1
|
Che S, Chen J, Zhang H, Xu W, Li Y, Dan X, Mo Z. Impacts of live and artificial feed on histology, biochemical indicators, gene expression, and bacterial resistance in mandarin fish (Siniperca chuatsi). FISH & SHELLFISH IMMUNOLOGY 2025; 158:110169. [PMID: 39900313 DOI: 10.1016/j.fsi.2025.110169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/14/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
The mandarin fish (Siniperca chuatsi) is a significant freshwater carnivorous species in Chinese aquaculture industry, and its farming scale is continuously expanding. The use of feed in aquaculture has become an increasingly common practice. However, the impacts of substituting artificial feed for live bait on fish's biochemical and immune responses are poorly understood. In this study, two hundred forty mandarin fish (weight: 5.60 ± 0.41 g) were divided into two groups and fed live bait or artificial feed (LB and AF groups) over a 63-day aquaculture experiment. We compared the differences between the two groups in terms of histology, biochemical indicators, gene expression, and bacterial resistance. The results showed that artificial feed promoted enhanced growth, evidenced by higher weight (p < 0.05). The AF group exhibited higher liver and intestinal somatic indices (p < 0.05), and histological examination revealed denser cytoplasmic content in liver cells, less fragmentation of renal tubular epithelial cells, and less detachment of intestinal epithelial cells in the AF group. Regarding biochemical indicators and gene expression, the AF group showed better performance in glucose regulation and lipid metabolism. The AF group maintained glucose balance (p < 0.05) and effectively regulated cholesterol transport (p < 0.05), promoting lipolysis (p < 0.05) while inhibiting lipogenesis (p < 0.05). In contrast, live bait consumption resulted in reduced lipolysis (p < 0.05), increased lipogenesis (p < 0.05), impaired endoplasmic reticulum function (p < 0.05), heightened inflammation (p < 0.05), and diminished antioxidant capacity (p < 0.05). Additionally, the LB group exhibited lower survival rates and lysozyme levels during bacterial challenges. Overall, artificial feed was more beneficial for the growth, regulate physiology and enhance disease resistance of S. chuatsi, highlighting its potential to improve fish health and increase aquaculture yield.
Collapse
Affiliation(s)
- Shunli Che
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Jiawei Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Hai Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Weizhen Xu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Yanwei Li
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xueming Dan
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| | - Zequan Mo
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
2
|
Li X, Wu X, Li X, Wei N, Jiang M, Zhu Y, Zhu T. Effect of Different Opening Diet on the Growth, the Structure of the Digestive Tract and Digestive Enzyme Activity of Larval and Juvenile Mystus macropterus. BIOLOGY 2024; 13:749. [PMID: 39336176 PMCID: PMC11444140 DOI: 10.3390/biology13090749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
One of the crucial factors influencing the growth and viability of larvae and juveniles is their opening diets. The objective of this study was to identify suitable initial feed options for M. macropterus larvae and juveniles. A total of 1200 newly hatched M. macropterus with an average weight of 18.3 mg and an average length of 11.58 mm were selected and randomly divided into four groups. The fish were fed with different opening diets, including rotifer, Artemia nauplii, Tubifex, and micro-diet from six days after hatching (dahs), respectively. Growth indices and activities of digestive enzymes were assessed at 10, 15, 20, 25, 30, 35, and 40 dahs. Histological examination of the structure of the digestive tract was performed at 40 dahs, while survival rates were also documented. The results demonstrated that different diets had no effect on the survival rate of larvae and juveniles of M. macropterus. The growth performance indices were ranked as follows: Tubifex group > Artemia nauplii group > micro-diet group > rotifer group. Remarkably, the Tubifex group exhibited superior growth performance, which was also reflected in the structure of the digestive tract and digestive enzyme activity. Therefore, it is recommended to include Tubifex in the diet of M. macropterus larvae and juvenile during the standardized farming process.
