1
|
Al-Rubaye RF, Kardel F, Dehbandi R. Ecological and human health risks of potentially toxic elements (PTEs) in street dust of Al-Hillah City, Iraq using Monte Carlo simulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 966:178722. [PMID: 39919661 DOI: 10.1016/j.scitotenv.2025.178722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/14/2025] [Accepted: 02/01/2025] [Indexed: 02/09/2025]
Abstract
Street dust is a primary source of metal pollution in urban environments, posing a significant threat to human health through chronic exposure via inhalation, ingestion, and skin contact. This study used deterministic and Monte Carlo simulation to assess the health risks of potential toxic elements (PTEs) in the street dust of Al-Hillah City. The average concentrations of elements in the samples followed the order: Al > Fe > S > K > Sr > Mn > Cr > Ba > Zn > Ni > Pb > Cu > Co > As > Sn > Sb > Cd. In the study area, all the measured elements exceeded UCC values except for Al, Ba, Fe, and K. The results for the enrichment factor (EF), geo accumulation index (Igeo), and contamination factor (CF) revealed that the most sampled locations were polluted with sulfur (S), arsenic (As), and chromium (Cr). The highest values of the pollution load index were not for a solely land use class; they were identified at different sampling stations. According to the potential ecological risk rating, As and Cd pose a medium risk, while Cr, Cu, Ni, Pb, and Zn have low risks. The probabilistic Monte Carlo simulation highlighted the significant health risks from PTEs in street dust, especially for children, with HI values of 2.01, 3.24, and 5.26 at the 5th, 50th, and 95th percentiles, respectively. In comparison, HI values for adults were much lower at 0.29, 0.41, and 0.58, remaining within safe limits. Lifetime Cancer Risk (LTCR) estimates showed that 99.7 % of adults and 97 % of children exposed to levels exceeding the safe threshold 1E-4. Sensitivity analysis revealed that chromium (Cr) and nickel (Ni) were the main PTEs contributing to health risks in children and adults' groups.
Collapse
Affiliation(s)
- Rafeef Fadhil Al-Rubaye
- Department of Environmental Science, Faculty of Marine and Environmental Sciences, University of Mazandaran, P.O. Box: 416, Babolsar, Mazandaran, Iran; General Directorate of Education in Babil Governorate, Iraq
| | - Fatemeh Kardel
- Department of Environmental Science, Faculty of Marine and Environmental Sciences, University of Mazandaran, P.O. Box: 416, Babolsar, Mazandaran, Iran.
| | - Reza Dehbandi
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran; School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, United Kingdom
| |
Collapse
|
2
|
Isinkaralar O, Isinkaralar K, Nguyen TNT. Toxic metal accumulation, health risk, and distribution in road dust from the urban traffic-intensive environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60792-60803. [PMID: 39392576 DOI: 10.1007/s11356-024-35253-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
Owing to increasing levels of potentially toxic metals in road dust, air pollutants suspended in the air, pose significant health risks due to rapid, unplanned urbanization and industrialization. This study investigated the pollution status and health risks of trace metals (i.e., Cr, Cd, Ni, Cu, and Pb) in road dust collected from 16 locations across six land-use categories in Eskişehir, Türkiye, including residential, roadside, traffic, tram stations, and car industrial areas. The analysis of trace metals revealed distinct types of urban pollution based on these functional areas. In areas with heavy traffic, high concentrations of the elements, especially Zn, Cr, and Ni, would indicate significant toxic metal pollution. The overall contamination was evaluated using three indices: enrichment factor (EF 0.45-65.75), geo-accumulation index (Igeo - 2.50-4.18), and pollution index (PI 0.27-27.22). Human health risks of potentially toxic trace metals in urban road dust were evaluated for children and adult groups based on hazardous index (HI) and total cancer risk (TCR). The health risk assessments revealed that children (mean HIchildren 8.62E - 01; TCRchildren 6.99E + 04) are more vulnerable to toxic metal exposure than adults (mean HIadults 1.01E - 01; TCRadults 3.01E + 04), with ingestion being the primary exposure route over dermal contact and inhalation. In conclusion, we have captured the interaction between road dust and health risks, especially for children.
Collapse
Affiliation(s)
- Oznur Isinkaralar
- Department of Landscape Architecture, Faculty of Engineering and Architecture, Kastamonu University, 37150, Kastamonu, Türkiye.
| | - Kaan Isinkaralar
- Department of Environmental Engineering, Faculty of Engineering and Architecture, Kastamonu University, 37150, Kastamonu, Türkiye
| | - Tuyet Nam Thi Nguyen
- Faculty of Environment, Saigon University, 273 An Duong Vuong Street, District 5, Ho Chi Minh City, Vietnam
| |
Collapse
|
3
|
Isinkaralar O, Isinkaralar K, Nguyen TNT. Spatial distribution, pollution level and human health risk assessment of heavy metals in urban street dust at neighbourhood scale. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:2055-2067. [PMID: 38955818 PMCID: PMC11493832 DOI: 10.1007/s00484-024-02729-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/12/2024] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
Urban street dust (UStD) is a vital issue for human health and is crucial for urban sustainability. This study aims to enhance the creation of safe, affordable, and resilient cities by examining environmental contamination and health risks in urban residential areas. Specifically, it investigates the concentrations and spatial distribution of chromium (Cr), cadmium (Cd), nickel (Ni), copper (Cu), lead (Pb), and zinc (Zn) in UStD in Yenimahalle, Ankara. The mean concentrations of Zn, Cr, Pb, Cd, Ni, and Cu in UStD were 97.98, 66.88, 55.22, 52.45, 38.37, and 3.81 mg/kg, respectively. The geoaccumulation pollution index (Igeo) values for these elements were: Cd (5.12), Ni (1.61), Cr (1.21), Pb (1.13), Cu (0.78), and Zn (0.24). These indices indicate that the area is moderately polluted with Cr, Pb, and Ni, uncontaminated to moderately contaminated with Cu and Zn, and extremely polluted with Cd. The hazard index (HI) values for Cr, Cd, Ni, Cu, Pb, and Zn were below the non-carcinogenic risk threshold for adults, indicating no significant risk. However, for children, the HI values for Pb, Ni, Cd, and Zn were 3.37, 1.80, 1.25, and 1.25, respectively, suggesting a higher risk. Carcinogenic risk (RI) of Cd, Ni, and Pb was significant for both children and adults, indicating that exposure through ingestion, inhalation, and dermal contact is hazardous. The findings highlight the need for strategic mitigation measures for both natural and anthropogenic activities, providing essential insights for residents, policymakers, stakeholders, and urban planners.
