1
|
Macêdo AKS, da Silva JRP, Brighenti LS, de Azambuja Ribeiro RI, Dos Santos HB, Thomé RG. Variations in liver histology and P-gp expression among fish species in Doce River Basin, Brazil: implications for pollution sensitivity. J Mol Histol 2024; 56:47. [PMID: 39695022 DOI: 10.1007/s10735-024-10334-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024]
Abstract
Fish may have different sensitivity to pollutants present in the water. We analyzed the liver histology, and P-gp expression in six species of fish from the Doce River basin. Fish were caught at six different points in the Doce River, and liver samples were taken for histological analysis. P-gp expression was analyzed using an immunohistochemical technique. In Astyanax lacustris, Hoplias intermedius, Hypostomus affinis, Trachelyopterus striatulus and Oligosarcus acutirostris, a double arrangement of hepatocyte plates was generally observed (tubular-form), while in Deutorodon taeniatus, a single arrangement of hepatocyte plates was frequently observed (cord-like). Histological changes, such as cytoplasmic vacuolation and nuclear alteration, were observed in the livers of all species analyzed, however, the species A. lacustris (34.1%) and H. affinis (33.3%) were those with the fewest individuals with histological changes. The H. intermedius, T. striatulus, and O. acutirostris were the species that presented more than 80% of their individuals with histological changes. The A. lacustris and H. affinis were the species that showed the highest P-pg immunolabeling in the liver, while the T. striatulus and O. acutirostris had the lowest levels. These results support the hypothesis that levels of P-gp expression could respond to the resistance or sensitivity of each species to environmental pollutants.
Collapse
Affiliation(s)
- Anderson Kelvin Saraiva Macêdo
- Laboratório de Processamento de Tecidos - LAPROTEC, Universidade Federal de São João Del-Rei, Campus Centro Oeste, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, Minas Gerais, 35501-296, Brazil
| | - Jicaury Roberta Pereira da Silva
- Laboratório de Processamento de Tecidos - LAPROTEC, Universidade Federal de São João Del-Rei, Campus Centro Oeste, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, Minas Gerais, 35501-296, Brazil
| | - Ludmila Silva Brighenti
- Universidade do Estado de Minas Gerais, Campus Divinópolis, Avenida Paraná, 3001, Divinópolis, Minas Gerais, 35501- 170, Brazil
| | - Rosy Iara de Azambuja Ribeiro
- Laboratório de Patologia Experimental - LAPATEX, Universidade Federal de São João Del-Rei, Campus Centro Oeste, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, Minas Gerais, 35501-296, Brazil
| | - Hélio Batista Dos Santos
- Laboratório de Processamento de Tecidos - LAPROTEC, Universidade Federal de São João Del-Rei, Campus Centro Oeste, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, Minas Gerais, 35501-296, Brazil
| | - Ralph Gruppi Thomé
- Laboratório de Processamento de Tecidos - LAPROTEC, Universidade Federal de São João Del-Rei, Campus Centro Oeste, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, Minas Gerais, 35501-296, Brazil.
| |
Collapse
|
2
|
Roledo C, França DD, Dos Santos Feitosa IR, Quinaglia GA, Montagner CC, Roubicek DA, Dos Reis AG. A comprehensive study on bisphenol A and estrogenic activity in the Paraíba do Sul River, São Paulo, Brazil. JOURNAL OF WATER AND HEALTH 2024; 22:2060-2075. [PMID: 39611669 DOI: 10.2166/wh.2024.205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024]
Abstract
In recent decades, contaminants of emerging concern (CECs) in aquatic environments have garnered significant attention due to their adverse effects on ecosystems and human health. Among these CECs, bisphenol A (BPA) is a major concern because of its widespread use and endocrine-disrupting properties. Brazil's urbanization and industrial growth have led to significant pollution challenges, primarily due to inadequate sewage infrastructure and untreated domestic wastewater being discharged into rivers, contributing to the presence of emerging contaminants in surface waters. This study assessed BPA contamination and estrogenic activity in the Paraíba do Sul River in São Paulo State, Brazil. BPA was detected in 50% of the samples, with concentrations ranging from 11.1 to 116.9 ng L-1. The estrogenic activity assay also showed positive results in 50% of the samples, ranging from 0.12 to 1.36 ng L-1 of estradiol-equivalent, indicating the presence of multiple compounds contributing to estrogenic effects. This underscores the need for a comprehensive approach to monitoring water quality. The water quality index (WQI) revealed compromised water quality at the studied sites, particularly during the rainy season. The correlation between the WQI, BPA, and estrogenic activity parameters suggests that endocrine-disrupting compounds significantly impact water quality, exacerbated by inadequate wastewater treatment infrastructure.
