1
|
Phukan T, Ryntathiang S, Syiem MB. Externally supplied ascorbic acid moderates detrimental effects of UV-C exposure in cyanobacteria. Photochem Photobiol Sci 2024; 23:1521-1531. [PMID: 38995521 DOI: 10.1007/s43630-024-00612-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
The defensive role performed by exogenously supplied ascorbic acid in the cyanobacterium Nostoc muscorum Meg1 against damages produced by UV-C radiation exposure was assessed in this study. Exposure to UV-C (24 mJ/cm2) significantly enhanced reactive oxygen species (ROS) (50%) along with peroxidation of lipids (21%) and protein oxidation (22%) in the organism. But, addition of 0.5 mM ascorbic acid prior to UV-C exposure showed reduction in ROS production (1.7%) and damages to lipids and proteins (1.5 and 2%, respectively). Light and transmission electron microscopic studies revealed that ascorbic acid not only protected filament breakage but also restricted severe ultrastructural changes and cellular damages in the organism. Although the growth of the organism was repressed up to 9% under UV-C treatment within 15 days, a pre-treatment with ascorbic acid led to growth enhancement by 42% in the same period. Various growth parameters such as photo-absorbing pigments (phycoerythrin, phycocyanin, allophycocyanin, chlorophyll a, and carotenoids), water splitting complex (WSC), D1 protein, RuBisCO, glutamine synthetase and nitrogenase activities in the UV-C treated organism were seen to be relatively intact in the presence of ascorbic acid. Thus, a detailed analysis undertaken in the present study was able to demonstrate that ascorbic acid not only act as first responder against harmful UV-C radiation by down-regulating ROS production, it also accelerated the growth performance in the organism in the post UV-C incubation period as an immediate response to an adverse experience presented in the form of UV-C radiation exposure.
Collapse
Affiliation(s)
- Tridip Phukan
- Department of Biochemistry, North Eastern Hill University, Shillong, Meghalaya, 793022, India
- CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
| | - Sukjailin Ryntathiang
- Department of Biochemistry, North Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Mayashree B Syiem
- Department of Biochemistry, North Eastern Hill University, Shillong, Meghalaya, 793022, India.
| |
Collapse
|
2
|
Aba RP, Sbahi S, Mugani R, Redouane EM, Hejjaj A, Azevedo J, Moreira CIT, Boo SF, Alexandrino DADM, Campos A, Vasconcelos V, Oudra B, Ouazzani N, Mandi L. Eco-friendly management of harmful cyanobacterial blooms in eutrophic lakes through vertical flow multi-soil-layering technology. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134281. [PMID: 38626680 DOI: 10.1016/j.jhazmat.2024.134281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/18/2024]
Abstract
Eutrophication has led to the widespread occurrence of cyanobacterial blooms. Toxic cyanobacterial blooms with high concentrations of microcystins (MCs) have been identified in the Lalla Takerkoust reservoir in Morocco. The objective of this study was to evaluate the efficiency of the Multi-Soil-Layering (MSL) ecotechnology in removing natural cyanobacterial blooms from the lake. Two MSL pilots were used in rectangular glass tanks (60 × 10 × 70 cm). They consisted of permeable layers (PLs) made of pozzolan and a soil mixture layer (SML) containing local soil, ferrous metal, charcoal and sawdust. The main difference between the two systems was the type of local soil used: sandy soil for MSL1 and clayey soil for MSL2. Both MSL pilots effectively reduced cyanobacterial cell concentrations in the treated water to very low levels (0.09 and 0.001 cells/mL). MSL1 showed a gradual improvement in MC removal from 52 % to 99 %, while MSL2 started higher at 90 % but dropped to 54% before reaching 86%. Both MSL systems significantly reduced organic matter levels (97.2 % for MSL1 and 95.8 % for MSL2). Both MSLs were shown to be effective in removing cyanobacteria, MCs, and organic matter with comparable performance.
Collapse
Affiliation(s)
- Roseline Prisca Aba
- National Center for Studies and Research on Water and Energy, Cadi Ayyad University, Av. Abdelkarim El Khattabi, P.O. Box: 511, 40000 Marrakech, Morocco; Water, Biodiversity and Climate change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco.
| | - Sofyan Sbahi
- National Center for Studies and Research on Water and Energy, Cadi Ayyad University, Av. Abdelkarim El Khattabi, P.O. Box: 511, 40000 Marrakech, Morocco; National Institute of Scientific and Technological Research in Water, City of Innovation Souss Massa, Ibn Zohr University, BP 32/S, Riad Salam, CP 80000 Agadir, Morocco.
| | - Richard Mugani
- National Center for Studies and Research on Water and Energy, Cadi Ayyad University, Av. Abdelkarim El Khattabi, P.O. Box: 511, 40000 Marrakech, Morocco; Water, Biodiversity and Climate change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco.
| | - El Mahdi Redouane
- Water, Biodiversity and Climate change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco.
| | - Abdessamad Hejjaj
- National Center for Studies and Research on Water and Energy, Cadi Ayyad University, Av. Abdelkarim El Khattabi, P.O. Box: 511, 40000 Marrakech, Morocco.
| | - Joana Azevedo
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
| | - Cristiana Ivone Tavares Moreira
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
| | - Sergio Fernández Boo
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
| | - Diogo Alves Da Mota Alexandrino
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
| | - Alexandre Campos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
| | - Vitor Vasconcelos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - Brahim Oudra
- Water, Biodiversity and Climate change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco.
| | - Naaila Ouazzani
- National Center for Studies and Research on Water and Energy, Cadi Ayyad University, Av. Abdelkarim El Khattabi, P.O. Box: 511, 40000 Marrakech, Morocco; Water, Biodiversity and Climate change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco.
| | - Laila Mandi
- National Center for Studies and Research on Water and Energy, Cadi Ayyad University, Av. Abdelkarim El Khattabi, P.O. Box: 511, 40000 Marrakech, Morocco; Water, Biodiversity and Climate change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco.
| |
Collapse
|
3
|
Mugani R, El Khalloufi F, Kasada M, Redouane EM, Haida M, Aba RP, Essadki Y, Zerrifi SEA, Herter SO, Hejjaj A, Aziz F, Ouazzani N, Azevedo J, Campos A, Putschew A, Grossart HP, Mandi L, Vasconcelos V, Oudra B. Monitoring of toxic cyanobacterial blooms in Lalla Takerkoust reservoir by satellite imagery and microcystin transfer to surrounding farms. HARMFUL ALGAE 2024; 135:102631. [PMID: 38830709 DOI: 10.1016/j.hal.2024.102631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/05/2024]
Abstract
Cyanobacterial harmful algal blooms (CyanoHABs) threaten public health and freshwater ecosystems worldwide. In this study, our main goal was to explore the dynamics of cyanobacterial blooms and how microcystins (MCs) move from the Lalla Takerkoust reservoir to the nearby farms. We used Landsat imagery, molecular analysis, collecting and analyzing physicochemical data, and assessing toxins using HPLC. Our investigation identified two cyanobacterial species responsible for the blooms: Microcystis sp. and Synechococcus sp. Our Microcystis strain produced three MC variants (MC-RR, MC-YR, and MC-LR), with MC-RR exhibiting the highest concentrations in dissolved and intracellular toxins. In contrast, our Synechococcus strain did not produce any detectable toxins. To validate our Normalized Difference Vegetation Index (NDVI) results, we utilized limnological data, including algal cell counts, and quantified MCs in freeze-dried Microcystis bloom samples collected from the reservoir. Our study revealed patterns and trends in cyanobacterial proliferation in the reservoir over 30 years and presented a historical map of the area of cyanobacterial infestation using the NDVI method. The study found that MC-LR accumulates near the water surface due to the buoyancy of Microcystis. The maximum concentration of MC-LR in the reservoir water was 160 µg L-1. In contrast, 4 km downstream of the reservoir, the concentration decreased by a factor of 5.39 to 29.63 µgL-1, indicating a decrease in MC-LR concentration with increasing distance from the bloom source. Similarly, the MC-YR concentration decreased by a factor of 2.98 for the same distance. Interestingly, the MC distribution varied with depth, with MC-LR dominating at the water surface and MC-YR at the reservoir outlet at a water depth of 10 m. Our findings highlight the impact of nutrient concentrations, environmental factors, and transfer processes on bloom dynamics and MC distribution. We emphasize the need for effective management strategies to minimize toxin transfer and ensure public health and safety.