Collapse
Affiliation(s)
- Oznur Isinkaralar
- Department of Landscape Architecture, Faculty of Engineering and Architecture, Kastamonu University, 37150, Kastamonu, Türkiye.
| | - Kaan Isinkaralar
- Department of Environmental Engineering, Faculty of Engineering and Architecture, Kastamonu University, 37150, Kastamonu, Türkiye
| | - Tuyet Nam Thi Nguyen
- Faculty of Environment, Saigon University, 273 An Duong Vuong Street, District 5, Ho Chi Minh City, Vietnam
| |
Collapse
|
4
|
Hosseinpoor S, Habibi S, Mohammadi A. Understanding heavy metal contamination in the vicinity of Lake Urmia, NW Iran: Environmental and health Perspectives. Heliyon 2024; 10:e34198. [PMID: 39071674 PMCID: PMC11277387 DOI: 10.1016/j.heliyon.2024.e34198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/30/2024] Open
Abstract
This study addresses the potential impact of Lake Urmia on heavy metals (HMs) concentrations in the air and soil of the northern region of Lake Urmia in North West of Iran, highlighting significant environmental and health implications. The results showed different concentration levels for Arsenic (As), Cadmium (Cd), Chromium (Cr), and Lead (Pb) in soil and settled dust particles near Lake Urmia, and their concentrations exceeded recommended thresholds for Cr and Pb in some areas. Spatial distribution analysis indicated that local factors significantly affect contamination patterns, emphasizing the need for targeted interventions. The study employed enrichment factor (EF) assessment and potential ecological risk (PER) index to identify pollution sources and evaluate associated ecological risks. The results indicated moderate to severe pollution levels in specific regions, particularly for Pb and Cd. Health risk assessments suggest that non-carcinogenic risks are generally below hazardous levels; however, concerns remain for Cr and As exposure. Future studies should focus on long-term trends, source apportionment methodologies, and health effects of heavy metal exposure to develop effective pollution management strategies. Collaborative, interdisciplinary approaches will be crucial in mitigating heavy metal pollution and protecting human and environmental health.
Collapse
Affiliation(s)
- Saeed Hosseinpoor
- Department of Environmental Health Engineering, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Shiva Habibi
- Department of Environmental Health Engineering, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Amir Mohammadi
- Social Determinants of Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
5
|
Li X, He A, Cao Y, Yun J, Bao H, Yan X, Zhang X, Dong J, Kelly FJ, Mudway I. Exposure risks of lead and other metals to humans: A consideration of specific size fraction and methodology. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133549. [PMID: 38447362 DOI: 10.1016/j.jhazmat.2024.133549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 03/08/2024]
Abstract
Particle size is a critical influencing factor in assessing human exposure risk as fine particles are generally more hazardous than larger coarse particles. However, how particle composition influences human health risk is only poorly understood as different studies have different utilised different definitions and as a consequence there is no consensus. Here, with a new methodology taking insights of each size fraction load (%GSFload), metal bioaccessibility, we classify which specific particle size can reliably estimate the human exposure risk of lead and other metals. We then validate these by correlating the metals in each size fraction with those in human blood, hair, crop grain and different anthropogenic sources. Although increasing health risks are linked to metal concentration these increase as particle size decrease, the adjusted-risk for each size fraction differs when %GSFload is introduced to the risk assessment program. When using a single size fraction (250-50 µm, 50-5 µm, 5-1 µm, and < 1 µm) for comparison, the risk may be either over- or under-estimated. However, by considering bulk and adjusting the risk, it would be possible to obtain results that are closer to the real scenarios, which have been validated through human responses and evidence from crops. Fine particle size fractions (< 5 µm) bearing the mineral crystalline or aggregates (CaCO3, Fe3O4, Fe2O3, CaHPO4, Pb5(PO4)3Cl) alter the accumulation, chemical speciation, and fate of metals in soil/dust/sediment from the different sources. Loaded lead in the size fraction of < 50 µm has a significantly higher positive association with the risk-receptor biomarkers (BLLs, Hair Pb, Corn Pb, and Crop Pb) than other size fractions (bulk and 50-250 µm). Thus, we conclude that the < 50 µm fraction would be likely to be recommended as a reliable fraction to include in a risk assessment program. This methodology acts as a valuable instrument for future research undertakings, highlighting the importance of choosing suitable size fractions and attaining improved accuracy in risk assessment results that can be effectively compared.