Collapse
Affiliation(s)
- Cely Roledo
- São Paulo State University (UNESP), Institute of Science and Technology, Environmental Engineering Department, São José dos Campos 12247-016, Brazil; São Paulo State Environmental Agency, CETESB, São Paulo 05459-900, Brazil E-mail: ;
| | | | | | | | | | | | - Adriano Gonçalves Dos Reis
- São Paulo State University (UNESP), Institute of Science and Technology, Environmental Engineering Department, São José dos Campos 12247-016, Brazil
| |
Collapse
|
3
|
Qian M, Zhang Y, Bian Y, Feng XS, Zhang ZB. Nitrophenols in the environment: An update on pretreatment and analysis techniques since 2017. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116611. [PMID: 38909393 DOI: 10.1016/j.ecoenv.2024.116611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/07/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
Nitrophenols, a versatile intermediate, have been widely used in leather, medicine, chemical synthesis, and other fields. Because these components are widely applied, they can enter the environment through various routes, leading to many hazards and toxicities. There has been a recent surge in the development of simple, rapid, environmentally friendly, and effective techniques for determining these environmental pollutants. This review provides a comprehensive overview of the latest research progress on the pretreatment and analysis methods of nitrophenols since 2017, with a focus on environmental samples. Pretreatment methods include liquid-liquid extraction, solid-phase extraction, dispersive extraction, and microextraction methods. Analysis methods mainly include liquid chromatography-based methods, gas chromatography-based methods, supercritical fluid chromatography. In addition, this review also discusses and compares the advantages/disadvantages and development prospects of different pretreatment and analysis methods to provide a reference for further research.
Collapse
Affiliation(s)
- Min Qian
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Zhong-Bo Zhang
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
4
|
Pozza Junior MC, Rosenberger AG, da Silva FF, Dragunski DC, Muniz EC, Caetano J. Application of a PLA/PBAT/Graphite sensor obtained by electrospinning on determination of 2,4,6-trichlorophenol. ENVIRONMENTAL TECHNOLOGY 2024; 45:2388-2401. [PMID: 36734624 DOI: 10.1080/09593330.2023.2173088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/07/2022] [Indexed: 06/18/2023]
Abstract
The widespread use of pesticides requires effective detection and quantification tools to improve monitoring of environmental quality. Electrochemical sensors offer a fast and sensitive response, and can also be optimized by combining several constituents and techniques, including biodegradable materials, being useful in the determination of chemical agents from environmental samples. Here, we produced a polymer-based sensor for 2,4,6-trichlorophenol determination, through electrospinning of poly(lactic acid)/poly(butylene adipate-co-terephthalate) (PLA/PBAT) blend with graphite. The graphite-containing fibres were thermally treated and wetted in mineral oil, thus forming a paste, used as an electrode in the electrochemical sensor. The thermal analysis indicated a disorganization of the polymeric chains between the aromatic carbon chain of the PBAT polymer, resulting in a material with low enthalpy, lower crystallinity and greater thermal degradability after insertion of graphite in polymeric fibres. NIR spectra revealed changes related to the carbonyls of the polymeric ester groups. Cyclic voltammetry and square wave voltammetry techniques were applied to study the electrochemical behaviour of developed sensor. The thermal treatment of graphite-containing fibres increased the adhesion surface in which occurs the adsorption of the analyte on the electrode, which improved the peak current in the electrochemical tests. The PLA/PBAT/Graphite sensor applied to determination of 2,4,6-TCP presented the detection and quantification limits of 7.84 × 10-8 mol L-1 (0.0155 mg L-1) and 2.36 × 10-7 mol L-1 (0.0466 mg L-1) with a linearity response of 1.00 × 10-7 mol L-1 and 2.00 × 10-6 mol L-1 with correlation coefficient of 0.993 (r2).
