1
|
Talukdar P, Baruah A, Bhuyan SJ, Boruah S, Borah P, Bora C, Basumatary B. Costus speciosus (Koen ex. Retz.) Sm.: a suitable plant species for remediation of crude oil and mercury-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31843-31861. [PMID: 38639901 DOI: 10.1007/s11356-024-33376-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/13/2024] [Indexed: 04/20/2024]
Abstract
The aim of this study was to evaluate the efficiency of Costus speciosus (Koen ex. Retz.) Sm. in the degradation of crude oil and reduction of mercury (Hg) from the contaminated soil in pot experiments in the net house for 180 days. C. speciosus was transplanted in soil containing 19150 mg kg-1 crude oil and 3.2 mg kg-1 Hg. The study includes the evaluation of plant biomass, height, root length, total petroleum hydrocarbon (TPH) degradation, and Hg reduction in soil, TPH, and Hg accumulation in plants grown in fertilized and unfertilized pots, chlorophyll production, and rhizospheric most probable number (MPN) at 60-day interval. The average biomass production and heights of C. speciosus in contaminated treatments were significantly (p < 0.05) lower compared to the unvegetated control. Plants grown in contaminated soil showed relatively reduced root surface area compared to the uncontaminated treatments. TPH degradation in planted fertilized, unplanted, and planted unfertilized pot was 63%, 0.8%, and 38%, respectively. However, compared to unvegetated treatments, TPH degradation was significantly higher (p < 0.05) in vegetated treatments. A comparison of fertilized and unfertilized soils showed that TPH accumulation in plant roots and shoots was relatively higher in fertilized soils. Hg degradation in soil was significantly (p < 0.05) more in planted treatment compared to unplanted treatments. The fertilized soil showed relatively more Hg degradation in soil and its accumulation in roots and shoots of plants in comparison to unfertilized soil. MPN in treatments with plants was significantly greater (p < 0.05) than without plants. The plant's ability to produce biomass, chlorophyll, break down crude oil, reduce Hg levels in soil, and accumulate TPH and Hg in roots and shoots of the plant all point to the possibility of using this plant to remove TPH and Hg from soil.
Collapse
Affiliation(s)
- Parismita Talukdar
- Plant Ecology Laboratory, Department of Botany, North Lakhimpur College (Autonomous), Khelmati, 787031, Lakhimpur, Assam, India
| | - Aryan Baruah
- Plant Ecology Laboratory, Department of Botany, North Lakhimpur College (Autonomous), Khelmati, 787031, Lakhimpur, Assam, India
| | - Sameer Jyoti Bhuyan
- Plant Ecology Laboratory, Department of Botany, North Lakhimpur College (Autonomous), Khelmati, 787031, Lakhimpur, Assam, India
| | - Swati Boruah
- Plant Ecology Laboratory, Department of Botany, North Lakhimpur College (Autonomous), Khelmati, 787031, Lakhimpur, Assam, India
| | - Pujashree Borah
- Plant Ecology Laboratory, Department of Botany, North Lakhimpur College (Autonomous), Khelmati, 787031, Lakhimpur, Assam, India
| | - Chittaranjan Bora
- Plant Ecology Laboratory, Department of Botany, North Lakhimpur College (Autonomous), Khelmati, 787031, Lakhimpur, Assam, India
| | - Budhadev Basumatary
- Plant Ecology Laboratory, Department of Botany, North Lakhimpur College (Autonomous), Khelmati, 787031, Lakhimpur, Assam, India.
| |
Collapse
|
2
|
Zhou X, Lei B, Yin D, Kang J, He Z, He T, Xu X. Application potential of biofertilizer-assisted Pennisetum giganteum in safe utilization of mercury-contaminated paddy fields. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119291. [PMID: 37832289 DOI: 10.1016/j.jenvman.2023.119291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/29/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
High mercury (Hg) bioaccumulation in crops such as rice in Hg-contaminated areas presents a potential health hazard to humans and wildlife. To develop a safe alternative technique, bacillus-inoculated biofertilizer, citric acid, earthworms, and selenium-modified activated clay were compared for their ability to regulate Hg bioaccumulation in Pennisetum giganteum (P. giganteum). This biofertilizer significantly increased Bacillus sp. abundance in the soil by 157.12%, resulting in the removal of 27.52% of water-soluble Hg fractions through volatilization and adsorption mechanisms. The variation in bioavailable Hg in the soil significantly reduced the total Hg concentration in P. giganteum young leaves, old leaves, stems, and roots of P. giganteum by 74.14%, 48.08%, 93.72%, and 50.91%, respectively (p < 0.05), which is lower than the Chinese feed safety standard (100 ng g-1). The biofertilizer inhibitory potential was highly consistent with that of the selenium-modified activated clay. Biofertilizers significantly reduced the methylmercury concentration in various P. giganteum tissues (p < 0.05), whereas selenium-modified activated clay failed to achieve a comparable effect. This biofertilizer-assisted planting pattern can achieve an economic income quadruple that of the rice planting pattern in the Hg-contaminated paddy fields. Because of its significant environmental and financial applications, the biofertilizer-assisted planting pattern is expected to replace Hg-contaminated paddy fields.
Collapse
Affiliation(s)
- Xian Zhou
- Engineering Research Center for Southwest Bio-Pharmaceutical Resources, Key Laboratory of Karst Georesources and Environment, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China; College of Resources and Environment Engineering, Guizhou University, Guiyang, 550025, China
| | - Bangxing Lei
- Engineering Research Center for Southwest Bio-Pharmaceutical Resources, Key Laboratory of Karst Georesources and Environment, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Deliang Yin
- Engineering Research Center for Southwest Bio-Pharmaceutical Resources, Key Laboratory of Karst Georesources and Environment, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China; College of Resources and Environment Engineering, Guizhou University, Guiyang, 550025, China.
| | - Jichuan Kang
- Engineering Research Center for Southwest Bio-Pharmaceutical Resources, Key Laboratory of Karst Georesources and Environment, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| | - Zhangjiang He
- Engineering Research Center for Southwest Bio-Pharmaceutical Resources, Key Laboratory of Karst Georesources and Environment, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Tianrong He
- Engineering Research Center for Southwest Bio-Pharmaceutical Resources, Key Laboratory of Karst Georesources and Environment, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Xiaohang Xu
- Engineering Research Center for Southwest Bio-Pharmaceutical Resources, Key Laboratory of Karst Georesources and Environment, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
3
|
Riseh RS, Vazvani MG, Hajabdollahi N, Thakur VK. Bioremediation of Heavy Metals by Rhizobacteria. Appl Biochem Biotechnol 2023; 195:4689-4711. [PMID: 36287331 PMCID: PMC10354140 DOI: 10.1007/s12010-022-04177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/02/2022]
Abstract
Heavy elements accumulate rapidly in the soil due to industrial activities and the industrial revolution, which significantly impact the morphology, physiology, and yield of crops. Heavy metal contamination will eventually affect the plant tolerance threshold and cause changes in the plant genome and genetic structure. Changes in the plant genome lead to changes in encoded proteins and protein sequences. Consuming these mutated products can seriously affect human and animal health. Bioremediation is a process that can be applied to reduce the adverse effects of heavy metals in the soil. In this regard, bioremediation using plant growth-promoting rhizobacteria (PGPRs) as beneficial living agents can help to neutralize the negative interaction between the plant and the heavy metals. PGPRs suppress the adverse effects of heavy metals and the negative interaction of plant-heavy elements by different mechanisms such as biological adsorption and entrapment of heavy elements in extracellular capsules, reduction of metal ion concentration, and formation of complexes with metal ions inside the cell.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-E-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan, 7718897111 Iran
| | - Mozhgan Gholizadeh Vazvani
- Department of Plant Protection, Faculty of Agriculture, Vali-E-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan, 7718897111 Iran
| | - Najmeh Hajabdollahi
- Department of Plant Protection, Faculty of Agriculture, Vali-E-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan, 7718897111 Iran
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Edinburgh, EH9 3JG UK
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun, 248007 India
- Centre for Research and Development, Chandigarh University, Mohali, 140413 Punjab India
- Department of Biotechnology, Graphic Era Deemed to Be University, Dehradun, 248002 Uttarakhand India
| |
Collapse
|
4
|
Yin D, Zhou X, He T, Wu P, Ran S. Remediation of Mercury-Polluted Farmland Soils: A Review. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:661-670. [PMID: 35690951 DOI: 10.1007/s00128-022-03544-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Mercury (Hg) bioaccumulation in Hg-polluted farmlands poses high health risk for humans and wildlife, and remediation work is urgently needed. Here, we first summarize some specific findings related to the environmental process of Hg in Hg-polluted farmlands, and distinguish the main achievements and deficiencies of available remediation strategies in recent studies. Results demonstrate that farmland is a sensitive area with vibrant Hg biogeochemistry. Current remediation methods are relatively hysteretic whether in mechanism understanding or field application, and deficient for large-scale Hg-polluted farmlands in view of safety, efficiency, sustainability, and cost-effectiveness. New perspectives including environment-friendly functional materials, assisted phytoremediation and agronomic regulations are worthy of further study as their key roles in reducing Hg exposure risk and protecting agricultural sustainability.
