1
|
Aparicio MA, Ruiz-Castilla FJ, Ramos J, Romera FJ, Lucena C. Pseudomonas simiae WCS417 Strain Enhances Tomato ( Solanum lycopersicum L.) Plant Growth Under Alkaline Conditions. PLANTS (BASEL, SWITZERLAND) 2025; 14:264. [PMID: 39861617 PMCID: PMC11768916 DOI: 10.3390/plants14020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/31/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Iron (Fe) deficiency is among the most important agronomical concerns under alkaline conditions. Bicarbonate is considered an important factor causing Fe deficiency in dicot plants, mainly on calcareous soils. Current production systems are based on the use of high-yielding varieties and the application of large quantities of agrochemicals, which can cause major environmental problems. The use of beneficial rhizosphere microorganisms is considered a relevant sustainable alternative to synthetic fertilizers. The main purpose of this work has been to analyze the impact of the inoculation of tomato (Solanum lycopersicum L.) seedlings with the WCS417 strain of Pseudomonas simiae, in the presence or absence of bicarbonate, on plant growth and other physiological parameters. To conduct this research, three different inoculation methods were implemented: root immersion, foliar application, and substrate inoculation by irrigation. The results obtained show the ability of the P. simiae WCS417 strain to induce medium acidification in the presence of bicarbonate to increase the SPAD index and to improve the growth and development of the tomato plants in calcareous conditions provoked by the presence of bicarbonate, which indicates that this bacteria strain could have a great potential as an Fe biofertilizer.
Collapse
Affiliation(s)
- Miguel A. Aparicio
- Departamento de Agronomía, Edificio Celestino Mutis (C-4), Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain; (M.A.A.); (F.J.R.)
| | - Francisco J. Ruiz-Castilla
- Departamento de Química Agrícola, Edafología y Microbiología, Edificio Severo Ochoa (C-6), Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain; (F.J.R.-C.); (J.R.)
| | - José Ramos
- Departamento de Química Agrícola, Edafología y Microbiología, Edificio Severo Ochoa (C-6), Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain; (F.J.R.-C.); (J.R.)
| | - Francisco J. Romera
- Departamento de Agronomía, Edificio Celestino Mutis (C-4), Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain; (M.A.A.); (F.J.R.)
| | - Carlos Lucena
- Departamento de Agronomía, Edificio Celestino Mutis (C-4), Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain; (M.A.A.); (F.J.R.)
| |
Collapse
|
2
|
Vandeborne K, Guy N, Lengyel G, Franks J, Maltman C. Pseudomonas spirodelae, sp. nov., a bacterium isolated from the roots of the aquatic plant Spirodela polyrhiza. Int J Syst Evol Microbiol 2025; 75. [PMID: 39792577 DOI: 10.1099/ijsem.0.006637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
A polyphasic taxonomic study was carried out on strain T5W1T, isolated from the roots of the aquatic plant Spirodela polyrhiza. This isolate is Gram-negative, rod-shaped, motile, aerobic and non-pigmented. Nearly complete 16S rRNA gene sequence homology related the strain to Pseudomonas, with 98.4% similarity to P. guineae, P. peli and P. leptonychotis. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) with the closest phylogenetic neighbour of T5W1T showed differences at the species level, further confirmed by differences in several physiological characteristics. The main fatty acids are summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C18 : 1 ω7c, and C16 : 0. The DNA G+C content is 59.3 mol%. Q-9 is the primary ubiquinone found, and phosphatidylethanolamine is the dominant polar lipid, with lesser amounts of phosphatidylglycerol, diphosphatidylglycerol and phosphatidylserine. Based on the results obtained, this bacterium is assigned to the genus Pseudomonas as a new species with the name Pseudomonas spirodelae sp. nov., type strain T5W1T (=NRRL B-65714T =DSM 118085T).
Collapse
Affiliation(s)
- Karlie Vandeborne
- Department of Biology, Slippery Rock University, Slippery Rock, Pennsylvania, 16057, USA
| | - Nathan Guy
- Department of Chemistry, Slippery Rock University, Slippery Rock, Pennsylvania, 16057, USA
| | - George Lengyel
- Department of Chemistry, Slippery Rock University, Slippery Rock, Pennsylvania, 16057, USA
| | - Jonathan Franks
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Chris Maltman
- Department of Biology, Slippery Rock University, Slippery Rock, Pennsylvania, 16057, USA
| |
Collapse
|
3
|
Ramírez‐Serrano B, Querejeta M, Minchev Z, Pozo MJ, Dubreuil G, Giron D. Root inoculation with soil-borne microorganisms alters gut bacterial communities and performance of the leaf-chewer Spodoptera exigua. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70049. [PMID: 39592916 PMCID: PMC11598745 DOI: 10.1111/1758-2229.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024]
Abstract
Soil-borne microorganisms can impact leaf-chewing insect fitness by modifying plant nutrition and defence. Whether the altered insect performance is linked to changes in microbial partners of caterpillars remains unclear. We investigated the effects of root inoculation with soil bacteria or fungi on the gut bacterial community and biomass of the folivore Spodoptera exigua. We also explored the potential correlation between both parameters. We performed herbivory bioassay using leaves of tomato plants (Solanum lycopersicum), measured caterpillar weight gain and characterized the gut bacterial communities via 16S rRNA gene metabarcoding. All soil microbes modified the gut bacterial communities, but the extent of these changes depended on the inoculated species. Rhizophagus irregularis and Bacillus amyloliquefaciens had opposite effects on S. exigua weight. While plant inoculation with the fungus influenced gut bacterial diversity, B. amyloliquefaciens also affected the community composition. A reduced abundance of two S. exigua enterococcal symbionts correlated with decreased insect biomass. Our results show that soil microorganisms can induce plant-mediated changes in the gut bacterial community of foliar-feeding caterpillars. We propose that the impact of these alterations on insect performance might rely on specific adaptations within the gut bacteria, rather than solely on the occurrence of changes.
Collapse
Affiliation(s)
- Beatriz Ramírez‐Serrano
- Biodiversity and Interactions Between Micro‐organisms/Insects/Plants (IMIP)Institut de Recherche sur la Biologie de l'Insecte (IRBI)—UMR 7261 CNRS/Université de ToursToursFrance
- Department of Soil and Plant MicrobiologyEstación Experimental del Zaidín (EEZ‐CSIC)GranadaSpain
| | - Marina Querejeta
- Biodiversity and Interactions Between Micro‐organisms/Insects/Plants (IMIP)Institut de Recherche sur la Biologie de l'Insecte (IRBI)—UMR 7261 CNRS/Université de ToursToursFrance
- UMR CNRS 7267, Ecologie et Biologie des InteractionsUniversité de PoitiersPoitiersFrance
| | - Zhivko Minchev
- Department of Soil and Plant MicrobiologyEstación Experimental del Zaidín (EEZ‐CSIC)GranadaSpain
- Agronomical Development Department, Business Unit MicrobiologyKoppert Biological SystemsBerkel en RodenrijsThe Netherlands
| | - María J. Pozo
- Department of Soil and Plant MicrobiologyEstación Experimental del Zaidín (EEZ‐CSIC)GranadaSpain
| | - Géraldine Dubreuil
- Biodiversity and Interactions Between Micro‐organisms/Insects/Plants (IMIP)Institut de Recherche sur la Biologie de l'Insecte (IRBI)—UMR 7261 CNRS/Université de ToursToursFrance
| | - David Giron
- Biodiversity and Interactions Between Micro‐organisms/Insects/Plants (IMIP)Institut de Recherche sur la Biologie de l'Insecte (IRBI)—UMR 7261 CNRS/Université de ToursToursFrance
| |
Collapse
|
4
|
Villavicencio-Pulido JG, Robles-Sámano R, Tapia-Santos B. Sustainable scenarios in a plants-rhizobacteria-plant consumers system are in risk when biotic or abiotic factors change. Math Biosci 2024; 375:109261. [PMID: 39033960 DOI: 10.1016/j.mbs.2024.109261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/23/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
The ecological relationship among plants, rhizobacteria and plant consumers has attracted the attention of researchers due to its implications in field crops. It is known that, the rhizosphere is occupied not only by rhizobacteria which grant benefits to the plants but also by bacteria which are detrimental for them. In this work, we construct and analyze a plants-rhizobacteria-plant consumers system. In the modeling process, it is assumed that there is a conditioned interaction between plants and bacteria in the rhizosfera such that there is a mutualistic relationship at low densities of rhizobacteria and the relationship is parasitic or competitive at higher densities of them. Benefits granted by rhizobacteria include mechanisms that increase the plant growth and defense mechanisms against plant consumers. From the analysis of the model and its simplified version, we show that scenarios of coexistence of all populations can occur for a wide range of values of the parameters which describe biotic or abiotic factors; however, these scenarios are in risk since scenarios of exclusion of species can occur simultaneously due to the presence of bistability phenomena. The results obtained can be useful for the decision makers to design interventions strategies on field crops when plant growth-promoting rhizobacteria are used.
Collapse
Affiliation(s)
- José Geiser Villavicencio-Pulido
- División de Ciencias Biológicas y de la Salud, Depto. de Ciencias Ambientales, Universidad Autónoma Metropolitana Unidad Lerma, Av. Hidalgo Poniente No. 46, Col. La Estación, 52006 Lerma de Villada, Edo. de México, Mexico.
| | - Rodrigo Robles-Sámano
- División de Ciencias Biológicas y de la Salud, Depto. de Ciencias Ambientales, Universidad Autónoma Metropolitana Unidad Lerma, Av. Hidalgo Poniente No. 46, Col. La Estación, 52006 Lerma de Villada, Edo. de México, Mexico.
| | - Brenda Tapia-Santos
- Facultad de Matemáticas, Universidad Veracruzana, Pase No. ext. 112, L. 2. Col. Nueva Xalapa, C.P. 91097, Xalapa, Veracruz, Mexico.
| |
Collapse
|
5
|
Ping X, Khan RAA, Chen S, Jiao Y, Zhuang X, Jiang L, Song L, Yang Y, Zhao J, Li Y, Mao Z, Xie B, Ling J. Deciphering the role of rhizosphere microbiota in modulating disease resistance in cabbage varieties. MICROBIOME 2024; 12:160. [PMID: 39215347 PMCID: PMC11363401 DOI: 10.1186/s40168-024-01883-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Cabbage Fusarium wilt (CFW) is a devastating disease caused by the soil-borne fungus Fusarium oxysporum f. sp. conglutinans (Foc). One of the optimal measures for managing CFW is the employment of tolerant/resistant cabbage varieties. However, the interplay between plant genotypes and the pathogen Foc in shaping the rhizosphere microbial community, and the consequent influence of these microbial assemblages on biological resistance, remains inadequately understood. RESULTS Based on amplicon metabarcoding data, we observed distinct differences in the fungal alpha diversity index (Shannon index) and beta diversity index (unweighted Bray-Curtis dissimilarity) within the rhizosphere of the YR (resistant to Foc) and ZG (susceptible to Foc) cabbage varieties, irrespective of Foc inoculation. Notably, the Shannon diversity shifts in the resistant YR variety were more pronounced following Foc inoculation. Disease-resistant plant variety demonstrate a higher propensity for harboring beneficial microorganisms, such as Pseudomonas, and exhibit superior capabilities in evading harmful microorganisms, in contrast to their disease-susceptible counterparts. Furthermore, the network analysis was performed on rhizosphere-associated microorganisms, including both bacteria and fungi. The networks of association recovered from YR exhibited greater complexity, robustness, and density, regardless of Foc inoculation. Following Foc infection in the YR rhizosphere, there was a notable increase in the dominant bacterium NA13, which is also a hub taxon in the microbial network. Reintroducing NA13 into the soil significantly improved disease resistance in the susceptible ZG variety, by directly inhibiting Foc and triggering defense mechanisms in the roots. CONCLUSIONS The rhizosphere microbial communities of these two cabbage varieties are markedly distinct, with the introduction of the pathogen eliciting significant alterations in their microbial networks which is correlated with susceptibility or resistance to soil-borne pathogens. Furthermore, we identified a rhizobacteria species that significantly boosts disease resistance in susceptible cabbages. Our results indicated that the induction of resistance genes leading to varied responses in microbial communities to pathogens may partly explain the differing susceptibilities of the cabbage varieties tested to CFW. Video Abstract.