Collapse
Affiliation(s)
- Richard Mugani
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco; National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000, Marrakech, Morocco; Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhuette 2, 14775, Stechlin, Germany
| | - Fatima El Khalloufi
- Natural Resources Engineering and Environmental Impacts Team, Multidisciplinary Research and Innovation Laboratory, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University of Beni Mellal, B.P.: 145, 25000, Khouribga, Morocco
| | - Minoru Kasada
- Graduate School of Life Sciences, Tohoku University 6-3, Aoba, Sendai, 980-8578 Japan
| | - El Mahdi Redouane
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco; UMR-I 02 INERIS-URCA-ULH SEBIO, University of Reims Champagne-Ardenne, Reims 51100, France
| | - Mohammed Haida
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco
| | - Roseline Prisca Aba
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco; National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000, Marrakech, Morocco
| | - Yasser Essadki
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco
| | - Soukaina El Amrani Zerrifi
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco; Higher Institute of Nurses Professions and Health Techniques of Guelmim, Guelmim, 81000, Morocco
| | - Sven-Oliver Herter
- Department of Water Quality Engineering, Institute of Environmental Technology, Technical University Berlin, Berlin, Germany
| | - Abdessamad Hejjaj
- National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000, Marrakech, Morocco
| | - Faissal Aziz
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco; National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000, Marrakech, Morocco
| | - Naaila Ouazzani
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco; National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000, Marrakech, Morocco
| | - Joana Azevedo
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
| | - Alexandre Campos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
| | - Anke Putschew
- Department of Water Quality Engineering, Institute of Environmental Technology, Technical University Berlin, Berlin, Germany
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhuette 2, 14775, Stechlin, Germany; Institute of Biochemistry and Biology, University of Potsdam, Maulbeeralle 2, 14469, Potsdam, Germany
| | - Laila Mandi
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco; National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000, Marrakech, Morocco
| | - Vitor Vasconcelos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| | - Brahim Oudra
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco
| |
Collapse
|
4
|
Caro-Borrero A, Márquez-Santamaria K, Carmona-Jiménez J, Becerra-Absalón I, Perona E. Cyanobacterial Harmful Algal Mats (CyanoHAMs) in tropical rivers of central Mexico and their potential risks through toxin production. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:408. [PMID: 38561517 PMCID: PMC10984904 DOI: 10.1007/s10661-024-12568-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
Cyanobacteria inhabiting lotic environments have been poorly studied and characterized in Mexico, despite their potential risks from cyanotoxin production. This article aims to fill this knowledge gap by assessing the importance of benthic cyanobacteria as potential cyanotoxin producers in central Mexican rivers through: (i) the taxonomic identification of cyanobacteria found in these rivers, (ii) the environmental characterization of their habitats, and (iii) testing for the presence of toxin producing genes in the encountered taxa. Additionally, we introduce and discuss the use of the term "CyanoHAMs" for lotic water environments. Populations of cyanobacteria were collected from ten mountain rivers and identified using molecular techniques. Subsequently, these taxa were evaluated for genes producing anatoxins and microcystins via PCR. Through RDA analyses, the collected cyanobacteria were grouped into one of three categories based on their environmental preferences for the following: (1) waters with high ionic concentrations, (2) cold-temperate waters, or (3) waters with high nutrient enrichment. Populations from six locations were identified to genus level: Ancylothrix sp., Cyanoplacoma sp., and Oxynema sp. The latter was found to contain the gene that produces anatoxins and microcystins in siliceous rivers, while Oxynema tested positive for the gene that produces microcystins in calcareous rivers. Our results suggest that eutrophic environments are not necessarily required for toxin-producing cyanobacteria. Our records of Compactonostoc, Oxynema, and Ancylothrix represent the first for Mexico. Four taxa were identified to species level: Wilmottia aff. murrayi, Nostoc tlalocii, Nostoc montejanii, and Dichothrix aff. willei, with only the first testing positive using PCR for anatoxin and microcystin-producing genes in siliceous rivers. Due to the differences between benthic growths with respect to planktonic ones, we propose the adoption of the term Cyanobacterial Harmful Algal Mats (CyanoHAMs) as a more precise descriptor for future studies.
Collapse
Affiliation(s)
- Angela Caro-Borrero
- Ecology and Natural Resources Department, Science Faculty, National Autonomous University of Mexico, University City, Exterior Circuit S/N, 04510, Coyoacan, Mexico City, Mexico
| | - Kenia Márquez-Santamaria
- Ecology and Natural Resources Department, Science Faculty, National Autonomous University of Mexico, University City, Exterior Circuit S/N, 04510, Coyoacan, Mexico City, Mexico
- Postgraduate School in Marine Sciences and Limnology, National Autonomous University of Mexico, University City, Exterior Circuit S/N, 04510, Coyoacan, Mexico City, Mexico
| | - Javier Carmona-Jiménez
- Ecology and Natural Resources Department, Science Faculty, National Autonomous University of Mexico, University City, Exterior Circuit S/N, 04510, Coyoacan, Mexico City, Mexico.
| | - Itzel Becerra-Absalón
- Comparative Biology Department, Science Faculty, National Autonomous University of Mexico, University City, Exterior Circuit S/N, 04510, Coyoacan, Mexico City, Mexico
| | - Elvira Perona
- Biology Department, Science Faculty, Autonomous University of Madrid, Darwin 2, Canto Blanco Campus, 28049, Madrid, Spain
| |
Collapse
|
5
|
Chia MA, Ameh I, George KC, Balogun EO, Akinyemi SA, Lorenzi AS. Genetic Diversity of Microcystin Producers (Cyanobacteria) and Microcystin Congeners in Aquatic Resources across Africa: A Review Paper. TOXICS 2022; 10:772. [PMID: 36548605 PMCID: PMC9783101 DOI: 10.3390/toxics10120772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Microcystins are produced by multifaceted organisms called cyanobacteria, which are integral to Africa's freshwater environments. The excessive proliferation of cyanobacteria caused by rising temperature and eutrophication leads to the production and release of copious amounts of microcystins, requiring critical management and control approaches to prevent the adverse environmental and public health problems associated with these bioactive metabolites. Despite hypotheses reported to explain the phylogeography and mechanisms responsible for cyanobacterial blooms in aquatic water bodies, many aspects are scarcely understood in Africa due to the paucity of investigations and lack of uniformity of experimental methods. Due to a lack of information and large-scale studies, cyanobacteria occurrence and genetic diversity are seldom reported in African aquatic ecosystems. This review covers the diversity and geographical distribution of potential microcystin-producing and non-microcystin-producing cyanobacterial taxa in Africa. Molecular analyses using housekeeping genes (e.g., 16S rRNA, ITS, rpoC1, etc.) revealed significant sequence divergence across several cyanobacterial strains from East, North, West, and South Africa, but the lack of uniformity in molecular markers employed made continent-wise phylogenetic comparisons impossible. Planktothrix agardhii, Microcystis aeruginosa, and Cylindrospermopsis raciborskii (presently known as Raphidiopsis raciborskii) were the most commonly reported genera. Potential microcystin (MCs)-producing cyanobacteria were detected using mcy genes, and several microcystin congeners were recorded. Studying cyanobacteria species from the African continent is urgent to effectively safeguard public and environmental health because more than 80% of the continent has no data on these important microorganisms and their bioactive secondary metabolites.