Collapse
Affiliation(s)
- Deliang Yin
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Xian Zhou
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Tianrong He
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Pan Wu
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China.
| | - Shu Ran
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
5
|
Tran TAT, Dinh QT, Zhou F, Zhai H, Xue M, Du Z, Bañuelos GS, Liang D. Mechanisms underlying mercury detoxification in soil-plant systems after selenium application: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:46852-46876. [PMID: 34254235 DOI: 10.1007/s11356-021-15048-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/17/2021] [Indexed: 05/12/2023]
Abstract
Feasible countermeasures to mitigate mercury (Hg) accumulation and its deleterious effects on crops are urgently needed worldwide. Selenium (Se) fertilizer application is a cost-effective strategy to reduce Hg concentrations, promote agro-environmental sustainability and food safety, and decrease the public health risk posed by Hg-contaminated soils and its accumulation in food crops. This holistic review focuses on the processes and detoxification mechanisms of Hg in whole soil-plant systems after Se application. The reduction of Hg bioavailability in soil, the formation of inert HgSe or/and HgSe-containing proteinaceous complexes in the rhizosphere and/or roots, and the reduction of plant root uptake and translocation of Hg in plant after Se application are systemically discussed. In addition, the positive responses in plant physiological and biochemical processes to Se application under Hg stress are presented to show the possible mechanisms for protecting the plant. However, application of high levels Se showed synergistic toxic effect with Hg and inhibited plant growth. The effectiveness of Se application methods, rates, and species on Hg detoxification is compared. This review provides a good approach for plant production in Hg-contaminated areas to meet food security demands and reduce the public health risk.
Collapse
Affiliation(s)
- Thi Anh Thu Tran
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Faculty of Natural Resources and Environmental Management, Thu Dau Mot University, Thu Dau Mot City, Binh Duong, Vietnam
| | - Quang Toan Dinh
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Department of Natural Resources and Environment of Thanh Hoa, Thanh Hoa, 400570, Vietnam
| | - Fei Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hui Zhai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingyue Xue
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zekun Du
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Gary S Bañuelos
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, 93648-9757, USA
| | - Dongli Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
6
|
Heavy Metal-Resistant Filamentous Fungi as Potential Mercury Bioremediators. J Fungi (Basel) 2021; 7:jof7050386. [PMID: 34069296 PMCID: PMC8156478 DOI: 10.3390/jof7050386] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022] Open
Abstract
Filamentous fungi native to heavy metals (HMs) contaminated sites have great potential for bioremediation, yet are still often underexploited. This research aimed to assess the HMs resistance and Hg remediation capacity of fungi isolated from the rhizosphere of plants resident on highly Hg-contaminated substrate. Analysis of Hg, Pb, Cu, Zn, and Cd concentrations by X-ray spectrometry generated the ecological risk of the rhizosphere soil. A total of 32 HM-resistant fungal isolates were molecularly identified. Their resistance spectrum for the investigated elements was characterized by tolerance indices (TIs) and minimum inhibitory concentrations (MICs). Clustering analysis of TIs was coupled with isolates’ phylogeny to evaluate HMs resistance patterns. The bioremediation potential of five isolates’ live biomasses, in 100 mg/L Hg2+ aqueous solution over 48 h at 120 r/min, was quantified by atomic absorption spectrometry. New species or genera that were previously unrelated to Hg-contaminated substrates were identified. Ascomycota representatives were common, diverse, and exhibited varied HMs resistance spectra, especially towards the elements with ecological risk, in contrast to Mucoromycota-recovered isolates. HMs resistance patterns were similar within phylogenetically related clades, although isolate specific resistance occurred. Cladosporium sp., Didymella glomerata, Fusarium oxysporum, Phoma costaricensis, and Sarocladium kiliense isolates displayed very high MIC (mg/L) for Hg (140–200), in addition to Pb (1568), Cu (381), Zn (2092–2353), or Cd (337). The Hg biosorption capacity of these highly Hg-resistant species ranged from 33.8 to 54.9 mg/g dry weight, with a removal capacity from 47% to 97%. Thus, the fungi identified herein showed great potential as bioremediators for highly Hg-contaminated aqueous substrates.
Collapse
|
7
|
Tiodar ED, Văcar CL, Podar D. Phytoremediation and Microorganisms-Assisted Phytoremediation of Mercury-Contaminated Soils: Challenges and Perspectives. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:2435. [PMID: 33801363 PMCID: PMC7967564 DOI: 10.3390/ijerph18052435] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 01/01/2023]
Abstract
Mercury (Hg) pollution is a global threat to human and environmental health because of its toxicity, mobility and long-term persistence. Although costly engineering-based technologies can be used to treat heavily Hg-contaminated areas, they are not suitable for decontaminating agricultural or extensively-polluted soils. Emerging phyto- and bioremediation strategies for decontaminating Hg-polluted soils generally involve low investment, simple operation, and in situ application, and they are less destructive for the ecosystem. Current understanding of the uptake, translocation and sequestration of Hg in plants is reviewed to highlight new avenues for exploration in phytoremediation research, and different phytoremediation strategies (phytostabilization, phytoextraction and phytovolatilization) are discussed. Research aimed at identifying suitable plant species and associated-microorganisms for use in phytoremediation of Hg-contaminated soils is also surveyed. Investigation into the potential use of transgenic plants in Hg-phytoremediation is described. Recent research on exploiting the beneficial interactions between plants and microorganisms (bacteria and fungi) that are Hg-resistant and secrete plant growth promoting compounds is reviewed. We highlight areas where more research is required into the effective use of phytoremediation on Hg-contaminated sites, and conclude that the approaches it offers provide considerable potential for the future.
Collapse
Affiliation(s)
- Emanuela D. Tiodar
- Department of Molecular Biology and Biotechnology, Babeş-Bolyai University, 1 Kogălniceanu St., 400084 Cluj-Napoca, Romania; (E.D.T.); (C.L.V.)