Collapse
Affiliation(s)
- Xingxing Ping
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Raja Asad Ali Khan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, YaZhou, 572024, China
| | - Shumin Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yang Jiao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xia Zhuang
- School of Life Sciences, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Lijun Jiang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Liqun Song
- Microbial Research Institute of Liaoning Province, Liaoning Academy of Agricultural Sciences, Chaoyang, China
| | - Yuhong Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianlong Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yan Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhenchuan Mao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Bingyan Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jian Ling
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
6
|
Woo JM, Kim HS, Lee IK, Byeon EJ, Chang WJ, Lee YS. Potentiality of Beneficial Microbe Bacillus siamensis GP-P8 for the Suppression of Anthracnose Pathogens and Pepper Plant Growth Promotion. THE PLANT PATHOLOGY JOURNAL 2024; 40:346-357. [PMID: 39117334 PMCID: PMC11309841 DOI: 10.5423/ppj.oa.01.2024.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024]
Abstract
This study was carried out to screen the antifungal activity against Colletotrichum acutatum, Colletotrichum dematium, and Colletotrichum coccodes. Bacterial isolate GP-P8 from pepper soil was found to be effective against the tested pathogens with an average inhibition rate of 70.7% in in vitro dual culture assays. 16S rRNA gene sequencing analysis result showed that the effective bacterial isolate as Bacillus siamensis. Biochemical characterization of GP-P8 was also performed. According to the results, protease and cellulose, siderophore production, phosphate solubilization, starch hydrolysis, and indole-3-acetic acid production were shown by the GP-P8. Using specific primers, genes involved in the production of antibiotics, such as iturin, fengycin, difficidin, bacilysin, bacillibactin, surfactin, macrolactin, and bacillaene were also detected in B. siamensis GP-P8. Identification and analysis of volatile organic compounds through solid phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) revealed that acetoin and 2,3-butanediol were produced by isolate GP-P8. In vivo tests showed that GP-P8 significantly reduced the anthracnose disease caused by C. acutatum, and enhanced the growth of pepper plant. Reverse transcription polymerase chain reaction analysis of pepper fruits revealed that GP-P8 treated pepper plants showed increased expression of immune genes such as CaPR1, CaPR4, CaNPR1, CaMAPK4, CaJA2, and CaERF53. These results strongly suggest that GP-P8 could be a promising biocontrol agent against pepper anthracnose disease and possibly a pepper plant growth-promoting agent.
Collapse
Affiliation(s)
- Ji Min Woo
- Division of Biological Resource Sciences, Department of Applied Plant Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Hyun Seung Kim
- Division of Biological Resources Sciences, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Korea
| | - In Kyu Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Eun Jeong Byeon
- Division of Biological Resource Sciences, Department of Applied Plant Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Won Jun Chang
- Division of Biological Resources Sciences, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Korea
| | - Youn Su Lee
- Division of Biological Resource Sciences, Department of Applied Plant Sciences, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
7
|
Ruan YN, Nong C, Jintrawet A, Fan H, Fu L, Zheng SJ, Li S, Wang ZY. A smooth vetch ( Vicia villosa var.) strain endogenous to the broad-spectrum antagonist Bacillus siamensis JSZ06 alleviates banana wilt disease. FRONTIERS IN PLANT SCIENCE 2024; 15:1410197. [PMID: 38978518 PMCID: PMC11229777 DOI: 10.3389/fpls.2024.1410197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/13/2024] [Indexed: 07/10/2024]
Abstract
Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense Tropical Race 4 (Foc TR4), poses a significant threat to banana production globally, thereby necessitating effective biocontrol methods to manage this devastating disease. This study investigates the potential of Bacillus siamensis strain JSZ06, isolated from smooth vetch, as a biocontrol agent against Foc TR4. To this end, we conducted a series of in vitro and in vivo experiments to evaluate the antifungal activity of strain JSZ06 and its crude extracts. Additionally, genomic analyses were performed to identify antibiotic synthesis genes, while metabolomic profiling was conducted to characterize bioactive compounds. The results demonstrated that strain JSZ06 exhibited strong inhibitory activity against Foc TR4, significantly reducing mycelial growth and spore germination. Moreover, scanning and transmission electron microscopy revealed substantial ultrastructural damage to Foc TR4 mycelia treated with JSZ06 extracts. Genomic analysis identified several antibiotic synthesis genes, and metabolomic profiling revealed numerous antifungal metabolites. Furthermore, in pot trials, the application of JSZ06 fermentation broth significantly enhanced banana plant growth and reduced disease severity, achieving biocontrol efficiencies of 76.71% and 79.25% for leaves and pseudostems, respectively. In conclusion, Bacillus siamensis JSZ06 is a promising biocontrol agent against Fusarium wilt in bananas, with its dual action of direct antifungal activity and plant growth promotion underscoring its potential for integrated disease management strategies.
Collapse
Affiliation(s)
- Yan-Nan Ruan
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
- College of Agronomy and Life Sciences, Kunming Universities, Kunming, Yunnan, China
| | - Caihong Nong
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
- College of Agronomy and Life Sciences, Kunming Universities, Kunming, Yunnan, China
| | | | - Huacai Fan
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Libo Fu
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Si-Jun Zheng
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Shu Li
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Zhi-Yuan Wang
- Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| |
Collapse
|
8
|
Jabborova D, Mamarasulov B, Davranov K, Enakiev Y, Bisht N, Singh S, Stoyanov S, Garg AP. Diversity and Plant Growth Properties of Rhizospheric Bacteria Associated with Medicinal Plants. Indian J Microbiol 2024; 64:409-417. [PMID: 39010983 PMCID: PMC11246357 DOI: 10.1007/s12088-024-01275-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/28/2024] [Indexed: 07/17/2024] Open
Abstract
Microbes in the rhizosphere play a significant role in the growth, development, and efficiency of plants and trees. The rhizospheric area's microbes are reliant on the soil's characteristics and the substances that the plants release. The majority of previous research on medicinal plants concentrated on their bioactive phytochemicals, but this is changing now that it is understood that a large proportion of phytotherapeutic substances are actually created by related microorganisms or through contact with their host. The roots of medicinal plants secrete a large number of secondary metabolites that determine the diversity of microbial communities in their rhizosphere. The dominant bacteria isolated from a variety of medicinal plants include various species of Bacillus, Rhizobium, Pseudomonas, Azotobacter, Burkholderia, Enterobacte, Microbacterium, Serratia, Burkholderia, and Beijerinckia. Actinobacteria also colonize the rhizosphere of medicinal plants that release low molecular weight organic solute that facilitate the solubilisation of inorganic phosphate. Root exudates of medicinal plants resist abiotic stress and accumulate in soil to produce autotoxic effects that exhibit strong obstacles to continuous cropping. Although having a vast bioresource that may be used in agriculture and modern medicine, medicinal plants' microbiomes are largely unknown. The purpose of this review is to (i) Present new insights into the plant microbiome with a focus on medicinal plants, (ii) Provide information about the components of medicinal plants derived from plants and microbes, and (iii) Discuss options for promoting plant growth and protecting plants for commercial cultivation of medicinal plants. The scientific community has paid a lot of attention to the use of rhizobacteria, particularly plant growth-promoting rhizobacteria (PGPR), as an alternative to chemical pesticides. By a variety of processes, these rhizobacteria support plant growth, manage plant pests, and foster resilience to a range of abiotic challenges. It also focuses on how PGPR inoculation affects plant growth and survival in stressful environments.
Collapse
Affiliation(s)
- Dilfuza Jabborova
- Institute of Genetics and Plant Experimental Biology, Uzbekistan Academy of Sciences, 111208 Qibray, Uzbekistan
- Faculty of Biology, National University of Uzbekistan, 100174 Tashkent, Uzbekistan
- School of Biological Engineering and Life Sciences, Shobhit Institute of Engineering and Technology (NAAC Accredited Grade 'A', Deemed to-be-University), NH-58, Modipuram, Meerut, 250110 India
| | - Bakhodir Mamarasulov
- Institute of Microbiology of the Academy of Sciences of Uzbekistan, 100128 Tashkent, Uzbekistan
| | - Kakhramon Davranov
- Institute of Microbiology of the Academy of Sciences of Uzbekistan, 100128 Tashkent, Uzbekistan
| | - Yuriy Enakiev
- Nikola Pushkarov Institute of Soil Science, Agrotechnologies and Plant Protection, Agricultural Academy, Sofia, Bulgaria
| | - Neha Bisht
- School of Biological Engineering and Life Sciences, Shobhit Institute of Engineering and Technology (NAAC Accredited Grade 'A', Deemed to-be-University), NH-58, Modipuram, Meerut, 250110 India
| | - Sachidanand Singh
- Department of Biotechnology School of Energy and Technology, Pandit Deendayal Energy University, Knowledge Corridor, Raisan Village, PDPU Rd, Gandhinagar, 382007 Gujarat India
| | - Svilen Stoyanov
- Dobrudzha College of Technology, Technical University of Varna, 9010 Varna, Bulgaria
| | - Amar P Garg
- Swami Vivekanand Subharti University, NH-58, Subhartipuram, Meerut, 250005 India
| |
Collapse
|
9
|
Bustos-Segura C, Godschalx AL, Malacari L, Deiss F, Rasmann S, Ballhorn DJ, Benrey B. Rhizobia-legume symbiosis mediates direct and indirect interactions between plants, herbivores and their parasitoids. Heliyon 2024; 10:e27815. [PMID: 38524601 PMCID: PMC10957422 DOI: 10.1016/j.heliyon.2024.e27815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Microorganisms associated with plant roots significantly impact the quality and quantity of plant defences. However, the bottom-up effects of soil microbes on the aboveground multitrophic interactions remain largely under studied. To address this gap, we investigated the chemically-mediated effects of nitrogen-fixing rhizobia on legume-herbivore-parasitoid multitrophic interactions. To address this, we initially examined the cascading effects of the rhizobia bean association on herbivore caterpillars, their parasitoids, and subsequently investigated how rhizobia influence on plant volatiles and extrafloral nectar. Our goal was to understand how these plant-mediated effects can affect parasitoids. Lima bean plants (Phaseoulus lunatus) inoculated with rhizobia exhibited better growth, and the number of root nodules positively correlated with defensive cyanogenic compounds. Despite increase of these chemical defences, Spodoptera latifascia caterpillars preferred to feed and grew faster on rhizobia-inoculated plants. Moreover, the emission of plant volatiles after leaf damage showed distinct patterns between inoculation treatments, with inoculated plants producing more sesquiterpenes and benzyl nitrile than non-inoculated plants. Despite these differences, Euplectrus platyhypenae parasitoid wasps were similarly attracted to rhizobia- or no rhizobia-treated plants. Yet, the oviposition and offspring development of E. platyhypenae was better on caterpillars fed with rhizobia-inoculated plants. We additionally show that rhizobia-inoculated common bean plants (Phaseolus vulgaris) produced more extrafloral nectar, with higher hydrocarbon concentration, than non-inoculated plants. Consequently, parasitoids performed better when fed with extrafloral nectar from rhizobia-inoculated plants. While the overall effects of bean-rhizobia symbiosis on caterpillars were positive, rhizobia also indirectly benefited parasitoids through the caterpillar host, and directly through the improved production of high quality extrafloral nectar. This study underscores the importance of exploring diverse facets and chemical mechanisms that influence the dynamics between herbivores and predators. This knowledge is crucial for gaining a comprehensive understanding of the ecological implications of rhizobia symbiosis on these interactions.
Collapse
Affiliation(s)
- Carlos Bustos-Segura
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Sorbonne Université, Institut National de Recherche pour L'Agriculture, L'Alimentation et L'Environnement, CNRS, Institut de Recherche pour le Développement, Université Paris-Est-Créteil-Val-de-Marne, Université Paris Cité, Institut D’Ecologie et des Sciences de L’Environnement de Paris, Versailles, 78026, France
| | - Adrienne L. Godschalx
- Laboratory of Functional Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Lucas Malacari
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Fanny Deiss
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Sergio Rasmann
- Laboratory of Functional Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | | | - Betty Benrey
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
10
|
Roca A, Cabeo M, Enguidanos C, Martínez‐Checa F, Sampedro I, Llamas I. Potential of the quorum-quenching and plant-growth promoting halotolerant Bacillus toyonensis AA1EC1 as biocontrol agent. Microb Biotechnol 2024; 17:e14420. [PMID: 38532596 PMCID: PMC10966274 DOI: 10.1111/1751-7915.14420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 03/28/2024] Open
Abstract
The use of fertilizers and pesticides to control plant diseases is widespread in intensive farming causing adverse effects together with the development of antimicrobial resistance pathogens. As the virulence of many Gram-negative phytopathogens is controlled by N-acyl-homoserine lactones (AHLs), the enzymatic disruption of this type of quorum-sensing (QS) signal molecules, mechanism known as quorum quenching (QQ), has been proposed as a promising alternative antivirulence therapy. In this study, a novel strain of Bacillus toyonensis isolated from the halophyte plant Arthrocaulon sp. exhibited numerous traits associated with plant growth promotion (PGP) and degraded a broad range of AHLs. Three lactonases and an acylase enzymes were identified in the bacterial genome and verified in vitro. The AHL-degrading activity of strain AA1EC1 significantly attenuated the virulence of relevant phytopathogens causing reduction of soft rot symptoms on potato and carrots. In vivo assays showed that strain AA1EC1 significantly increased plant length, stem width, root and aerial dry weights and total weight of tomato and protected plants against Pseudomonas syringae pv. tomato. To our knowledge, this is the first report to demonstrate PGP and QQ activities in the species B. toyonensis that make this strain as a promising phytostimulant and biocontrol agent.