Collapse
Affiliation(s)
- Mathias Ahii Chia
- Department of Botany, Ahmadu Bello University, Zaria 810107, Nigeria
| | - Ilu Ameh
- Department of Biochemistry, Ahmadu Bello University, Zaria 810107, Nigeria
- African Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria 810107, Nigeria
| | - Korie Chibuike George
- Department of Biochemistry, Ahmadu Bello University, Zaria 810107, Nigeria
- African Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria 810107, Nigeria
| | | | | | - Adriana Sturion Lorenzi
- Department of Cellular Biology, Institute of Biological Sciences, University of Brasília—UnB, Brasília 70910-900, Brazil
| |
Collapse
|
6
|
Benredjem L, Berredjem H, Abdi A, Casero MC, Quesada A, Fosso B, Marzano M, Pesole G, Azevedo J, Vasconcelos V. Morphological, molecular, and biochemical study of cyanobacteria from a eutrophic Algerian reservoir (Cheffia). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:27624-27635. [PMID: 34984616 DOI: 10.1007/s11356-021-17528-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
The cyanobacteria management in water bodies requires a deep knowledge of the community composition. Considering the reliable and thorough information provided by the polyphasic approach in cyanobacteria taxonomy, here we assess the cyanobacterial community structure of the Cheffia reservoir from Algeria. Cyanobacteria were identified on the basis of morphological traits and next-generation sequencing (NGS); toxins-related genes were localized in addition to the identification of toxins; temperature and nutrient level of water samples were also determined. The polyphasic approach was essential for cyanobacteria investigation; 28 genera were identified through 16S rRNA metabarcoding with the dominance of taxa from Microcystis (34.2%), Aphanizomenon (20.1%), and Planktothrix (20.0%), and morphological analysis revealed the association in this water body of five species within the genus Microcystis: M. aeruginosa, M. novacekii, M. panniformis, M. ichthyoblabe, and M. flos-aquae. The presence of mcyE genotypes was detected; moreover, HPLC-PDA and LC-ESI-MS/MS revealed the production of microcystin-LR. Results obtained in our study are very important since this ecosystem is used for water supply and irrigation; as a consequence, a good water management plan is essential.
Collapse
Affiliation(s)
- Lamia Benredjem
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, Faculty of Sciences, Badji Mokhtar University, BP 12, 23000, Annaba, Algeria
| | - Hajira Berredjem
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, Faculty of Sciences, Badji Mokhtar University, BP 12, 23000, Annaba, Algeria
| | - Akila Abdi
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, Faculty of Sciences, Badji Mokhtar University, BP 12, 23000, Annaba, Algeria
| | - Maria Cristina Casero
- Departamento de Biología, C/Darwin, 2, Universidad Autónoma de Madrid, ES-28049, Madrid, Spain
| | - Antonio Quesada
- Departamento de Biología, C/Darwin, 2, Universidad Autónoma de Madrid, ES-28049, Madrid, Spain
| | - Bruno Fosso
- Istituto Di Biomembrane, Bioenergetica E Biotecnologie Molecolari (IBIOM), CNR, Via Amendola 122/O, 70126, Bari, Italy
| | - Marinella Marzano
- Istituto Di Biomembrane, Bioenergetica E Biotecnologie Molecolari (IBIOM), CNR, Via Amendola 122/O, 70126, Bari, Italy
| | - Graziano Pesole
- Istituto Di Biomembrane, Bioenergetica E Biotecnologie Molecolari (IBIOM), CNR, Via Amendola 122/O, 70126, Bari, Italy
- Dipartimento Di Bioscienze, Biotecnologie E Biofarmaceutica, Università Degli Studi Di Bari "Aldo Moro", Via Orabona 4, 70126, Bari, Italy
| | - Joana Azevedo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua Dos Bragas, 289, 4050-123, Porto, Portugal
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua Dos Bragas, 289, 4050-123, Porto, Portugal.
- Biology Department, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal.
| |
Collapse
|
7
|
Multi-Soil-Layering Technology: A New Approach to Remove Microcystis aeruginosa and Microcystins from Water. WATER 2022. [DOI: 10.3390/w14050686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Eutrophication of surface waters caused by toxic cyanobacteria such as Microcystis aeruginosa leads to the release of secondary metabolites called Microcystins (MCs), which are heptapeptides with adverse effects on soil microbiota, plants, animals, and human health. Therefore, to avoid succumbing to the negative effects of these cyanotoxins, various remediation approaches have been considered. These techniques involve expensive physico-chemical processes because of the specialized equipment and facilities required. Thus, implementing eco-technologies capable of handling this problem has become necessary. Indeed, multi-soil-layering (MSL) technology can essentially meet this requirement. This system requires little space, needs simple maintenance, and has energy-free operation and high durability (20 years). The performance of the system is such that it can remove 1.16 to 4.47 log10 units of fecal contamination from the water, 98% of suspended solids (SS), 92% of biological oxygen demand (BOD), 98% of chemical oxygen demand (COD), 92% of total nitrogen (TN), and 100% of total phosphorus (TP). The only reported use of the system to remove cyanotoxins has shown a 99% removal rate of MC-LR. However, the mechanisms involved in removing this toxin from the water are not fully understood. This paper proposes reviewing the principal methods employed in conventional water treatment and other technologies to eliminate MCs from the water. We also describe the principles of operation of MSL systems and compare the performance of this technology with others, highlighting some advantages of this technology in removing MCs. Overall, the combination of multiple processes (physico-chemical and biological) makes MSL technology a good choice of cyanobacterial contamination treatment system that is applicable in real-life conditions, especially in rural areas.
