to 7710 ng/L in May and 48.9 to 1300 ng/L in November. Sulfamethoxazole, ofloxacin, anhydro-erythromycin, carbamazepine, caffeine, and were screened as the predominant PPCPs. The rivers input was an essential source of PPCPs. The source apportionment with a series of analytical methods revealed that domestic sewage was the primary source, and untreated water also crucial for PPCPs contamination. The risk assessment suggested carbamazepine, caffeine, ofloxacin, and anhydro-erythromycin exhibited relatively high ecological risks for protecting most species such as algae, fish, and flowers in the aquatic ecosystem, especially near the outlet of WWTPs. Thus, management strategies for such PPCPs will be needed. Intensive human interventions, including a prohibition of fish breeding, water diversion project, and wastewater treatment in villages, were having an effective role in alleviating PPCPs contamination.
Collapse
Affiliation(s)
- Lu Yang
- Institute of Marine Sciences, Shantou University, Shantou 515063, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tieyu Wang
- Institute of Marine Sciences, Shantou University, Shantou 515063, China.
| | - Yunqiao Zhou
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Shi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ran Bi
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Jing Meng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
24
|
Chaturvedi P, Shukla P, Giri BS, Chowdhary P, Chandra R, Gupta P, Pandey A. Prevalence and hazardous impact of pharmaceutical and personal care products and antibiotics in environment: A review on emerging contaminants. ENVIRONMENTAL RESEARCH 2021; 194:110664. [PMID: 33400949 DOI: 10.1016/j.envres.2020.110664] [Citation(s) in RCA: 253] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/02/2020] [Accepted: 12/20/2020] [Indexed: 05/24/2023]
Abstract
Antibiotic resistance is a global health emergency linked to unrestrained use of pharmaceutical and personal care products (PPCPs) as prophylactic agent and therapeutic purposes across various industries. Occurrence of pharmaceuticals are identified in ground water, surface water, soils, and wastewater treatment plants (WWTPs) in ng/L to μg/L concentration range. The prevalence of organic compounds including antimicrobial agents, hormones, antibiotics, preservatives, disinfectants, synthetic musks etc. in environment have posed serious health concerns. The aim of this review is to elucidate the major sources accountable for emergence of antibiotic resistance. For this purpose, variety of introductory sources and fate of PPCPs in aquatic environment including human and veterinary wastes, aquaculture and agriculture related wastes, and other anthropogenic activities have been discussed. Furthermore, genetic and enzymatic factors responsible for transfer and appearance of antibiotic resistance genes are presented. Ecotoxicity of PPCPs has been studied in environment in order to present risk imposed to human and ecological health. As per published literature reports, the removal of antibiotics and related traces being difficult, couples the possibility of emergence of antibiotic resistance and hence sustainability in global water resources. Therefore, research on environmental behavior and control strategies should be conducted along with assessing their chronic toxicity to identify potential human and ecological risks.
Collapse
Affiliation(s)
- Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India; Department of Biotechnology, National Institute of Technology-Raipur, G.E. Road, Raipur, 492010, Chhattisgarh, India.
| | - Parul Shukla
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Balendu Shekher Giri
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Pankaj Chowdhary
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Ram Chandra
- Department of Microbiology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology-Raipur, G.E. Road, Raipur, 492010, Chhattisgarh, India.