Collapse
Affiliation(s)
- Amalia Roca
- Department of Microbiology, Faculty of PharmacyUniversity of GranadaGranadaSpain
- Institute of Biotechnology, Biomedical Research Center (CIBM)University of GranadaGranadaSpain
| | - Mónica Cabeo
- Department of Microbiology, Faculty of PharmacyUniversity of GranadaGranadaSpain
| | - Carlos Enguidanos
- Department of Microbiology, Faculty of PharmacyUniversity of GranadaGranadaSpain
| | - Fernando Martínez‐Checa
- Department of Microbiology, Faculty of PharmacyUniversity of GranadaGranadaSpain
- Institute of Biotechnology, Biomedical Research Center (CIBM)University of GranadaGranadaSpain
| | - Inmaculada Sampedro
- Department of Microbiology, Faculty of PharmacyUniversity of GranadaGranadaSpain
- Institute of Biotechnology, Biomedical Research Center (CIBM)University of GranadaGranadaSpain
| | - Inmaculada Llamas
- Department of Microbiology, Faculty of PharmacyUniversity of GranadaGranadaSpain
- Institute of Biotechnology, Biomedical Research Center (CIBM)University of GranadaGranadaSpain
| |
Collapse
|
11
|
Li T, Zhang Z, Liu Y, Sun S, Wang H, Geng X. Phenotype and signaling pathway analysis to explore the interaction between tomato plants and TYLCV in different organs. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111955. [PMID: 38097048 DOI: 10.1016/j.plantsci.2023.111955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/04/2023] [Accepted: 12/08/2023] [Indexed: 12/25/2023]
Abstract
Tomato yellow leaf curl disease (TYLCD), caused by Tomato yellow leaf curl virus (TYLCV), is one of the most destructive diseases in tomato cultivation. By comparing the phenotypic characteristics and virus quantities in the susceptible variety 'Cooperation 909 Red Tomatoes' and the resistant variety 'Huamei 204' after inoculation with TYLCV infectious clones, our study discovered that the root, stem and leaf growth of the susceptible variety 'Cooperation 909 Red Tomatoes' were severely hindered and the resistant variety 'Huamei 204' showed growth inhibition only in roots. TYLCV accumulation in roots were significantly higher than in leaves. Further, we examined the expression of key genes in the SA and JA signalling pathways in leaves, stems and roots and found the up-regulation of SA-signalling genes in all organs of the susceptible variety after inoculation with TYLCV clones. Interestingly, SlJAZ2 in roots of the resistant variety was significantly down-regulated upon TYLCV infection. Further, we silenced the SlNPR1 and SlCOI1 genes individually using virus induced gene silencing system in tomato plants. We found that viruses accumulated to a higher level in SlNPR1 silenced plants than wild type plants, and the virus quantity in roots was significantly increased in SlCOI1 silenced plants. These results provide new insights for advancing research in understanding tomato-TYLCV interaction.
Collapse
Affiliation(s)
- Tian Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China; College of Horticulture, Shanxi Agricultural University, Jinzhong, Shanxi Province, People's Republic of China
| | - Zhipeng Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, People's Republic of China
| | - Yang Liu
- College of Horticulture, Shanxi Agricultural University, Jinzhong, Shanxi Province, People's Republic of China
| | - Sheng Sun
- College of Horticulture, Shanxi Agricultural University, Jinzhong, Shanxi Province, People's Republic of China.
| | - Hehe Wang
- Clemson University, Edisto Research and Education Center, Blackville, SC, USA
| | - Xueqing Geng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| |
Collapse
|
12
|
Ferrante R, Campagni C, Vettori C, Checcucci A, Garosi C, Paffetti D. Meta-analysis of plant growth-promoting rhizobacteria interaction with host plants: implications for drought stress response gene expression. FRONTIERS IN PLANT SCIENCE 2024; 14:1282553. [PMID: 38288406 PMCID: PMC10823023 DOI: 10.3389/fpls.2023.1282553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/18/2023] [Indexed: 01/31/2024]
Abstract
Introduction The molecular and physiological mechanisms activated in plants during drought stress tolerance are regulated by several key genes with both metabolic and regulatory roles. Studies focusing on crop gene expression following plant growth-promoting rhizobacteria (PGPR) inoculation may help understand which bioinoculant is closely related to the induction of abiotic stress responses. Methods Here, we performed a meta-analysis following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to summarise information regarding plant-PGPR interactions, focusing on the regulation of nine genes involved in plant drought stress response. The literature research yielded 3,338 reports, of which only 41 were included in the meta-analysis based on the chosen inclusion criteria. The meta-analysis was performed on four genes (ACO, APX, ACS and DREB2); the other five genes (ERD15, MYB, MYC, acdS, WRKY) had an insufficient number of eligible articles. Results Forest plots obtained through each meta-analysis showed that the overexpression of ACO, APX, ACS and DREB2 genes was not statistically significant. Unlike the other genes, DREB2 showed statistically significant results in both the presence and absence of PGPR. Considering I2>75 %, the results showed a high heterogeneity among the studies included, and the cause for this was examined using subgroup analysis. Moreover, the funnel plot and Egger's test showed that the analyses were affected by strong publication bias. Discussion This study argues that the presence of PGPR may not significantly influence the expression of drought stress response-related crop genes. This finding may be due to high heterogeneity, lack of data on the genes examined, and significant publication bias.
Collapse
Affiliation(s)
- Roberta Ferrante
- National Biodiversity Future Center (NBFC), Palermo, Italy
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), Università degli Studi di Firenze, Florence, Italy
| | - Chiara Campagni
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), Università degli Studi di Firenze, Florence, Italy
| | - Cristina Vettori
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), Università degli Studi di Firenze, Florence, Italy
- Istituto di Bioscienze e Biorisorse (IBBR), Consiglio Nazionale delle Ricerche (CNR), Sesto Fiorentino, Italy
| | - Alice Checcucci
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), Università degli Studi di Firenze, Florence, Italy
| | - Cesare Garosi
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), Università degli Studi di Firenze, Florence, Italy
| | - Donatella Paffetti
- National Biodiversity Future Center (NBFC), Palermo, Italy
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
13
|
Soares CRFS, Hernández AG, da Silva EP, de Souza JEA, Bonfim DF, Zabot GL, Ferreira PAA, Brunetto G. Applications and Market of Micro-Organism-Based and Plant-Based Inputs in Brazilian Agriculture. PLANTS (BASEL, SWITZERLAND) 2023; 12:3844. [PMID: 38005741 PMCID: PMC10675046 DOI: 10.3390/plants12223844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/22/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023]
Abstract
The use of plant-based and micro-organism-based biological inputs is a sustainable agricultural practice. It promotes a suitable and better utilization of non-renewable resources in the environment. The benefits of using micro-organisms are associated with direct and indirect mechanisms, mainly related to improvements in the absorption and availability of nutrients, resulting in a consequent impact on plant growth. The main benefits of using biochemical pesticides are the promotion of sustainability and the management of resistance to pests and diseases. Although the use of micro-organisms and botanical metabolites is a promising agricultural alternative, they are still primarily concentrated in grain crops. There is a huge opportunity to expand the plant-based and micro-organism-based biological inputs used in agriculture due to the wide range of mechanisms of action of those products. At a global level, several terminologies have been adopted to characterize biological inputs, but many terms used conflict with Brazilian legislation. This review will clarify the classes of biological inputs existing in Brazil as well as present the application and evolution of the market for microbiological and plant-based inputs.
Collapse
Affiliation(s)
- Cláudio Roberto Fonsêca Sousa Soares
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Imunologia e Parasitologia, Campus Universitário Reitor João David Ferreira Lima, Trindade, Florianópolis 88040-900, SC, Brazil; (A.G.H.); (E.P.d.S.)
| | - Anabel González Hernández
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Imunologia e Parasitologia, Campus Universitário Reitor João David Ferreira Lima, Trindade, Florianópolis 88040-900, SC, Brazil; (A.G.H.); (E.P.d.S.)
| | - Emanuela Pille da Silva
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Imunologia e Parasitologia, Campus Universitário Reitor João David Ferreira Lima, Trindade, Florianópolis 88040-900, SC, Brazil; (A.G.H.); (E.P.d.S.)
| | | | - Danyella Fernandes Bonfim
- Agricultural Engineer, SHIN CA 9, Lt 13-15, Ed. Porto do Lago, Lago Norte, Brasília 71503-509, DF, Brazil;
| | - Giovani Leone Zabot
- Coordenação Acadêmica, Universidade Federal de Santa Maria, Campus Cachoeira do Sul, Cachoeira do Sul 96521-000, RS, Brazil; (G.L.Z.); (P.A.A.F.)
| | - Paulo Ademar Avelar Ferreira
- Coordenação Acadêmica, Universidade Federal de Santa Maria, Campus Cachoeira do Sul, Cachoeira do Sul 96521-000, RS, Brazil; (G.L.Z.); (P.A.A.F.)
| | - Gustavo Brunetto
- Departamento de Ciência do Solo, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil;
| |
Collapse
|
14
|
Liang B, Bai Y, Zang C, Pei X, Xie J, Lin Y, Liu X, Ahsan T, Liang C. Overexpression of the First Peanut-Susceptible Gene, AhS5H1 or AhS5H2, Enhanced Susceptibility to Pst DC3000 in Arabidopsis. Int J Mol Sci 2023; 24:14210. [PMID: 37762513 PMCID: PMC10531710 DOI: 10.3390/ijms241814210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Salicylic acid (SA) serves as a pivotal plant hormone involved in regulating plant defense mechanisms against biotic stresses, but the extent of its biological significance in relation to peanut resistance is currently lacking. This study elucidated the involvement of salicylic acid (SA) in conferring broad-spectrum disease resistance in peanuts through the experimental approach of inoculating SA-treated leaves. In several other plants, the salicylate hydroxylase genes are the typical susceptible genes (S genes). Here, we characterized two SA hydroxylase genes (AhS5H1 and AhS5H2) as the first S genes in peanut. Recombinant AhS5H proteins catalyzed SA in vitro, and showed SA 5-ydroxylase (S5H) activity. Overexpression of AhS5H1 or AhS5H2 decreased SA content and increased 2,5-DHBA levels in Arabidopsis, suggesting that both enzymes had a similar role in planta. Moreover, overexpression of each AhS5H gene increased susceptibility to Pst DC3000. Analysis of the transcript levels of defense-related genes indicated that the expression of AhS5H genes, AhNPR1 and AhPR10 was simultaneously induced by chitin. Overexpression of each AhS5H in Arabidopsis abolished the induction of AtPR1 or AtPR2 upon chitin treatment. Eventually, AhS5H2 expression levels were highly correlated with SA content in different tissues of peanut. Hence, the expression of AhS5H1 and AhS5H2 was tissue-specific.
Collapse
Affiliation(s)
- Bingbing Liang
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China; (B.L.)
| | - Yuanjun Bai
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China; (B.L.)
- Institute of Rice Research, Liaoning Academy of Agricultural Sciences, Shenyang 110101, China
| | - Chaoqun Zang
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China; (B.L.)
| | - Xue Pei
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China; (B.L.)
| | - Jinhui Xie
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China; (B.L.)
| | - Ying Lin
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China; (B.L.)
| | - Xiaozhou Liu
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China; (B.L.)
| | - Taswar Ahsan
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China; (B.L.)
| | - Chunhao Liang
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China; (B.L.)
| |
Collapse
|
15
|
Karczyński P, Orłowska A, Kępczyńska E. Two Medicago truncatula growth-promoting rhizobacteria capable of limiting in vitro growth of the Fusarium soil-borne pathogens modulate defense genes expression. PLANTA 2023; 257:118. [PMID: 37173556 PMCID: PMC10181981 DOI: 10.1007/s00425-023-04145-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
MAIN CONCLUSION PGPRs: P. fluorescens Ms9N and S. maltophilia Ll4 inhibit in vitro growth of three legume fungal pathogens from the genus Fusarium. One or both trigger up-regulation of some genes (CHIT, GLU, PAL, MYB, WRKY) in M. truncatula roots and leaves in response to soil inoculation. Pseudomonas fluorescens (referred to as Ms9N; GenBank accession No. MF618323, not showing chitinase activity) and Stenotrophomonas maltophilia (Ll4; GenBank accession No. MF624721, showing chitinase activity), previously identified as promoting growth rhizobacteria of Medicago truncatula, were found, during an in vitro experiment, to exert an inhibitory effect on three soil-borne fungi: Fusarium culmorum Cul-3, F. oxysporum 857 and F. oxysporum f. sp. medicaginis strain CBS 179.29, responsible for serious diseases of most legumes including M. truncatula. S. maltophilia was more active than P. fluorescens in suppressing the mycelium growth of two out of three Fusarium strains. Both bacteria showed β-1,3-glucanase activity which was about 5 times higher in P. fluorescens than in S. maltophilia. Upon soil treatment with a bacterial suspension, both bacteria, but particularly S. maltophilia, brought about up-regulation of plant genes encoding chitinases (MtCHITII, MtCHITIV, MtCHITV), glucanases (MtGLU) and phenylalanine ammonia lyases (MtPAL2, MtPAL4, MtPAL5). Moreover, the bacteria up-regulate some genes from the MYB (MtMYB74, MtMYB102) and WRKY (MtWRKY6, MtWRKY29, MtWRKY53, MtWRKY70) families which encode TFs in M. truncatula roots and leaves playing multiple roles in plants, including a defense response. The effect depended on the bacterium species and the plant organ. This study provides novel information about effects of two M. truncatula growth-promoting rhizobacteria strains and suggests that both have a potential to be candidates for PGPR inoculant products on account of their ability to inhibit in vitro growth of Fusarium directly and indirectly by up-regulation of some defense priming markers such as CHIT, GLU and PAL genes in plants. This is also the first study of the expression of some MYB and WRKY genes in roots and leaves of M. truncatula upon soil treatment with two PGPR suspensions.