Collapse
Affiliation(s)
- Xiaoli Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xingbing Wu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xuemei Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Nian Wei
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Ming Jiang
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yongjiu Zhu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Tingbing Zhu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| |
Collapse
|
3
|
Wang J, Zhang L, Gao X, Sun Y, Zhao C, Gao X, Wu C. Molecular Cloning of the scd1 Gene and Its Expression in Response to Feeding Artificial Diets to Mandarin Fish ( Siniperca chuatsi). Genes (Basel) 2024; 15:1211. [PMID: 39336802 PMCID: PMC11431013 DOI: 10.3390/genes15091211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Stearoyl-coenzyme A desaturase 1 (SCD1) plays a crucial role in fatty acid metabolism. However, its roles in the feeding habit transformation of mandarin fish (Siniperca chuatsi) remain largely unknown. Methods: Juvenile mandarin fish (10.37 ± 0.54)g were trained to feed on an artificial diet and then divided into artificial diet feeders and nonfeeders according to their feed preference. Afterwards, the scd1 gene of mandarin fish (Sc-scd1) was identified and characterized, and its transcription difference was determined between S. chuatsi fed live artificial diets and those fed prey fish. Results: Our results show that Sc-scd1 coding sequence is 1002 bp long, encoding 333 amino acids. The assumed Sc-SCD1 protein lacks a signal peptide, and it contains 1 N-linked glycosylation site, 24 phosphorylation sites, 4 transmembrane structures, and 3 conserved histidine elements. We found that Sc-SCD1 exhibits a high similarity with its counterparts in other fish by multiple alignments and phylogenetic analysis. The expression level of Sc-scd1 was detected with different expression levels in all tested tissues between male and female individuals fed either live prey fish or artificial diets. Conclusions: In particular, the Sc-scd1 expression level was the highest in the liver of both male and female mandarin fish fed artificial diets, indicating that scd1 genes may be associated with feed adaption of mandarin fish. Taken together, our findings offer novel perspectives on the potential roles of scd1 in specific domestication, and they provide valuable genetic information on feeding habits for the domestication of mandarin fish.
Collapse
Affiliation(s)
- Jiangjiang Wang
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China; (J.W.); (L.Z.); (X.G.); (Y.S.)
| | - Lihan Zhang
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China; (J.W.); (L.Z.); (X.G.); (Y.S.)
- Hebei Key Laboratory of Aquaculture Nutritional Regulation and Disease Control, Qinhuangdao 066003, China
| | - Xiaowei Gao
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China; (J.W.); (L.Z.); (X.G.); (Y.S.)
- Hebei Key Laboratory of Aquaculture Nutritional Regulation and Disease Control, Qinhuangdao 066003, China
| | - Yanfeng Sun
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China; (J.W.); (L.Z.); (X.G.); (Y.S.)
- Hebei Key Laboratory of Aquaculture Nutritional Regulation and Disease Control, Qinhuangdao 066003, China
| | - Chunlong Zhao
- Hebei Academy of Ocean and Fishery Sciences, Qinhuangdao 066200, China;
| | - Xiaotian Gao
- Hebei Academy of Ocean and Fishery Sciences, Qinhuangdao 066200, China;
| | - Chengbin Wu
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China; (J.W.); (L.Z.); (X.G.); (Y.S.)