Collapse
Affiliation(s)
- Xiaoping Li
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China; MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, 80 Wood Lane, London W12 0BZ, UK.
| | - Ana He
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Yuhan Cao
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Jiang Yun
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Hongxiang Bao
- Frontier Medical Service Training Brigade, Army Medical University, Hutubi 831200, PR China
| | - Xiangyang Yan
- International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
| | - Xu Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Jie Dong
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Frank J Kelly
- MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, 80 Wood Lane, London W12 0BZ, UK; NIHR Health Protection Research Units in Environmental Exposures and Health, and Chemical and Radiation Threats and Hazards, Imperial College London, London, UK
| | - Ian Mudway
- MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, 80 Wood Lane, London W12 0BZ, UK; NIHR Health Protection Research Units in Environmental Exposures and Health, and Chemical and Radiation Threats and Hazards, Imperial College London, London, UK
| |
Collapse
|
6
|
Nduka JK, Umeh TC, Kelle HI, Okeke FC, Iloka GC, Okafor PC. Ecological pollution features and health risk exposure to heavy metals via street dust and topsoil from Nkpor and Onitsha in Anambra, Nigeria. Environ Anal Health Toxicol 2024; 39:e2024005-0. [PMID: 38631397 PMCID: PMC11079403 DOI: 10.5620/eaht.2024005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/16/2024] [Indexed: 04/19/2024] Open
Abstract
The manuscript presents the investigation results on the pollution and risk of metal mines, and it is considered an important report on environmental pollution near mines in Nigeria, with archival value. The research involved soil sampling and heavy metal analysis for about 12 months in three metal mines. Based on these results, the paper provides information on pollution levels and hazards using well-known methods like pollution and ecological risk indexes. The increasing population in urban communities attracted by various industrial, economic and social activities causes contamination of atmospheric environment that can affect human health. We investigated heavy metal distributions, correlation coefficient among elements, ecological indices and probable health risk assessment in street dust and topsoil from Nkpor and Onitsha urban suburb, Nigeria. The mean concentration of heavy metals in car dust from Onitsha and Nkpor suburb follows thus: Fe > Mn > Cu > As > Pb > Ni > Cr. The decreasing trend of heavy metal in rooftop dust from both area: Fe > Mn > Cu > Pb > As > Ni > Cr whereas metal contents in topsoil were: Fe > Mn > Cu > Pb > Ni > Cr > As for both areas. The degree of pollution indices was characterized by contamination factor (CF), geo-accumulation factor (I-geo), pollution load index (PLI), Nemerow (PN), ecological and potential ecological risk index (ER and PERI) which indicated low pollution in the urban street environment. The results of Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) showed that the estimated heavy metals displayed sources from atmospheric deposition, natural origin and anthropogenic sources. Risk assessment revealed that ingestion of dust and soil was the significant route for heavy metals exposure to the populace followed by inhalation, then dermal contact. Considering all factors, non-cancer risk was more prominent in children than adults and no significant health hazard could be attributed to both aged groups as of the period of study except for As and Ni that needs constant monitoring to avoid exceeding organ damaging threshold limit of 1 × 10-4.
Collapse
Affiliation(s)
- John Kanayochukwu Nduka
- Environmental Chemistry and Toxicology Research Unit, Pure and Industrial Chemistry Department, Nnamdi Azikiwe University, Nigeria
| | - Theresa Chisom Umeh
- Environmental Chemistry and Toxicology Research Unit, Pure and Industrial Chemistry Department, Nnamdi Azikiwe University, Nigeria
| | | | - Francisca Chioma Okeke
- Environmental Chemistry and Toxicology Research Unit, Pure and Industrial Chemistry Department, Nnamdi Azikiwe University, Nigeria
| | - Genevieve Chinyere Iloka
- Environmental Chemistry and Toxicology Research Unit, Pure and Industrial Chemistry Department, Nnamdi Azikiwe University, Nigeria
| | | |
Collapse
|
7
|
Shi Z, Lu J, Liu T, Zhao X, Liu Y, Mi J, Zhao X. Risk assessment and source apportionment of available atmospheric heavy metal in a typical sandy area reservoir in Inner Mongolia, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168960. [PMID: 38043824 DOI: 10.1016/j.scitotenv.2023.168960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
This study evaluated dry and wet deposition of atmospheric heavy metals (HMs) in a sandy area of Inner Mongolia, China, with the Dahekou Reservoir, Xilin Gol League, adopted as the study area. Monthly monitoring of atmospheric HM dry and wet deposition was conducted over one year (2021 to 2022) at 12 monitoring points, producing 144 dry and wet deposition samples, respectively. The sample contents of eight HMs (Cr, Ni, Pb, Cu, Zn, Mn, As, and Cd) were determined to estimate the fluxes of available forms of heavy metal (AHM) in dry and wet deposition. The potential ecological index (Eri), risk assessment coding (RAC), and ratio of secondary phase to primary phase (RSP) were used to evaluate the impact of atmospheric HM dry deposition on ecological security. Correlation analysis, principal component analysis, and the absolute principal component scores-multiple linear regression (APCS-MLR) receptor model were used to quantitatively analyze the sources of AHMs in atmospheric dry and wet deposition. The results showed that the study area experienced annual dry and wet deposition fluxes of AHMs of 1712.59 kg and 534.97 kg, respectively. Atmospheric heavy metal dry deposition over the entire year presented a strong ecological risk, with Cd contributing most to this risk. Risk assessment of HM speciation showed that the greatest risks of migration and transformation were for Cd and Pb. The APCS-MLR receptor model identified five and three sources of dry and wet deposition, respectively, in order of proportion of total contribution of: natural wind and sand > road traffic and coal combustion > mineral mining > other human activities > industrial soot.