| | - Ashok Pandey
- Centre for Innovation and Transnational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, Uttar Pradesh, India
| |
Collapse
|
25
|
Chakraborty P, Shappell NW, Mukhopadhyay M, Onanong S, Rex KR, Snow D. Surveillance of plasticizers, bisphenol A, steroids and caffeine in surface water of River Ganga and Sundarban wetland along the Bay of Bengal: occurrence, sources, estrogenicity screening and ecotoxicological risk assessment. WATER RESEARCH 2021; 190:116668. [PMID: 33285458 DOI: 10.1016/j.watres.2020.116668] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 11/10/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
The transboundary River Ganga serves as a conduit for meltwater from the Himalayas and is a major freshwater source for two thirds of Indian population before emptying into the Sundarban Delta, the largest estuary in the Bay of Bengal. Endocrine disrupting compounds (EDCs) such as phthalic acid esters (PAEs) and bisphenol A (BPA) used as organic plastic additives can pollute the aquatic environment receiving plastic litter. Hence, we have investigated these EDCs in water samples from Ganga and Sundarban wetland of India. Since these compounds exhibit estrogenic potential, we have further measured steroids and evaluated the estrogenic activity (estradiol equivalents, BioE2Eqs) using an in-vitro bioassay (E-Screen). Further BioE2Eqs were compared with the sum of predicted estradiol equivalents based on the chemical concentrations of PAEs and BPA by E-Screen (ChemE2Eq) and YES factors (ChemYES). Caffeine was measured as a marker for anthropogenic wastewater discharge. Results showed that the highest BioE2Eq (below the lowest observable effect of E2 on fish) was associated with sites having sewer outfalls in the middle stretch of the river, and concomitantly coinciding with the elevated concentrations of caffeine. Neither ChemE2Eq nor ChemYES correlated with measured BioE2Eqs. River concentrations of BPA (0.04-4.46 µg/L) and ∑7plasticizers (0.43-7.63 µg/L) were higher than BPA (0.21-2.82 µg/L) and ∑7plasticizers (0.85-2 µg/L) in the Sundarban wetland. The only steroids detected were androgens, found at four sites in Ganga (0.007 µg/L± 0.003, mean ± S.D.). The highest estimated ecotoxicological risk to aquatic insect and fish stemmed from BPA. A secondary effect, and a potential impact on human health could be reflected via fish consumption from the productive fisheries region along the lower stretch of River Ganga. Identification of areas of elevated estrogenicity, plasticizer and steroid concentrations in River Ganga can be used to design and implement interventions for the remediation of such emerging contaminants.
Collapse
Affiliation(s)
- Paromita Chakraborty
- Department of Civil Engineering, SRM Institute of Science and Technology, Kancheepuram district, Tamil Nadu 603203, India; SRM Research Institute, SRM Institute of Science and Technology, Kancheepuram district, Tamil Nadu 603203, India.
| | - Nancy W Shappell
- Retired from Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Biosciences Research Laboratory, 1616 Albrecht Blvd., Fargo, ND, 58102, United States
| | - Moitraiyee Mukhopadhyay
- SRM Research Institute, SRM Institute of Science and Technology, Kancheepuram district, Tamil Nadu 603203, India
| | - Sathaporn Onanong
- Water Sciences Laboratory, University of Nebraska, Lincoln, NE 68583 United States
| | - K Ronnie Rex
- SRM Research Institute, SRM Institute of Science and Technology, Kancheepuram district, Tamil Nadu 603203, India
| | - Daniel Snow
- Water Sciences Laboratory, University of Nebraska, Lincoln, NE 68583 United States
| |
Collapse
|
26
|
Lu T, Zhang Q, Zhang Z, Hu B, Chen J, Chen J, Qian H. Pollutant toxicology with respect to microalgae and cyanobacteria. J Environ Sci (China) 2021; 99:175-186. [PMID: 33183695 DOI: 10.1016/j.jes.2020.06.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 05/11/2023]
Abstract
Microalgae and cyanobacteria are fundamental components of aquatic ecosystems. Pollution in aquatic environment is a worldwide problem. Toxicological research on microalgae and cyanobacteria can help to establish a solid foundation for aquatic ecotoxicological assessments. Algae and cyanobacteria occupy a large proportion of the biomass in aquatic environments; thus, their toxicological responses have been investigated extensively. However, the depth of toxic mechanisms and breadth of toxicological investigations need to be improved. While existing pollutants are being discharged into the environment daily, new ones are also being produced continuously. As a result, the phenomenon of water pollution has become unprecedentedly complex. In this review, we summarize the latest findings on five kinds of aquatic pollutants, namely, metals, nanomaterials, pesticides, pharmaceutical and personal care products (PPCPs), and persistent organic pollutants (POPs). Further, we present information on emerging pollutants such as graphene, microplastics, and ionic liquids. Efforts in studying the toxicological effects of pollutants on microalgae and cyanobacteria must be increased in order to better predict the potential risks posed by these materials to aquatic ecosystems as well as human health.