- Hebei Key Laboratory of Aquaculture Nutritional Regulation and Disease Control, Qinhuangdao 066003, China
| |
Collapse
|
4
|
Li H, Zeng Y, Wang G, Zhang K, Gong W, Li Z, Tian J, Xia Y, Xie W, Xie J, Xie S, Yu E. Betaine improves appetite regulation and glucose-lipid metabolism in mandarin fish ( Siniperca chuatsi) fed a high-carbohydrate-diet by regulating the AMPK/mTOR signaling. Heliyon 2024; 10:e28423. [PMID: 38623237 PMCID: PMC11016588 DOI: 10.1016/j.heliyon.2024.e28423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/17/2024] Open
Abstract
Diets with high carbohydrate (HC) was reported to have influence on appetite and intermediary metabolism in fish. To illustrate whether betaine could improve appetite and glucose-lipid metabolism in aquatic animals, mandarin fish (Siniperca chuatsi) were fed with the HC diets with or without betaine for 8 weeks. The results suggested that betaine enhanced feed intake by regulating the hypothalamic appetite genes. The HC diet-induced downregulation of AMPK and appetite genes was also positively correlated with the decreased autophagy genes, suggesting a possible mechanism that AMPK/mTOR signaling might regulate appetite through autophagy. The HC diet remarkably elevated transcriptional levels of genes related to lipogenesis, while betaine alleviated the HC-induced hepatic lipid deposition. Additionally, betaine supplementation tended to store the energy storage as hepatic glycogen. Our findings proposed the possible mechanism for appetite regulation through autophagy via AMPK/mTOR, and demonstrated the feasibility of betaine as an aquafeed additive to regulate appetite and intermediary metabolism in fish.
Collapse
Affiliation(s)
- Hongyan Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, CAS, China
- Fujian Province Key Laboratory of Special Aquatic Formula Feed (Fujian Tianma Science and Technology Group Co., Ltd.), Fuqing, 350308, China
| | - Yanzhi Zeng
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Guangjun Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Kai Zhang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Wangbao Gong
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Zhifei Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Jingjing Tian
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Yun Xia
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Wenping Xie
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Jun Xie
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Shouqi Xie
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, CAS, China
| | - Ermeng Yu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| |
Collapse
|
5
|
Wang S, Xu G, Zou J. Soluble non-starch polysaccharides in fish feed: implications for fish metabolism. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1-22. [PMID: 36219350 DOI: 10.1007/s10695-022-01131-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Because of their unique glycosidic bond structure, non-starch polysaccharides (NSP) are difficult for the stomach to break down. NSP can be classified as insoluble NSP (iNSP, fiber, lignin, etc.) and soluble NSP (sNSP, oligosaccharides, β-glucan, pectin, fermentable fiber, inulin, plant-derived polysaccharides, etc.). sNSP is viscous, fermentable, and soluble. Gut microbiota may catabolize sNSP, which can then control fish lipid, glucose, and protein metabolism and impact development rates. This review examined the most recent studies on the impacts of various forms of sNSP on the nutritional metabolism of various fish in order to comprehend the effects of sNSP on fish. According to certain investigations, sNSP can enhance fish development, boost the activity of digestive enzymes, reduce blood sugar and cholesterol, enhance the colonization of good gut flora, and modify fish nutrition metabolism. In-depth research on the mechanism of action is also lacking in most studies on the effects of sNSP on fish metabolism. It is necessary to have a deeper comprehension of the underlying processes by which sNSP induce host metabolism. This is crucial to address the main issue of the sensible use of carbohydrates in fish feed.
Collapse
Affiliation(s)
- Shaodan Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region On Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region On Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
6
|
Chen J, Zeng M, Liang XF, Peng D, Xie R, Wu D. Dietary supplementation of VA enhances growth, feed utilization, glucose and lipid metabolism, appetite, and antioxidant capacity of Chinese perch (Siniperca chuatsi). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:225-237. [PMID: 37594622 DOI: 10.1007/s10695-023-01221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/11/2023] [Indexed: 08/19/2023]
Abstract
The aim of this study was to investigate the effect of dietary vitamin A on juvenile Chinese perch (Siniperca chuatsi). Chinese perch were fed with five experimental diets containing 0, 20, 40, 60, and 80 mg VA·kg-1 for 8 weeks. Results showed that dietary vitamin A significantly influenced the fish's growth, feed utilization, glucose and lipid metabolism, appetite, and antioxidant capacity. Vitamin A-supplemented groups had higher weight gain rate (WGR) and specific growth rate (SGR) compared to the control group. Feed conversion ratio (FCR) was also lower in the vitamin A-supplemented groups. Dietary vitamin A had no significant effect on the survival rate (SR). Compared to the control group, fish fed with vitamin A had increased feed intake (FI), and the expression of appetite-promoting genes (npy and agrp) was significantly higher in the 40 mg VA·kg-1 group. Vitamin A also enhanced the utilization of dietary protein by Chinese perch. The serum glucose content of the fish fed with 40 mg VA·kg-1 diet was significantly higher than that of the control group and 20 mg VA·kg-1 diet, indicating that the promoting effect of VA on gluconeogenesis was greater than that on glycolysis. Additionally, dietary vitamin A increased the expression of lipid metabolism-related genes (hl and fas) and antioxidant genes (nrf2 and gpx) in the fish. These results suggest that the optimal vitamin A requirement of juvenile Chinese perch bream was estimated to be 37.32 mg VA·kg-1 based on broken-line regression analysis of WGR. In conclusion, this study provides valuable insights into the potential benefits of dietary vitamin A on the growth, metabolism, and antioxidant capacity of Chinese perch.