- Centre for Systems Biology, Biodiversity and Bioresources (3B), Babeş-Bolyai University, 3-5 Clinicilor St., 400015 Cluj-Napoca, Romania
| | - Cristina L. Văcar
- Department of Molecular Biology and Biotechnology, Babeş-Bolyai University, 1 Kogălniceanu St., 400084 Cluj-Napoca, Romania; (E.D.T.); (C.L.V.)
- Centre for Systems Biology, Biodiversity and Bioresources (3B), Babeş-Bolyai University, 3-5 Clinicilor St., 400015 Cluj-Napoca, Romania
| | - Dorina Podar
- Department of Molecular Biology and Biotechnology, Babeş-Bolyai University, 1 Kogălniceanu St., 400084 Cluj-Napoca, Romania; (E.D.T.); (C.L.V.)
- Centre for Systems Biology, Biodiversity and Bioresources (3B), Babeş-Bolyai University, 3-5 Clinicilor St., 400015 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Liu Z, Chen B, Wang LA, Urbanovich O, Nagorskaya L, Li X, Tang L. A review on phytoremediation of mercury contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123138. [PMID: 32947735 DOI: 10.1016/j.jhazmat.2020.123138] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Mercury (Hg) and its compounds are one of the most dangerous environmental pollutants and Hg pollution exists in soils in different degrees over the world. Phytoremediation of Hg-contaminated soils has attracted increasing attention for the advantages of low investment, in-situ remediation, potential economic benefits and so on. Searching for the hyperaccumulator of Hg and its application in practice become a research hotspot. In this context, we review the current literatures that introduce various experimental plant species for accumulating Hg and aided techniques improving the phytoremediation of Hg-contaminated soils. Experimental plant species for accumulating Hg and accumulation or translocation factor of Hg are listed in detail. The translocation factor (TF) is greater than 1.0 for some plant species, however, the bioaccumulation factor (BAF) is greater than 1.0 for Axonopus compressus only. Plant species, soil properties, weather condition, and the bioavailability and heterogeneity of Hg in soils are the main factors affecting the phytoremediation of Hg-contaminated soils. Chemical accelerator kinds and promoting effect of chemical accelerators for accumulating and transferring Hg by various plant species are also discussed. Potassium iodide, compost, ammonium sulphate, ammonium thiosulfate, sodium sulfite, sodium thiosulfate, hydrochloric acid and sulfur fertilizer may be selected to promote the absorption of Hg by plants. The review introduces transgenic gene kinds and promoting effect of transgenic plants for accumulating and transferring Hg in detail. Some transgenic plants can accumulate more Hg than non-transgenic plants. The composition of rhizosphere microorganisms of remediation plants and the effect of rhizosphere microorganisms on the phytoremediation of Hg-contaminated soils are also introduced. Some rhizosphere microorganisms can increase the mobility of Hg in soils and are beneficial for the phytoremediation.
Collapse
Affiliation(s)
- Zhongchuang Liu
- Green Intelligence Environmental School, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China; Chongqing Multiple-source Technology Engineering Research Center for Ecological Environment Monitoring, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China.
| | - Boning Chen
- Fuling Environmental Monitoring Center, 3 Taibai Rd, Fuling New District of Chongqing, China
| | - Li-Ao Wang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing, China; College of Resources and Environmental Science, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing, China
| | - Oksana Urbanovich
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, 220072, Belarus
| | - Liubov Nagorskaya
- Applied Science Center for Bioresources of the National Academy of Sciences of Belarus, Minsk, 220072, Belarus
| | - Xiang Li
- International Policy, Faculty of Law and Economics, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba, 263-8522, Japan
| | - Li Tang
- School of Chemistry and Chemical Engineering, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing, China
| |
Collapse
|
9
|
Kanwar VS, Sharma A, Srivastav AL, Rani L. Phytoremediation of toxic metals present in soil and water environment: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44835-44860. [PMID: 32981020 DOI: 10.1007/s11356-020-10713-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Heavy metals are one of the most hazardous inorganic contaminants of both water and soil environment composition. Normally, heavy metals are non-biodegradable in nature because of their long persistence in the environment. Trace amounts of heavy metal contamination may pose severe health problems in human beings after prolonged consumption. Many instrumental techniques such as atomic absorption spectrophotometry, inductively coupled plasma-mass spectrometry, X-ray fluorescence, neutron activation analysis, etc. have been developed to determine their concentration in water as well as in the soil up to ppm, ppb, or ppt levels. Recent advances in these techniques along with their respective advantages and limitations are being discussed in the present paper. Moreover, some possible remedial phytoremediation approaches (phytostimulation, phytoextraction, phyotovolatilization, rhizofiltration, phytostabilization) have been presented for the removal of the heavy metal contamination from the water and soil environments.
Collapse
Affiliation(s)
- Varinder Singh Kanwar
- Chitkara University School of Engineering and Technology, Chitkara University, Solan, Himachal Pradesh, 174103, India
| | - Ajay Sharma
- Chitkara University School of Engineering and Technology, Chitkara University, Solan, Himachal Pradesh, 174103, India
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Solan, Himachal Pradesh, 174103, India.
| | - Lata Rani
- School of Basic Sciences, Chitkara University, Solan, Himachal Pradesh, 174103, India
| |
Collapse
|
10
|
Adesanya T, Zvomuya F, Farenhorst A. Sulfamethoxazole sorption by cattail and switchgrass roots. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 55:1021-1031. [PMID: 32941097 DOI: 10.1080/03601234.2020.1807263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sorption to roots is one of several mechanisms by which plant-assisted attenuation of antibiotics can be achieved. The objectives of this study were to (1) evaluate the sorption of sulfamethoxazole (SMX) by cattail and switchgrass roots, (2) determine the kinetics of SMX sorption by cattail and switchgrass roots, and (3) characterize the temperature-dependency of SMX sorption. A batch sorption experiment was conducted to measure SMX sorption by roots of the two plant species using five initial antibiotic concentrations (2.5, 5, 10, 15, and 20 µg L-1) and eight sampling times (0, 0.5, 1, 2, 4, 8, 12, and 24 h). Another batch experiment was conducted at three temperatures (5, 15, and 25 °C) to determine the effect of temperature on sorption kinetics. SMX sorption followed pseudo-second-order kinetics. The pseudo-second-order rate constant (k2) decreased with increasing temperature for both plant species. The rate constant followed the order: 5 °C = 15 °C > 25 °C for cattail and 5 °C > 15 °C = 25 °C for switchgrass. Results from this study show that switchgrass roots are more effective than cattail roots in the removal of SMX. Therefore, the use of switchgrass in systems designed for phytoremediation of contaminants might also provide an efficient removal of some antibiotics.