Collapse
Affiliation(s)
- Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
27
|
Li S, Kuang Y, Hu J, You M, Guo X, Gao Q, Yang X, Chen Q, Sun W, Ni J. Enrichment of antibiotics in an inland lake water. ENVIRONMENTAL RESEARCH 2020; 190:110029. [PMID: 32795452 DOI: 10.1016/j.envres.2020.110029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Inland water is very susceptible to the input of pollutants. However, little is known about the occurrence of antibiotics in inland lakes. In this study, a total of 83 target antibiotics were quantified in water and sediment samples collected from the Qinghai Lake, the largest inland lake of China located on the northeast of Qinghai-Tibet plateau, and its inflowing rivers. The results showed that 27 and 25 antibiotics were detected in water and sediments, respectively, with the summed concentrations (SUM) of 1.14-17.3 ng/L and 0.72-8.31 ng/g. Compared with the input rivers, significantly higher levels of sulfonamides (SAs), quinolones (QNs), polyethers (PEs), and SUM in water samples were observed in Qinghai Lake water. The average proportions of SAs (50.9-52.7%) and QNs (22.0-28.3%) in Qinghai Lake water nearly doubled compared to those in input rivers. An enrichment factor (EF) was proposed to reveal the enrichment degree of antibiotics in Qinghai Lake compared to its input river water. Sulfaguanidine (SGD), flumequine (FLU), and nalidixic acid (NDA) were enriched in Qinghai Lake up to several ten times based on the calculated EF values, due to their persistence in such a cold saline lake. Risk assessment showed that most antibiotics except anhydrochlortetracycline (ACTC) had insignificant risks to aquatic organisms and antibiotic resistance selection in Qinghai Lake water. This study was the first to reveal the enrichment of antibiotics in Qinghai Lake water, and suggests the urgent need to investigate the possible long-term enrichment and environmental risks of antibiotics in inland lakes.
Collapse
Affiliation(s)
- Si Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuzhu Kuang
- College of Resources Environment and Tourism, Capital Normal University, Beijing, 100048, China
| | - Jingrun Hu
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Mingtao You
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Xiaoyu Guo
- College of Resources Environment and Tourism, Capital Normal University, Beijing, 100048, China
| | - Qiang Gao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Xi Yang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Qian Chen
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China.
| | - Jinren Ni
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| |
Collapse
|
28
|
Korekar G, Kumar A, Ugale C. Occurrence, fate, persistence and remediation of caffeine: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:34715-34733. [PMID: 31811612 DOI: 10.1007/s11356-019-06998-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Pharmaceutical and personal care products (PPCPs) have gained attention in recent years due to their continuous discharge in natural waters. Their persistence in the environment has impacted flora, fauna and human being worldwide. One of the most common PPCPs is caffeine (1, 3, 7-trimethylxanthine) which acts as a stimulant to the central nervous system in humans and is found in nature in about 60 plant species, especially in coffee, tea and cacao plants. Here we discuss the evidence with respect to caffeine occurrence, its persistence and remediation in light of increasing knowledge and the impact of caffeine on the environment. Daily intake of caffeine around the world is found to increase due to the frequent introduction of new caffeinated beverages as well as increased consumption of coffee, tea and carbonated soft drinks, which has led to increase in its concentration in water bodies including agricultural soil. The caffeine concentration in different water system, studied by various authors is also described. Diverse effects of the use of caffeine on several organisms including humans are also briefly presented. Therefore, urgent attention for the removal of caffeine and its derivatives is the need of the hour. Various methods described in literature for caffeine degradation/removal is also presented. Another widely used technique in environmental remediation is molecular imprinting (MIP); however, only few MIPs have been demonstrated for caffeine which is also discussed. Regular monitoring can be useful to control toxic effects of caffeine. Graphical abstract.
Collapse
Affiliation(s)
- Girish Korekar
- Department of Chemistry, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra, 440010, India
| | - Anupama Kumar
- Department of Chemistry, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra, 440010, India.
| | - Chetna Ugale
- Department of Botany, Indira Mahavidyalaya Kalamb, Dist. Yavatmal, Maharashtra, 445401, India
| |
Collapse
|
29
|
Zhou R, Lu G, Yan Z, Jiang R, Bao X, Lu P. A review of the influences of microplastics on toxicity and transgenerational effects of pharmaceutical and personal care products in aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139222. [PMID: 32438173 DOI: 10.1016/j.scitotenv.2020.139222] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/03/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
PPCPs (pharmaceutical and personal care products) and microplastics (MPs) are two types of emerging pollutants that are ubiquitous and widely concerned in the environment. Both of them can accumulate in fish or aquatic invertebrates and transfer to offspring, thereby producing toxic effects on both parents and offspring, in which the characteristics of MPs also enable them to adsorb PPCPs thus producing carrier effects. In this study, we have conducted a comprehensive review of MPs and PPCPs and found that MPs can act as a carrier of PPCPs to influence the bioaccumulation of PPCPs. MPs and PPCPs have toxicity and transgenerational effects on both fish and aquatic invertebrates in many aspects, and MPs can also affect the toxicity and transgenerational effects of PPCPs due to their carrier effects. This paper revealed that MPs may have an important impact on the bioavailability of PPCPs and the interaction between MPs and PPCPs is a hot topic in future research. This study also puts forward the shortcomings of the current research and related suggestions, and relevant research should be carried out as soon as possible to provide the basis for the prevention and treatment of fresh water.