Collapse
Affiliation(s)
- Junliang Chen
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Ming Zeng
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China.
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
| | - Di Peng
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Ruipeng Xie
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Dongliang Wu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| |
Collapse
|
7
|
Huang D, Gu J, Xue C, Zhang L, Chen X, Wang Y, Liang H, Ren M. Different Starch Sources Affect the Growth Performance and Hepatic Health Status of Largemouth Bass ( Micropterus salmoides) in a High-Temperature Environment. Animals (Basel) 2023; 13:3808. [PMID: 38136845 PMCID: PMC10741064 DOI: 10.3390/ani13243808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The experiment was designed to investigate the effects of different starch types on the growth performance and liver health status of largemouth bass in a high-temperature environment (33-35 °C). In this study, we designed five diets using corn starch (CS), tapioca starch (TS), sweet potato starch (SPS), potato starch (PS), and wheat starch (WS) as the starch sources (10%). We selected 225 healthy and uniformly sized largemouth bass (199.6 ± 0.43 g) and conducted the feeding experiment for 45 days. The results showed that the WS group had the highest WGR, SGR, and SR and the lowest FCR. Among the five groups, the WS group had the highest CAT activity, SOD activity, and GSH content, while the SPS group had the highest MDA content. Furthermore, oil red O staining of liver samples showed that the TS group had the largest positive region, indicating high lipid accumulation. Lastly, the gene expression results revealed that compared with the WS group, the CS, TS, and SPS groups showed suppressed expression of nrf2, keap1, cat, sod, gpx, il-8, and il-10. Therefore, our results demonstrated the effect of different starch sources on largemouth bass growth performance and hepatic health in a high-temperature environment.
Collapse
Affiliation(s)
- Dongyu Huang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jiaze Gu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Chunyu Xue
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Lu Zhang
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| | - Xiaoru Chen
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| | - Yongli Wang
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| | - Hualiang Liang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Mingchun Ren
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| |
Collapse
|
8
|
Wu D, Peng D, Liang XF, Xie R, Zeng M, Chen J, Lan J, Yang R, Hu J, Lu P. Dietary soybean lecithin promoted growth performance and feeding in juvenile Chinese perch (Siniperca chuatsi) could be by optimizing glucolipid metabolism. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1097-1114. [PMID: 37855970 DOI: 10.1007/s10695-023-01241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/16/2023] [Indexed: 10/20/2023]
Abstract
To explore the potential benefits of dietary phospholipids (PLs) in fish glucose metabolism and to promote feed culture of Chinese perch (Siniperca chuatsi), we set up six diets to feed Chinese perch (initial mean body weight 37.01 ± 0.20 g) for 86 days, including: Control diet (CT), 1% (SL1), 2% (SL2), 3% (SL3), 4% (SL4) soybean lecithin (SL) and 2% (KO2) krill oil (KO) supplemental diets (in triplicate, 20 fish each). Our study found that the SL2 significantly improved the weight gain rate and special growth rate, but the KO2 did not. In addition, the SL2 diet significantly improved feed intake, which is consistent with the mRNA levels of appetite-related genes (npy, agrp, leptin A). Additionally, in the CT and SL-added groups, leptin A expression levels were nearly synchronized with serum glucose levels. Besides, the SL2 significantly upregulated expression levels of glut2, gk, cs, fas and downregulated g6pase in the