Collapse
Affiliation(s)
- Theresa Adesanya
- Department of Soil Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Francis Zvomuya
- Department of Soil Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
11
|
Napaldet JT, Buot IE. Absorption of Lead and Mercury in Dominant Aquatic Macrophytes of Balili River and Its Implication to Phytoremediation of Water Bodies. Trop Life Sci Res 2020; 31:19-32. [PMID: 32922667 PMCID: PMC7470480 DOI: 10.21315/tlsr2020.31.2.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
In the Philippines, phytoremediation studies on heavy metals are mainly concentrated in mining areas amidst several reports of heavy metal contamination even in non-mining sites in various parts of the country. Such was the case Balili River which was reportedly contaminated with mercury (Hg) and lead (Pb). Aquatic macrophytes growing in the river could offer the solution to this problem via phytoremediation. Thus, this study was conceptualised to determine the uptake of Hg and Pb in selected dominant macrophytes of the river namely Amaranthus spinosus, Eleusine indica and Pennisetum purpureum. Soil, water and plant samples gathered from the study sites were submitted to Department of Science and Technology-Cordillera Administrative Region (DOST-CAR) laboratory for Hg and Pb determination. Soil and wastewater of Balili River were found contaminated with Pb but not with Hg. The soil recorded higher Hg concentration than water while Pb concentrations did not differ between the two media. The aquatic macrophytes in the study registered consistently higher Hg and Pb in their shoots > roots but differed in their capacities and distribution in the shoot organs. Hg and Pb accumulation was significantly (p = 0.00) higher in stem of P. purpureum while in E. indica, leaf had the highest accumulation, though not statistically significant (p = 0.09). For A. spinosus, Hg was highest in its leaf while Pb in stem, though not statistically significant (p = 0.06). Among the three macrophytes, P. purpureum showed the highest potential for Hg uptake and translocation and for Pb uptake. On the other hand, the highest Pb internal transfer was recorded in E. indica. These results contradict initial findings that Pb is mostly accumulated in plant roots with minimal shoot translocation. Also, these results show that local macrophytes in Balili River, even if obnoxious weeds, are ecologically important and could be used for phytoremediation of local rivers that are recipient of small-scale mine tailings.
Collapse
Affiliation(s)
- Jones T. Napaldet
- Biology Department, Benguet State University, Km. 6, La Trinidad, Benguet, 2601 Philippines
- Institute of Biological Sciences, University of the Philippines Los Baños, Philippines
| | - Inocencio E. Buot
- Institute of Biological Sciences, University of the Philippines Los Baños, Philippines
| |
Collapse
|
12
|
Recent developments in environmental mercury bioremediation and its toxicity: A review. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.enmm.2020.100283] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Yan A, Wang Y, Tan SN, Mohd Yusof ML, Ghosh S, Chen Z. Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land. FRONTIERS IN PLANT SCIENCE 2020; 11:359. [PMID: 32425957 PMCID: PMC7203417 DOI: 10.3389/fpls.2020.00359] [Citation(s) in RCA: 460] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/12/2020] [Indexed: 05/18/2023]
Abstract
Heavy metal accumulation in soil has been rapidly increased due to various natural processes and anthropogenic (industrial) activities. As heavy metals are non-biodegradable, they persist in the environment, have potential to enter the food chain through crop plants, and eventually may accumulate in the human body through biomagnification. Owing to their toxic nature, heavy metal contamination has posed a serious threat to human health and the ecosystem. Therefore, remediation of land contamination is of paramount importance. Phytoremediation is an eco-friendly approach that could be a successful mitigation measure to revegetate heavy metal-polluted soil in a cost-effective way. To improve the efficiency of phytoremediation, a better understanding of the mechanisms underlying heavy metal accumulation and tolerance in plant is indispensable. In this review, we describe the mechanisms of how heavy metals are taken up, translocated, and detoxified in plants. We focus on the strategies applied to improve the efficiency of phytostabilization and phytoextraction, including the application of genetic engineering, microbe-assisted and chelate-assisted approaches.
Collapse
Affiliation(s)
- An Yan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Yamin Wang
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Swee Ngin Tan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | | | - Subhadip Ghosh
- Centre for Urban Greenery and Ecology, National Parks Board, Singapore, Singapore
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Zhong Chen
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
- M Grass International Institute of Smart Urban Greenology, Singapore, Singapore
| |
Collapse
|
14
|
Application of Floating Aquatic Plants in Phytoremediation of Heavy Metals Polluted Water: A Review. SUSTAINABILITY 2020. [DOI: 10.3390/su12051927] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heavy-metal (HM) pollution is considered a leading source of environmental contamination. Heavy-metal pollution in ground water poses a serious threat to human health and the aquatic ecosystem. Conventional treatment technologies to remove the pollutants from wastewater are usually costly, time-consuming, environmentally destructive, and mostly inefficient. Phytoremediation is a cost-effective green emerging technology with long-lasting applicability. The selection of plant species is the most significant aspect for successful phytoremediation. Aquatic plants hold steep efficiency for the removal of organic and inorganic pollutants. Water hyacinth (Eichhornia crassipes), water lettuce (Pistia stratiotes) and Duck weed (Lemna minor) along with some other aquatic plants are prominent metal accumulator plants for the remediation of heavy-metal polluted water. The phytoremediation potential of the aquatic plant can be further enhanced by the application of innovative approaches in phytoremediation. A summarizing review regarding the use of aquatic plants in phytoremediation is gathered in order to present the broad applicability of phytoremediation.
Collapse
|
15
|
García-Mercado HD, Fernández-Villagómez G, Garzón-Zúñiga MA, Durán-Domínguez-de-Bazúa MDC. Fate of mercury in a terrestial biological lab process using Polypogon monspeliensis and Cyperus odoratus. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:1170-1178. [PMID: 31165622 DOI: 10.1080/15226514.2019.1612842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mercury has been extracted in Queretaro, Mexico since the 1960s. The mining wastes were open-air disposal and these mercury wastes have polluted the zone. The aim of this research was to evaluate mercury's fate in lab scale terrestrial reactors considering the following mercury species: soluble, interchangeable, strongly bound, organic, and residual ones. Soils were sampled in two former mines of Pinal de Amoles, Queretaro, Mexico (N 20° 58' to 21° 21' and West 99° 26' to 99° 43') with initial mercury concentrations were 424 ± 29 and 433 ± 12 mg kg-1 for "La Lorena" and "San Jose" former mines, respectively. Two vegetal species Polypogon monspeliensis and Cyperus odoratus were used and 20 reactors were constructed for the lab process. Total mercury was removed to 49-79% from both soils. Mercury elemental, exchangeable, and organic species had the most removal or exchange in the process. Metal uptake, by the plants, was of 5-6% for P. monspeliensis and 5-15% for C. odoratus. Also, mercury fate was estimated to the atmosphere to be 3.3-4.5 mg m-2 h-1 for both soils.
Collapse
Affiliation(s)
- Héctor Daniel García-Mercado
- UNAM, Facultad de Química, DIQ, Edif. E-3, Laboratorios 301-302-303 , Paseo de la Investigación científica s/n. Mexico City , Mexico
| | | | - Marco Antonio Garzón-Zúñiga
- Instituto Politécnico Nacional (IPN). Academia de Ciencias Ambientales, Centro Interdisciplinario de Investigación para el Desarrollo Regional (CIIDIR) Unidad Durango , Durango , Mexico
| | | |
Collapse
|
16
|
Asad SA, Farooq M, Afzal A, West H. Integrated phytobial heavy metal remediation strategies for a sustainable clean environment - A review. CHEMOSPHERE 2019; 217:925-941. [PMID: 30586789 DOI: 10.1016/j.chemosphere.2018.11.021] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/01/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
Heavy metal contamination in the environment is a global threat which accelerated after the industrial revolution. Remediation of these noxious elements has been widely investigated and multifarious technologies have been practiced for many decades. Phytoremediation has attracted much attention from researchers. Under this technology, heavy metal hyperaccumulator plants have been extensively employed to extract extraordinary concentrations of heavy metals but slow growth, limited biomass and stresses caused by heavy metals imperil the efficiency of hyperaccumulators. Plant growth promoting rhizobacteria (PGPR) can help overcome/lessen heavy metal-induced adversities. PGPR produce several metabolites, including growth hormones, siderophores and organic acids, which aid in solubilization and provision of essential nutrients (e.g. Fe and Mg) to the plant. Hyperaccumulator plants may be employed to remediate metal contaminated sites. Use of PGPR to enhance growth of hyperaccumulator plant species may enhance their metal accumulating capacity by increasing metal availability and also by alleviating plant stress induced by the heavy metals. Combined use of hyperaccumulator plants and PGPR may prove to be a cost effective and environmentally friendly technology to clean heavy metal contaminated sites on a sustainable basis. This review discusses the current status of PGPR in improving the growth and development of hyperaccumulator plants growing in metal contaminated environments. The mechanisms used by these rhizosphere bacteria in increasing the availability of heavy metals to plants and coping with heavy metal stresses are also described.