Collapse
Affiliation(s)
- Piotr Karczyński
- Institute of Biology, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland
| | - Anna Orłowska
- Institute of Biology, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland
| | - Ewa Kępczyńska
- Institute of Biology, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland.
| |
Collapse
|
16
|
Ponsankar A, Senthil-Nathan S, Vasantha-Srinivasan P, Pandiyan R, Karthi S, Kalaivani K, Chellappandian M, Narayanaswamy R, Thanigaivel A, Patcharin K, Mahboob S, Al-Ghanim KA. Systematic induced resistance in Solanum lycopersicum (L.) against vascular wilt pathogen (Fusarium oxysporum f. sp. lycopersici) by Citrullus colocynthis and Trichoderma viride. PLoS One 2023; 18:e0278616. [PMID: 37130086 PMCID: PMC10153711 DOI: 10.1371/journal.pone.0278616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/20/2022] [Indexed: 05/03/2023] Open
Abstract
The antifungal effects of Citrullus colocynthis extract (Hexane, chloroform, methanol, and water) were tested in vitro on Fusarium oxysporum f. sp. lycopersici (Sacc.) W. C. Snyder & H. N. Hans (FOL), the causal agent of Fusarium wilt. Of these, methanol and water extract at 10% showed the highest inhibition of mycelial growth of FOL by 12.32 and 23.61 mm respectively. The antifungal compounds were identified through Fourier transform infrared (FT-IR) spectroscopy and gas chromatography-mass spectroscopy (GC-MS). The methanol extract was compatible with the biocontrol agent Trichoderma viride. The antagonistic fungi were mass-cultured under laboratory conditions using sorghum seeds. Both T. viride and C. colocynthis methanol extract was also tested alone and together against FOL under both in vitro and in vivo conditions. The combination of T. viride and C. colocynthis showed the highest percentage of antifungal activity (82.92%) against FOL under in vitro conditions. This study revealed that induced systemic resistance (ISR) in enhancing the disease resistance in tomato plants against Fusarium wilt disease. The combined treatment of T. viride and C. colocynthis significantly reduced the disease incidence and index by 21.92 and 27.02% in greenhouse conditions, respectively. Further, the induction of defense enzymes, such as peroxidase (PO), polyphenol oxidase (PPO), β-1,3-glucanase, and chitinase were studied. The accumulation of defense enzyme was greater in plants treated with a combination of T. viride and C. colocynthis compared to the control. Reduction of wilt disease in tomato plants due to the involvement of defense-related enzymes is presumed through this experiment.
Collapse
Affiliation(s)
- Athirstam Ponsankar
- Division of Bio-pesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, India
| | - Sengottayan Senthil-Nathan
- Division of Bio-pesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, India
| | - Prabhakaran Vasantha-Srinivasan
- Department of Bioinformatics, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha School of Engineering, Chennai, India
| | - Raghuraman Pandiyan
- Department of Bioinformatics, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha School of Engineering, Chennai, India
| | - Sengodan Karthi
- Division of Bio-pesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, India
- Department of Entomology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Kandaswamy Kalaivani
- Post Graduate and Research Department of Zoology, Sri Parasakthi College for Women, Courtrallam, Tirunelveli, Tamil Nadu, India
| | - Muthiah Chellappandian
- PG and Research Department of Botany, V.O. Chidambaram College, Thoothukudi, Tamil Nadu, India
| | - Radhakrishnan Narayanaswamy
- Department of Biochemistry, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Medical College and Hospital, Chennai, Tamil Nadu, India
| | - Annamalai Thanigaivel
- Division of Bio-pesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, India
| | - Krutmuang Patcharin
- Faculty of Agriculture, Department of Entomology and Plant Pathology, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Agriculture, Innovative Agriculture Research Center, Chiang Mai University, Chiang Mai, Thailand
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
17
|
Wang J, Zhao H, Chen T, Lin W, Lin S. Effect of Burkholderia ambifaria LK-P4 inoculation on the plant growth characteristics, metabolism, and pharmacological activity of Anoectochilus roxburghii. FRONTIERS IN PLANT SCIENCE 2022; 13:1043042. [PMID: 36531397 PMCID: PMC9755642 DOI: 10.3389/fpls.2022.1043042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Plant growth-promoting bacteria (PGPB) represents a common biological fertilizer with remarkable effect in improving crop production and environmental friendliness. METHODS In the present work, we presented a detailed characterization of plant morphology and physiology, metabolism, and pharmacological activity of A. roxburghii between Burkholderia ambifaria LK-P4 inoculation and un-inoculation (CK) treatment by routine analytical techniques (include microscopy and enzymatic activity assays and so on) coupled with metabolomics approaches. RESULTS Morphological and physiological results showedthat the P4 bacteria could significantly increase plant stomatal density, freshweight, survival rate,and the content of total flavonoids in leaves but reducethe amount of free amino acid. Furthermore, metabolite data showed that fatty acids (linoleic acid, linolenic acid, stearic acid) and active substance (kyotorphin and piceatannol) were specifically up-regulated in P4 inoculation. It was also demonstrated that the differential metabolites were involved in citrate cycle, glyoxylate and dicarboxylate metabolism, and biosynthesis of unsaturated fatty acids pathway. In addition, pharmacological efficacy found that A. roxburghii under P4 inoculation can significantly decrease (p < 0.05) blood glucose levels and protect the organs of mice with similar effect of Glibenclamide tablets. CONLUSION Overall, it can be seen that the exogenous P4 bacteria can promote the growth and increase content of special metabolites in A. roxburghii. This study provided theoretical basis and supported for the high-yield and high-quality bionic cultivation of A. roxburghii.
Collapse
Affiliation(s)
- Juanying Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou Key Lab of Agro-bioengineering, Institute of Agro-bioengineering/College of Life Science, Guizhou University, Guiyang, China
| | - Hanyu Zhao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial High Education Key Laboratory of Crop Physiology and Molecular Ecology, College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ting Chen
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial High Education Key Laboratory of Crop Physiology and Molecular Ecology, College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial High Education Key Laboratory of Crop Physiology and Molecular Ecology, College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sheng Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial High Education Key Laboratory of Crop Physiology and Molecular Ecology, College of Agronomy, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
18
|
Sindhu SS, Sehrawat A, Glick BR. The involvement of organic acids in soil fertility, plant health and environment sustainability. Arch Microbiol 2022; 204:720. [DOI: 10.1007/s00203-022-03321-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/22/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
|
19
|
Sá C, Matos D, Cardoso P, Figueira E. Do Volatiles Affect Bacteria and Plants in the Same Way? Growth and Biochemical Response of Non-Stressed and Cd-Stressed Arabidopsis thaliana and Rhizobium E20-8. Antioxidants (Basel) 2022; 11:2303. [PMID: 36421489 PMCID: PMC9687498 DOI: 10.3390/antiox11112303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 09/08/2024] Open
Abstract
Plant roots are colonized by rhizobacteria, and these soil microorganisms can not only stimulate plant growth but also increase tolerance to stress through the production of volatile organic compounds. However, little is known about the effect that these plant beneficial volatiles may have on bacteria. In this study, the effects on growth and oxidative status of different concentrations of three volatiles already reported to have a positive influence on plant growth (2-butanone, 3-methyl-1-butanol, and 2,3-butanediol) were determined in A. thaliana and Rhizobium sp. strain E20-8 via airborne exposure in the presence and absence of Cd. It was expected to ascertain if the plant and the bacterium are influenced in the same way by the volatiles, and if exposure to stress (Cd) shifts the effects of volatiles on plants and bacteria. Results showed the antioxidant activity of the volatiles protecting the plant cell metabolism from Cd toxicity and increasing plant tolerance to Cd. Effects on bacteria were less positive. The two alcohols (3-methyl-1-butanol and 2,3-butanediol) increased Cd toxicity, and the ketone (2-butanone) was able to protect Rhizobium from Cd stress, constituting an alternative way to protect soil bacterial communities from stress. The application of 2-butanone thus emerges as an alternative way to increase crop production and crop resilience to stress in a more sustainable way, either directly or through the enhancement of PGPR activity.
Collapse
Affiliation(s)
- Carina Sá
- Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diana Matos
- Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paulo Cardoso
- Department of Biology and CESAM, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Department of Biology and CESAM, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
20
|
Kumar P, Singh S, Pranaw K, Kumar S, Singh B, Poria V. Bioinoculants as mitigators of multiple stresses: A ray of hope for agriculture in the darkness of climate change. Heliyon 2022; 8:e11269. [PMID: 36339753 PMCID: PMC9634370 DOI: 10.1016/j.heliyon.2022.e11269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/04/2022] [Accepted: 10/21/2022] [Indexed: 11/28/2022] Open
Abstract
Plant encounters various biotic and abiotic stresses, that affect agricultural productivity and reduce farmer's income especially under changing global climate. These environmental stresses can advance plant senescence by inducing osmotic stress, nutrient stress, hormonal imbalance, production of oxygen radicals, and ion toxicity, etc. Additionally, these stresses are not limited to plant health but also deteriorate soil health by affecting the microbial diversity of soil. To tackle this global delinquent of agriculture, several methods are suggested to ameliorate the negative effect of different types of stresses, the application of beneficial microorganisms or bioinoculants is one of them. Beneficial microorganisms that are used as bioinoculants not only facilitate plant growth by fulfilling the nutrient requirements but also assist the plant to withstand these stresses. These microorganisms produce certain chemicals such as 1-aminocyclopropane-1-carboxylate (ACC) deaminase, phytohormones, antioxidants, extracellular polysaccharide (EPS), siderophores, antibiotics, and volatile organic compounds (VOCs), etc. which help the plants to mitigate various stresses. Besides, these microbes also activate plant defence responses. Thus, these bioinoculants can effectively replace chemical inputs to supplement nutrient requirements and mitigation of multiple stresses in plants.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Surender Singh
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Kumar Pranaw
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, University of Warsaw, Miecznikowa, 102-096 Warsaw, Poland
| | - Sandeep Kumar
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Balkar Singh
- Department of Botany, Arya PG College, Panipat, Haryana, 132103, India
| | - Vikram Poria
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, Haryana, India
| |
Collapse
|
21
|
Jingjing Y, Huiqin G, Fry EL, De Long JR, Shiming T, Ting Y, Weibo R. Plant roots send metabolic signals to microbes in response to long-term overgrazing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156241. [PMID: 35644397 DOI: 10.1016/j.scitotenv.2022.156241] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/22/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Overgrazing directly and indirectly affects soil microorganisms, which can have feedback effects on plant growth. Little is known about the root metabolites plants produce and whether they recruit beneficial microbes in response to overgrazing. Here, we used the dominant grassland species Leymus chinensis to explore correlations between root metabolites and the rhizosphere microbiome shaped by long-term overgrazing, which was determined by using LC-MS technology and high-throughput sequencing. In total, 839 metabolites were detected, with 41 significantly higher and 3 significantly lower in overgrazing versus grazing exclusion plots. The rhizosphere bacterial community was changed, but the fungal community was not altered. Moreover, 11 bacterial orders were found only in the overgrazed samples, and these showed close relationships to root metabolites and certain soil properties. Of these, Latescibacterales, B10-SB3A, and Nitrosococcales are known to be involved in growth promotion, C and N metabolism, respectively. In addition, root metabolites play an important role in mediating root-fungi interactions. The beneficial fungal orders Agaricales and Sordariales have a tread to be higher maybe due to root metabolites, mainly facilitate nutrient absorption and protect organic carbon in the soil, respectively. Our results indicate that grassland plants send metabolic signals to recruit key beneficial bacteria and stabilize fungal communities to alleviate grazing-induced stress in typical grassland ecosystems.