Collapse
|
8
|
Role of Rhizospheric Microbiota as a Bioremediation Tool for the Protection of Soil-Plant Systems from Microcystins Phytotoxicity and Mitigating Toxin-Related Health Risk. Microorganisms 2021; 9:microorganisms9081747. [PMID: 34442826 PMCID: PMC8402104 DOI: 10.3390/microorganisms9081747] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022] Open
Abstract
Frequent toxic cyanoblooms in eutrophic freshwaters produce various cyanotoxins such as the monocyclic heptapeptides microcystins (MCs), known as deleterious compounds to plant growth and human health. Recently, MCs are a recurrent worldwide sanitary problem in irrigation waters and farmland soils due to their transfer and accumulation in the edible tissues of vegetable produce. In such cases, studies about the persistence and removal of MCs in soil are scarce and not fully investigated. In this study, we carried out a greenhouse trial on two crop species: faba bean (Vicia faba var. Alfia 321) and common wheat (Triticum aestivum var. Achtar) that were grown in sterile (microorganism-free soil) and non-sterile (microorganism-rich soil) soils and subjected to MC-induced stress at 100 µg equivalent MC-LR L−1. The experimentation aimed to assess the prominent role of native rhizospheric microbiota in mitigating the phytotoxic impact of MCs on plant growth and reducing their accumulation in both soils and plant tissues. Moreover, we attempted to evaluate the health risk related to the consumption of MC-polluted plants for humans and cattle by determining the estimated daily intake (EDI) and health risk quotient (RQ) of MCs in these plants. Biodegradation was liable to be the main removal pathway of the toxin in the soil; and therefore, bulk soil (unplanted soil), as well as rhizospheric soil (planted soil), were used in this experiment to evaluate the accumulation of MCs in the presence and absence of microorganisms (sterile and non-sterile soils). The data obtained in this study showed that MCs had no significant effects on growth indicators of faba bean and common wheat plants in non-sterile soil as compared to the control group. In contrast, plants grown in sterile soil showed a significant decrease in growth parameters as compared to the control. These results suggest that MCs were highly bioavailable to the plants, resulting in severe growth impairments in the absence of native rhizospheric microbiota. Likewise, MCs were more accumulated in sterile soil and more bioconcentrated in root and shoot tissues of plants grown within when compared to non-sterile soil. Thereby, the EDI of MCs in plants grown in sterile soil was more beyond the tolerable daily intake recommended for both humans and cattle. The risk level was more pronounced in plants from the sterile soil than those from the non-sterile one. These findings suggest that microbial activity, eventually MC-biodegradation, is a crucial bioremediation tool to remove and prevent MCs from entering the agricultural food chain.
Collapse
|
9
|
First Report on Cyanotoxin (MC-LR) Removal from Surface Water by Multi-Soil-Layering (MSL) Eco-Technology: Preliminary Results. WATER 2021. [DOI: 10.3390/w13101403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cyanobacteria blooms occur frequently in freshwaters around the world. Some can produce and release toxic compounds called cyanotoxins, which represent a danger to both the environment and human health. Microcystin-LR (MC-LR) is the most toxic variant reported all over the world. Conventional water treatment methods are expensive and require specialized personnel and equipment. Recently, a multi-soil-layering (MSL) system, a natural and low-cost technology, has been introduced as an attractive cost-effective, and environmentally friendly technology that is likely to be an alternative to conventional wastewater treatment methods. This study aims to evaluate, for the first time, the efficiency of MSL eco-technology to remove MC-LR on a laboratory scale using local materials. To this end, an MSL pilot plant was designed to treat distilled water contaminated with MC-LR. The pilot was composed of an alternation of permeable layers (pozzolan) and soil mixture layers (local sandy soil, sawdust, charcoal, and metallic iron on a dry weight ratio of 70, 10, 10, and 10%, respectively) arranged in a brick-layer-like pattern. MSL pilot was continuously fed with synthetic water containing distilled water contaminated with increasing concentrations of MC-LR (0.18–10 µg/L) at a hydraulic loading rate (HLR) of 200 L m−2 day−1. The early results showed MC-LR removal of above 99%. Based on these preliminary results, the multi-soil-layering eco-technology could be considered as a promising solution to treat water contaminated by MC-LR in order to produce quality water for irrigation or recreational activities.
Collapse
|
10
|
Algal Toxic Compounds and Their Aeroterrestrial, Airborne and other Extremophilic Producers with Attention to Soil and Plant Contamination: A Review. Toxins (Basel) 2021; 13:toxins13050322. [PMID: 33946968 PMCID: PMC8145420 DOI: 10.3390/toxins13050322] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
The review summarizes the available knowledge on toxins and their producers from rather disparate algal assemblages of aeroterrestrial, airborne and other versatile extreme environments (hot springs, deserts, ice, snow, caves, etc.) and on phycotoxins as contaminants of emergent concern in soil and plants. There is a growing body of evidence that algal toxins and their producers occur in all general types of extreme habitats, and cyanobacteria/cyanoprokaryotes dominate in most of them. Altogether, 55 toxigenic algal genera (47 cyanoprokaryotes) were enlisted, and our analysis showed that besides the “standard” toxins, routinely known from different waterbodies (microcystins, nodularins, anatoxins, saxitoxins, cylindrospermopsins, BMAA, etc.), they can produce some specific toxic compounds. Whether the toxic biomolecules are related with the harsh conditions on which algae have to thrive and what is their functional role may be answered by future studies. Therefore, we outline the gaps in knowledge and provide ideas for further research, considering, from one side, the health risk from phycotoxins on the background of the global warming and eutrophication and, from the other side, the current surge of interest which phycotoxins provoke due to their potential as novel compounds in medicine, pharmacy, cosmetics, bioremediation, agriculture and all aspects of biotechnological implications in human life.
Collapse
|
11
|
Chopyk J, Nasko DJ, Allard S, Bui A, Pop M, Mongodin EF, Sapkota AR. Seasonal dynamics in taxonomy and function within bacterial and viral metagenomic assemblages recovered from a freshwater agricultural pond. ENVIRONMENTAL MICROBIOME 2020; 15:18. [PMID: 33902740 PMCID: PMC8067656 DOI: 10.1186/s40793-020-00365-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/29/2020] [Indexed: 06/01/2023]
Abstract
BACKGROUND Ponds are important freshwater habitats that support both human and environmental activities. However, relative to their larger counterparts (e.g. rivers, lakes), ponds are understudied, especially with regard to their microbial communities. Our study aimed to fill this knowledge gap by using culture-independent, high-throughput sequencing to assess the dynamics, taxonomy, and functionality of bacterial and viral communities in a freshwater agricultural pond. RESULTS Water samples (n = 14) were collected from a Mid-Atlantic agricultural pond between June 2017 and May 2018 and filtered sequentially through 1 and 0.2 μm filter membranes. Total DNA was then extracted from each filter, pooled, and subjected to 16S rRNA gene and shotgun sequencing on the Illumina HiSeq 2500 platform. Additionally, on eight occasions water filtrates were processed for viral metagenomes (viromes) using chemical concentration and then shotgun sequenced. A ubiquitous freshwater phylum, Proteobacteria was abundant at all sampling dates throughout the year. However, environmental characteristics appeared to drive the structure of the community. For instance, the abundance of Cyanobacteria (e.g. Nostoc) increased with rising water temperatures, while a storm event appeared to trigger an increase in overall bacterial diversity, as well as the relative abundance of Bacteroidetes. This event was also associated with an increase in the number of antibiotic resistance genes. The viral fractions were dominated by dsDNA of the order Caudovirales, namely Siphoviridae and Myovirdae. CONCLUSIONS Overall, this study provides one of the largest datasets on pond water microbial ecology to date, revealing seasonal trends in the microbial taxonomic composition and functional potential.
Collapse
Affiliation(s)
- Jessica Chopyk
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA.