Collapse
Affiliation(s)
- Saeed Ahmad Asad
- Centre for Climate Research and Development, COMSATS University, Park Road, Chak Shahzad Islamabad 45550, Pakistan.
| | - Muhammad Farooq
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman; Department of Agronomy, University of Agriculture Faisalabad, Pakistan
| | - Aftab Afzal
- Department of Botany, Hazara University Mansehra, Mansehra, Pakistan
| | - Helen West
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom
| |
Collapse
|
17
|
Umlaufová M, Száková J, Najmanová J, Sysalová J, Tlustoš P. The soil-plant transfer of risk elements within the area of an abandoned gold mine in Libčice, Czech Republic. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:1267-1276. [PMID: 30596320 DOI: 10.1080/10934529.2018.1528041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/06/2018] [Indexed: 06/09/2023]
Abstract
Abandoned gold mines are often suggested as potential sources of environmental pollution. Thus, the soils within the area of a gold mine in Libčice, Czech Republic, were monitored. Elevated element contents were found of As, Cd, Cu, Hg, Pb, and Zn. The risk assessment codes (RACs) indicated high environmental risk from soil Cd, and moderate risk from Zn, whereas the risk of As, Cu, and Pb was low. It was supported by the analysis of 134 samples of aboveground biomass of plants, where the levels of As and Pb were below the detection limit. For Cd, the plant uptake reflected the high mobility of this element, where the bioaccumulation factors (BAFs) varied in range 0.032 (Fragaria vesca) and 1.97 (Circia arvensis). For 11% of samples the BAF values for Cd exceeded 1. For Hg, although the maximum BAF did not exceed 0.37 (Lotus corniculatus), the Hg contents in plants occasionally exceeded the threshold limits for Hg contents in raw feedstuffs. The investigated gold mine does not represent a direct environmental risk, but the fate of Cd and Hg in the soils and plants suggests the necessity of a deeper understanding of the penetration of these elements into the surrounding environment.
Collapse
Affiliation(s)
- Martina Umlaufová
- a Department of Agroenvironmental Chemistry and Plant Nutrition , Czech University of Life Sciences Prague , Prague , Czech Republic
| | - Jiřina Száková
- a Department of Agroenvironmental Chemistry and Plant Nutrition , Czech University of Life Sciences Prague , Prague , Czech Republic
| | - Jana Najmanová
- a Department of Agroenvironmental Chemistry and Plant Nutrition , Czech University of Life Sciences Prague , Prague , Czech Republic
| | - Jiřina Sysalová
- b AAS laboratory , University of Chemistry and Technology , Prague , Czech Republic
| | - Pavel Tlustoš
- a Department of Agroenvironmental Chemistry and Plant Nutrition , Czech University of Life Sciences Prague , Prague , Czech Republic
| |
Collapse
|
18
|
Liu Z, Wang LA, Ding S, Xiao H. Enhancer assisted-phytoremediation of mercury-contaminated soils by Oxalis corniculata L., and rhizosphere microorganism distribution of Oxalis corniculata L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 160:171-177. [PMID: 29804013 DOI: 10.1016/j.ecoenv.2018.05.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/01/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
The present study investigated remediation of mercury-contaminated soils using Oxalis corniculata L. combined with various enhancers (sodium thiosulfate, ammonium thiosulfate, ethylenediaminetetraacetic acid and diethylenetriaminepentaacetic acid). The experiment was conducted using Oxalis corniculata seedlings planted in pots containing mercury loaded soils. Investigations included analysis of soil properties, plant growth conditions, ability of the plants to accumulate and extract mercury, and rhizosphere microorganism distribution. The maximal mercury content of the aerial parts and the mercury-translocation ratio of Oxalis corniculata treated with enhancers increased compared to Oxalis corniculata without enhancers. Compared with no enhancers, the theoretical reduction in phytoremediation time was about 50%, 25%, 20% and 21% when Oxalis corniculata was treated with sodium thiosulfate (Na2S2O3), ammonium thiosulfate ((NH4)2S2O3), ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA), respectively. The results indicated that the dominant species in rhizosphere soils varied with different enhancers. However, the evenness of background soils, rhizosphere soils of Oxalis corniculata, Oxalis corniculata treated with Na2S2O3, (NH4)2S2O3, EDTA and DTPA was not largely different at 0.62, 0.61, 0.57, 0.64, 0.61 and 0.63, respectively. These findings demonstrate that Oxalis corniculata treated with Na2S2O3 has the potential to recover and reclaim mercury-contaminated soils in pots.
Collapse
Affiliation(s)
- Zhongchuang Liu
- School of Chemistry and Chemical Engineering, School of Green Intelligence Environment, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China; Research Center for Development and Utility of Unique Resources in the Wulingshan Region, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China; Collaborative Innovation Center for Green Development in Wuling Mountain Areas, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China.
| | - Li-Ao Wang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing, China; College of Resources and Environmental Science, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing, China
| | - Shimin Ding
- School of Chemistry and Chemical Engineering, School of Green Intelligence Environment, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China; Research Center for Development and Utility of Unique Resources in the Wulingshan Region, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China; Collaborative Innovation Center for Green Development in Wuling Mountain Areas, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China
| | - Hongyan Xiao
- School of Chemistry and Chemical Engineering, School of Green Intelligence Environment, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China; Research Center for Development and Utility of Unique Resources in the Wulingshan Region, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China; Collaborative Innovation Center for Green Development in Wuling Mountain Areas, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China
| |
Collapse
|
19
|
Durand A, Maillard F, Alvarez-Lopez V, Guinchard S, Bertheau C, Valot B, Blaudez D, Chalot M. Bacterial diversity associated with poplar trees grown on a Hg-contaminated site: Community characterization and isolation of Hg-resistant plant growth-promoting bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 622-623:1165-1177. [PMID: 29890585 DOI: 10.1016/j.scitotenv.2017.12.069] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 05/19/2023]
Abstract
Industrial waste dumps are rarely colonized by vegetation after they have been abandoned, indicating biological infertility. Revegetation of industrial tailings dumps is thus necessary to prevent wind erosion, metal leaching and has been shown to restore soil functions and ecosystem services. However, little is known about the microbial colonization and community structure of vegetated tailings following the application of restoration technologies. In this study, we investigated the rhizosphere and phyllosphere bacterial communities of a poplar tree plantation within a phytomanagement-based restoration program of a Hg-contaminated site. We used Illumina-based sequencing combined with culture-dependent approaches to describe plant-associated bacterial communities and to isolate growth-promoting bacteria (PGPB) and Hg-resistant bacteria. The genus Streptomyces was highly specific to the root community, accounting for 24.4% of the relative abundance but only representing 0.8% of the soil community, whereas OTUs from the Chloroflexi phylum were essentially detected in the soil community. Aboveground habitats were dominated by bacteria from the Deinococcus-Thermus phylum, which were not detected in belowground habitats. Leaf and stem habitats were characterized by several dominant OTUs, such as those from the phylum Firmicutes in the stems or from the genera Methylobacterium, Kineococcus, Sphingomonas and Hymenobacter in the leaves. Belowground habitats hosted more cultivable Hg-resistant bacteria than aboveground habitats and more Hg-resistant bacteria were found on the episphere than in endospheric habitats. Hg-resistant isolates exhibiting plant growth-promoting (PGP) traits, when used as inoculants of Capsicum annuum, were shown to increase its root dry biomass but not Hg concentration. The N2-fixing and Hg-resistant species Pseudomonas graminis, observed in the poplar phyllosphere, may be a key microorganism for the restoration of industrial tailings dumps.