liver, suggesting that it may enhance glucose uptake, aerobic oxidation, and conversion to fatty acids. The SL2 also maintained the hepatic crude lipid content unchanged compared to the CT, possibly by significantly down-regulating the mRNA level of hepatic lipase gene (hl), and by elevating serum low-density lipoprotein (LDL) level and intraperitoneal fat ratio in significance. Moreover, the serum high-density lipoprotein levels were significantly increased by PL supplementation, and the SL2 further significantly increased serum total cholesterol and LDL levels, suggesting that dietary PLs promote lipid absorption and transport. Furthermore, dietary SL at 1% level could enhance non-specific immune capacity, with serum total protein level being markedly higher than that in the CT group. In conclusion, it is speculated that the promotion of glucose utilization and appetite by 2% dietary SL could be linked. We suggest a 1.91% supplementation of SL in the diet for the best growth performance in juvenile Chinese perch.
Collapse
Affiliation(s)
- Dongliang Wu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Di Peng
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China.
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
| | - Ruipeng Xie
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Ming Zeng
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Junliang Chen
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Jie Lan
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Ru Yang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Jiacheng Hu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Peisong Lu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| |
Collapse
|
9
|
Li H, Zeng Y, Zheng X, Wang G, Tian J, Gong W, Xia Y, Zhang K, Li Z, Xie W, Xie J, Yu E. Dietary Betaine Attenuates High-Carbohydrate-Diet-Induced Oxidative Stress, Endoplasmic Reticulum Stress, and Apoptosis in Mandarin Fish ( Siniperca chuatsi). Antioxidants (Basel) 2023; 12:1860. [PMID: 37891939 PMCID: PMC10604392 DOI: 10.3390/antiox12101860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
To investigate the impact of betaine on high-carbohydrate-diet-induced oxidative stress and endoplasmic reticulum (ER) stress, mandarin fish (Siniperca chuatsi) (23.73 ± 0.05 g) were fed with control (NC), betaine (BET), high carbohydrate (HC), and high carbohydrate + betaine (HC + BET) diets for 8 weeks. The results showed that betaine significantly promoted the growth of mandarin fish irrespective of the dietary carbohydrate levels. The HC diet induced oxidative stress, as evidenced by significantly elevated MDA levels. The HC diet significantly stimulated the mRNA levels of genes involved in ER stress (ire1, perk, atf6, xbp1, eif2α, atf4, chop), autophagy (ulk1, becn1, lc3b), and apoptosis (bax). However, betaine mitigated HC-diet-induced oxidative stress by modulating antioxidant enzymes and alleviated ER stress by regulating the mRNA of genes in the PERK-eIF2a-ATF4 pathway. Additionally, betaine significantly reduced the mRNA levels of becn1 and bax, along with the apoptosis rate, indicating a mitigating effect on autophagy and apoptosis. Overall, dietary betaine improved growth, attenuated HC-diet-induced oxidative stress and ER stress, and ultimately alleviated apoptosis in mandarin fish. These findings provide evidence for the use of betaine in aquafeeds to counter disruptive effects due to diets containing high carbohydrate levels.
Collapse
Affiliation(s)
- Hongyan Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (Y.Z.); (X.Z.); (G.W.); (J.T.); (W.G.); (Y.X.); (K.Z.); (Z.L.); (W.X.); (J.X.)
| | - Yanzhi Zeng
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (Y.Z.); (X.Z.); (G.W.); (J.T.); (W.G.); (Y.X.); (K.Z.); (Z.L.); (W.X.); (J.X.)
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xinyu Zheng
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (Y.Z.); (X.Z.); (G.W.); (J.T.); (W.G.); (Y.X.); (K.Z.); (Z.L.); (W.X.); (J.X.)