Collapse
Affiliation(s)
- Zhenyu Shi
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Junping Lu
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China; Water Resources Protection and Utilization Key Laboratory, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Tingxi Liu
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China; Water Resources Protection and Utilization Key Laboratory, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiaoqin Zhao
- Hohhot Sub Station of the General Environmental Monitoring Station of Inner Mongolia Autonomous Region, Hohhot 010030,Inner Mongolia, China
| | - Yinghui Liu
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jiahui Mi
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiaoze Zhao
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
8
|
Tepanosyan G, Yenokyan T, Sahakyan L. Geospatial patterns and geochemical compositional characteristics of molybdenum in different mediums of an urban environment. ENVIRONMENTAL RESEARCH 2023; 239:117340. [PMID: 37816423 DOI: 10.1016/j.envres.2023.117340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/12/2023]
Abstract
Urban areas are characterized by the presence of certain potentially toxic elements including molybdenum (Mo). Therefore, compositional data analysis combined with geospatial mapping was applied in this study to reveal the spatial distribution characteristics of Mo in courtyard surface dust (dust), soils, and river sediments (sediments), to identify potential sources of Mo, and to reveal Mo geochemical associations in different urban environmental mediums. The mean contents of Mo decreased in the following order: dust (11.9 mg/kg) - soil (5.84 mg/kg) - sediment (4.87 mg/kg). The highest maximum Mo content among the studied mediums (61.8 mg/kg) was detected in dust. It was the only investigated medium where a very high level of Mo enrichment was observed (4.4% of samples). Moreover, a significant level of enrichment predominated in dust (47% of samples) whereas in soil, moderate enrichment prevails (68.5%). A significant correlation of Mo contents was observed with Zn contents in all the studied mediums, and with Ca contents in soil and sediments. A significant negative correlation was observed only between Mo contents in dust and sampling site altitudes suggesting that high-rise buildings might play the role of geochemical barriers. Principal component analysis, k-means and hierarchical clustering showed that in the geogenic elements soil group Mo showed an affinity to be bound by Fe/Mn oxide/hydroxides whereas the Mo coprecipitation, complexation and absorption by carbonates predominated in the Mo-related soil group (geochemical compositional association of Mo, Zn, Cu, Pb, and Ca) under anthropogenic influence. For dust, the geochemical compositional association was the same, but in the geogenic-related group, Cu was the most closely associated element instead of Zn. The spatial location of the Mo-related group of samples identified by k-means clustering indicates that Mo concentrate processing plant may be a potential source of Mo introduction into the urban environment.
Collapse
Affiliation(s)
- Gevorg Tepanosyan
- The Center for Ecological-Noosphere Studies NAS, Yerevan 0025, Abovian-68, Armenia.
| | - Tatevik Yenokyan
- The Center for Ecological-Noosphere Studies NAS, Yerevan 0025, Abovian-68, Armenia
| | - Lilit Sahakyan
- The Center for Ecological-Noosphere Studies NAS, Yerevan 0025, Abovian-68, Armenia
| |
Collapse
|
9
|
Maleky S, Faraji M. BTEX in Ambient Air of Zarand, the Industrial City in Southeast of Iran: Concentration, Spatio-temporal Variation and Health Risk Assessment. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:25. [PMID: 37572109 DOI: 10.1007/s00128-023-03778-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/25/2023] [Indexed: 08/14/2023]
Abstract
The existence of several industries in Zarand, a city in Southeastern Iran, caused challenges for the residents about air pollutants and associated health effects. In the present study, the concentration of benzene, toluene, ethylbenzene, and xylene (BTEX), spatio-temporal distribution and related health risks were evaluated. Passive samplers were used to collect 30 samples in the over the hot and cold periods in 2020. The ordinary Kriging method was used to predict the spatio-temporal distribution of BTEXs. Also, the Monte Carlo simulation was used to evaluate the related carcinogenic and non-carcinogenic risks of BTEX for adults. The ranking of mean concentration of overall toluene, xylene, ethylbenzene, and benzene followed as 82.49 ± 26.86, 30.91 ± 14.04, 4.75 ± 3.28, and 0.91 ± 0.18 µg/m3, respectively. The mean value of lifetime carcinogenic risk (LTCR) for residents related to benzene was 7.52 × 10- 6, indicating a negligible carcinogenic risk for them. Furthermore, the ranking of non-carcinogenic risk calculated through hazard quotient (HQ) for investigated BTEX compounds followed as xylene > benzene > toluene > ethylbenzene over the hot period and xylene > toluene > ethylbenzene over the cold period which all points had HQ < 1. Additionally, according to the findings of the sensitivity analysis, the concentration of benzene was the main contributor in increasing the carcinogenic risk. According to our results, it can be stated that the existence of several industries in the study area could not possibly occur the significant carcinogenic and non-carcinogenic risks to the adults residents in the study period. Human studies are recommended to determine definite results.
Collapse
Affiliation(s)
- Sobhan Maleky
- Department of Environmental Health Engineering, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Maryam Faraji
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
10
|
Liu T, Zhao C, Chen Q, Li L, Si G, Li L, Guo B. Characteristics and health risk assessment of heavy metal pollution in atmospheric particulate matter in different regions of the Yellow River Delta in China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2013-2030. [PMID: 35764757 DOI: 10.1007/s10653-022-01318-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
To understand the characteristics, temporal and spatial variation, and health risks of atmospheric heavy metal pollution in different areas of the YRD (Yellow River Delta), atmospheric particles samples were collected in the YRD in China during 2016-2017. A total of 10 monitoring points were chosen in different areas (industrial parks, main urban areas, and rural areas) in the YRD, heavy metals were monitored using atomic fluorescence spectrometry and graphite furnace atomic absorption spectrometry. The results showed that TSP (total suspended particulate), PM10 (particulate matter with an aerodynamic diameter less than 10 μm), and PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 μm) contents were higher in the Kenli EDZ (economic development zone) and Kenli urban areas than those in other points. The concentration range of heavy metals in atmospheric samples at 10 points was different, with a difference of five orders of magnitude, of which the content of copper (Cu) was the highest, with the highest concentration of 4.375 μg/m3, and the content of particulate mercury (Hg) was the lowest, with the minimum concentration of 0.00001 μg/m3. Among the nine heavy metals, the contents of cadmium (Cd), lead (Pb), and Hg were higher in winter than in summer, and chromium (Cr), nickel (Ni), Cu, and manganese (Mn) were higher in summer than in winter. In addition to Hg, the contents of the other eight heavy metals in particulate matter showed a trend that urban areas and EDZs had higher concentrations than cities and towns and nature reserves, which can be attributed to industrial activities and coal-fired fuel emissions. Health risk assessment was carried out for adults and children, respectively, and the results showed that carcinogens have no obvious carcinogenic risk, but As and Cr have major potential carcinogenic risk. Among the noncarcinogenic substances, Mn has the greatest noncarcinogenic risk, and urban areas and economic development zones have the greatest risk. This study investigated the characteristics and health risk assessment of atmospheric heavy metal pollution in different areas in the YRD to supplement the research contents of atmospheric particulate heavy metals in the YRD in domestics and overseas. It is also critical to study the pollution and migration of heavy metals in China.