Collapse
Affiliation(s)
- Alexis Durand
- Laboratoire Chrono-Environnement, UMR 6249, Université de Bourgogne Franche-Comté, Pôle Universitaire du Pays de Montbéliard, 4 place Tharradin, BP 71427, 25211 Montbéliard, France
| | - François Maillard
- Laboratoire Chrono-Environnement, UMR 6249, Université de Bourgogne Franche-Comté, Pôle Universitaire du Pays de Montbéliard, 4 place Tharradin, BP 71427, 25211 Montbéliard, France
| | - Vanessa Alvarez-Lopez
- Laboratoire Chrono-Environnement, UMR 6249, Université de Bourgogne Franche-Comté, Pôle Universitaire du Pays de Montbéliard, 4 place Tharradin, BP 71427, 25211 Montbéliard, France
| | - Sarah Guinchard
- Laboratoire Chrono-Environnement, UMR 6249, Université de Bourgogne Franche-Comté, Pôle Universitaire du Pays de Montbéliard, 4 place Tharradin, BP 71427, 25211 Montbéliard, France
| | - Coralie Bertheau
- Laboratoire Chrono-Environnement, UMR 6249, Université de Bourgogne Franche-Comté, Pôle Universitaire du Pays de Montbéliard, 4 place Tharradin, BP 71427, 25211 Montbéliard, France
| | - Benoit Valot
- Laboratoire Chrono-Environnement, UMR 6249, Université de Bourgogne Franche-Comté, Pôle Universitaire du Pays de Montbéliard, 4 place Tharradin, BP 71427, 25211 Montbéliard, France
| | - Damien Blaudez
- Université de Lorraine, UMR CNRS 7360 Laboratoire Interdisciplinaire des Environnements Continentaux, Faculté des Sciences et Technologies, BP 70239, 54506, Vandœuvre-lès-Nancy, France
| | - Michel Chalot
- Laboratoire Chrono-Environnement, UMR 6249, Université de Bourgogne Franche-Comté, Pôle Universitaire du Pays de Montbéliard, 4 place Tharradin, BP 71427, 25211 Montbéliard, France; Université de Lorraine, Faculté des Sciences et Technologies, BP 70239, 54506 Vandoeuvre-les-Nancy, France.
| |
Collapse
|
20
|
Kiran BR, Prasad MNV. Ricinus communis L. (Castor bean), a potential multi-purpose environmental crop for improved and integrated phytoremediation. EUROBIOTECH JOURNAL 2017. [DOI: 10.24190/issn2564-615x/2017/02.01] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
Phytoremediation is a plant based environmental cleanup technology to contain (rendering less toxic), sequester and degrade contaminated susbtrates. As can be seen from data metrics, it is gaining cosiderable importance globally. Phytoremediation approach is being applied for cleanup of inorganic (potentially toxic metals), organic (persistent, emergent, poly-acromatic hydrocarbons and crude oil etc.) and co-contaminated (mixture of inorganic and organic) and/or polluted sites globally. Recently new approaches of utilizing abundantly available natural organic amendments have yielded significant results. Ricinus communis L. (Castor bean) is an important multipurpose crop viz., Agricultural, Energy, Environmental and Industrial crop. The current status of knowledge is abundant but scattered which need to be exploited for sustainable development. This review collates and evaluates all the scattered information and provides a critical view on the possible options for exploiting its potential as follows: 1. Origin and distribution, 2. Lead toxicity bioassays, 3. Progress in arbuscular mycorrhizal fungi-assisted phytoremediation, 4. Promising bioenergy crop that can be linked to pytoremediation, 5. A renewable source for many bioproducts with rich chemical diversity, 6. It is a good biomonitor and bioindicator of atmospheric pollution in urban areas, 7. Enhanced chelate aided remediation, 8. Its rhizospheric processes accelerate natural attenuation, 9. It is suitable for remediation of crude oil contaminated soil, 10. It is an ideal candidate for aided phytostabilization, 11. Castor bean is a wizard for phytoremediation and 12. Its use in combined phytoextraction and ecocatalysis. Further, the knowledge gaps and scope for future research on sustainable co-generation of value chain and value addition biobased products for sustainable circular economy and environmental security are described in this paper.
Collapse
Affiliation(s)
- Boda Ravi Kiran
- Department of Plant Sciences, University of Hyderabad, Central University P.O., Gachibowli, Hyderabad, Telangana , India
| | - Majeti Narasimha Vara Prasad
- Department of Plant Sciences, University of Hyderabad, Central University P.O., Gachibowli, Hyderabad, Telangana , India
- Visiting Professor School of Environment, Resources and Development (SERD), Room E120 Asian Institute of Technology (AIT), Klong Luang, Pathumthani , Thailand
| |
Collapse
|
21
|
García-Mercadoa HD, Fernándezb G, Garzón-Zúñigac MA, Durán-Domínguez-de-Bazúaa MDC. Remediation of mercury-polluted soils using artificial wetlands. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:3-13. [PMID: 27484186 DOI: 10.1080/15226514.2016.1216074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mexico's mercury mining industry is important for economic development, but has unfortunately contaminated soils due to open-air disposal. This case was seen at two sites in the municipality of Pinal de Amoles, State of Queretaro, Mexico. This paper presents an evaluation of mercury dynamics and biogeochemistry in two soils (mining waste soil) using ex-situ wetlands over 36 weeks. In soils sampled in two former mines of Pinal de Amoles, initial mercury concentrations were 424 ± 29 and 433 ± 12 mg kg-1 in La Lorena and San Jose, former mines, respectively. Typha latifolia and Phragmites australis were used and 20 reactors were constructed (with and without plants). The reactors were weekly amended with a nutrient solution (NPK), for each plant, at a pH of 5.0. For remediation using soils from San Jose 70-78% of mercury was removed in T. latifolia reactors and 76-82% in P. australis reactors, and for remediation of soils from La Lorena, mercury content was reduced by 55-71% using T. latifolia and 58-66% in P. australis reactors. Mercury emissions into the atmosphere were estimated to be 2-4 mg m-2 h-1 for both soils.