Collapse
Affiliation(s)
- Ranran Zhou
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal Husbandry University, Linzhi 860000, China.
| | - Zhenhua Yan
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Runren Jiang
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xuhui Bao
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Ping Lu
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
30
|
Li S, Wen J, He B, Wang J, Hu X, Liu J. Occurrence of caffeine in the freshwater environment: Implications for ecopharmacovigilance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114371. [PMID: 32217417 DOI: 10.1016/j.envpol.2020.114371] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/18/2020] [Accepted: 03/12/2020] [Indexed: 05/08/2023]
Abstract
Owing to the substantial consumption of caffeinated food, beverages, and medicines worldwide, caffeine is considered the most representative pharmaceutically active compound (PhAC) pollutant based on its high abundance in the environment and its suitability as an indicator of the anthropogenic inputs of PhACs in water bodies. This review presents a worldwide analysis of 132 reports of caffeine residues in freshwater environments. The results indicated that more than 70% of the studies reported were from Asia and Europe, which have densely populated and industrially developed areas. However, caffeine pollution was also found to affect areas isolated from human influence, such as Antarctica. In addition, the maximum concentrations of caffeine in raw wastewater, treated wastewater, river, drinking water, groundwater, lake, catchment, reservoir, and rainwater samples were reported to be 3.60 mg/L, 55.5, 19.3, 3.39, 0.683, 174, 44.6, 4.87, and 5.40 μg/L, respectively. The seasonal variation in caffeine residues in the freshwater environment has been demonstrated. In addition, despite the fact that there was a small proportion of wastewater treatment plants in which the elimination rates of caffeine were below 60%, wastewater treatment is generally believed to have a high caffeine removal efficiency. From a pharmacy perspective, we proposed to adopt effective measures to minimize the environmental risks posed by PhACs, represented by caffeine, through a new concept known as ecopharmacovigilance (EPV). Some measures of EPV aimed at caffeine pollution have been advised, as follows: improving knowledge and perceptions about caffeine pollution among the public; listing caffeine as a high-priority PhAC pollutant, which should be targeted in EPV practices; promoting green design and production, rational consumption, and environmentally preferred disposal of caffeinated medicines, foods, and beverages; implementing intensive EPV measures in high-risk areas and during high-risk seasons; and integrating EPV into wastewater treatment programs.
Collapse
Affiliation(s)
- Shulan Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jing Wen
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Bingshu He
- Hubei Province Woman and Child Hospital, Wuhan, 430070, China
| | - Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Xianmin Hu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Juan Liu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| |
Collapse
|
31
|
Cao SS, Duan YP, Tu YJ, Tang Y, Liu J, Zhi WD, Dai C. Pharmaceuticals and personal care products in a drinking water resource of Yangtze River Delta Ecology and Greenery Integration Development Demonstration Zone in China: Occurrence and human health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137624. [PMID: 32171137 DOI: 10.1016/j.scitotenv.2020.137624] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
The occurrence, partition, and human health risk of thirteen pharmaceuticals and personal care products (PPCPs) have been investigated in surface water, overlying water, pore water and sediment samples from Dianshan Lake of Yangtze River Delta Ecology and Greenery Integration Development Demonstration Zone in China. PPCPs were ubiquitous in aqueous phase and sediments from Dianshan Lake. Sulfamethazine (SMZ) was dominated in surface water and overlying water, while ketoprofen (KPF) was rich in sediment. The total concentration of PPCPs ranged from 0.38-85.27 ng/L, 24.26-130.03 ng/L and 5.39-149.84 μg/kg in surface water, overlying water and sediment, respectively, which were in middle levels compared with these reported in other aquatic environment in China. Naproxen (NPX), sulfadimethoxine (SDM), sulfamethoxazole (SMX) and sulfamethazine (SMZ) in surface water showed a relatively higher level in lake side than those in lake center suggesting that a mixed containment source of human- and animal-derived from the areas around lake. The significant season variations of most PPCPs were mainly attributed to their usage, water temperature and dilution effect. The partition behaviors of PPCPs in sediment-overlying water and sediment-pore water system were mainly affected by their logKow values, and showed weak correlation with total organic carbon (TOC) content in sediment and molecular weights of PPCPs. Preliminary results indicated that PPCPs in Dianshan Lake have not posed a high risk to human health by exposure to drinking water for all age groups. Nevertheless, their potential to cause the mixture toxicity and resistance genes cannot be neglected. This work will contribute to the clear picture of PPCPs contamination in drinking water source in the Demonstration Zone, and provide reliable and simple-to-use information to regulators on the exposure and risk levels of PPCPs, as well as recommendations for future research.