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Guangjun Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (Y.Z.); (X.Z.); (G.W.); (J.T.); (W.G.); (Y.X.); (K.Z.); (Z.L.); (W.X.); (J.X.)
| | - Jingjing Tian
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (Y.Z.); (X.Z.); (G.W.); (J.T.); (W.G.); (Y.X.); (K.Z.); (Z.L.); (W.X.); (J.X.)
| | - Wangbao Gong
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (Y.Z.); (X.Z.); (G.W.); (J.T.); (W.G.); (Y.X.); (K.Z.); (Z.L.); (W.X.); (J.X.)
| | - Yun Xia
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (Y.Z.); (X.Z.); (G.W.); (J.T.); (W.G.); (Y.X.); (K.Z.); (Z.L.); (W.X.); (J.X.)
| | - Kai Zhang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (Y.Z.); (X.Z.); (G.W.); (J.T.); (W.G.); (Y.X.); (K.Z.); (Z.L.); (W.X.); (J.X.)
| | - Zhifei Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (Y.Z.); (X.Z.); (G.W.); (J.T.); (W.G.); (Y.X.); (K.Z.); (Z.L.); (W.X.); (J.X.)
| | - Wenping Xie
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (Y.Z.); (X.Z.); (G.W.); (J.T.); (W.G.); (Y.X.); (K.Z.); (Z.L.); (W.X.); (J.X.)
| | - Jun Xie
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (Y.Z.); (X.Z.); (G.W.); (J.T.); (W.G.); (Y.X.); (K.Z.); (Z.L.); (W.X.); (J.X.)
| | - Ermeng Yu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (H.L.); (Y.Z.); (X.Z.); (G.W.); (J.T.); (W.G.); (Y.X.); (K.Z.); (Z.L.); (W.X.); (J.X.)
| |
Collapse
|
10
|
Jin AH, Qian YF, Ren J, Wang JG, Qiao F, Zhang ML, Du ZY, Luo Y. PDK inhibition promotes glucose utilization, reduces hepatic lipid deposition, and improves oxidative stress in largemouth bass (Micropterus salmoides) by increasing pyruvate oxidative phosphorylation. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108969. [PMID: 37488039 DOI: 10.1016/j.fsi.2023.108969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
In omnivorous fish, the pyruvate dehydrogenase kinases (PDKs)-pyruvate dehydrogenase E1α subunit (PDHE1α) axis is essential in the regulation of carbohydrate oxidative catabolism. Among the existing research, the role of the PDKs-PDHE1α axis in carnivorous fish with poor glucose utilization is unclear. In the present study, we determined the effects of PDK inhibition on the liver glycolipid metabolism of largemouth bass (Micropterus salmoides). DCA is a PDK-specific inhibitor that inhibits PDK by binding the allosteric sites. A total of 160 juvenile largemouth bass were randomly divided into two groups, with four replicates of 20 fish each, fed a control diet and a control diet supplemented with dichloroacetate (DCA) for 8 weeks. The present results showed that DCA supplementation significantly decreased the hepatosomatic index, triglycerides in liver and serum, and total liver lipids of largemouth bass compared with the control group. In addition, compared with the control group, DCA treatment significantly down-regulated gene expression associated with lipogenesis. Furthermore, DCA supplementation significantly decreased the mRNA expression of pdk3a and increased PDHE1α activity. In addition, DCA supplementation improved glucose oxidative catabolism and pyruvate oxidative phosphorylation (OXPHOS) in the liver, as evidenced by low pyruvate content in the liver and up-regulated expressions of glycolysis-related and TCA cycle/OXPHOS-related genes. Moreover, DCA consumption decreased hepatic malondialdehyde (MDA) content, enhanced the activities of superoxide dismutase (SOD), and increased transforming growth factor beta (tgf-β), glutathione S-transferase (gst), and superoxide dismutase 1 (sod1) gene expression compared with the control diet. This study demonstrated that inhibition of PDKs by DCA promoted glucose utilization, reduced hepatic lipid deposition, and improved oxidative stress in largemouth bass by increasing pyruvate OXPHOS. Our findings contribute to the understanding of the underlying mechanism of the PDKs-PDHE1α axis in glucose metabolism and improve the utilization of dietary carbohydrates in farmed carnivorous fish.