Collapse
Affiliation(s)
| | - Georgina Fernándezb
- b UNAM, Facultad de Ingeniería, Edif. T , Ciudad Universitaria , México D.F. , México
| | - Marco Antonio Garzón-Zúñigac
- c Instituto Politécnico Nacional (IPN). Investigador Titular. Academia de Ciencias Ambientales, Centro Interdisciplinariol de Investigación para el Desarrollo Integral Regional (CIIDIR) Unidad Durango , Durango , Dgo. México
| | | |
Collapse
|
22
|
Ordak M, Wesolowski M, Radecka I, Muszynska E, Bujalska-Zazdrozny M. Seasonal Variations of Mercury Levels in Selected Medicinal Plants Originating from Poland. Biol Trace Elem Res 2016; 173:514-24. [PMID: 26923864 PMCID: PMC5018038 DOI: 10.1007/s12011-016-0645-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/09/2016] [Indexed: 01/15/2023]
Abstract
The presence of mercury in the living cells may be caused by environmental pollution with this element, which is referred to as a toxic xenobiotic. Many literature reports have provided evidence for toxic effects of low levels of mercury in the human body. Therefore, it seems essential to investigate mercury content in food and in natural environment, particularly its seasonal variations. The objective of this study was to determine trace amounts of mercury in 45 samples of 20 medicinal plant species collected in northern Poland, in various seasons of the year, i.e., in autumn 2012 and then spring 2013. The results obtained showed that the levels of mercury in the herbs were lower in spring (3.66-34.89 ng/g) than in autumn (4.55-81.54 ng/g). The statistically significant correlation (p < 0.05) between the levels of mercury in herbs collected in spring and autumn indicates hazardous accumulation of the element in plants in autumn. The highest levels of mercury were found in leaves and plants growing in the vicinity of busy streets. Perennials plants have a significantly higher mercury levels as compared to those of monocarpic plants. Furthermore, commonly used herbal plants have a significantly higher mercury levels as compared to those less common.
Collapse
Affiliation(s)
- M Ordak
- Department of Analytical Chemistry, Medical University of Gdansk, Gdansk, Poland.
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology (CePT), Medical University of Warsaw, Warsaw, Poland.
- Chair and Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland.
| | - M Wesolowski
- Department of Analytical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - I Radecka
- Department of Analytical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - E Muszynska
- Department of General Biology, Medical University of Bialystok, Bialystok, Poland
| | - M Bujalska-Zazdrozny
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology (CePT), Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
23
|
Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, Li R, Zhang Z. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 126:111-121. [PMID: 26741880 DOI: 10.1016/j.ecoenv.2015.12.023] [Citation(s) in RCA: 475] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 05/20/2023]
Abstract
Mining operations, industrial production and domestic and agricultural use of metal and metal containing compound have resulted in the release of toxic metals into the environment. Metal pollution has serious implications for the human health and the environment. Few heavy metals are toxic and lethal in trace concentrations and can be teratogenic, mutagenic, endocrine disruptors while others can cause behavioral and neurological disorders among infants and children. Therefore, remediation of heavy metals contaminated soil could be the only effective option to reduce the negative effects on ecosystem health. Thus, keeping in view the above facts, an attempt has been made in this article to review the current status, challenges and opportunities in the phytoremediation for remediating heavy metals from contaminated soils. The prime focus is given to phytoextraction and phytostabilization as the most promising and alternative methods for soil reclamation.
Collapse
Affiliation(s)
- Amanullah Mahar
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Centre for Environmental Sciences, University of Sindh, Jamshoro 76080, Pakistan
| | - Ping Wang
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Amjad Ali
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Biotechnology, Amicable Knowledge Solution University, Satna, India
| | - Altaf Hussain Lahori
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Quan Wang
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ronghua Li
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zengqiang Zhang
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
24
|
He F, Gao J, Pierce E, Strong PJ, Wang H, Liang L. In situ remediation technologies for mercury-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:8124-8147. [PMID: 25850737 DOI: 10.1007/s11356-015-4316-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/02/2015] [Indexed: 06/04/2023]
Abstract
Mercury from anthropogenic activities is a pollutant that poses significant risks to humans and the environment. In soils, mercury remediation can be technically challenging and costly, depending on the subsurface mercury distribution, the types of mercury species, and the regulatory requirements. This paper introduces the chemistry of mercury and its implications for in situ mercury remediation, which is followed by a detailed discussion of several in situ Hg remediation technologies in terms of applicability, cost, advantages, and disadvantages. The effect of Hg speciation on remediation performance, as well as Hg transformation during different remediation processes, was detailed. Thermal desorption, electrokinetic, and soil flushing/washing treatments are removal technologies that mobilize and capture insoluble Hg species, while containment, solidification/stabilization, and vitrification immobilize Hg by converting it to less soluble forms. Two emerging technologies, phytoremediation and nanotechnology, are also discussed in this review.
Collapse
Affiliation(s)
- Feng He
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China,
| | | | | | | | | | | |
Collapse
|
25
|
Agostini E, Talano MA, González PS, Oller ALW, Medina MI. Application of hairy roots for phytoremediation: what makes them an interesting tool for this purpose? Appl Microbiol Biotechnol 2013; 97:1017-30. [DOI: 10.1007/s00253-012-4658-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 12/12/2012] [Accepted: 12/15/2012] [Indexed: 12/15/2022]
|
26
|
Wang J, Feng X, Anderson CWN, Xing Y, Shang L. Remediation of mercury contaminated sites - A review. JOURNAL OF HAZARDOUS MATERIALS 2012; 221-222:1-18. [PMID: 22579459 DOI: 10.1016/j.jhazmat.2012.04.035] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 04/08/2012] [Accepted: 04/14/2012] [Indexed: 05/08/2023]
Abstract
Environmental contamination caused by mercury is a serious problem worldwide. Coal combustion, mercury and gold mining activities and industrial activities have led to an increase in the mercury concentration in soil. The objective of this paper is to present an up-to-date understanding of the available techniques for the remediation of soil contaminated with mercury through considering: mercury contamination in soil, mercury speciation in soil; mercury toxicity to humans, plants and microorganisms, and remediation options. This paper describes the commonly employed and emerging techniques for mercury remediation, namely: stabilization/solidification (S/S), immobilization, vitrification, thermal desorption, nanotechnology, soil washing, electro-remediation, phytostabilization, phytoextraction and phytovolatilization.
Collapse
Affiliation(s)
- Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, China
| | | | | | | | | |
Collapse
|
27
|
Ali N, Sorkhoh N, Salamah S, Eliyas M, Radwan S. The potential of epiphytic hydrocarbon-utilizing bacteria on legume leaves for attenuation of atmospheric hydrocarbon pollutants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2012; 93:113-20. [PMID: 22054577 DOI: 10.1016/j.jenvman.2011.08.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 08/16/2011] [Accepted: 08/17/2011] [Indexed: 05/31/2023]
Abstract
The leaves of two legumes, peas and beans, harbored on their surfaces up to 9×10⁷ cells g⁻¹ of oil-utilizing bacteria. Less numbers, up to 5×10⁵ cells g⁻¹ inhabited leaves of two nonlegume crops, namely tomato and sunflower. Older leaves accommodated more of such bacteria than younger ones. Plants raised in oily environments were colonized by much more oil-utilizing bacteria than those raised in pristine (oil-free) environments. Similar numbers were counted on the same media in which nitrogen salt was deleted, indicating that most phyllospheric bacteria were probably diazotrophic. Most dominant were Microbacterium spp. followed by Rhodococcus spp., Citrobacter freundii, in addition to several other minor species. The pure bacterial isolates could utilize leaf tissue hydrocarbons, and consume considerable proportions of crude oil, phenanthrene (an aromatic hydrocarbon) and n-octadecane (an alkane) in batch cultures. Bacterial consortia on fresh (but not on previously autoclaved) leaves of peas and beans could also consume substantial proportions of the surrounding volatile oil hydrocarbons in closed microcosms. It was concluded that phytoremediation through phyllosphere technology could be useful in remediating atmospheric hydrocarbon pollutants.