- Department of Pathology University of California San Diego, La Jolla, California, USA.
| | - Daniel J Nasko
- Center for Bioinformatics and Computational Biology, Institute for Advanced Computer Sciences, University of Maryland, College Park, MD, USA
| | - Sarah Allard
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Anthony Bui
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Mihai Pop
- Center for Bioinformatics and Computational Biology, Institute for Advanced Computer Sciences, University of Maryland, College Park, MD, USA
| | - Emmanuel F Mongodin
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amy R Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| |
Collapse
|
12
|
Wood SA, Kelly L, Bouma-Gregson K, Humbert JF, Laughinghouse HD, Lazorchak J, McAllister T, McQueen A, Pokrzywinski K, Puddick J, Quiblier C, Reitz LA, Ryan K, Vadeboncoeur Y, Zastepa A, Davis TW. Toxic benthic freshwater cyanobacterial proliferations: Challenges and solutions for enhancing knowledge and improving monitoring and mitigation. FRESHWATER BIOLOGY 2020; 65:1824-1842. [PMID: 34970014 PMCID: PMC8715960 DOI: 10.1111/fwb.13532] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/05/2020] [Indexed: 05/05/2023]
Abstract
1. This review summarises knowledge on the ecology, toxin production, and impacts of toxic freshwater benthic cyanobacterial proliferations. It documents monitoring, management, and sampling strategies, and explores mitigation options. 2. Toxic proliferations of freshwater benthic cyanobacteria (taxa that grow attached to substrates) occur in streams, rivers, lakes, and thermal and meltwater ponds, and have been reported in 19 countries. Anatoxin- and microcystin-containing mats are most commonly reported (eight and 10 countries, respectively). 3. Studies exploring factors that promote toxic benthic cyanobacterial proliferations are limited to a few species and habitats. There is a hierarchy of importance in environmental and biological factors that regulate proliferations with variables such as flow (rivers), fine sediment deposition, nutrients, associated microbes, and grazing identified as key drivers. Regulating factors differ among colonisation, expansion, and dispersal phases. 4. New -omics-based approaches are providing novel insights into the physiological attributes of benthic cyanobacteria and the role of associated microorganisms in facilitating their proliferation. 5. Proliferations are commonly comprised of both toxic and non-toxic strains, and the relative proportion of these is the key factor contributing to the overall toxin content of each mat. 6. While these events are becoming more commonly reported globally, we currently lack standardised approaches to detect, monitor, and manage this emerging health issue. To solve these critical gaps, global collaborations are needed to facilitate the rapid transfer of knowledge and promote the development of standardised techniques that can be applied to diverse habitats and species, and ultimately lead to improved management.
Collapse
Affiliation(s)
| | | | - Keith Bouma-Gregson
- Office of Information Management and Analysis, California State Water Resources Control Board, Sacramento, California, United States of America
| | | | - H Dail Laughinghouse
- Fort Lauderdale Research and Education Center, University of Florida, Florida, USA
| | - James Lazorchak
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Monitoring and Modeling, Cincinnati, Ohio, United States of America
| | - Tara McAllister
- Te Pūnaha Matatini Centre of Research Excellence for Complex Systems, University of Auckland, Auckland, New Zealand
| | - Andrew McQueen
- Environmental Risk Assessment Branch, US Army Corps of Engineers, Engineering Research & Development Center, Vicksburg, Mississippi, United States of America
| | - Katyee Pokrzywinski
- Environmental Risk Assessment Branch, US Army Corps of Engineers, Engineering Research & Development Center, Vicksburg, Mississippi, United States of America
| | | | | | - Laura A Reitz
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States of America
| | - Ken Ryan
- School of Biological Sciences, Victoria University of Wellington, New Zealand
| | - Yvonne Vadeboncoeur
- Department of Biological Sciences, Wright State University, Ohio, United States of America
| | - Arthur Zastepa
- Environment and Climate Change Canada, Canada Centre for Inland Waters, Ontario, Canada
| | - Timothy W Davis
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States of America
| |
Collapse
|
13
|
Arsenic-contaminated sediment from mining areas as source of morphological and phylogenetic distinct cyanobacterial lineages. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101589] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
14
|
Gkelis S, Panou M, Konstantinou D, Apostolidis P, Kasampali A, Papadimitriou S, Kati D, Di Lorenzo GM, Ioakeim S, Zervou SK, Christophoridis C, Triantis TM, Kaloudis T, Hiskia A, Arsenakis M. Diversity, Cyanotoxin Production, and Bioactivities of Cyanobacteria Isolated from Freshwaters of Greece. Toxins (Basel) 2019; 11:toxins11080436. [PMID: 31349572 PMCID: PMC6723990 DOI: 10.3390/toxins11080436] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 12/28/2022] Open
Abstract
Cyanobacteria are a diverse group of photosynthetic Gram-negative bacteria that produce an array of secondary compounds with selective bioactivity against a broad spectrum of organisms and cell lines. In this study, 29 strains isolated from freshwaters in Greece were classified using a polyphasic approach and assigned to Chroococcales, Synechococcales, and Nostocales, representing 11 genera and 17 taxa. There were good agreements between 16S ribosomal RNA (rRNA)-cpcBA-internal genetic spacer (IGS) characterization and morphological features, except for the Jaaginema-Limnothrix group which appears intermixed and needs further elucidation. Methanol extracts of the strains were analyzed for cyanotoxin production and tested against pathogenic bacteria species and several cancer cell lines. We report for the first time a Nostoc oryzae strain isolated from rice fields capable of producing microcystins (MCs) and a Chlorogloeopsis fritschii strain isolated from the plankton of a lake, suggesting that this species may also occur in freshwater temperate habitats. Strains with very high or identical 16S rRNA gene sequences displayed different antibacterial and cytotoxic activities. Extracts from Synechococcus cf. nidulans showed the most potent antibacterial activity against Staphylococcus aureus, whereas Jaaginema sp. strains exhibited potent cytotoxic activities against human colorectal adenocarcinoma and hepatocellular carcinoma cells. Jaaginema Thessaloniki Aristotle University Microalgae and Cyanobacteria (TAU-MAC) 0110 and 0210 strains caused pronounced changes in the actin network and triggered the formation of numerous lipid droplets in hepatocellular carcinoma and green monkey kidney cells, suggesting oxidative stress and/or mitochondrial damage leading to apoptosis.
Collapse
Affiliation(s)
- Spyros Gkelis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| | - Manthos Panou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Despoina Konstantinou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Panagiotis Apostolidis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Antonia Kasampali
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Sofia Papadimitriou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Dominiki Kati
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Giorgia Maria Di Lorenzo
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Stamatia Ioakeim
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Sevasti-Kiriaki Zervou
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research "Demokritos", Patriarchou Grigoriou & Neapoleos, Agia Paraskevi, 15341 Athens, Greece
| | - Christophoros Christophoridis
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research "Demokritos", Patriarchou Grigoriou & Neapoleos, Agia Paraskevi, 15341 Athens, Greece
| | - Theodoros M Triantis
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research "Demokritos", Patriarchou Grigoriou & Neapoleos, Agia Paraskevi, 15341 Athens, Greece
| | - Triantafyllos Kaloudis
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research "Demokritos", Patriarchou Grigoriou & Neapoleos, Agia Paraskevi, 15341 Athens, Greece
| | - Anastasia Hiskia
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research "Demokritos", Patriarchou Grigoriou & Neapoleos, Agia Paraskevi, 15341 Athens, Greece
| | - Minas Arsenakis
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| |
Collapse
|
15
|
Dong C, Zhang H, Yang Y, He X, Liu L, Fu J, Shi J, Wu Z. Physiological and transcriptomic analyses to determine the responses to phosphorus utilization in Nostoc sp. HARMFUL ALGAE 2019; 84:10-18. [PMID: 31128794 DOI: 10.1016/j.hal.2019.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 05/05/2023]
Abstract
Phosphorus (P) is an important factor driving algal growth in aquatic ecosystems. In the present study, the growth, P uptake and utilization, photosynthesis, and transcriptome profile of Nostoc sp. were measured when Nostoc sp. cultured in media containing β-glycerol phosphate (β-gly, containing COP bonds), 2-aminoethylphosphonic acid (2-amin, containing CP bonds), or orthophosphate (K2HPO4), and in P-free (NP) medium. The results revealed that NP treatment adversely affected the growth and photosynthesis of Nostoc sp. and significantly down-regulated the expression of genes related to nutrient transport and material metabolism. Furthermore, 2-amin treatment reduced the growth of Nostoc sp. but did not significantly reduce photosynthesis, and the treatments of NP and 2-amin up-regulated the expressions of genes related antioxidation and stress. Additionally, there were no obvious differences in growth, photosynthesis, and phosphorus utilization between the β-gly and K2HPO4 treatments. These results suggested that Nostoc had a flexible ability to utilize P, which might play an important role in its widespread distribution in the environment.