Collapse
Affiliation(s)
- Shuang-Shuang Cao
- School of Environmental and Geographical Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Yan-Ping Duan
- School of Environmental and Geographical Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China.
| | - Yao-Jen Tu
- School of Environmental and Geographical Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Yu Tang
- School of Environmental and Geographical Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Jin Liu
- School of Environmental and Geographical Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Wei-Di Zhi
- School of Environmental and Geographical Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Chaomeng Dai
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
32
|
Liu Y, Feng M, Wang B, Zhao X, Guo R, Bu Y, Zhang S, Chen J. Distribution and potential risk assessment of antibiotic pollution in the main drinking water sources of Nanjing, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:21429-21441. [PMID: 32274694 DOI: 10.1007/s11356-020-08516-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
The distribution character of 41 antibiotics belonging to 6 groups, sulfonamides (SAs), quinolones (QUs), tetracyclines (TCs), macrolides (MLs), penicillins (PLs), and chloramphenicol (CHL), was investigated in drinking water sources of Nanjing during 2017-2019. MLs (42.98%) were the most abundant category, followed by SAs (25.94%) and QUs (22.52%). The dominant antibiotic was ofloxacin (OFX) in Dec. 2017 (average concentration, 3.14 ng/L; range, ND-35.20 ng/L) and Nov. 2018 (2.16 ng/L, ND-12.26 ng/L), and sulfadiazine (SDZ) in Mar. 2019 (16.37 ng/L, ND-25.90 ng/L). For Dec. 2017, the total concentrations in Zhongshan Waterworks (S15) and Jinniushan Reservoir (S16) were significantly higher than the other sampling sites, which may be attributed to point source pollution. The ecological and human risk of the main antibiotics was assessed by risk quotients (RQs) and target hazard quotient (THQ), respectively. Most of the RQ values were below 0.1, except enrofloxacin (ERX, 0.11) and enoxacin (ENX, 0.62) in Dec. 2017, lomefloxacin (LOM, 0.14) in Nov. 2018, and LOM (0.28) and ERX (0.10) in Mar. 2019. This indicated that the risk of the target antibiotics to aquatic organisms in the 3 years was moderate or low level. Meanwhile, results of the THQ values showed that antibiotic exposure caused no risk to human health. This research provides scientific information for antibiotic pollution control and enriches environmental monitoring data in the drinking water sources.
Collapse
Affiliation(s)
- Yanhua Liu
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Mengjuan Feng
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Bo Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Xin Zhao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Ruixin Guo
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuanqing Bu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Shenghu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Jianqiu Chen
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
33
|
Awfa D, Ateia M, Fujii M, Yoshimura C. Photocatalytic degradation of organic micropollutants: Inhibition mechanisms by different fractions of natural organic matter. WATER RESEARCH 2020; 174:115643. [PMID: 32114015 DOI: 10.1016/j.watres.2020.115643] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/15/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
Natural organic matter (NOM) can inhibit the photocatalytic degradation of organic micropollutants (OMPs) through inner filter effect, reactive oxygen species (ROS) scavenging, and competitive adsorption. However, previous studies have focused solely on the bulk properties of NOM and our understanding of the inhibition mechanism by NOM fractions during photocatalytic degradation of OMP is still fragmentary. In this study, five well-characterized different NOM samples (i.e., secondary treated wastewater, river water, and three standard NOM surrogates) were used to elucidate the inhibition mechanisms during photocatalytic degradation of carbamazepine (a model OMP) using TiO2 and its composites with carbon nanotubes (CNT-TiO2) under UVC and solar-light irradiation. The results indicated that terrestrially derived NOM with high aromaticity, a low oxygen/carbon atom ratio, and large molecular weight is the major fraction that participates in ROS scavenging, competitive adsorption, and inner filter effect. Furthermore, the modeling analysis suggested that inner filter effect due to NOM and ROS scavenging was the most influential inhibitory mechanism. In the case of secondary treated wastewater, the presence of high concentrations of inorganic species (e.g., PO43-, Cl-, and NO3-) together with NOM significantly reduced the photocatalytic degradation of carbamazepine. Overall, the methods and the results of this study provide a comprehensive understanding of the effects of NOM fractions on photocatalysis and highlight the need to further consider the interplay between NOM and background inorganic constituents in photocatalytic degradation of OMP.