Collapse
Affiliation(s)
- Ting Liu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Changsheng Zhao
- Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China.
| | - Qingfeng Chen
- Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China.
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, Shandong, China.
| | - Luzhen Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Guorui Si
- Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Lei Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| | - Beibei Guo
- Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, Shandong, China
| |
Collapse
|
11
|
Masroor K, Shamsipour M, Mehrdad R, Fanaei F, Aghaei M, Yunesian M. Exposure to ambient gaseous air pollutants and adult lung function: a systematic review. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:137-150. [PMID: 34957731 DOI: 10.1515/reveh-2021-0135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/28/2021] [Indexed: 06/14/2023]
Abstract
Exposure to hazardous air pollutants is identified as most obvious premature mortality factors in the world. Numerous epidemiological studies have estimated exposure to air pollutants may cause pulmonary toxicity and the incidence of respiratory diseases including chronic obstructive pulmonary disease (COPD), chronic bronchitis and asthma. The currently research was performed to evaluation the association between gaseous pollutants and lung function in healthy adults. Articles related to this study were selected from researches of Scopus, PubMed, and Web of Science databases. A total of 2,644 articles were retrieved and 39 records were reviewed after removing duplicates and excluding irrelevant studies. The result of this systematic review indicated that there is some evidence on decreasing lung function with exposure to gaseous air pollutants (NO2, SO2, and O3) which can have negative effects on human health. Although according to the evidence changes in lung function are mostly linked to the exposure to environmental pollutants including CO, O3, NO2 and SO2, the results should be interpreted with caution considering some following issues discussed in this review. Therefore, further studies are required considering well-designed studies in large scales to strengthen the evidence.
Collapse
Affiliation(s)
- Kazhal Masroor
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansour Shamsipour
- Department of Research Methodology and Data Analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Mehrdad
- Department of Occupational Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Center for Research on Occupational Disease, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Fanaei
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mina Aghaei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masud Yunesian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Research Methodology and Data Analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Skorbiłowicz M, Trybułowski Ł, Skorbiłowicz E. Spatial Distribution and Pollution Level of Heavy Metals in Street Dust of the City of Suwałki (Poland). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4687. [PMID: 36981596 PMCID: PMC10048270 DOI: 10.3390/ijerph20064687] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
This paper presents an analysis of the content and spatial distribution of heavy metals (HM) in street dust in Suwałki, a city located in northeastern Poland. The HM content of street dust was also evaluated using the geochemical index (Igeo), enrichment factor (EF), and contamination factor (CF), and local HM sources were identified using chemometric methods. The arithmetic averages of HM contents in dust arranged in the following order: Fe > Zn > Mn > Cu > Cr > Ni > Pb, were 11,692.80, 215.97, 194.78, 142.84, 63.59, 17.50, 17.04 mg∙kg-1, respectively. Higher values than the local background occurred for Cr, Cu, Ni, Zn and Pb. The values of Igeo, CF, and EF indicate that the highest pollution in dust is due to Zn and Cu. The spatial distribution of metals was evaluated using maps of HM content in road dust samples from Suwałki. The spatial distribution of HM showed areas with high contents of Cr, Cu, Ni, Zn and Pb located mainly in the central and eastern parts of the city. In these areas, high traffic volume, the presence of shopping centers, administrative buildings and bus stops dominate. Statistical models of multivariate analysis (FA) and cluster analysis (CA) identified two sources of HM. The first source of pollution was associated with local industrial activity and motor vehicle travel, and the second with natural sources.
Collapse
|
13
|
Lima LHV, do Nascimento CWA, da Silva FBV, Araújo PRM. Baseline concentrations, source apportionment, and probabilistic risk assessment of heavy metals in urban street dust in Northeast Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159750. [PMID: 36309279 DOI: 10.1016/j.scitotenv.2022.159750] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Heavy metal pollution by accelerating urbanization is an emerging socio-environmental issue that poses a potential risk to human health and the environment. In this scenario, street dust is a primary source of contaminants. Here, the metal concentrations in street dust of one of the biggest Brazilian cities were assessed aiming to identify and quantify the sources of contamination. The metal bioaccessibility and estimated probabilistic (non)-carcinogenic risks to humans were also evaluated. Thirty-six dust samples were collected in the metropolitan region of Recife. Results showed that the traffic governed the distribution and accumulation of metals in street dust. Emissions from vehicles were the primary source (> 70 %) of heavy metals, except for Cd, which had a mixed origin (natural, traffic, and industrial). Moderate to heavy dust contamination by Ba, Cu, Mn, Pb, and Zn were found, with a very high potential ecological risk. The main exposure route depended on the metal. Barium, Cu, and Pb had ingestion rather than dermal contact as the main route of exposure, while inhalation and dermal contact posed the main risks to Mn and Cr, respectively. The risk for children was higher than for adults. The probabilities of unacceptable carcinogenic risk scenarios (TCRI >10-6) for children and adults were 27 and 4 %, respectively, with Cr being the most concerning metal for the health of the urban population.