Collapse
Affiliation(s)
- Congcong Dong
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Hongbo Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Yanjun Yang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Xinyu He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Li Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Junke Fu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Junqiong Shi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Zhongxing Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
16
|
Kust A, Urajová P, Hrouzek P, Vu DL, Čapková K, Štenclová L, Řeháková K, Kozlíková-Zapomělová E, Lepšová-Skácelová O, Lukešová A, Mareš J. A new microcystin producing Nostoc strain discovered in broad toxicological screening of non-planktic Nostocaceae (cyanobacteria). Toxicon 2018; 150:66-73. [DOI: 10.1016/j.toxicon.2018.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/10/2018] [Accepted: 05/13/2018] [Indexed: 10/16/2022]
|
17
|
Bouma-Gregson K, Kudela RM, Power ME. Widespread anatoxin-a detection in benthic cyanobacterial mats throughout a river network. PLoS One 2018; 13:e0197669. [PMID: 29775481 PMCID: PMC5959195 DOI: 10.1371/journal.pone.0197669] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/07/2018] [Indexed: 11/20/2022] Open
Abstract
Benthic algae fuel summer food webs in many sunlit rivers, and are hotspots for primary and secondary production and biogeochemical cycling. Concerningly, riverine benthic algal assemblages can become dominated by toxic cyanobacteria, threatening water quality and public health. In the Eel River in Northern California, over a dozen dog deaths have been attributed to cyanotoxin poisonings since 2000. During the summers of 2013–2015, we documented spatial and temporal patterns of cyanotoxin concentrations in the watershed, showing widespread distribution of anatoxin-a in benthic cyanobacterial mats. Solid phase adsorption toxin tracking (SPATT) samplers were deployed weekly to record dissolved microcystin and anatoxin-a levels at 10 sites throughout the watershed, and 187 Anabaena-dominated or Phormidium-dominated cyanobacterial mat samples were collected from 27 locations to measure intracellular anatoxin-a (ATX) and microcystins (MCY). Anatoxin-a levels were higher than microcystin for both SPATT (mean MCY = 0.8 and ATX = 4.8 ng g resin-1 day-1) and cyanobacterial mat samples (mean MCY = 0.074 and ATX = 1.89 μg g-1 DW). Of the benthic mats sampled, 58.9% had detectable anatoxin-a (max = 70.93 μg g-1 DW), while 37.6% had detectable microcystins (max = 2.29 μg g-1 DW). SPATT cyanotoxin levels peaked in mid-summer in warm mainstem reaches of the watershed. This is one of the first documentations of widespread anatoxin-a occurrence in benthic cyanobacterial mats in a North American watershed.
Collapse
Affiliation(s)
- Keith Bouma-Gregson
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
- * E-mail:
| | - Raphael M. Kudela
- Ocean Sciences Department, University of California, Santa Cruz, California, United States of America
| | - Mary E. Power
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
| |
Collapse
|
18
|
Abu-Serie MM, Nasser N, Abd El-Wahab A, Shehawy R, Pienaar H, Baddour N, Amer R. In vivo assessment of the hepatotoxicity of a new Nostoc isolate from the Nile River: Nostoc sp. strain NRI. Toxicon 2018; 143:81-89. [PMID: 29366868 DOI: 10.1016/j.toxicon.2018.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/29/2017] [Accepted: 01/16/2018] [Indexed: 01/29/2023]
Abstract
Nostoc sp. is one of the most widely distributed cyanobacterial genera that produce potentially protein phosphatase (PP) inhibitor; microcystins (MCs). MCs have posed a worldwide concern due to predominant hepatotoxicity to human health. We have previously isolated a Nostoc strain (NR1) from the Nile River (the main water supply in Egypt) and this strain exerted production of rare and highly toxic MC; demethylated microcystin-LR. There is no data concerning risk factors of liver diseases for human and animal exposure to NR1-contaminated drinking water yet. It is thus important to evaluate acute (LD50 dose), subacute (0.01% and 10% of LD50 dose) and subchronic (0.01% and 10% of LD50 dose) hepatotoxicity's NR1 extract using experimental mice. Mice groups, who orally received 0.01% LD50, represented a permissible concentration of the World Health Organization (WHO) for MC in drinking water. Several parameters were detected, including hepatotoxicity (i.e. PP activity, liver function, oxidative stress markers and DNA fragmentation), pro-inflammatory cytokine (TNF-α) and liver histopathology. Our results demonstrated LD50 of NR1 extract was at 15,350 mg/kg body weight and caused hepatotoxicity that attributed to PP inhibition and a significant increase of hepatic damage biomarkers with lipid accumulation. Moreover, NR1 extract induced hepatic oxidative damage that may have led to DNA fragmentation and production of TNF-α. As demonstrated from the histopathological study, NR1 extract caused a severe collapse of cytoskeleton with subsequent focal degeneration of hepatocytes, necroinflammation and steatosis. The grade of hepatotoxicity in subacute (10% of LD50) group was higher than that in the subchronic (10% of LD50 and 0.01% of LD50, WHOch, respectively) groups. No significant hepatotoxicity was detectable for subacute (0.01% of LD50, WHOac) group. NR1 is therefore considered as one of the harmful and life-threatening cyanobacteria for Egyptian people being exposed to dose above WHO guideline. Thus, biological indicators and thresholds for water treatment are extremely needed.