Collapse
Affiliation(s)
| | | | - Franciele Fernanda da Silva
- Center for Engineering and Mathematical Sciences, Western Paraná State University (UNIOESTE), Toledo, Brazil
| | - Douglas Cardoso Dragunski
- Center for Engineering and Mathematical Sciences, Western Paraná State University (UNIOESTE), Toledo, Brazil
| | - Edvani Curti Muniz
- Department of Chemistry, State University of Maringá (UEM), Maringá, Brazil
| | - Josiane Caetano
- Center for Engineering and Mathematical Sciences, Western Paraná State University (UNIOESTE), Toledo, Brazil
| |
Collapse
|
5
|
Ladeia Ramos R, Rezende Moreira V, Santos Amaral MC. Phenolic compounds in water: Review of occurrence, risk, and retention by membrane technology. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119772. [PMID: 38147771 DOI: 10.1016/j.jenvman.2023.119772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/10/2023] [Accepted: 12/03/2023] [Indexed: 12/28/2023]
Abstract
Phenolic compounds are one of the main contributors to water source contamination worldwide. In this review, the data collected on Elsevier, Scopus, and Pubmed, considering papers published between 2000 and 2023, showed more than 60 different phenols have been identified in water matrix (<0.065-179,000,000 ng L-1). The highest concentration reported was in surface water canals in India. The most recurrent and studied compound was bisphenol A (n = 93) in concentrations ranging from 0.45 to 2,970,000 ng L-1. The solid phase extraction (HBL Oasis cartridge) and methanol as solvent was the method of pre-concentration most used followed by gas chromatography for the determination of phenols in water samples. The importance of drinking water guidelines incorporating more phenolic compounds was emphasized given the variety of these compounds quantified in water matrix. The human health risk assessment (HRA) was performed for the min-max concentrations of the pollutants reported in the literature. High HRA even at the lowest concentrations for 2-nitrophenol, 2,6-dichlorophenol, 3,4,5-trichlorophenol, 2,3,4,6-tetrachlorophenol, and 2,4-dinitrophenol was recognized. The cancer risk estimated was considered possible for 3-methylphenol, 2,4-dimethylphenol, 2,4,6-trichlorophenol, pentachlorophenol, and 2,4-dinitrophenol in the highest concentrations. The in-depth discussion of mechanisms, advantages, challenges, and carbon footprint of membrane technologies in water treatment and phenols retention demonstrated the great potential and trends for the production of safe drinking water, highlighting reverse osmosis, as a mature technology, and membrane distillation, as an emergent technology.
Collapse
Affiliation(s)
- Ramatisa Ladeia Ramos
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, ZIP 30.270-901, Belo Horizonte, MG, Brazil.
| | - Victor Rezende Moreira
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, ZIP 30.270-901, Belo Horizonte, MG, Brazil
| | - Miriam Cristina Santos Amaral
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, ZIP 30.270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
6
|
Camparotto NG, de Figueiredo Neves T, de Souza Vendemiatti J, Dos Santos BT, Vieira MGA, Prediger P. Adsorption of contaminants by nanomaterials synthesized by green and conventional routes: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12683-12721. [PMID: 38253828 DOI: 10.1007/s11356-024-31922-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
Nanomaterials, due to their large surface area and selectivity, have stood out as an alternative for the adsorption of contaminants from water and effluents. Synthesized from green or traditional protocols, the main advantages and disadvantages of green nanomaterials are the elimination of the use of toxic chemicals and difficulty of reproducing the preparation of nanomaterials, respectively, while traditional nanomaterials have the main advantage of being able to prepare nanomaterials with well-defined morphological properties and the disadvantage of using potentially toxic chemicals. Thus, based on the particularities of green and conventional nanomaterials, this review aims to fill a gap in the literature on the comparison of the synthesis, morphology, and application of these nanomaterials in the adsorption of contaminants in water. Focusing on the adsorption of heavy metals, pesticides, pharmaceuticals, dyes, polyaromatic hydrocarbons, and phenol derivatives in water, for the first time, a review article explored and compared how chemical and morphological changes in nanoadsorbents synthesized by green and conventional protocols affect performance in the adsorption of contaminants in water. Despite advances in the area, there is still a lack of review articles on the topic.