Collapse
Affiliation(s)
- Luiz Henrique Vieira Lima
- Department of Agronomy, Federal Rural University of Pernambuco, Dom Manuel de Medeiros street, s/n - Dois Irmãos, 52171-900 Recife, PE, Brazil.
| | | | - Fernando Bruno Vieira da Silva
- Department of Agronomy, Federal Rural University of Pernambuco, Dom Manuel de Medeiros street, s/n - Dois Irmãos, 52171-900 Recife, PE, Brazil.
| | - Paula Renata Muniz Araújo
- Department of Agronomy, Federal Rural University of Pernambuco, Dom Manuel de Medeiros street, s/n - Dois Irmãos, 52171-900 Recife, PE, Brazil.
| |
Collapse
|
14
|
Faraji M, Alizadeh I, Oliveri Conti G, Mohammadi A. Investigation of health and ecological risk attributed to the soil heavy metals in Iran: Systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:158925. [PMID: 36174699 DOI: 10.1016/j.scitotenv.2022.158925] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/02/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
The presence of heavy metals (HMs) in the soil can pose risks to human health via ingestion and dermal absorption. This systematic review and meta-analysis study focused on both of health and ecological risks attributed to the six HMs (As, Cd, Cr, Cu, Pb, Zn) in the soil of different Provinces of Iran. Articles were selected in the Web of Science and Scopus from 2000 to August 2021. The study was carried out according to Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guideline. Based on the inclusion and exclusion criteria, finally 32 studies were reviewed which the ranking of mean concentrations of the studied metals followed as: As > Zn > Cr > Pb > Cu > Cd. Mean concentration of Cd and As calculated via meta-analysis in the studied Provinces was found to be more than Iran's environment protection agency (EPA) guideline values. Other HMs met guideline values. A significant non-carcinogenic risk attributed to the As found in Kurdistan Province (hazard index, HI > 1). Furthermore, a significant carcinogenic health risk was found in Kurdistan and West Azerbaijan associated to As and in Fars, Khozestan and Khorasan-e-Razavi Provinces associated to Cd (ELCR >10-4). Concerning the impact on the ecosystem, Cd, As and Pb caused ecological risks in some areas of Iran (ecological risk, ER > 40 and potential ecological risk, PER >150). Hence, we can conclude that Cd and As are important heavy metals from the health aspect. Moreover, Cd, As and Pb must be considered from an ecological point of view. Therefore, control of the Cd, As and Pb release in the environment and remediation of polluted sites through novel approaches is recommended.
Collapse
Affiliation(s)
- Maryam Faraji
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran.
| | - Ismaeil Alizadeh
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Gea Oliveri Conti
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia" of University of Catania, Catania, Italy
| | - Amir Mohammadi
- Department of Public Health, School of Nursing and Midwifery, Maragheh University of Medical Sciences, Maragheh, Iran
| |
Collapse
|
15
|
Zhao B, Zhao J, Zhou S, Wu X, Xu X, Yang R, Yuan Z. Selenium and toxic metals in human hair of the Dashan Region, China: Concentrations, sources, and antagonism effect. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114479. [PMID: 36603484 DOI: 10.1016/j.ecoenv.2022.114479] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/08/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The Dashan Region was a Se-rich region of China. In this study, 131 residents' human hair samples were collected. The concentrations of Se and toxic metals were analyzed, and the health risk was estimated using the concentration data. Cd and As concentrations were significantly higher than in East China. Se and most toxic metal concentrations increased with age (except for the aged people). Furthermore, gender and smoking habits might have a significant impact on toxic metals and Se levels. Multivariable statistics analysis revealed that Se and toxic metals primarily originate in the environment and are then transferred to the human body via the food chain. Dietary habits had an effect on the Se and As concentrations in hair, according to the results of stable isotope analysis. To assess detoxification ability, the Se/ toxic metal molar ratio was used as an indicator. The results demonstrated that the antagonistic effect of Se and Cd, As, Cr, and Hg (molar ratio > 1) could effectively protect residents in the study area from Cd and As pollution in daily life.
Collapse
Affiliation(s)
- Bing Zhao
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| | - Jing Zhao
- Anhui Technical College of Mechanical and Electrical Engineering, Wuhu, Anhui 241002, PR China
| | - Shoubiao Zhou
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| | - Xiaoguo Wu
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China.
| | - Xue Xu
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| | - Ruyi Yang
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| | - Zijiao Yuan
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| |
Collapse
|
16
|
Zanetta-Colombo NC, Fleming ZL, Gayo EM, Manzano CA, Panagi M, Valdés J, Siegmund A. Impact of mining on the metal content of dust in indigenous villages of northern Chile. ENVIRONMENT INTERNATIONAL 2022; 169:107490. [PMID: 36116364 DOI: 10.1016/j.envint.2022.107490] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/29/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Indigenous communities from northern Chile have historically been exposed to the impacts of massive copper industrial activities conducted in the region. Some of the communities belonging to the Alto El Loa Indigenous Development Area are located less than 10 km from the "Talabre'' tailings dam, which contains residues from copper production and other metals that can be toxic to human health (e.g., As, Sb, Cd, Mo, Pb). Given the increasing demand of copper production to achieve net-zero emission scenarios and concomitant expansions of the tailings, the exposure to toxic metals is a latent risk to local communities. Despite the impact that copper production could generate on ancestral communities from northern Chile, studies and monitoring are limited and the results are often not made accessible for local communities. Here, we evaluate such risks by characterizing metal concentrations in dust collected from roofs and windows of houses from the Alto El Loa area. Our results showed that As, Sb, Cd, Cu, Mo, Ag, S, and Pb concentrations in these matrices can be connected to local copper mining activities. Additionally, air transport models indicate that high concentrations of toxic elements (As, Sb, and Cd) can be explained by the atmospheric transport of particles from the tailings in a NE direction up to 50 km away. Pollution indices and Health Risk Assessment suggested a highly contaminated region with a health risk for its inhabitants. Our analysis on a local scale seeks to make visible the case of northern Chile as a critical territory where actions should be taken to mitigate the effects of mining in the face of this new scenario of international demand for the raw materials necessary for the transition to a net-zero carbon global society.