Collapse
Affiliation(s)
- Yin Jingjing
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Guo Huiqin
- Faculty of Life Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Ellen L Fry
- Department of Biology, Edge Hill University, Ormskirk, Lancashire L39 4QP, UK
| | | | - Tang Shiming
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Yuan Ting
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China.
| | - Ren Weibo
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China.
| |
Collapse
|
22
|
Sarma H, Narayan M, Peralta-Videa JR, Lam SS. Exploring the significance of nanomaterials and organic amendments - Prospect for phytoremediation of contaminated agroecosystem. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119601. [PMID: 35709913 DOI: 10.1016/j.envpol.2022.119601] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/10/2022] [Accepted: 06/07/2022] [Indexed: 05/22/2023]
Abstract
Emerging micro-pollutants have rapidly contaminated the agro-ecosystem, posing serious challenges to a sustainable future. The vast majority of them have infiltrated the soil and damaged agricultural fields and crops after being released from industry. These pollutants and their transformed products are also transported in vast quantities which further exacerbate the damage. Sustainable remediation techniques are warranted for such large amounts of contaminants. As aforementioned, many of them have been detected at very high concentrations in soil and water which adversely affect crop physiology by disrupting different metabolic processes. To combat this situation, nanomaterials and other organic amendments assisted phytoremediation ware considered as a viable alternative. It is a potent synergistic activity between the biological system and the supplied organic or nanomaterial material to eliminate emerging contaminants and micropollutants from crop fields. This can be effectively be applied to degraded crop fields and could potentially embody a green technology for sustainable agriculture.
Collapse
Affiliation(s)
- Hemen Sarma
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar(BTR), Assam, 783370, India; Institutional Biotech Hub, Department of Botany, Nanda Nath Saikia College, Titabar, Assam, 785630, India.
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W. University Ave., El Paso, TX, 79968, USA
| | - Jose R Peralta-Videa
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W. University Ave., El Paso, TX, 79968, USA
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| |
Collapse
|
23
|
Jia R, Chen J, Hu L, Liu X, Xiao K, Wang Y. Alcaligenes faecalis Juj3 alleviates Plasmodiophora brassicae stress to cabbage via promoting growth and inducing resistance. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.942409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Clubroot is a devastating disease threatening global cruciferous vegetable production caused by Plasmodiophora brassicae (Pb). We have evaluated the positive effects of the Alcaligenes faecalis Juj3 on cabbage growth promotion and Pb stress alleviation through pot and field experiments. The Juj3 strain was isolated from a healthy cabbage rhizosphere with growth-promoting characteristics and was identified as A. faecalis based on morphological traits and phylogeny. Seed germination assays revealed that Juj3 inoculation enhances cabbage bud shoot and root growth. In pot experiments, inoculation with Juj3 fermentation powder at cabbage sowing dates significantly improved the seedling biomass. Combining seed treatments with root irrigation after transplanting considerably reduced the clubroot disease index and resulted in appreciable biocontrol efficacy (83.7%). Gene expression analyses of cabbage after Juj3 inoculation showed that PR2 and EIN3 expression were significantly up-regulated. Physiologically, Juj3 inoculation enhanced cabbage chlorophyll content and root activity in a normal environment. Irrespective of whether plants were under normal environment or Pb stresses, Juj3 improved photosynthesis. Field trial analyses revealed that Juj3 exhibits satisfactory biocontrol efficacy in cabbage (51.4%) and Chinese cabbage (37.7%). Moreover, Juj3 could also enhance cabbage and Chinese cabbage biomass to improve the yield quality. These findings pave the way for future use of A. faecalis as biocontrol agents for clubroot and reveal the great potential of the rhizobacterium for plant growth-promoting applications in agriculture and horticulture.
Collapse
|
24
|
Novikova II, Popova EV, Krasnobaeva IL, Kovalenko NM. The Use of Chitosan Salicylate to Increase the Biological Efficiency of Vitaplan against Cochliobolus sativus. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822030103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Aldorfová A, Dostálek T, Münzbergová Z. Effects of soil conditioning, root and shoot litter addition interact to determine the intensity of plant–soil feedback. OIKOS 2022. [DOI: 10.1111/oik.09025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Anna Aldorfová
- Inst. of Botany of the Czech Academy of Sciences Průhonice Czech Republic
- Dept of Botany, Faculty of Science, Charles Univ. in Prague Praha 2 Czech Republic
| | - Tomáš Dostálek
- Inst. of Botany of the Czech Academy of Sciences Průhonice Czech Republic
- Dept of Botany, Faculty of Science, Charles Univ. in Prague Praha 2 Czech Republic
| | - Zuzana Münzbergová
- Inst. of Botany of the Czech Academy of Sciences Průhonice Czech Republic
- Dept of Botany, Faculty of Science, Charles Univ. in Prague Praha 2 Czech Republic
| |
Collapse
|
26
|
Shukla V, Kumar S, Tripathi YN, Upadhyay RS. Bacillus subtilis- and Pseudomonas fluorescens-Mediated Systemic Resistance in Tomato Against Sclerotium rolfsii and Study of Physio-Chemical Alterations. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:851002. [PMID: 37746200 PMCID: PMC10512241 DOI: 10.3389/ffunb.2022.851002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/10/2022] [Indexed: 09/26/2023]
Abstract
The present study is a comparative study between Reactive Oxygen Species (ROS) signaling and antioxidative enzymatic signaling and deals with induced systemic resistance (ISR) in enhancing the disease resistance in typical tomato plant (Solanum lycopersicum L.) infected by the collar rot fungus, Sclerotium rolfsii (Teleomorph: Athelia rolfsii) by priming with Bacillus subtilis, Pseudomonas fluorescens, and their microbial consortia by a single strain of Bacillus subtilis, and P. fluorescens as well as by developed microbial consortium with both bacteria. Leaf samples were collected after different durations of pathogen inoculation, i.e., 1, 2, 3, and 4 days, and the systemic level of oxidative stress parameters, such as hydrogen peroxide (H2O2), photosynthetic apparatus, superoxide radicals, and enzymatic antioxidants, were studied. Plant mortality under various treatments in two different seasons was calculated. The highest H2O2 was scavenged by the microbial consortium-treated plants (B1P1) and the lowest in pathogen-challenged plants (PC) compared to the untreated control. Cellular damage and reduction in the chlorophyll pigments were the highest at 48 h, and the photosynthetic efficiency (Fv/Fm) was evaluated from 24 to 96 h; the lowest values were observed for pathogen-challenged plants and the highest for B1P1. Enzymatic antioxidants showed the maximum value for B1P1 and the minimum for PC compared to the unchallenged control. Furthermore, an analysis of variance and principal component analysis (PCA) were conducted to examine the effect of the evaluation time (ET) and inoculation conditions (ICs) alone and in combination (ET × IC) on the physiological and biochemical parameters; accordingly, the score and the loading plots were constructed. Tomato root sections inoculated with different treatments were observed through scanning electron microscopy (SEM) to validate the potentiality of primed biocontrol agents in controlling the invasion of the pathogen. Further studies on the potential of this isolate to enhance the plant growth at the field level would strengthen the possibility of using the isolate as an alternative for organic fertilizers and pesticides.
Collapse
Affiliation(s)
- Vaishali Shukla
- Laboratory of Mycopathology and Microbial Technology, Centre of Advance Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | | | | | | |
Collapse
|
27
|
Murgia I, Marzorati F, Vigani G, Morandini P. Plant iron nutrition: the long road from soil to seeds. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1809-1824. [PMID: 34864996 DOI: 10.1093/jxb/erab531] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
Iron (Fe) is an essential plant micronutrient since many cellular processes including photosynthesis, respiration, and the scavenging of reactive oxygen species depend on adequate Fe levels; however, non-complexed Fe ions can be dangerous for cells, as they can act as pro-oxidants. Hence, plants possess a complex homeostatic control system for safely taking up Fe from the soil and transporting it to its various cellular destinations, and for its subcellular compartmentalization. At the end of the plant's life cycle, maturing seeds are loaded with the required amount of Fe needed for germination and early seedling establishment. In this review, we discuss recent findings on how the microbiota in the rhizosphere influence and interact with the strategies adopted by plants to take up iron from the soil. We also focus on the process of seed-loading with Fe, and for crop species we also consider its associated metabolism in wild relatives. These two aspects of plant Fe nutrition may provide promising avenues for a better comprehension of the long pathway of Fe from soil to seeds.
Collapse
Affiliation(s)
- Irene Murgia
- Department of Biosciences, University of Milano, Milano, Italy
| | - Francesca Marzorati
- Department of Environmental Science and Policy, University of Milano, Milano, Italy
| | - Gianpiero Vigani
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Piero Morandini
- Department of Environmental Science and Policy, University of Milano, Milano, Italy
| |
Collapse
|
28
|
Palermo TB, Cappellari LDR, Chiappero J, Giordano W, Banchio E. Beneficial rhizobacteria inoculation on Ocimum basilicum reduces the growth performance and nutritional value of Spodoptera frugiperda. PEST MANAGEMENT SCIENCE 2022; 78:778-784. [PMID: 34708509 DOI: 10.1002/ps.6691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/07/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Plant growth-promoting rhizobacteria (PGPR) has a significant role in plant-insect interaction. However, the extent of their impact on insects is still not well understood. This investigation was designed to evaluate the role of inoculation with Bacillus amyloliquefaciens GB03 on sweet basil (Ocimum basilucum L.) in the development and nutritional parameters of Spodoptera frugiperda. In addition, the feeding preferences on inoculated and non-inoculated plants were assessed. RESULTS Spodoptera frugiperda larvae reared with inoculated sweet basil leaves had a strong negative effect on the development of the insect, resulting in lower larval and pupal weights, and a longer period for larval-adult development. Moreover, adult emergence was reduced, but the relative consumption rate (RCR) value was unaffected, thereby revealing no alteration of the palatability. Growth rate and nutritional indicators, such as the efficiency of conversion of ingested food (ECI) and the efficiency of conversion of digested food (ECD), were reduced in larvae reared from treated plants. In the choice test, larvae avoided feeding on inoculated leaves. CONCLUSION The higher occurrence of secondary metabolites in inoculated plants could have been the reason for the reduction of the plant nutritional rate and also for the food selection, since it has been previously reported that GB03 inoculated sweet basil increased the essential oil yield. Therefore, PGPR inoculation could be used as a growth promoter, making it a promising candidate for plant protection programs against insects in aromatic plant production. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tamara Belén Palermo
- INBIAS Instituto de Biotecnología Ambiental y Salud (CONICET - Universidad Nacional de Río Cuarto), Campus Universitario, Río Cuarto, Argentina
| | - Lorena Del Rosario Cappellari
- INBIAS Instituto de Biotecnología Ambiental y Salud (CONICET - Universidad Nacional de Río Cuarto), Campus Universitario, Río Cuarto, Argentina
| | - Julieta Chiappero
- INBIAS Instituto de Biotecnología Ambiental y Salud (CONICET - Universidad Nacional de Río Cuarto), Campus Universitario, Río Cuarto, Argentina
| | - Walter Giordano
- INBIAS Instituto de Biotecnología Ambiental y Salud (CONICET - Universidad Nacional de Río Cuarto), Campus Universitario, Río Cuarto, Argentina
| | - Erika Banchio
- INBIAS Instituto de Biotecnología Ambiental y Salud (CONICET - Universidad Nacional de Río Cuarto), Campus Universitario, Río Cuarto, Argentina
| |
Collapse
|
29
|
Hydrolytic Enzymes from PGPR Against Plant Fungal Pathogens. Fungal Biol 2022. [DOI: 10.1007/978-3-031-04805-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
30
|
Malviya MK, Li CN, Lakshmanan P, Solanki MK, Wang Z, Solanki AC, Nong Q, Verma KK, Singh RK, Singh P, Sharma A, Guo DJ, Dessoky ES, Song XP, Li YR. High-Throughput Sequencing-Based Analysis of Rhizosphere and Diazotrophic Bacterial Diversity Among Wild Progenitor and Closely Related Species of Sugarcane ( Saccharum spp. Inter-Specific Hybrids). FRONTIERS IN PLANT SCIENCE 2022; 13:829337. [PMID: 35283913 PMCID: PMC8908384 DOI: 10.3389/fpls.2022.829337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/04/2022] [Indexed: 05/14/2023]
Abstract
Considering the significant role of genetic background in plant-microbe interactions and that most crop rhizospheric microbial research was focused on cultivars, understanding the diversity of root-associated microbiomes in wild progenitors and closely related crossable species may help to breed better cultivars. This study is aimed to fill a critical knowledge gap on rhizosphere and diazotroph bacterial diversity in the wild progenitors of sugarcane, the essential sugar and the second largest bioenergy crop globally. Using a high-throughput sequencing (HTS) platform, we studied the rhizosphere and diazotroph bacterial community of Saccharum officinarum L. cv. Badila (BRS), Saccharum barberi (S. barberi) Jesw. cv Pansahi (PRS), Saccharum robustum [S. robustum; (RRS), Saccharum spontaneum (S. spontaneum); SRS], and Saccharum sinense (S. sinense) Roxb. cv Uba (URS) by sequencing their 16S rRNA and nifH genes. HTS results revealed that a total of 6,202 bacteria-specific operational taxonomic units (OTUs) were identified, that were distributed as 107 bacterial groups. Out of that, 31 rhizobacterial families are commonly spread in all five species. With respect to nifH gene, S. barberi and S. spontaneum recorded the highest and lowest number of OTUs, respectively. These results were validated by quantitative PCR analysis of both genes. A total of 1,099 OTUs were identified for diazotrophs with a core microbiome of 9 families distributed among all the sugarcane species. The core microbiomes were spread across 20 genera. The increased microbial diversity in the rhizosphere was mainly due to soil physiochemical properties. Most of the genera of rhizobacteria and diazotrophs showed a positive correlation, and few genera negatively correlated with the soil properties. The results showed that sizeable rhizospheric diversity exists across progenitors and close relatives. Still, incidentally, the rhizosphere microbial abundance of progenitors of modern sugarcane was at the lower end of the spectrum, indicating the prospect of Saccharum species introgression breeding may further improve nutrient use and disease and stress tolerance of commercial sugarcane. The considerable variation for rhizosphere microbiome seen in Saccharum species also provides a knowledge base and an experimental system for studying the evolution of rhizobacteria-host plant association during crop domestication.