Collapse
Affiliation(s)
| | | | | | - Bruna Toledo Dos Santos
- School of Technology, University of Campinas - Unicamp, Limeira , São Paulo, CEP: 13484-332, Brazil
| | - Melissa Gurgel Adeodato Vieira
- School of Chemical Engineering, University of Campinas - UNICAMP, Albert Einstein Avenue, 500, Campinas, São Paulo, 13083-852, Brazil
| | - Patrícia Prediger
- School of Technology, University of Campinas - Unicamp, Limeira , São Paulo, CEP: 13484-332, Brazil.
| |
Collapse
|
7
|
Santos JDS, Pontes MDS, de Souza MB, Fernandes SY, Azevedo RA, de Arruda GJ, Santiago EF. Toxicity of bisphenol A (BPA) and its analogues BPF and BPS on the free-floating macrophyte Salvinia biloba. CHEMOSPHERE 2023; 343:140235. [PMID: 37734497 DOI: 10.1016/j.chemosphere.2023.140235] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
Evidence linking the toxicity of bisphenol A (BPA) to environmental and public-health issues has led to restrictions on its use. This compound has been gradually replaced with analogues proposed as a safer alternative, normally bisphenol F (BPF) and bisphenol S (BPS), but these substitutes are structurally almost identical to BPA, suggesting they may pose similar risks. The effects of BPA and these analogues were compared for antioxidant activity, lipid peroxidation, free-radical generation, photosynthetic pigments, and chlorophyll fluorescence in Salvinia biloba Raddi (S. biloba) plants exposed to environmentally relevant and sublethal concentrations (1, 10, 50, 100 and 150 μM). Bisphenol exposure promoted alterations in most of the physiological parameters investigated, with BPS toxicity differing slightly from that of the analogues. Furthermore, S. biloba removed similar levels of BPA and BPF from aqueous solutions with ≈70% removed at the 150 μM concentration, while BPS was less effectively removed, with only 23% removed at 150 μM. These findings show that high concentrations of bisphenols (10≥) are toxic to S. biloba, and even typical environmental levels (≤1 μM) can induce metabolic changes in plants, bringing to light that both BPA and its substitutes BPF and BPS pose risks to aquatic ecosystems.
Collapse
Affiliation(s)
- Jaqueline da Silva Santos
- Genetics Department, Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo (USP), Piracicaba, SP, Brazil.
| | - Montcharles da Silva Pontes
- Natural Resources Program, Centro de Estudos em Recursos Naturais (CERNA), Universidade Estadual de Mato Grosso do Sul (UEMS), Dourados, MS, Brazil; Research and Development Sector (R&D), Agróptica Instrumentation and Services Ltda (AGROPTICA), São Carlos, SP, Brazil
| | - Matheus Bispo de Souza
- Graduate Program in Chemistry, Analytics Department, Universidade Estadual de São Paulo (UNESP), Araraquara, SP, Brazil
| | - Simone Yasuda Fernandes
- Natural Resources Program, Centro de Estudos em Recursos Naturais (CERNA), Universidade Estadual de Mato Grosso do Sul (UEMS), Dourados, MS, Brazil
| | - Ricardo Antunes Azevedo
- Genetics Department, Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo (USP), Piracicaba, SP, Brazil
| | - Gilberto José de Arruda
- Natural Resources Program, Centro de Estudos em Recursos Naturais (CERNA), Universidade Estadual de Mato Grosso do Sul (UEMS), Dourados, MS, Brazil
| | - Etenaldo Felipe Santiago
- Natural Resources Program, Centro de Estudos em Recursos Naturais (CERNA), Universidade Estadual de Mato Grosso do Sul (UEMS), Dourados, MS, Brazil
| |
Collapse
|
8
|
Zeng X, Yu J, Zhang S, Ni T, Ma D. Ecological risk of phenol on typical biota of the northern Chinese river from an integrated probability perspective: the Hun River as an example. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1512. [PMID: 37989793 DOI: 10.1007/s10661-023-12089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/02/2023] [Indexed: 11/23/2023]
Abstract
Phenol, known for its bioaccumulative nature and severe toxicity to riverine organisms, poses complex challenges for ecological risk assessment. To tackle this issue, we developed a three-stage incremental assessment method, providing an integrated perspective on phenol toxicity risk for aquatic organisms. The findings indicated that phenol concentrations were generally higher in the aquatic environments of northern rivers, such as the Hun River, Taizi River, and Liao River, compared to those in southern China. The evaluation results at individual points showed that the ecological risk of phenol to aquatic organisms ranked from high to low during rainy, dry, and normal seasons, showing seasonal variation characteristics. Regarding spatial variation along the river, the ecological risk of phenol gradually increased from upper reaches, peaked in the middle reaches, and then decreased in the lower reaches. Considering the different species types, fish face a higher risk of toxic effects of phenol than invertebrates when exposed to phenol over a long period of time, probably due to the bioaccumulative nature of phenol. To address ecological risk control at the watershed scale, there is an urgent need to revise China's current river water quality standards. It is essential to increase the emphasis on ecological risk control for aquatic organisms. Developing more targeted and refined ecological risk control strategies for river phenols is crucial to maintain a healthier and more vibrant river ecosystem.