Collapse
Affiliation(s)
- Nicolás C Zanetta-Colombo
- Heidelberg Center for the Environment (HCE), Heidelberg University, Heidelberg, Germany; Department of Geography - Research Group for Earth Observation (rgeo), Heidelberg University of Education, Heidelberg, Germany; Department of Geography, SAI, Heidelberg University, Heidelberg, Germany.
| | - Zoë L Fleming
- Envirohealth Dynamics Lab, C+ Research Center in Technologies for Society, School of Engineering, Universidad Del Desarrollo, Santiago, Chile; Center for Climate and Resilience Research (CR)2, Chile
| | - Eugenia M Gayo
- Center for Climate and Resilience Research (CR)2, Chile; ANID - Millennium Science Initiative Program- Nucleo Milenio UPWELL, Chile
| | - Carlos A Manzano
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; School of Public Health, San Diego State University, San Diego, CA, USA.
| | - Marios Panagi
- School of Physics and Astronomy, University of Leicester, Leicester, UK
| | - Jorge Valdés
- Laboratorio de Sedimentología y Paleoambientes (LASPAL), Instituto de Ciencias Naturales Alexander von Humboldt, Facultad de Ciencias del Mar y de Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Alexander Siegmund
- Heidelberg Center for the Environment (HCE), Heidelberg University, Heidelberg, Germany; Department of Geography - Research Group for Earth Observation (rgeo), Heidelberg University of Education, Heidelberg, Germany
| |
Collapse
|
17
|
Neshat A, Oghazyan A, Kariminejad F, Mahmudiono T, Fakhri Y, Asadi AMS, Atamaleki A, Khaneghah AM. The concentration of potentially toxic elements (PTEs) in human milk: a systematic review, meta-analysis, and health risk assessment. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Khodadadi N, Amini A, Dehbandi R. Contamination, probabilistic health risk assessment and quantitative source apportionment of potentially toxic metals (PTMs) in street dust of a highly developed city in north of Iran. ENVIRONMENTAL RESEARCH 2022; 210:112962. [PMID: 35182599 DOI: 10.1016/j.envres.2022.112962] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/31/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Street dust (SD) are the particulates that primarily originated from Earth's crust and secondary alteration and erosion of natural and anthropogenic materials. The multi-dimensional pollution and health risk assessment of potentially toxic metals (PTMs) in these particles remain unknown in the majority of world urban areas. The elemental concentration, mineralogy, and micro-morphology of street dust were determined by inductively coupled plasma mass spectrometry (ICP-MS), SEM-EDX, XRD, and petrographical observation. Multivariate statistical analysis combined with positive matrix factorization (PMF) and Monte-Carlo simulations were applied to source identification and health risk assessment of PTMs. A severe enrichment of Sb, Cu and Zn and moderate contamination of Sn, Pb, and Cr were observed in the samples particularly in the areas with higher loads of traffic. The results of geochemical indices showed that K, Al, Mn, and V have natural/geogenic origins. While Sb, Pb, Cr, Cu, and Zn showed an enrichment relative to the background values with dominant anthropogenic sources. The results were confirmed by source appointment techniques. The results of deterministic and probabilistic health risk assessment by Monte-Carlo simulations revealed the non-carcinogenic nature of As, Mn, and Pb for children mainly through skin and ingestion routes. It can be concluded that the chemical compound of street dust in Gorgan city is affected by both natural (loess deposits) and anthropogenic sources. Also, children are in the risk of exposure to PTMs in street dust more than adults.
Collapse
Affiliation(s)
| | - Arash Amini
- Geology Department, Faculty of Sciences, Golestan University, Gorgan, Iran.
| | - Reza Dehbandi
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
19
|
Hasanzadeh M, Malakootian M, Nasiri A, Oliveri Conti G, Ferrante M, Faraji M. Ecological and Probabilistic Health Risk Assessment of Heavy Metals in Topsoils, Southeast of Iran. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:737-744. [PMID: 34988609 DOI: 10.1007/s00128-021-03389-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/28/2021] [Indexed: 06/14/2023]
Abstract
This study aimed to assess ecological and health risk of heavy metals (HMs) in the 35 topsoils in southeastern Iran. Ecological and health risks were assessed based on the EPA method. The order of the HMs followed as: Zn > Cr>Cu>Pb>As>Cd. All samples, except As and Cu, had the moderate enrichment and low to moderate pollution, respectively. The As in both regions and Cu in the city was classified in the lack to minimal enrichment and no pollution category. The studied HMs in both regions were shown a low ecological risk. There was minimal possibility of adverse non-carcinogenic effects. The Cr and As had an acceptable or tolerable carcinogenic risk from ingestion route (ELCRing) in both regions. According to the important role of As, Cd and Cr from the aspect of ecological and health risk, control of their sources must be considered to attenuate ecological and human adverse effets in the studied areas.