Collapse
Affiliation(s)
- Dion Awfa
- Department of Civil and Environmental Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1, M1-4, Ookayama, Meguro-ku, Tokyo, 152-8552, Japan; Water and Wastewater Engineering Research Group, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia.
| | - Mohamed Ateia
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, United States.
| | - Manabu Fujii
- Department of Civil and Environmental Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1, M1-4, Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Chihiro Yoshimura
- Department of Civil and Environmental Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1, M1-4, Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| |
Collapse
|
34
|
Giebułtowicz J, Nałęcz-Jawecki G, Harnisz M, Kucharski D, Korzeniewska E, Płaza G. Environmental Risk and Risk of Resistance Selection Due to Antimicrobials' Occurrence in Two Polish Wastewater Treatment Plants and Receiving Surface Water. Molecules 2020; 25:molecules25061470. [PMID: 32213976 PMCID: PMC7144726 DOI: 10.3390/molecules25061470] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/13/2020] [Accepted: 03/21/2020] [Indexed: 12/31/2022] Open
Abstract
In this study, a screening of 26 selected antimicrobials using liquid chromatography coupled to a tandem mass spectrometry method in two Polish wastewater treatment plants and their receiving surface waters was provided. The highest average concentrations of metronidazole (7400 ng/L), ciprofloxacin (4300 ng/L), vancomycin (3200 ng/L), and sulfamethoxazole (3000 ng/L) were observed in influent of WWTP2. Ciprofloxacin and sulfamethoxazole were the most dominant antimicrobials in influent and effluent of both WWTPs. In the sludge samples the highest mean concentrations were found for ciprofloxacin (up to 28 μg/g) and norfloxacin (up to 5.3 μg/g). The removal efficiency of tested antimicrobials was found to be more than 50% for both WWTPs. However, the presence of antimicrobials influenced their concentrations in the receiving waters. The highest antimicrobial resistance risk was estimated in influent of WWTPs for azithromycin, ciprofloxacin, clarithromycin, metronidazole, and trimethoprim and in the sludge samples for the following antimicrobials: azithromycin, ciprofloxacin, clarithromycin, norfloxacin, trimethoprim, ofloxacin, and tetracycline. The high environmental risk for exposure to azithromycin, clarithromycin, and sulfamethoxazole to both cyanobacteria and eukaryotic species in effluents and/or receiving water was noted. Following the obtained results, we suggest extending the watch list of the Water Framework Directive for Union-wide monitoring with sulfamethoxazole.
Collapse
Affiliation(s)
- Joanna Giebułtowicz
- Department of Bioanalysis and Drugs Analysis, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha, 02-097 Warszawa, Poland; (J.G.); (D.K.)
| | - Grzegorz Nałęcz-Jawecki
- Department of Environmental Health Sciences, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha, 02-097 Warszawa, Poland;
| | - Monika Harnisz
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury, 5 Oczapowskiego, 10-719 Olsztyn, Poland; (M.H.); (E.K.)
| | - Dawid Kucharski
- Department of Bioanalysis and Drugs Analysis, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha, 02-097 Warszawa, Poland; (J.G.); (D.K.)
| | - Ewa Korzeniewska
- Department of Environmental Microbiology, Faculty of Environmental Sciences, University of Warmia and Mazury, 5 Oczapowskiego, 10-719 Olsztyn, Poland; (M.H.); (E.K.)
| | - Grażyna Płaza
- Microbiology Unit, Institute for Ecology of Industrial Areas, 6 Kossutha, 40-844 Katowice, Poland
- Correspondence: ; Tel.: +48 322546031
| |
Collapse
|
35
|
Lomefloxacin—Occurrence in the German River Erft, Its Photo-Induced Elimination, and Assessment of Ecotoxicity. CLEAN TECHNOLOGIES 2020. [DOI: 10.3390/cleantechnol2010006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Pharmaceuticals in waters represent a worldwide problem of today. Advanced oxidation processes (AOPs) are being researched for elimination of the ecological hazard. Among the substances, the fluoroquinolone antibiotic lomefloxacin was selected for investigation in this study. Lomefloxacin (LOM) was found in the German river Erft. Near and far ultraviolet (UVA, UVC) radiation were used as AOPs and compared for efficiency depending on pH, water matrix, and catalysts. Chemical kinetics description revealed that UVC at pH 8–9 led to the fastest degradation of LOM. The catalysts hydrogen peroxide and titanium dioxide had only limited influence on the degradation rate. Seven novel transformation products were structurally identified by high-resolution higher-order mass spectrometry. Ecotoxicity of the novel and known compounds was assessed by quantitative structure-activity relationship (QSAR) analysis. In addition, irradiation time dependent minimal, and half-maximal inhibitory concentrations (MIC, IC50) of LOM solutions were determined and suggested as ecotoxicological hazard indicators. From MIC and kinetic rate constants, the irradiation time required for compound and activity removal could be predicted.