Collapse
Affiliation(s)
- Xia Zeng
- School of Geography and Ocean Science of Nanjing University, Nanjing, 210023, People's Republic of China
| | - Junlan Yu
- School of Geography and Ocean Science of Nanjing University, Nanjing, 210023, People's Republic of China
| | - Shaoxuan Zhang
- School of Geography and Ocean Science of Nanjing University, Nanjing, 210023, People's Republic of China
| | - Tianhua Ni
- School of Geography and Ocean Science of Nanjing University, Nanjing, 210023, People's Republic of China.
| | - Daoming Ma
- The School of Social and Behavioral Sciences of Nanjing University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
9
|
Madeira CL, Acayaba RD, Santos VS, Villa JEL, Jacinto-Hernández C, Azevedo JAT, Elias VO, Montagner CC. Uncovering the impact of agricultural activities and urbanization on rivers from the Piracicaba, Capivari, and Jundiaí basin in São Paulo, Brazil: A survey of pesticides, hormones, pharmaceuticals, industrial chemicals, and PFAS. CHEMOSPHERE 2023; 341:139954. [PMID: 37660794 DOI: 10.1016/j.chemosphere.2023.139954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Rivers in Southeast Brazil are essential as sources of drinking water, energy production, irrigation, and industrial processes. The Piracicaba, Capivari, and Jundiaí rivers basin, known as the PCJ basin, comprises major cities, industrial hubs, and large agricultural areas, which have impacted the water quality in the region. Emerging contaminants such as pesticides, hormones, pharmaceuticals, industrial chemicals, and per- and polyfluoroalkyl substances (PFAS) are likely to be released into the rivers in the PCJ basin; however, the current Brazilian legislation does not require monitoring of most of these chemicals. Thus, the extent of emerging contaminants pollution and their risks to aquatic and human life in the basin are largely unknown. In this study, we investigated the occurrence of several pesticides, hormones, pharmaceuticals, and personal care products in 15 sampling points across the PCJ basin, while industrial chemicals and PFAS were assessed in 11 sampling points. The results show that agriculture and industrial activities are indeed causing the pollution of most rivers. Multivariate analysis indicates that some sampling points, such as Jundiaí, Capivari, and Piracicaba rivers, are largely impacted by pesticides used in agriculture. In addition, to the best of our knowledge, this is the first study reporting the presence of PFAS in rivers in São Paulo, the most populous state in Brazil. Four out of eight species of PFAS assessed in our study were detected in at least 5 sampling points at concentrations ranging from 2.0 to 50.0 ng L-1. The preliminary risk assessment indicates that various pesticides, caffeine, industrial chemicals, and PFAS were present at concentrations that could threaten aquatic life. Notably, risk quotients of 414, 340, and 178 were obtained for diuron, atrazine, and imidacloprid, respectively, in the Jundiaí River. Our study suggests that establishing a comprehensive monitoring program is needed to ensure the protection of aquatic life and human health.