Collapse
Affiliation(s)
- Marwa M Abu-Serie
- Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications (SRTA-City), New Borg El Arab, Egypt.
| | - Nermine Nasser
- Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications (SRTA-City), New Borg El Arab, Egypt.
| | - Abeer Abd El-Wahab
- Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications (SRTA-City), New Borg El Arab, Egypt.
| | - Rehab Shehawy
- Institute IMDEA-Agua, C/Punto Net4, Alcalá de Henares, Madrid, Spain.
| | - Harrison Pienaar
- CSIR, Natural Resources and Environment, Pretoria, South Africa.
| | | | - Ranya Amer
- Environment and Natural Materials Research Institute (ENMRI), SRTA-City, New Borg El Arab, Egypt.
| |
Collapse
|
19
|
Cantoral Uriza EA, Asencio AD, Aboal M. Are We Underestimating Benthic Cyanotoxins? Extensive Sampling Results from Spain. Toxins (Basel) 2017; 9:toxins9120385. [PMID: 29182536 PMCID: PMC5744105 DOI: 10.3390/toxins9120385] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 11/29/2022] Open
Abstract
Microcystins (MCs) are potent hepatotoxins, and their presence in water bodies poses a threat to wildlife and human populations. Most of the available information refers to plankton, and much less is known about microcystins in other habitats. To broaden our understanding of the presence and environmental distribution of this group of toxins, we conducted extensive sampling throughout Spain, under a range of conditions and in distinct aquatic and terrestrial habitats. More than half of the tested strains were toxic; concentrations of the hepatotoxin were low compared with planktic communities, and the number of toxic variants identified in each sample of the Spanish strains ranged from 1–3. The presence of microcystins LF and LY (MC-LF and MC-LY) in the tested samples was significant, and ranged from 21.4% to 100% of the total microcystins per strain. These strains were only detected in cyanobacteria Oscillatoriales and Nostocales. We can report, for the first time, seven new species of microcystin producers in high mountain rivers and chasmoendolithic communities. This is the first report of these species in Geitlerinema and the confirmation of Anatoxin-a in Phormidium uncinatum. Our findings show that microcystins are widespread in all habitat types, including both aerophytic and endolithic peat bogs and that it is necessary to identify all the variants of microcystins in aquatic bodies as the commonest toxins sometimes represent a very low proportion of the total.
Collapse
Affiliation(s)
- Enrique A Cantoral Uriza
- Unidad Multidisciplinaria de Docencia e Investigación (UMDI), Facultad de Ciencias, Universidad Nacional Autónoma de México, Campus Juriquilla, C.P. Querétaro 76230, Mexico.
| | - Antonia D Asencio
- Departamento de Biología Aplicada (Botánica), Facultad de Ciencias Experimentales, Universidad Miguel Hernández, Campus de Elche, E-03202 Alicante, Spain.
| | - Marina Aboal
- Laboratorio de Algología, Departamento de Biología Vegetal, Facultad de Biología, Universidad de Murcia, Campus de Espinardo, E-30100 Murcia, Spain.
| |
Collapse
|
20
|
Ndlela LL, Oberholster PJ, Van Wyk JH, Cheng PH. An overview of cyanobacterial bloom occurrences and research in Africa over the last decade. HARMFUL ALGAE 2016; 60:11-26. [PMID: 28073554 DOI: 10.1016/j.hal.2016.10.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 05/04/2023]
Abstract
Cyanobacterial blooms are a current cause for concern globally, with vital water sources experiencing frequent and increasingly toxic blooms in the past decade. These increases are resultant of both anthropogenic and natural factors, with climate change being the central concern. Of the more affected parts of the world, Africa has been considered particularly vulnerable due to its historical predisposition and lag in social economic development. This review collectively assesses the available information on cyanobacterial blooms in Africa as well as any visible trends associated with reported occurrences over the last decade. Of the 54 countries in Africa, only 21 have notable research information in the area of cyanobacterial blooms within the last decade, although there is substantial reason to attribute these blooms as some of the major water quality threats in Africa collectively. The collected information suggests that civil wars, disease outbreaks and inadequate infrastructure are at the core of Africa's delayed advancement. This is even more so in the area of cyanobacteria related research, with 11 out of 21 countries having recorded toxicity and physicochemical parameters related to cyanobacterial blooms. Compared to the rest of the continent, peripheral countries are at the forefront of research related to cyanobacteria, with countries such as Angola having sufficient rainfall, but poor water quality with limited information on bloom occurrences. An assessment of the reported blooms found nitrogen concentrations to be higher in the water column of more toxic blooms, validating recent global studies and indicating that phosphorous is not the only factor to be monitored in bloom mitigation. Blooms occurred at low TN: TP ratios and at temperatures above 12°C. Nitrogen was linked to toxicity and temperature also had a positive effect on bloom occurrence and toxicity. Microcystis was the most ubiquitous of the cyanobacterial strains reported in Africa and the one most frequently toxic. Cylindrospermopsis was reported more in the dry, north and western parts of the continent countries as opposed to the rest of the continent, whilst Anabaena was more frequent on the south eastern regions. In light of the entire continent, the inadequacy in reported blooms and advances in this area of research require critical intervention and action.
Collapse
Affiliation(s)
- L L Ndlela
- Council for Scientific and Industrial Research, 11 Jan Celliers Road, Stellenbosch, 7600 South Africa; Department of Botany and Zoology, Faculty of Science, Stellenbosch University, Matieland 7600, South Africa.
| | - P J Oberholster
- Council for Scientific and Industrial Research, 11 Jan Celliers Road, Stellenbosch, 7600 South Africa; Department of Botany and Zoology, Faculty of Science, Stellenbosch University, Matieland 7600, South Africa
| | - J H Van Wyk
- Department of Botany and Zoology, Faculty of Science, Stellenbosch University, Matieland 7600, South Africa
| | - P H Cheng
- Council for Scientific and Industrial Research, 11 Jan Celliers Road, Stellenbosch, 7600 South Africa
| |
Collapse
|
21
|
Microcystins and anatoxin-a in Arctic biocrust cyanobacterial communities. Toxicon 2015; 101:35-40. [DOI: 10.1016/j.toxicon.2015.04.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/01/2015] [Accepted: 04/29/2015] [Indexed: 11/23/2022]
|
22
|
Lu YF, Liu J, Wu KC, Qu Q, Fan F, Klaassen CD. Overexpression of Nrf2 protects against microcystin-induced hepatotoxicity in mice. PLoS One 2014; 9:e93013. [PMID: 24667526 PMCID: PMC3965536 DOI: 10.1371/journal.pone.0093013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 02/28/2014] [Indexed: 12/03/2022] Open
Abstract
Oxidative stress and glutathione (GSH) depletion are implicated in mycocystin hepatotoxicity. To investigate the role of nuclear factor erythroid 2-related factor 2 (Nrf2) in microcystin-induced liver injury, Nrf2-null, wild-type, and Keap1-hepatocyte knockout (Keap1-HKO) mice were treated with microcystin (50 μg/kg, i.p.). Blood and liver samples were collected 8 h thereafter. Microcystin increased serum alanine aminotransferase and aspartate aminotransferase activities, and caused extensive inflammation and necrosis in Nrf2-null and wild-type mice, but not in Keap1-HKO mice. Oxidative stress and inflammation are implicated in microcystin-induced hepatotoxicity, as evidenced by increased lipid peroxidation and increased expression of pro-inflammatory genes, such as neutrophil-specific chemokines mKC and MIP-2, and pro-inflammatory cytokines IL-1β and IL-6. The increased expression of these pro-inflammatory genes was attenuated in Keap1-HKO mice. Nrf2 and Nqo1 mRNA and protein were higher in Keap1-HKO mice at constitutive levels and after microcystin. To further investigate the mechanism of the protection, hepatic GSH and the mRNA of GSH-related enzymes were determined. Microcystin markedly depleted liver GSH by 60–70% in Nrf2 and WT mice but only 35% in Keap1-HKO mice. The mRNAs of GSH conjugation and peroxide reduction enzymes, such as Gstα1, Gstα4, Gstμ, and Gpx2 were higher in livers of Keap1-HKO mice, together with higher expression of the rate-limiting enzyme for GSH synthesis (Gclc). Organic anion transport polypeptides were increased by microcystin with the most increase in Keap1-HKO mice. In conclusion, this study demonstrates that higher basal levels of Nrf2 and GSH-related genes in Keap1-HKO mice prevented microcystin-induced oxidative stress and liver injury.