Collapse
Affiliation(s)
- An-Hui Jin
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yi-Fan Qian
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiong Ren
- HANOVE Research Center, Wuxi, PR China
| | - Jin-Gang Wang
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Fang Qiao
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Mei-Ling Zhang
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhen-Yu Du
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuan Luo
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
11
|
Wang S, Zuo Z, Ye B, Zhang L, Cheng Y, Xie S, Zou J, Xu G. Microbiome-Metabolomic Analysis Reveals Beneficial Effects of Dietary Kelp Resistant Starch on Intestinal Functions of Hybrid Snakeheads ( Channa maculata ♀ × Channa argus ♂). Antioxidants (Basel) 2023; 12:1631. [PMID: 37627626 PMCID: PMC10451247 DOI: 10.3390/antiox12081631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/23/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The benefits of resistant starch on hypoglycemia, obesity prevention, antioxidant status and the alleviation of metabolic syndrome have received considerable attention. In this study, we explored how dietary kelp resistant starch (KRS) enhances intestinal morphology and function through a microbiome-metabolomic analysis. Hybrid snakeheads (initial weight: 11.4 ± 0.15 g) were fed experimental diets for 60 days. Fish were fed a basic wheat starch diet and the KRS diet. Dietary KRS improved intestinal morphology and enhanced intestinal antioxidant and digestive capabilities, as evidenced by decreased intestinal damage and upregulated intestinal biochemical markers. The microbiome analysis showed that KRS administration elevated the proportion of butyrate-producing bacteria and the abundance of beneficial bacteria that increases insulin sensitivity. Furthermore, significant alterations in metabolic profiles were observed to mainly associate with the amino acid metabolism (particularly arginine production), the metabolism of cofactors and vitamins, fat metabolism, glutathione metabolism, and the biosynthesis of other secondary metabolites. Additionally, alterations in intestinal microbiota composition were significantly associated with metabolites. Collectively, changes in intestinal microbiota and metabolite profiles produced by the replacement of common starch with dietary KRS appears to play an important role in the development of intestinal metabolism, thus leading to improved intestinal function and homeostasis.
Collapse
Affiliation(s)
- Shaodan Wang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.W.); (L.Z.); (Y.C.)
| | - Zhiheng Zuo
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (B.Y.); (S.X.)
| | - Bin Ye
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (B.Y.); (S.X.)
| | - Li Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.W.); (L.Z.); (Y.C.)
| | - Yanbo Cheng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.W.); (L.Z.); (Y.C.)
| | - Shaolin Xie
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (B.Y.); (S.X.)
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (B.Y.); (S.X.)
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.W.); (L.Z.); (Y.C.)