Collapse
Affiliation(s)
- Mukesh Kumar Malviya
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Chang-Ning Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Prakash Lakshmanan
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia, QLD, Australia
| | - Manoj Kumar Solanki
- Plant Cytogenetics and Molecular Biology Group, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Zhen Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Biology and Pharmacy, Yulin Normal University, Yulin, China
| | | | - Qian Nong
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Rajesh Kumar Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Pratiksha Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Anjney Sharma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Dao-Jun Guo
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- College of Agriculture, Guangxi University, Nanning, China
| | | | - Xiu-Peng Song
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- *Correspondence: Xiu-Peng Song
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- College of Agriculture, Guangxi University, Nanning, China
- Yang-Rui Li ; orcid.org/0000-0002-7559-9244
| |
Collapse
|
31
|
Subramaniam S, Zainudin NAIM, Aris A, Hasan ZAE. Role of Trichoderma in Plant Growth Promotion. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Kumar S, Diksha, Sindhu SS, Kumar R. Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 3:100094. [PMID: 35024641 PMCID: PMC8724949 DOI: 10.1016/j.crmicr.2021.100094] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 01/02/2023] Open
Abstract
Modern intensive agricultural practices face numerous challenges that pose major threats to global food security. In order to address the nutritional requirements of the ever-increasing world population, chemical fertilizers and pesticides are applied on large scale to increase crop production. However, the injudicious use of agrochemicals has resulted in environmental pollution leading to public health hazards. Moreover, agriculture soils are continuously losing their quality and physical properties as well as their chemical (imbalance of nutrients) and biological health. Plant-associated microbes with their plant growth- promoting traits have enormous potential to solve these challenges and play a crucial role in enhancing plant biomass and crop yield. The beneficial mechanisms of plant growth improvement include enhanced nutrient availability, phytohormone modulation, biocontrol of phytopathogens and amelioration of biotic and abiotic stresses. Solid-based or liquid bioinoculant formulation comprises inoculum preparation, addition of cell protectants such as glycerol, lactose, starch, a good carrier material, proper packaging and best delivery methods. Recent developments of formulation include entrapment/microencapsulation, nano-immobilization of microbial bioinoculants and biofilm-based biofertilizers. This review critically examines the current state-of-art on use of microbial strains as biofertilizers and the important roles performed by these beneficial microbes in maintaining soil fertility and enhancing crop productivity.
Collapse
Key Words
- ABA, Abscisic acid
- ACC, 1-aminocyclopropane-1-carboxylic acid
- AM, Arbuscular mycorrhiza
- APX, Ascorbate peroxidase
- BGA, Blue green algae
- BNF, Biological nitrogen fixation
- Beneficial microorganisms
- Biofertilizers
- CAT, Catalase
- Crop production
- DAPG, 2, 4-diacetyl phloroglucinol
- DRB, Deleterious rhizospheric bacteria
- GA, Gibberellic acid
- GPX, Glutathione/thioredoxin peroxidase
- HCN, Hydrogen cyanide
- IAA, Indole acetic acid
- IAR, Intrinsic antibiotic resistance
- ISR, Induced systemic resistance
- KMB, Potassium mobilizing bacteria
- KSMs, Potassium-solubilizing microbes
- MAMPs, Microbes associated molecular patterns
- PAMPs, Pathogen associated molecular patterns
- PCA, Phenazine-1-carboxylic acid
- PGP, Plant growth-promoting
- PGPR, Plant growth-promoting rhizobacteria
- POD, Peroxidase
- PSB, Phosphate-solubilizing bacteria
- Rhizosphere
- SAR, Systemic acquired resistance
- SOB, Sulphur oxidizing bacteria
- Soil fertility
- Sustainable agriculture
Collapse
Affiliation(s)
- Satish Kumar
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Diksha
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Satyavir S. Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Rakesh Kumar
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, India
| |
Collapse
|
33
|
Ma YN, Ni YX, Cao ZY, Pan JY, Tuwang MC, Yang H, Chen MX, Mou RX. Chemistry-specific responses due to rice-microbe interactions in the rhizosphere to counteract mefenacet stress. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 179:104970. [PMID: 34802520 DOI: 10.1016/j.pestbp.2021.104970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
The widespread use of herbicides has raised considerable concern with regard to their harmful consequences on plant growth, crop yield and the soil ecological environment. It has been well documented that colonization of rhizobacteria in the plant root system has a positive effect on activation of plant defenses to protect the plant from damage. Using the platform of high-throughput analysis with tandem mass spectrometry and Illumina sequencing, we identified the specific activated rhizobacteria, the key growth stimulating substances and the metabolic pathways involved in seedling stage tolerance to mefenacet stress in rice. The relative abundance of beneficial rhizospheremicrobes such as Acidobacteria and Firmicutes increased with mefenacet treatment, indicating that the rhizosphere recruited some beneficial microbes to resist mefenacet stress. Mefenacet treatment induced alterations in several interlinked metabolic pathways, many of which were related to activation of defense response signaling, especially the indole-3-pyruvate pathway. Indole-3-acetaldehyde and indole-3-ethanol from this pathway may act as flexible storage pools for indole-3-acetic acid (IAA). Our findings also suggest that a significant increase of IAA produced by the enrichment of beneficial rhizospheremicrobes, for example genus Bacillus, alleviated the dwarfing phenomenon observed in hydroponic medium following mefenacet exposure, which may be a key signaling molecule primarily for phytostimulation and phytotolerance in microbe-plant interactions.
Collapse
Affiliation(s)
- You-Ning Ma
- China National Rice Research Institute, Hangzhou 310006, China
| | - Yan-Xia Ni
- China National Rice Research Institute, Hangzhou 310006, China
| | - Zhao-Yun Cao
- China National Rice Research Institute, Hangzhou 310006, China
| | - Jiu-Yue Pan
- China National Rice Research Institute, Hangzhou 310006, China
| | - Man-Cuo Tuwang
- China National Rice Research Institute, Hangzhou 310006, China
| | - Huan Yang
- China National Rice Research Institute, Hangzhou 310006, China
| | - Ming-Xue Chen
- China National Rice Research Institute, Hangzhou 310006, China
| | - Ren-Xiang Mou
- China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
34
|
Up-Regulated Salivary Proteins of Brown Marmorated Stink Bug Halyomorpha halys on Plant Growth-Promoting Rhizobacteria-Treated Plants. J Chem Ecol 2021; 47:747-754. [PMID: 34550513 DOI: 10.1007/s10886-021-01293-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/09/2021] [Accepted: 06/06/2021] [Indexed: 10/20/2022]
Abstract
Plant Growth-Promoting Rhizobacteria (PGPR) induce systemic resistance (SR) in plants, decreasing the development of phytopathogens. The FZB42 strain of Bacillus velezensis is known to induce an SR against pathogens in various plant species. Previous studies suggested that it could also influence the interactions between plants and associated pests. However, insects have developed several strategies to counteract plant defenses, including salivary proteins that allow the insect escaping detection, manipulating defensive pathways to its advantage, deactivating early signaling processes, or detoxifying secondary metabolites. Because Brown Marmorated Stink Bug (BMSB) Halyomorpha halys is highly invasive and polyphagous, we hypothesized that it could detect the PGPR-induced systemic defenses in the plant, and efficiently adapt its salivary compounds to counteract them. Therefore, we inoculated a beneficial rhizobacterium on Vicia faba roots and soil, previous to plant infestation with BMSB. Salivary gland proteome of BMSB was analyzed by LC-MS/MS and a label-free quantitative proteomic method. Among the differentially expressed proteins, most were up-regulated in salivary glands of insects exposed to PGPR-treated plants for 24 h. We could confirm that BMSB was confronted with a stress during feeding on PGPR-treated plants. The to-be-confirmed defensive state of the plant would have been rapidly detected by the invasive H. halys pest, which consequently modified its salivary proteins. Among the up-regulated proteins, many could be associated with a role in plant defense counteraction, and more especially in allelochemicals detoxification or sequestration.
Collapse
|
35
|
Selection of Endophytic Strains for Enhanced Bacteria-Assisted Phytoremediation of Organic Pollutants Posing a Public Health Hazard. Int J Mol Sci 2021; 22:ijms22179557. [PMID: 34502466 PMCID: PMC8431480 DOI: 10.3390/ijms22179557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 01/01/2023] Open
Abstract
Anthropogenic activities generate a high quantity of organic pollutants, which have an impact on human health and cause adverse environmental effects. Monitoring of many hazardous contaminations is subject to legal regulations, but some substances such as therapeutic agents, personal care products, hormones, and derivatives of common organic compounds are currently not included in these regulations. Classical methods of removal of organic pollutants involve economically challenging processes. In this regard, remediation with biological agents can be an alternative. For in situ decontamination, the plant-based approach called phytoremediation can be used. However, the main disadvantages of this method are the limited accumulation capacity of plants, sensitivity to the action of high concentrations of hazardous pollutants, and no possibility of using pollutants for growth. To overcome these drawbacks and additionally increase the efficiency of the process, an integrated technology of bacteria-assisted phytoremediation is being used recently. For the system to work, it is necessary to properly select partners, especially endophytes for specific plants, based on the knowledge of their metabolic abilities and plant colonization capacity. The best approach that allows broad recognition of all relationships occurring in a complex community of endophytic bacteria and its variability under the influence of various factors can be obtained using culture-independent techniques. However, for practical application, culture-based techniques have priority.
Collapse
|
36
|
Rhizobacteria Inoculation and Caffeic Acid Alleviated Drought Stress in Lentil Plants. SUSTAINABILITY 2021. [DOI: 10.3390/su13179603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Lentil (Lens culinaris Medik) is an important component of the human diet due to its high mineral and protein contents. Abiotic stresses, i.e., drought, decreases plant growth and yield. Drought causes the synthesis of reactive oxygen species, which decrease a plant’s starch contents and growth. However, ACC-deaminase (1-aminocyclopropane-1-carboxylate deaminase) producing rhizobacteria can alleviate drought stress by decreasing ethylene levels. On the other hand, caffeic acid (CA) can also positively affect cell expansion and turgor pressure maintenance under drought stress. Therefore, the current study was planned with an aim to assess the effect of CA (0, 20, 50 and 100 ppm) and ACC-deaminase rhizobacteria (Lysinibacillus fusiform, Bacillus amyloliquefaciens) on lentils under drought stress. The combined application of CA and ACC-deaminase containing rhizobacteria significantly improved plant height (55%), number of pods per plant (51%), 1000-grain weight (45%), nitrogen concentration (56%), phosphorus concentration (19%), potassium concentration (21%), chlorophyll (54%), relative water contents RWC (60%) and protein contents (55%). A significant decrease in electrolyte leakage (30%), proline contents (44%), and hydrogen peroxide contents (54%), along with an improvement in cell membrane stability (34% over control) validated the combined use of CA and rhizobacteria. In conclusion, co-application of CA (20 ppm) and ACC-deaminase producing rhizobacteria can significantly improve plant growth and yield for farmers under drought stress. More investigations are suggested at the field level to select the best rhizobacteria and CA level for lentils under drought.