Collapse
Affiliation(s)
- Camila Leite Madeira
- Institute of Chemistry, University of Campinas, UNICAMP, Campinas, São Paulo, 13083970, Brazil
| | - Raphael D'Anna Acayaba
- School of Technology, University of Campinas, UNICAMP, Limeira, São Paulo, 13484-332, Brazil; Eurofins do Brasil, Rod. Eng. Ermênio de Oliveira Penteado, Indaiatuba, São Paulo, 13337-300, Brazil
| | | | - Javier E L Villa
- Institute of Chemistry, University of Campinas, UNICAMP, Campinas, São Paulo, 13083970, Brazil
| | | | | | - Vladimir Oliveira Elias
- Eurofins do Brasil, Rod. Eng. Ermênio de Oliveira Penteado, Indaiatuba, São Paulo, 13337-300, Brazil
| | - Cassiana Carolina Montagner
- Institute of Chemistry, University of Campinas, UNICAMP, Campinas, São Paulo, 13083970, Brazil; School of Technology, University of Campinas, UNICAMP, Limeira, São Paulo, 13484-332, Brazil.
| |
Collapse
|
10
|
Czarny-Krzymińska K, Krawczyk B, Szczukocki D. Bisphenol A and its substitutes in the aquatic environment: Occurrence and toxicity assessment. CHEMOSPHERE 2023; 315:137763. [PMID: 36623601 DOI: 10.1016/j.chemosphere.2023.137763] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Bisphenol A is classified as a high production volume chemical commonly used in the manufacture of polycarbonate plastics, epoxy resins and thermal paper. The endocrine disrupting properties of this xenobiotic have led to the restriction and prohibition of its use in many consumer products. To date, many chemical compounds with a chemical structure similar to bisphenol A have been used in consumer products as its replacement. The ubiquitous occurrence of bisphenol A and its substitutes in the environment and their endocrine activity as well as adverse effects on aquatic organisms is a global concern, especially because many available literature reports show that many substitutes (e.g. bisphenol AF, bisphenol AP, bisphenol B, bisphenol C, bisphenol F, bisphenol G, bisphenol FL, tetrabromobisphenol A) exert adverse effects on aquatic organisms, similar to, or even stronger than bisphenol A. Therefore, the objective of this paper is to provide a comprehensive overview of the production, sources, occurrence and associated toxicity, as well as the endocrine activity of bisphenol A and its substitutes on aquatic species. The environmental levels and ecotoxicological data presented in this review allowed for a preliminary assessment and prediction of the risk of bisphenol A and its substitutes for aquatic organisms. Furthermore, the data collected in this paper highlight that several compounds applied in bisphenol A-free products are not safe alternatives and regulations regarding their use should be introduced.
Collapse
Affiliation(s)
- Karolina Czarny-Krzymińska
- Laboratory of Environmental Threats, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, 91-403, Lodz, Tamka 12, Poland.
| | - Barbara Krawczyk
- Laboratory of Environmental Threats, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, 91-403, Lodz, Tamka 12, Poland
| | - Dominik Szczukocki
- Laboratory of Environmental Threats, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, 91-403, Lodz, Tamka 12, Poland
| |
Collapse
|
11
|
High-Throughput Microbial Community Analyses to Establish a Natural Fungal and Bacterial Consortium from Sewage Sludge Enriched with Three Pharmaceutical Compounds. J Fungi (Basel) 2022; 8:jof8070668. [PMID: 35887425 PMCID: PMC9324927 DOI: 10.3390/jof8070668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
Emerging and unregulated contaminants end up in soils via stabilized/composted sewage sludges, paired with possible risks associated with the development of microbial resistance to antimicrobial agents or an imbalance in the microbial communities. An enrichment experiment was performed, fortifying the sewage sludge with carbamazepine, ketoprofen and diclofenac as model compounds, with the aim to obtain strains with the capability to transform these pollutants. Culturable microorganisms were obtained at the end of the experiment. Among fungi, Cladosporium cladosporioides, Alternaria alternata and Penicillium raistrickii showed remarkable degradation rates. Population shifts in bacterial and fungal communities were also studied during the selective pressure using Illumina MiSeq. These analyses showed a predominance of Ascomycota (Dothideomycetes and Aspergillaceae) and Actinobacteria and Proteobacteria, suggesting the possibility of selecting native microorganisms to carry out bioremediation processes using tailored techniques.