Collapse
Affiliation(s)
- Mahsa Hasanzadeh
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Malakootian
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Nasiri
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Gea Oliveri Conti
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Margherita Ferrante
- Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Maryam Faraji
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
20
|
Malakootian M, Mohammadi A, Nasiri A, Oliveri Conti G, Faraji M. Correlation between heavy metal concentration and oxidative potential of street dust. AIR QUALITY, ATMOSPHERE, & HEALTH 2021; 15:731-738. [PMID: 34868387 PMCID: PMC8627698 DOI: 10.1007/s11869-021-01130-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/10/2021] [Indexed: 05/30/2023]
Abstract
The current study aimed to consider oxidative potential (OP), its spatial distribution, and correlations with heavy metals (HMs) in street dust in Kerman city, Iran. The concentration of HMs in 35 street dust samples was detected by ICP-AES. The OP in samples was measured through dithiothreitol (DTT). The mean concentration of elements followed Zn > Cu > Pb > Cr > As > Cd. The OP value was found to be 7.17 ± 2.98 nmol/min. µg dust in the current study. A strong correlation was observed among the concentrations of As and Cr and OP values in dust samples. More values of OP were observed in the center and west of the Kerman city. According to results of the current study, it could be concluded that OP can be applied as metrics of pollution originated from different sources and human health effects. The amount of OP in the street dust in the Kerman city can be reduced through the use of clean fuels.
Collapse
Affiliation(s)
- Mohammad Malakootian
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Amir Mohammadi
- Department of Public Health, School of Nursing and Midwifery, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Alireza Nasiri
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Gea Oliveri Conti
- Department of Medical Sciences, Surgical and Advanced Technologies “G.F. Ingrassia,”, University of Catania, Catania, Italy
| | - Maryam Faraji
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
21
|
Characteristics and Risk Assessment of 16 Metals in Street Dust Collected from a Highway in a Densely Populated Metropolitan Area of Vietnam. ATMOSPHERE 2021. [DOI: 10.3390/atmos12121548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The present study focused on investigating the contamination and risk assessment for 16 metals in street dust from Ha Noi highway, Ho Chi Minh City. The results indicated that the concentrations of metals (mg/kg) were found, in decreasing order, to be Ti (676.3 ± 155.4) > Zn (519.2 ± 318.9) > Mn (426.6 ±113.1) > Cu (144.7 ± 61.5) > Cr (81.4 ± 22.6) > Pb (52.2 ± 22.9) > V (35.5 ± 5.6) > Ni (30.9 ± 9.5) > Co (8.3 ± 1.2) > As (8.3 ± 2.5) > Sn (7.0 ± 3.6) > B (5.7 ± 0.9) > Mo (4.1 ± 1.7) > Sb (0.8 ± 0.3) > Cd (0.6 ± 0.2) > Se (0.4 ± 0.1). The geo-accumulation index (Igeo) showed moderate contamination levels for Pb, Cd, Cu, Sn, Mo, and Zn. The enrichment factor (EF) values revealed moderate levels for Cd, Cu, Mo, and Sn but moderate–severe levels for Zn. The pollution load index of the heavy metals was moderate. The potential ecological risk (207.43) showed a high potential. Notably, 40.7% and 33.5% of the ecological risks were contributed by Zn and Mn, respectively. These findings are expected to provide useful information to decision-makers about environmental quality control strategies.
Collapse
|
22
|
Qin Y, Xu C, Li W, Jian B, Wu B, Chen M, Sun H, Hong H. Metal/metalloid levels in hair of Shenzhen residents and the associated influencing factors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112375. [PMID: 34051662 DOI: 10.1016/j.ecoenv.2021.112375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
129 Shenzhen residents' hair samples were collected and the metal/metalloid concentrations of Hg, As, Pb, Cd, Cr, Cu, Mn, Zn, Fe and Ni were detected. Meanwhile, the relationships between metal/metalloid contents in human hair and gender, age, seafood diet habit, smoking habit, as well as the housing type (dwelling environment) were analyzed. Results showed that the average content of Hg, As, Pb, Cd, Cr, Cu, Mn, Zn, Fe and Ni in human hair of Shenzhen residents was 0.76 ± 0.96, 0.10 ± 0.04, 5.25 ± 4.88, 0.25 ± 0.33, 0.60 ± 0.31, 13.84 ± 3.67, 2.82 ± 2.01, 196.90 ± 145.01, 12.20 ± 5.10 and 0.34 ± 0.32 μg/g, respectively. Compared with other regions at home and abroad, most metal/metalloids in Shenzhen residents were at a moderate level, and the highly toxic elements (i.e. Pb, Cd, As and Hg) didn't exceed the upper limit of normal values in China. Statistical analysis showed that the young male people contained significantly higher (p < 0.05) level of Pb (in age group of 20-30 years old) and Fe (in age group of 20-40 years old) in hair than the female people. Smokers had significantly (p < 0.05) higher level of Cd (0.35 μg/g) but lower level of Zn (101.24 µg/g) than non-smokers (Cd: 0.17 μg/g; Zn: 252.63 µg/g). Hg and Pb contents in hair of Shenzhen people were positively related with the frequencies of seafood consumption and the age, respectively. Moreover, residents lived in private buildings (well decorated house) accumulated significantly higher (p < 0.05) levels of Pb, Cr, Fe and Ni as compared with those lived in public rental house and village house (no decoration or simple decoration), suggesting that decoration material was also an important way for human exposure to heavy metals.
Collapse
Affiliation(s)
- Yanyan Qin
- Shenzhen Polytechnic, Shenzhen 518055, China
| | - Chen Xu
- Shenzhen Polytechnic, Shenzhen 518055, China
| | - Wanrong Li
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Bin Jian
- Shenzhen Public Security, Shenzhen 518040, China
| | - Binbin Wu
- Centre for Cardiovascular Genomics and Medicine, The Chinese University of Hong Kong (CUHK), HKSAR, China
| | - Minwei Chen
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Hongjie Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Huachang Hong
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|