Collapse
|
36
|
Xu M, Huang H, Li N, Li F, Wang D, Luo Q. Occurrence and ecological risk of pharmaceuticals and personal care products (PPCPs) and pesticides in typical surface watersheds, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 175:289-298. [PMID: 30898333 DOI: 10.1016/j.ecoenv.2019.01.131] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/24/2018] [Accepted: 01/17/2019] [Indexed: 05/08/2023]
Abstract
To evaluate the occurrence and ecological risk of organic contaminants in aquatic environment in China, a method for simultaneously detecting 130 pharmaceuticals and personal care products (PPCPs) and 35 pesticides has been established using solid phase extraction-ultra performance liquid chromatography-tandem mass spectrometry (SPE-UPLC-MS/MS) method. In the present survey, a total of 122 target compounds (103 PPCPs and 19 pesticides) were detected in seven major watersheds in China, with average concentrations ranged from 0.02 ng/L (sulfamerazine) to 332.75 ng/L (bisphenol A), revealing that PPCPs and pesticides were widely distributed in surface water of China. Antibiotics and organophosphorus were the most ubiquitously PPCPs and pesticides, respectively; quinolones were the predominant antibiotics, most of which were detected in more than 96% sampling sites, with average concentrations ranged from 2.14 to 309.67 ng/L; six pesticides including isoprocarb, fenobucarb, acetamiprid, imidacloprid, acetochlor and bentazone were detected in more than 80% sampling sites, with average concentrations ranged from 5.62 to 225.93 ng/L; more than half of the non-antibiotic pharmaceuticals were hormones; and diethyltoluamide (DEET) was predominant personal care products; The risk assessment showed that each watershed was at potential medium ecological risk based on their mean concentration (RQTotal > 1), and pesticides were the main compounds arising risks.
Collapse
Affiliation(s)
- Meijia Xu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Huiting Huang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Fang Li
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Donghong Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
| | - Qian Luo
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
37
|
Xie H, Hao H, Xu N, Liang X, Gao D, Xu Y, Gao Y, Tao H, Wong M. Pharmaceuticals and personal care products in water, sediments, aquatic organisms, and fish feeds in the Pearl River Delta: Occurrence, distribution, potential sources, and health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:230-239. [PMID: 30599342 DOI: 10.1016/j.scitotenv.2018.12.222] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 05/12/2023]
Abstract
This study investigated the occurrence, distribution, and potential sources of 34 pharmaceuticals and personal care products (PPCPs) in water, sediments, aquatic organisms (fish and shellfish), and fish feeds from the mariculture areas of the Pearl River Delta (PRD). The health risk presented by this class of compounds was also assessed in relation to their intake via seafood consumption. Of the 34 PPCPs, a total of 9, 21, 14, and 28 PPCPs were detected in water, sediments, fish feeds, and aquatic organisms, respectively. Trimethoprim, norfloxacin, ofloxacin, and spectinomycin were detected in all matrices. The levels of PPCPs in water and sediment samples were relatively low. Spectinomycin, paracetamol, ciprofloxacin, norfloxacin, and ibuprofen were the most frequently detected PPCPs in feeds. Ibuprofen and ketoprofen were widely detected in aquatic organisms, with average concentrations of 562 and 267 ng/g wet weight, respectively. The residual levels of PPCPs in shellfish such as ME (mussel, Mytilus edulis) and OS (oyster, Ostrea gigas) were significantly higher (p < 0.05) than those in other species including CA (topmouth culter, Culter alburnus) and EO (orbfish, Ephippus orbis). Correlation analysis indicated that the medicated feeds were a potential source of PPCPs in the mariculture areas of the PRD, but other anthropogenic sources should not be ignored. Based on maximum residue limits and acceptable daily intake, the health risks presented to humans via seafood consumption are negligible. However, as multiple antibiotics were frequently detected in the mariculture environment, aquatic organisms, and feeds, the induction and dissemination of antimicrobial resistance associated with antibiotic usage in aquaculture would be of great concern. It is necessary to establish a centralized management system and control the use of veterinary drugs in mariculture to protect the aquaculture environment and ensure the safety of seafood.