Collapse
|
37
|
Phytase-Producing Rahnella aquatilis JZ-GX1 Promotes Seed Germination and Growth in Corn ( Zea mays L.). Microorganisms 2021; 9:microorganisms9081647. [PMID: 34442724 PMCID: PMC8400716 DOI: 10.3390/microorganisms9081647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 11/30/2022] Open
Abstract
Phytase plays an important role in crop seed germination and plant growth. In order to fully understand the plant growth-promoting mechanism by Rahnella aquatilis JZ-GX1, the effect of this strain on germination of maize seeds was determined in vitro, and the colonization of maize root by R. aquatilis JZ-GX1 was observed by scanning electron microscope. Different inoculum concentrations and Phytate-related soil properties were applied to investigate the effect of R. aquatilis JZ-GX1 on the growth of maize seedlings. The results showed that R. aquatilis JZ-GX1 could effectively secrete indole acetic acid and had significantly promoted seed germination and root length of maize. A large number of R. aquatilis JZ-GX1 cells colonized on the root surface, root hair and the root interior of maize. When the inoculation concentration was 107 cfu/mL and the insoluble organophosphorus compound phytate existed in the soil, the net photosynthetic rate, chlorophyll content, phytase activity secreted by roots, total phosphorus concentration and biomass accumulation of maize seedlings were the highest. In contrast, no significant effect of inoculation was found when the total P content was low or when inorganic P was sufficient in the soil. R. aquatilis JZ-GX1 promotes the growth of maize directly by secreting IAA and indirectly by secreting phytase. This work provides beneficial information for the development and application of R. aquatilis JZ-GX1 as a microbial fertilizer in the future.
Collapse
|
38
|
Dutta J, Thakur D. Diversity of culturable bacteria endowed with antifungal metabolites biosynthetic characteristics associated with tea rhizosphere soil of Assam, India. BMC Microbiol 2021; 21:216. [PMID: 34275448 PMCID: PMC8286567 DOI: 10.1186/s12866-021-02278-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/13/2021] [Indexed: 11/16/2022] Open
Abstract
Background Rhizosphere soil is a crucial niche for the diverse beneficial microbial communities in plant-microbe interactions. This study explores the antagonistic potential and diversity of the rhizosphere soil bacteria from commercial tea estates of Assam, India which comes under the Indo-Burma mega-biodiversity hotspot. Rhizosphere soil samples were collected from six different tea estates to isolate the bacteria. The bacterial isolates were subjected to evaluate for the antagonistic activity against fungal pathogens. The potential isolates were investigated for chitinase production and the presence of chitinase gene. The bacterial genetic diversity was studied by Amplified Ribosomal DNA Restriction Analysis (ARDRA) and BOX-PCR fingerprinting. Results A total of 217 rhizobacteria were isolated from tea rhizosphere soil, out of which 50 isolates exhibited the potential antagonistic activity against fungal pathogens. Among them, 12 isolates showed extracellular chitinase activity and the presence of chitinase genes. The chitinase genes were sequenced and the analysis of the sequences was performed by using PDB protein databank at the amino acid level. It showed the presence of ChiA and ChiA74 gene in the 6 most potent isolates which are involved in the hydrolysis of chitin. These isolates also exhibited antagonistic activity against all tested fungal pathogens. The diversity of 50 antagonistic bacterial isolates were analyzed through ARDRA and BOX-PCR fingerprinting. Diversity analysis and molecular identification of the rhizosphere isolates revealed that these antagonistic isolates predominantly belonged to the genus Bacillus followed by Enterobacter, Serratia, Lysinibacillus, Pseudomonas, and Burkholderia. Conclusion The present study establishes that rhizobacteria isolated from the poorly explored tea rhizosphere soil could be a rich reservoir for the investigation of potential antagonistic bacterial candidates for sustainable agricultural and industrial applications. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02278-z.
Collapse
Affiliation(s)
- Jintu Dutta
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India.,Present Address: Centre for the Environment, Indian Institute of Technology, Guwahati, Assam, India
| | - Debajit Thakur
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India.
| |
Collapse
|
39
|
Asaturova A, Shternshis M, Tsvetkova V, Shpatova T, Maslennikova V, Zhevnova N, Homyak A. Biological control of important fungal diseases of potato and raspberry by two Bacillus velezensis strains. PeerJ 2021; 9:e11578. [PMID: 34178462 PMCID: PMC8210809 DOI: 10.7717/peerj.11578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/19/2021] [Indexed: 11/20/2022] Open
Abstract
Stem canker and black scurf caused by Rhizoctonia solani are the important diseases in potato, while spur blight caused by Didymella applanata is a major disease in red raspberry. In Western Siberia, both crops are grown predominantly in small-scale farming that requires maximal usage of biological products for plant protection instead of chemicals. We evaluated two promising Bacillus velezensis strains BZR 336 g and BZR 517 isolated in the south of Russia (45°1′N, 38°59′E) for their biological control potentials against the potato and red raspberry diseases under the more severe weather conditions of Western Siberia (55°1′N, 82°55′ E). We tested two techniques to apply biocontrol agents: (1) coating the seeds (potato tubers) and (2) spraying over the plants (raspberry canes). In each case, we estimated B. velezensis strains on two plant cultivars differed by the disease resistance. The degree of B. velezensis influence on disease incidence and severity depended on the bacterial strain, the protected plant, and its cultivar. We also demonstrated that two B. velezensis strains significantly stimulated plant growth of potato, which contributed to the plant productivity on both cultivars. The BZR 336 g strain affected the potato productivity more than the BZR 517 strain. Under the influence of both bacterial strains, raspberry yield was significantly higher compared to the control on the susceptible cultivar. These findings indicated that two southern B. velezensis strains had proved their efficacy as biological control agents in the control of the serious fungal infection of potato and raspberry plants under the more severe ecological conditions of Western Siberia. For the first time, we demonstrated B. velezensis strains potential for use as biological control agents against R. solani on potato, and against D. applanata on red raspberry.
Collapse
Affiliation(s)
- Anzhela Asaturova
- Federal Research Center for Biological Plant Protection, Krasnodar, Krasnodar region, Russian Federation
| | - Margarita Shternshis
- Federal Research Center for Biological Plant Protection, Krasnodar, Krasnodar region, Russian Federation
| | - Vera Tsvetkova
- Federal Research Center for Biological Plant Protection, Krasnodar, Krasnodar region, Russian Federation.,Novosibirsk State Agrarian University, Novosibirsk, Russian Federation
| | - Tatyana Shpatova
- Federal Research Center for Biological Plant Protection, Krasnodar, Krasnodar region, Russian Federation.,Novosibirsk State Agrarian University, Novosibirsk, Russian Federation
| | | | - Natalya Zhevnova
- Federal Research Center for Biological Plant Protection, Krasnodar, Krasnodar region, Russian Federation
| | - Anna Homyak
- Federal Research Center for Biological Plant Protection, Krasnodar, Krasnodar region, Russian Federation
| |
Collapse
|
40
|
Imade EE, Babalola OO. Biotechnological utilization: the role of Zea mays rhizospheric bacteria in ecosystem sustainability. Appl Microbiol Biotechnol 2021; 105:4487-4500. [PMID: 34043079 DOI: 10.1007/s00253-021-11351-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/01/2022]
Abstract
Maize is an essential cereal crop and the third most essential food crop globally. The extensive dependence on pesticides and chemical fertilizers to control pests and increase crop yield, respectively, has generated an injurious impact on soil and animal health. Plant growth-promoting rhizobacteria (PGPR), which depict a broad array of bacteria inhabiting the root vicinity and root surface, have proven to be a better alternative. These organisms expressly or by implication foster the growth and development of plants by producing and secreting numerous regulatory compounds in the rhizosphere. Some rhizobacteria found to be in association with Zea mays rhizosphere include Bacillus sp., Azotobacter chroococcum, Burkholderia spp., Streptomyces spp., Pseudomonas spp., Paenibacillus spp., and Sphingobium spp. For this review, the mechanism of action of these rhizospheric bacteria was grouped into three, which are bioremediation, biofertilization, and biocontrol. KEY POINTS: • Plant-microbe interaction is vital for ecosystem functioning. • PGPR can produce volatile cues to deter ravaging insects from plants.
Collapse
Affiliation(s)
- Emmanuel Edoghogho Imade
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho, 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho, 2735, South Africa.
| |
Collapse
|
41
|
An Overview of Metabolic Activity, Beneficial and Pathogenic Aspects of Burkholderia Spp. Metabolites 2021; 11:metabo11050321. [PMID: 34067834 PMCID: PMC8156019 DOI: 10.3390/metabo11050321] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022] Open
Abstract
Burkholderia is an important bacterial species which has different beneficial effects, such as promoting the plant growth, including rhizosphere competence for the secretion of allelochemicals, production of antibiotics, and siderophores. In addition, most of Burkholderia species have demonstrated promising biocontrol action against different phytopathogens for diverse crops. In particular, Burkholderia demonstrates significant biotechnological potential as a source of novel antibiotics and bioactive secondary metabolites. The current review is concerned with Burkholderia spp. covering the following aspects: discovering, classification, distribution, plant growth promoting effect, and antimicrobial activity of different species of Burkholderia, shedding light on the most important secondary metabolites, their pathogenic effects, and biochemical characterization of some important species of Burkholderia, such as B. cepacia, B. andropogonis, B. plantarii, B. rhizoxinica, B. glumae, B. caryophylli and B. gladioli.
Collapse
|
42
|
Zafar-Ul-Hye M, Tahzeeb-Ul-Hassan M, Wahid A, Danish S, Khan MJ, Fahad S, Brtnicky M, Hussain GS, Battaglia ML, Datta R. Compost mixed fruits and vegetable waste biochar with ACC deaminase rhizobacteria can minimize lead stress in mint plants. Sci Rep 2021; 11:6606. [PMID: 33758248 PMCID: PMC7988167 DOI: 10.1038/s41598-021-86082-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
High lead (Pb) concentration in soils is becoming a severe threat to human health. It also deteriorates plants, growth, yield and quality of food. Although the use of plant growth-promoting rhizobacteria (PGPR), biochar and compost can be effective environment-friendly amendments for decreasing Pb stress in crop plants, the impacts of their simultaneous co-application has not been well documented. Thus current study was carried, was conducted to investigate the role of rhizobacteria and compost mixed biochar (CB) under Pb stress on selected soil properties and agronomic parameters in mint (Mentha piperita L.) plants. To this end, six treatments were studied: Alcaligenes faecalis, Bacillus amyloliquefaciens, CB, PGPR1 + CB, PGPR2 + CB and control. Results showed that the application A. faecalis + CB significantly decreased soil pH and EC over control. However, OM, nitrogen, phosphorus and potassium concentration were significantly improved in the soil where A. faecalis + CB was applied over control. The A. faecalis + CB treatment significantly improved mint plant root dry weight (58%), leaves dry weight (32%), chlorophyll (37%), and N (46%), P (39%) and K (63%) leave concentration, while also decreasing the leaves Pb uptake by 13.5% when compared to the unamended control. In conclusion, A. faecalis + CB has a greater potential to improve overall soil quality, fertility and mint plant productivity under high Pb soil concentration compared to the sole application of CB and A. faecalis.
Collapse
Affiliation(s)
- Muhammad Zafar-Ul-Hye
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, 60800, Pakistan
| | - Muhammad Tahzeeb-Ul-Hassan
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, 60800, Pakistan
| | - Abdul Wahid
- Department of Environmental Sciences, Bahauddin Zakariya University, Multan, Punjab, 60800, Pakistan
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, 60800, Pakistan.
| | - Muhammad Jamil Khan
- Department of Soil and Environmental Sciences, Faculty of Agriculture, Gomal University, Dera Ismail Khan, KPK, Pakistan
| | - Shah Fahad
- Department of Agronomy, The University of Haripur, Haripur, Khyber Pakhtunkhwa, 22620, Pakistan.
| | - Martin Brtnicky
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic
- Faculty of Chemistry, Institute of Chemistry and Technology of Environmental Protection, Brno University of Technology, Purkynova 118, 62100, Brno, Czech Republic
| | - Ghulam Sabir Hussain
- Department of Technical Services, Fatima Agri Sales and Services, Bahawalpur, Punjab, Pakistan
| | | | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska1, 61300, Brno, Czech Republic.
| |
Collapse
|
43
|
Zhuang L, Li Y, Wang Z, Yu Y, Zhang N, Yang C, Zeng Q, Wang Q. Synthetic community with six Pseudomonas strains screened from garlic rhizosphere microbiome promotes plant growth. Microb Biotechnol 2021; 14:488-502. [PMID: 32762153 PMCID: PMC7936309 DOI: 10.1111/1751-7915.13640] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 12/19/2022] Open
Abstract
The rhizosphere microbiome plays an important role in the growth and health of many plants, particularly for plant growth-promoting rhizobacteria (PGPR). Although the use of PGPR could improve plant production, real-world applications are still held back by low-efficiency methods of finding and using PGPR. In this study, the structure of bacterial and fungal rhizosphere communities of Jinxiang garlic under different growth periods (resume growth, bolting and maturation), soil types (loam, sandy loam and sandy soil) and agricultural practices (with and without microbial products) were explored by using amplicon sequencing. High-efficiency top-down approaches based on high-throughput technology and synthetic community (SynCom) approaches were used to find PGPR in garlic rhizosphere and improve plant production. Our findings indicated that Pseudomonas was a key PGPR in the rhizosphere of garlic. Furthermore, SynCom with six Pseudomonas strains isolated from the garlic rhizosphere were constructed, which showed that they have the ability to promote plant growth.