Collapse
Affiliation(s)
- Nida Ali
- Department of Biological Sciences, Kuwait University, Safat 13060, Kuwait
| | | | | | | | | |
Collapse
|
28
|
A Review on Heavy Metals (As, Pb, and Hg) Uptake by Plants through Phytoremediation. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2011. [DOI: 10.1155/2011/939161] [Citation(s) in RCA: 883] [Impact Index Per Article: 63.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Heavy metals are among the most important sorts of contaminant in the environment. Several methods already used to clean up the environment from these kinds of contaminants, but most of them are costly and difficult to get optimum results. Currently, phytoremediation is an effective and affordable technological solution used to extract or remove inactive metals and metal pollutants from contaminated soil and water. This technology is environmental friendly and potentially cost effective. This paper aims to compile some information about heavy metals of arsenic, lead, and mercury (As, Pb, and Hg) sources, effects and their treatment. It also reviews deeply about phytoremediation technology, including the heavy metal uptake mechanisms and several research studies associated about the topics. Additionally, it describes several sources and the effects of As, Pb, and Hg on the environment, the advantages of this kind of technology for reducing them, and also heavy metal uptake mechanisms in phytoremediation technology as well as the factors affecting the uptake mechanisms. Some recommended plants which are commonly used in phytoremediation and their capability to reduce the contaminant are also reported.
Collapse
|
29
|
Sorkhoh NA, Ali N, Al-Awadhi H, Dashti N, Al-Mailem DM, Eliyas M, Radwan SS. Phytoremediation of mercury in pristine and crude oil contaminated soils: Contributions of rhizobacteria and their host plants to mercury removal. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2010; 73:1998-2003. [PMID: 20833430 DOI: 10.1016/j.ecoenv.2010.08.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 08/23/2010] [Accepted: 08/24/2010] [Indexed: 05/29/2023]
Abstract
The rhizospheric soils of three tested legume crops: broad beans (Vicia faba), beans (Phaseolus vulgaris) and pea (Pisum sativum), and two nonlegume crops: cucumber (Cucumis sativus) and tomato, (Lycopersicon esculentum) contained considerable numbers (the magnitude of 10(5)g(-1) soil) of bacteria with the combined potential for hydrocarbon-utilization and mercury-resistance. Sequencing of the 16S rRNA coding genes of rhizobacteria associated with broad beans revealed that they were affiliated to Citrobacter freundii, Enterobacter aerogenes, Exiquobacterium aurantiacum, Pseudomonas veronii, Micrococcus luteus, Brevibacillus brevis, Arthrobacter sp. and Flavobacterium psychrophilum. These rhizobacteria were also diazotrophic, i.e. capable of N(2) fixation, which makes them self-sufficient regarding their nitrogen nutrition and thus suitable remediation agents in nitrogen-poor soils, such as the oily desert soil. The crude oil attenuation potential of the individual rhizobacteria was inhibited by HgCl(2), but about 50% or more of this potential was still maintained in the presence of up to 40 mgl(-1) HgCl(2). Rhizobacteria-free plants removed amounts of mercury from the surrounding media almost equivalent to those removed by the rhizospheric bacterial consortia in the absence of the plants. It was concluded that both the collector plants and their rhizospheric bacterial consortia contributed equivalently to mercury removal from soil.
Collapse
Affiliation(s)
- N A Sorkhoh
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait
| | | | | | | | | | | | | |
Collapse
|
30
|
Luo W, Lu Y, Wang B, Tong X, Wang G, Shi Y, Wang T, Giesy JP. Distribution and sources of mercury in soils from former industrialized urban areas of Beijing, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2009; 158:507-517. [PMID: 18972213 DOI: 10.1007/s10661-008-0600-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 09/29/2008] [Indexed: 05/27/2023]
Abstract
Fifty-seven typical surface soils and 108 deeper soils were collected from five former industrial sites in Beijing and concentrations of total Hg (SigmaHg) as well as pH, total carbon (TC), total nitrogen (TN), total sulfur, and dissolved organic carbon concentrations determined. The mean concentration of SigmaHg in surface soils was significantly greater than background concentrations in the vicinity of Beijing. Forty-eight percent of the samples exceeded the "critical" concentration of 1.0 mg Hg/kg, dry weight in soils, which has been established by the Chinese government. At depths of 0-80 cm in the soil, profile concentrations of SigmaHg also exceeded the background value. There were significant correlations between concentrations of SigmaHg, TC, and TN in the industrial soils. The greater concentration of SigmaHg in most soils could have been due in part to combustion of coal and leakage from industrial processes.
Collapse
Affiliation(s)
- Wei Luo
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Patty C, Barnett B, Mooney B, Kahn A, Levy S, Liu Y, Pianetta P, Andrews JC. Using X-ray microscopy and Hg L3 XANES to study Hg binding in the rhizosphere of Spartina cordgrass. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:7397-402. [PMID: 19848152 PMCID: PMC2768038 DOI: 10.1021/es901076q] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
San Francisco Bay has been contaminated historically by mercury from mine tailings as well as contemporary industrial sources. Native Spartina foliosa and non-native S. alterniflora-hybrid cordgrasses are dominant florae within the SF Bay estuary environment. Understanding mercury uptake and transformations in these plants will help to characterize the significance of their roles in mercury biogeochemical cycling in the estuarine environment. Methylated mercury can be biomagnified up the food web, resulting in levels in sport fish up to 1 million times greater than in surrounding waters and resulting in advisories to limit fish intake. Understanding the uptake and methylation of mercury in the plant rhizosphere can yield insight into ways to manage mercury contamination. The transmission X-ray microscope on beamline 6-2 at the Stanford Synchrotron Radiation Lightsource (SSRL) was used to obtain absorption contrast images and 3D tomography of Spartina foliosa roots that were exposed to 1 ppm Hg (as HgCl2) hydroponically for 1 week. Absorption contrast images of micrometer-sized roots from S. foliosa revealed dark particles, and dark channels within the root, due to Hg absorption. 3D tomography showed that the particles are on the root surface, and slices from the tomographic reconstruction revealed that the particles are hollow, consistent with microorganisms with a thin layer of Hg on the surface. Hg L3 XANES of ground-up plant roots and Hg L3 micro-XANES from microprobe analysis of micrometer-sized roots (60-120 microm in size) revealed three main types of speciation in both Spartina species: Hg-S ligation in a form similar to Hg(II) cysteine, Hg-S bonding as in cinnabar and metacinnabar, and methylmercury-carboxyl bonding in a form similar to methylmercury acetate. These results are interpreted within the context of obtaining a "snapshot" of mercury methylation in progress.
Collapse
Affiliation(s)
- Cynthia Patty
- Stanford Synchrotron Radiation Lightsource (SSRL); 2575 Sand Hill Road, SLAC MS 69; Menlo Park, CA 94025
| | - Brandy Barnett
- Department of Chemistry and Biochemistry, California State University East Bay, 25800 Carlos Bee Boulevard, Hayward, CA 94542
| | - Bridget Mooney
- Department of Chemistry and Biochemistry, California State University East Bay, 25800 Carlos Bee Boulevard, Hayward, CA 94542
| | - Amanda Kahn
- Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing, CA 95039
| | - Silvio Levy
- Department of Chemistry and Biochemistry, California State University East Bay, 25800 Carlos Bee Boulevard, Hayward, CA 94542
| | - Yijin Liu
- Institute for High Energy Physics, Beijing, China
| | - Piero Pianetta
- Stanford Synchrotron Radiation Lightsource (SSRL); 2575 Sand Hill Road, SLAC MS 69; Menlo Park, CA 94025
| | - Joy C Andrews
- Stanford Synchrotron Radiation Lightsource (SSRL); 2575 Sand Hill Road, SLAC MS 69; Menlo Park, CA 94025
- Department of Chemistry and Biochemistry, California State University East Bay, 25800 Carlos Bee Boulevard, Hayward, CA 94542
- ; fax 650-926-4100; tel. 650-926-4285
| |
Collapse
|