Collapse
Affiliation(s)
- Haiwen Xie
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Hongshan Hao
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Nan Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Xinxiu Liang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Dingxue Gao
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yaru Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yue Gao
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Huchun Tao
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Minghung Wong
- Consortium on Health, Environment, Education and Research (CHEER), The Education University of Hong Kong, Tai Po, Hong Kong 999077, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
38
|
Awfa D, Ateia M, Fujii M, Johnson MS, Yoshimura C. Photodegradation of pharmaceuticals and personal care products in water treatment using carbonaceous-TiO 2 composites: A critical review of recent literature. WATER RESEARCH 2018; 142:26-45. [PMID: 29859390 DOI: 10.1016/j.watres.2018.05.036] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/09/2018] [Accepted: 05/19/2018] [Indexed: 05/14/2023]
Abstract
The high concentrations of pharmaceuticals and personal care products (PPCP) that found in water in many locations are of concern. Among the available water treatment methods, heterogeneous photocatalysis using TiO2 is an emerging and viable technology to overcome the occurrence of PPCP in natural and waste water. The combination of carbonaceous materials (e.g., activated carbon, carbon nanotubes and graphene nanosheets) with TiO2, a recent development, gives significantly improved performance. In this article, we present a critical review of the development and fabrication of carbonaceous-TiO2 and its application to PPCP removal including its influence on water chemistry, and the relevant operational parameters. Finally, we present an analysis of current priorities in the ongoing research and development of carbonaceous-TiO2 for the photodegradation of PPCP.
Collapse
Affiliation(s)
- Dion Awfa
- Department of Civil and Environmental Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1, M1-4, Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Mohamed Ateia
- Department of Civil and Environmental Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1, M1-4, Ookayama, Meguro-ku, Tokyo, 152-8552, Japan; Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, United States; PSIPW Chair, Prince Sultan Institute for Environmental, Water and Desert Research, King Saud University, Saudi Arabia.
| | - Manabu Fujii
- Department of Civil and Environmental Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1, M1-4, Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Matthew S Johnson
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Chihiro Yoshimura
- Department of Civil and Environmental Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1, M1-4, Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| |
Collapse
|
39
|
Yang Y, Song W, Lin H, Wang W, Du L, Xing W. Antibiotics and antibiotic resistance genes in global lakes: A review and meta-analysis. ENVIRONMENT INTERNATIONAL 2018; 116:60-73. [PMID: 29653401 DOI: 10.1016/j.envint.2018.04.011] [Citation(s) in RCA: 392] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 05/17/2023]
Abstract
Lakes are an important source of freshwater, containing nearly 90% of the liquid surface fresh water worldwide. Long retention times in lakes mean pollutants from discharges slowly circulate around the lakes and may lead to high ecological risk for ecosystem and human health. In recent decades, antibiotics and antibiotic resistance genes (ARGs) have been regarded as emerging pollutants. The occurrence and distribution of antibiotics and ARGs in global freshwater lakes are summarized to show the pollution level of antibiotics and ARGs and to identify some of the potential risks to ecosystem and human health. Fifty-seven antibiotics were reported at least once in the studied lakes. Our meta-analysis shows that sulfamethoxazole, sulfamerazine, sulfameter, tetracycline, oxytetracycline, erythromycin, and roxithromycin were found at high concentrations in both lake water and lake sediment. There is no significant difference in the concentration of sulfonamides in lake water from China and that from other countries worldwide; however, there was a significant difference in quinolones. Erythromycin had the lowest predicted hazardous concentration for 5% of the species (HC5) and the highest ecological risk in lakes. There was no significant difference in the concentration of sulfonamide resistance genes (sul1 and sul2) in lake water and river water. There is surprisingly limited research on the role of aquatic biota in propagation of ARGs in freshwater lakes. As an environment that is susceptible to cumulative build-up of pollutants, lakes provide an important environment to study the fate of antibiotics and transport of ARGs with a broad range of niches including bacterial community, aquatic plants and animals.
Collapse
Affiliation(s)
- Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.
| | - Wenjuan Song
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Hui Lin
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weibo Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Linna Du
- Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, Wenzhou 325006, China
| | - Wei Xing
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|