Collapse
|
12
|
Araújo APDC, Luz TMD, Rocha TL, Ahmed MAI, Silva DDME, Rahman MM, Malafaia G. Toxicity evaluation of the combination of emerging pollutants with polyethylene microplastics in zebrafish: Perspective study of genotoxicity, mutagenicity, and redox unbalance. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128691. [PMID: 35334274 DOI: 10.1016/j.jhazmat.2022.128691] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Despite the toxicity of microplastics (MPs) in freshwater fish has been demonstrated in previous studies, their effects when mixed with other pollutants (organic and inorganic) are poorly understood. Thus, we aimed to test the hypothesis that the association of polyethylene MPs (PE-MPs) to a mix of emerging pollutants induces more adverse genotoxic, mutagenic, and redox unbalance effects in adult zebrafish (Danio rerio), after 15 days of exposure. Although the accumulation of MPs in animals was greater in animals exposed to PE-MPs alone, erythrocyte DNA damage (comet assay) and the frequency of erythrocytic nuclear abnormalities (ENAs) evidenced in zebrafish exposed to PE-MPs alone were as pronounced as those observed in animals exposed to the mix of pollutant (alone or in combination with MPs), which constitutes the big picture of the current study. Moreover, we noticed that such effects were associated with an imbalance between pro-and antioxidant metabolism in animals, whose activity of superoxide dismutase (SOD) and catalase (CAT) was assessed in different organs which were not sufficient to counterbalance the production of reactive oxygen species [hydrogen peroxide (H2O2)] and nitrogen [nitric oxide (NO)] evaluated. The principal component analysis (PCA) also revealed that while the antioxidant activity was more pronounced in the brain and liver of animals, the highest production of H2O2 was perceived in the gills and muscles, suggesting that the biochemical response of the animals was organ-dependent. Thus, the present study did not demonstrate antagonistic, synergistic, or additive effects on animals exposed to the combination between PE-MPs and a mix of pollutants in the zebrafish, which reinforces the theory that interactions between pollutants in aquatic ecosystems may be as complex as their effects on freshwater ichthyofauna.
Collapse
Affiliation(s)
| | - Thiarlen Marinho da Luz
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | | | - Daniela de Melo E Silva
- Post-Graduation Program in Environmental Sciences, Federal University of Goiás, Goiânia, GO, Brazil; Laboratory of Environmental Mutagenesis, Federal University of Goiás, Goiânia, GO, Brazil
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh; Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
13
|
Ramos RL, Lebron YAR, Moreira VR, Martins MF, Santos LVS, Amaral MCS. Direct contact membrane distillation as an approach for water treatment with phenolic compounds. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 303:114117. [PMID: 34838381 DOI: 10.1016/j.jenvman.2021.114117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/02/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Membrane distillation is a well-established technology for non-volatile components retention, but the removal of volatile and semi-volatile substances in trace concentration, such as phenols derivates commonly found in surface waters, requires further comprehension. In this context, the direct contact membrane distillation (DCMD) performance was assessed for the retention of fifteen phenolic compounds in surface water by different operating conditions of temperature (40, 50, and 60 °C), feed concentration (3, 5, 7, and 10 μg L-1), and permeate recovery rate (30, 50 and 70%). Kruskal Wallis confirmed a significant difference (p < 0.05) between the global removal of phenolic compounds at different temperatures. The increase in temperature led to a reduction in all compound's removal. As expected, a positive correlation (rSpearman>0.8) between the compounds' volatility and their losses was observed. Regarding the feed concentration and the recovery rate, there was no statistical difference between the removal values obtained for the phenolic compounds. This indicates the DCMD strength for that application. However, a trend for flux decay was noticed as the recovery rate (RR) increased, confirmed by temporal trend analysis and Mann-Kendall tests, although the flux decay was relatively low (J/J0 = 0.89). Aiming for a greater removal and to avoid a reduction in process performance, it is recommended to work with 40 °C as feed temperature and a RR prior to the flux decay (RR<30%). Nonetheless, the technology was efficient and did not compromise the permeate quality with >90% efficiency in pollutants removal, even for higher temperatures and RR.
Collapse
Affiliation(s)
- Ramatisa L Ramos
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, ZIP 30.270-901, Belo Horizonte, MG, Brazil.
| | - Yuri A R Lebron
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, ZIP 30.270-901, Belo Horizonte, MG, Brazil
| | - Victor R Moreira
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, ZIP 30.270-901, Belo Horizonte, MG, Brazil
| | - Mateus F Martins
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, ZIP 30.270-901, Belo Horizonte, MG, Brazil
| | - Lucilaine V S Santos
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, ZIP 30.270-901, Belo Horizonte, MG, Brazil
| | - Miriam C S Amaral
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, ZIP 30.270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|