Collapse
Affiliation(s)
- Lubo Zhuang
- Department of Plant PathologyMOA Key Lab of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijing100193China
| | - Yan Li
- Department of Plant PathologyMOA Key Lab of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijing100193China
| | - Zhenshuo Wang
- Department of Plant PathologyMOA Key Lab of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijing100193China
| | - Yue Yu
- Department of Plant PathologyMOA Key Lab of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijing100193China
| | - Nan Zhang
- Department of Plant PathologyMOA Key Lab of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijing100193China
| | - Chang Yang
- Department of Plant PathologyMOA Key Lab of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijing100193China
| | - Qingchao Zeng
- Department of Plant PathologyMOA Key Lab of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijing100193China
| | - Qi Wang
- Department of Plant PathologyMOA Key Lab of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijing100193China
| |
Collapse
|
44
|
Karlsson I, Persson P, Friberg H. Fusarium Head Blight From a Microbiome Perspective. Front Microbiol 2021; 12:628373. [PMID: 33732223 PMCID: PMC7956947 DOI: 10.3389/fmicb.2021.628373] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/08/2021] [Indexed: 11/25/2022] Open
Abstract
The fungal genus Fusarium causes several diseases in cereals, including Fusarium head blight (FHB). A number of Fusarium species are involved in disease development and mycotoxin contamination. Lately, the importance of interactions between plant pathogens and the plant microbiome has been increasingly recognized. In this review, we address the significance of the cereal microbiome for the development of Fusarium-related diseases. Fusarium fungi may interact with the host microbiome at multiple stages during their life cycles and in different plant organs including roots, stems, leaves, heads, and crop residues. There are interactions between Fusarium and other fungi and bacteria as well as among Fusarium species. Recent studies have provided a map of the cereal microbiome and revealed how different biotic and abiotic factors drive microbiome assembly. This review synthesizes the current understanding of the cereal microbiome and the implications for Fusarium infection, FHB development, disease control, and mycotoxin contamination. Although annual and regional variations in predominant species are significant, much research has focused on Fusarium graminearum. Surveying the total Fusarium community in environmental samples is now facilitated with novel metabarcoding methods. Further, infection with multiple Fusarium species has been shown to affect disease severity and mycotoxin contamination. A better mechanistic understanding of such multiple infections is necessary to be able to predict the outcome in terms of disease development and mycotoxin production. The knowledge on the composition of the cereal microbiome under different environmental and agricultural conditions is growing. Future studies are needed to clearly link microbiome structure to Fusarium suppression in order to develop novel disease management strategies for example based on conservation biological control approaches.
Collapse
Affiliation(s)
- Ida Karlsson
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Paula Persson
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Hanna Friberg
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
45
|
Lastochkina O, Garshina D, Ivanov S, Yuldashev R, Khafizova R, Allagulova C, Fedorova K, Avalbaev A, Maslennikova D, Bosacchi M. Seed Priming with Endophytic Bacillus subtilis Modulates Physiological Responses of Two Different Triticum aestivum L. Cultivars under Drought Stress. PLANTS (BASEL, SWITZERLAND) 2020; 9:1810. [PMID: 33371269 PMCID: PMC7766295 DOI: 10.3390/plants9121810] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 11/16/2022]
Abstract
The protective effects against drought stress of the endophytic bacterium Bacillus subtilis 10-4 were measured by studying the priming response in two wheat (Triticum aestivum L.)-Ekada70 (E70) and Salavat Yulaev (SY)-lines, tolerant and susceptible to drought, respectively. B. subtilis 10-4 improved germination and growth parameters under normal conditions in both cultivars with the most pronounced effect observed in cv. E70. Under drought conditions, B. subtilis 10-4 significantly ameliorated the negative impact of stress on germination and growth of cv. E70, but had no protective effect on cv. SY. B. subtilis 10-4 induced an increase in the levels of photosynthetic chlorophyll (Chl) a, Chl b, and carotenoids (Car) in the leaves of cv. E70, both under normal and drought conditions. In cv. SY plants, bacterial inoculation decreased the contents of Chl a, Chl b, and Car under normal conditions, but pigment content were almost recovered under drought stress. B. subtilis 10-4 increased water holding capacity (WHC) of cv. E70 (but did not affect this parameter in cv. SY) and prevented the stress-induced decline in WHC in both cultivars. Notably, B. subtilis 10-4 increased endogenous salicylic acid (SA) concentration in both cultivars, especially in cv. E70. Moreover, B. subtilis 10-4 reduced drought-induced endogenous SA accumulation, which was correlated with the influence of endophyte on growth, indicating a possible involvement of endogenous SA in the implementation of B. subtilis-mediated effects in both cultivars. Overall, B. subtilis 10-4 inoculation was found to increase drought tolerance in seedlings of both cultivars, as evidenced by decreased lipid peroxidation, proline content, and electrolyte leakage from tissues of wheat seedlings primed with B. subtilis 10-4 under drought conditions.
Collapse
Affiliation(s)
- Oksana Lastochkina
- Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia; (R.Y.); (C.A.); (K.F.); (A.A.); (D.M.)
| | - Darya Garshina
- Bashkir Research Institute of Agriculture—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450059, Russia;
| | - Sergey Ivanov
- Ufa Institute of Chemistry—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia; (S.I.); (R.K.)
| | - Ruslan Yuldashev
- Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia; (R.Y.); (C.A.); (K.F.); (A.A.); (D.M.)
| | - Regina Khafizova
- Ufa Institute of Chemistry—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia; (S.I.); (R.K.)
| | - Chulpan Allagulova
- Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia; (R.Y.); (C.A.); (K.F.); (A.A.); (D.M.)
| | - Kristina Fedorova
- Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia; (R.Y.); (C.A.); (K.F.); (A.A.); (D.M.)
| | - Azamat Avalbaev
- Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia; (R.Y.); (C.A.); (K.F.); (A.A.); (D.M.)
| | - Dilara Maslennikova
- Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450054, Russia; (R.Y.); (C.A.); (K.F.); (A.A.); (D.M.)
| | | |
Collapse
|
46
|
Amacker N, Gao Z, Agaras BC, Latz E, Kowalchuk GA, Valverde CF, Jousset A, Weidner S. Biocontrol Traits Correlate With Resistance to Predation by Protists in Soil Pseudomonads. Front Microbiol 2020; 11:614194. [PMID: 33384680 PMCID: PMC7769776 DOI: 10.3389/fmicb.2020.614194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Root-colonizing bacteria can support plant growth and help fend off pathogens. It is clear that such bacteria benefit from plant-derived carbon, but it remains ambiguous why they invest in plant-beneficial traits. We suggest that selection via protist predation contributes to recruitment of plant-beneficial traits in rhizosphere bacteria. To this end, we examined the extent to which bacterial traits associated with pathogen inhibition coincide with resistance to protist predation. We investigated the resistance to predation of a collection of Pseudomonas spp. against a range of representative soil protists covering three eukaryotic supergroups. We then examined whether patterns of resistance to predation could be explained by functional traits related to plant growth promotion, disease suppression and root colonization success. We observed a strong correlation between resistance to predation and phytopathogen inhibition. In addition, our analysis highlighted an important contribution of lytic enzymes and motility traits to resist predation by protists. We conclude that the widespread occurrence of plant-protective traits in the rhizosphere microbiome may be driven by the evolutionary pressure for resistance against predation by protists. Protists may therefore act as microbiome regulators promoting native bacteria involved in plant protection against diseases.
Collapse
Affiliation(s)
- Nathalie Amacker
- Ecology and Biodiversity Group, Institute of Environmental Biology, University of Utrecht, Utrecht, Netherlands
| | - Zhilei Gao
- Ecology and Biodiversity Group, Institute of Environmental Biology, University of Utrecht, Utrecht, Netherlands
| | - Betina C. Agaras
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Departamento de Ciencia y Tecnología, Centro de Bioquímica y Microbiología del Suelo, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Ellen Latz
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany
| | - George A. Kowalchuk
- Ecology and Biodiversity Group, Institute of Environmental Biology, University of Utrecht, Utrecht, Netherlands
| | - Claudio F. Valverde
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Departamento de Ciencia y Tecnología, Centro de Bioquímica y Microbiología del Suelo, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Alexandre Jousset
- Ecology and Biodiversity Group, Institute of Environmental Biology, University of Utrecht, Utrecht, Netherlands
| | - Simone Weidner
- Ecology and Biodiversity Group, Institute of Environmental Biology, University of Utrecht, Utrecht, Netherlands
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, Netherlands
| |
Collapse
|
47
|
Zhai Z, Chen A, Zhou H, Zhang D, Du X, Liu Q, Wu X, Cheng J, Chen L, Hu F, Liu Y, Su P. Structural characterization and functional activity of an exopolysaccharide secreted by Rhodopseudomonas palustris GJ-22. Int J Biol Macromol 2020; 167:160-168. [PMID: 33249155 DOI: 10.1016/j.ijbiomac.2020.11.165] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
One water exopolysaccharide, designated G-EPS, was secreted by Rhodopseudomonas palustris GJ-22 culture media. The structure of G-EPS was characterized with HPGPC, GC-MS, methylation, 1D and 2D NMR, along with UV and FT-IR spectrum. The G-EPS molecular weight was 10.026 kilodalton, and is composed of D-mannose (92.8%) and d-glucose (7.2%). The purified G-EPS promoted plant growth and induced systemic resistance against TMV in Nicotiana benthamiana. These results suggested that G-EPS is an important active component of the bio-control capacity of GJ-22.
Collapse
Affiliation(s)
- Zhongying Zhai
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
| | - Ang Chen
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Hanmei Zhou
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
| | - Deyong Zhang
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xiaohua Du
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Qing Liu
- Agricultural and Rural Bureau of Changsha County, Changsha 410100, China
| | - Xiyang Wu
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ju'e Cheng
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Lijie Chen
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
| | - Fang Hu
- Ecological Environment Testing Center of Changsha, Changsha 410001, China
| | - Yong Liu
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China; Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Pin Su
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
48
|
Oleńska E, Małek W, Wójcik M, Swiecicka I, Thijs S, Vangronsveld J. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140682. [PMID: 32758827 DOI: 10.1016/j.scitotenv.2020.140682] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/31/2020] [Accepted: 06/30/2020] [Indexed: 05/08/2023]
Abstract
New eco-friendly approaches are required to improve plant biomass production. Beneficial plant growth-promoting (PGP) bacteria may be exploited as excellent and efficient biotechnological tools to improve plant growth in various - including stressful - environments. We present an overview of bacterial mechanisms which contribute to plant health, growth, and development. Plant growth promoting rhizobacteria (PGPR) can interact with plants directly by increasing the availability of essential nutrients (e.g. nitrogen, phosphorus, iron), production and regulation of compounds involved in plant growth (e.g. phytohormones), and stress hormonal status (e.g. ethylene levels by ACC-deaminase). They can also indirectly affect plants by protecting them against diseases via competition with pathogens for highly limited nutrients, biocontrol of pathogens through production of aseptic-activity compounds, synthesis of fungal cell wall lysing enzymes, and induction of systemic responses in host plants. The potential of PGPR to facilitate plant growth is of fundamental importance, especially in case of abiotic stress, where bacteria can support plant fitness, stress tolerance, and/or even assist in remediation of pollutants. Providing additional evidence and better understanding of bacterial traits underlying plant growth-promotion can inspire and stir up the development of innovative solutions exploiting PGPR in times of highly variable environmental and climatological conditions.
Collapse
Affiliation(s)
- Ewa Oleńska
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland.
| | - Wanda Małek
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Małgorzata Wójcik
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Izabela Swiecicka
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland.
| | - Sofie Thijs
- Faculty of Sciences, Centre for Environmental Sciences, Hasselt University, Agoralaan D, B-3590, Belgium.
| | - Jaco Vangronsveld
- Faculty of Sciences, Centre for Environmental Sciences, Hasselt University, Agoralaan D, B-3590, Belgium.
| |
Collapse
|
49
|
Role of plant growth-promoting bacteria in sustainable agriculture. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101842] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
50
|
dos Santos RM, Diaz PAE, Lobo LLB, Rigobelo EC. Use of Plant Growth-Promoting Rhizobacteria in Maize and Sugarcane: Characteristics and Applications. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00136] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|