Collapse
Affiliation(s)
- Yuan-Fu Lu
- University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi, China
| | - Jie Liu
- University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi, China
| | - Kai Connie Wu
- University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Qiang Qu
- University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Fang Fan
- Cytopathology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Curtis D. Klaassen
- University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
23
|
Catherine Q, Susanna W, Isidora ES, Mark H, Aurélie V, Jean-François H. A review of current knowledge on toxic benthic freshwater cyanobacteria--ecology, toxin production and risk management. WATER RESEARCH 2013; 47:5464-79. [PMID: 23891539 DOI: 10.1016/j.watres.2013.06.042] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/19/2013] [Accepted: 06/21/2013] [Indexed: 05/12/2023]
Abstract
Benthic cyanobacteria are found globally in plethora of environments. Although they have received less attention than their planktonic freshwater counterparts, it is now well established that they produce toxins and reports of their involvement in animal poisonings have increased markedly during the last decade. Most of the known cyanotoxins have been identified from benthic cyanobacteria including: the hepatotoxic microcystins, nodularins and cylindrospermopsins, the neurotoxic saxitoxins, anatoxin-a and homoanatoxin-a and dermatotoxins, such as lyngbyatoxin. In most countries, observations of toxic benthic cyanobacteria are fragmented, descriptive and in response to animal toxicosis events. Only a limited number of long-term studies have aimed to understand why benthic proliferations occur, and/or how toxin production is regulated. These studies have shown that benthic cyanobacterial blooms are commonly a mixture of toxic and non-toxic genotypes and that toxin concentrations can be highly variable spatially and temporally. Physiochemical parameters responsible for benthic proliferation vary among habitat type with physical disturbance (e.g., flow regimes, wave action) and nutrients commonly identified as important. As climatic conditions change and anthropogenic pressures on waterways increase, it seems likely that the prevalence of blooms of benthic cyanobacteria will increase. In this article we review current knowledge on benthic cyanobacteria: ecology, toxin-producing species, variables that regulate toxin production and bloom formation, their impact on aquatic and terrestrial organisms and current monitoring and management strategies. We suggest research needs that will assist in filling knowledge gaps and ultimately allow more robust monitoring and management protocols to be developed.
Collapse
Affiliation(s)
- Quiblier Catherine
- MNHN, UMR 7245, 57 rue Cuvier, CP39, 75231 Paris Cedex 05, France; Université Paris Diderot, 5 rue T. Mann, 75013 Paris, France.
| | | | | | | | | | | |
Collapse
|
24
|
Galhano V, Santos H, Oliveira MM, Gomes-Laranjo J, Peixoto F. Changes in fatty acid profile and antioxidant systems in a Nostoc muscorum strain exposed to the herbicide bentazon. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
25
|
El Khalloufi F, Oufdou K, Lahrouni M, El Ghazali I, Saqrane S, Vasconcelos V, Oudra B. Allelopatic effects of cyanobacteria extracts containing microcystins on Medicago sativa-Rhizobia symbiosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:431-438. [PMID: 21030085 DOI: 10.1016/j.ecoenv.2010.10.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 09/17/2010] [Accepted: 10/04/2010] [Indexed: 05/30/2023]
Abstract
The eutrophication of water leads to massive blooms of cyanobacteria potentially producers of highly toxic substances: cyanotoxins, especially microcystins (MC). The contamination of water used for irrigation by these toxins, can cause several adverse effects on plants and microorganisms. In this work, we report the phytotoxic effects of microcystins on the development of symbiosis between the leguminous plant Medicago sativa (Alfalfa) and rhizobia strains. The exposure of rhizobial strains to three different concentrations 0.01, 0.05 and 0.1 μg MC ml(-1) led to decrease on the bacteria growth. The strains of rhizobia Rh L1, Rh L2, Rh L3 and Rh L4 reduced their growth to, respectively, 20.85%, 20.80%, 33.19% and 25.65%. The chronic exposure of alfalfa seeds and seedlings to different MC concentrations affects the whole stages of plant development. The germination process has also been disrupted with an inhibition, which reaches 68.34% for a 22.24 μg MC ml(-1). Further, seedlings growth and photosynthetic process were also disrupted. The toxins reduced significantly the roots length and nodule formation and leads to an oxidative stress. Thus, the MCs contained in lake water and used for irrigation affect the development of symbiosis between M. sativa and Rhizobia.
Collapse
Affiliation(s)
- Fatima El Khalloufi
- Laboratory of Biology and Biotechnology of Microorganisms, Environmental Microbiology and Toxicology Unit, Cadi Ayyad University, Faculty of Sciences Semlalia, P.O. Box 2390, Marrakech, Morocco
| | | | | | | | | | | | | |
Collapse
|
26
|
Kurmayer R. THE TOXIC CYANOBACTERIUM NOSTOC SP. STRAIN 152 PRODUCES HIGHEST AMOUNTS OF MICROCYSTIN AND NOSTOPHYCIN UNDER STRESS CONDITIONS. JOURNAL OF PHYCOLOGY 2011; 47:200-207. [PMID: 22723716 PMCID: PMC3378210 DOI: 10.1111/j.1529-8817.2010.00931.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The understanding of how environmental factors regulate toxic secondary metabolite production in cyanobacteria is important to guarantee water quality. Very little is known on the regulation of toxic secondary metabolite production in benthic cyanobacteria. In this study the physiological regulation of the production of the toxic heptapeptide microcystin (MC) and the non-toxic related peptide nostophycin (NP) in the benthic cyanobacterium Nostoc sp. strain 152 was studied under contrasting environmental conditions. I used a 2(k) levels factorial design, where k is the number of four factors that have been tested: Reduction in temperature (20 vs. 12°C), irradiance (50 vs. 1 μmol · m(-2) · s(-1)), P-PO(4) (144 vs. 0.14 μM P-PO(4)), N-NO(3) (5.88 mM vs. N-NO(3) free). While the growth rate was reduced more than hundred fold under most severe conditions of temperature, irradiance, and phosphate reduction the production of MC and NP never ceased. The MC and NP contents per cell varied at maximum 5- and 10.6-fold each, however the physiological variation did not outweigh the highly significant linear relationship between the daily cell division rate and the MC and NP net production rates. Surprisingly the MC and NP contents per cell showed a maximum under P-PO(4) reduced and irradiance reduced conditions. Both intra- and extracellular MC and NP concentrations were negatively related to P-PO(4) and irradiance. It is concluded that the proximate factor behind maximal cellular MC and NP contents is physiological stress.
Collapse
Affiliation(s)
- Rainer Kurmayer
- Austrian Academy of Sciences, Institute for Limnology, Mondseestrasse 9, 5310 Mondsee, Austria
| |
Collapse
|
27
|
Hepatosplenomegaly and phytotoxicity of a planktonic cyanobacterium Nostoc sp. BHU001 isolated from agricultural pond. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0100-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Bajpai R, Sharma NK, Lawton LA, Edwards C, Rai AK. Microcystin producing cyanobacterium Nostoc sp. BHU001 from a pond in India. Toxicon 2009; 53:587-90. [DOI: 10.1016/j.toxicon.2009.01.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|