| |
Collapse
|
12
|
Lu K, Wu J, Zhang Y, Zhuang W, Liang XF. Role of phosphoenolpyruvate carboxykinase 1 (pck1) in mediating nutrient metabolism in zebrafish. Funct Integr Genomics 2023; 23:67. [PMID: 36840800 DOI: 10.1007/s10142-023-00993-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/26/2023]
Abstract
Carbohydrates are the most economical source of energy in fish feeds, but most fish have limited ability to utilize carbohydrates. It has been reported that phosphoenolpyruvate carboxykinase 1 (pck1) is involved in carbohydrate metabolism, lipid metabolism, and other metabolic processes. However, direct evidence is lacking to fully understand the relationship between pck1 and glucose and lipid metabolism. Here, we generated a pck1 knockout zebrafish by CRISPR/cas9 system, and a high-carbohydrate diet was provided to 60 days post-fertilization (dpf) for 8 weeks. We found that pck1-deficient zebrafish displayed decreased plasma glucose, elevated mRNA levels of glycolysis-related genes (gck, pfk, pk), and reduced the transcriptional levels of gluconeogenic genes (pck1, fbp1a) in liver. We also found decreased triglyceride, total cholesterol, and lipid accumulation and in pck1-/- zebrafish, along with downregulation of genes for lipolysis (acaca) and lipogenesis (cpt1). In addition, the observation of HE staining revealed that the total muscle area of pck1-/- was substantially less than that of WT zebrafish and real-time PCR suggested that GH/IGF-1 signaling (ulk2, stat1b) may be suppressed in pck1-deficient fish. Taken together, these findings suggested that pck1 may play an important role in the high-carbohydrate diet utilization of fish and significantly affected lipid metabolism and protein synthesis in zebrafish. pck1 knockout mutant line could facilitate a further mechanism study of pck1-associated metabolic regulation and provide new information for improving carbohydrate utilization traits.
Collapse
Affiliation(s)
- Ke Lu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Wuhan, 430070, Hubei Province, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Jiaqi Wu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Wuhan, 430070, Hubei Province, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Yanpeng Zhang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Wuhan, 430070, Hubei Province, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Wuyuan Zhuang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Wuhan, 430070, Hubei Province, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Wuhan, 430070, Hubei Province, China. .,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|
13
|
Ji Z, Zhu C, Zhu X, Ban S, Yu L, Tian J, Dong L, Wen H, Lu X, Jiang M. Dietary host-associated Bacillus subtilis supplementation improves intestinal microbiota, health and disease resistance in Chinese perch (Siniperca chuatsi). ANIMAL NUTRITION 2023. [DOI: 10.1016/j.aninu.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
Pan M, Liu D, Liu J, Li X, Huang D, Luo K, Liu Y, Wu Z, Zhang W, Mai K. Biotin alleviates hepatic and intestinal inflammation and apoptosis induced by high dietary carbohydrate in juvenile turbot (Scophthalmus maximus L.). FISH & SHELLFISH IMMUNOLOGY 2022; 130:560-571. [PMID: 35944760 DOI: 10.1016/j.fsi.2022.07.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/21/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Excessive dietary carbohydrate commonly impairs the functions of liver and intestine in carnivorous fish. In the present study, a 10-week feeding trial was carried out to explore the regulation of biotin on the hepatic and intestinal inflammation and apoptosis in turbot (Scophthalmus maximus L.) fed with high carbohydrate diets. Three isonitrogenous and isolipidic experimental diets were designed as follows: the CC diet with 18.6% of carbohydrate and 0.04 mg/kg of biotin, the HC diet with 26.9% of carbohydrate and 0.05 mg/kg of biotin, and the HCB diet with 26.9% of carbohydrate and 1.62 mg/kg of biotin. Results showed that high dietary carbohydrate (HC diet) impaired the morphology of liver and intestine, however, inclusion of dietary biotin (HCB diet) normalized their morphology. Inflammation-related gene expression of nuclear factor κB p65 (nf-κb p65), tumor necrosis factor α (tnf-α), interleukin-1β (il-1β), il-6 and il-8, and the protein expression of NF-κB p65 in the liver and intestine were significantly up-regulated in the HC group compared to those in the CC group (P < 0.05), the HCB diet decreased their expression compared to the HC group (P < 0.05). The gene expression of il-10 and transforming growth factor-β (tgf-β) in the liver and intestine were significantly decreased in the HC group compared to the CC group (P < 0.05), and inclusion of dietary biotin increased the il-10 and tgf-β expression in the liver and intestine (P < 0.05). Moreover, compared to the CC group, the HC group had a stronger degree of DNA fragmentation and more TUNEL-positive cells in the liver and intestine, and the HCB group had a slighter degree of DNA fragmentation and fewer TUNEL-positive cells compared to the HC group. Meanwhile, the gene expression of B-cell lymphoma protein-2-associated X protein (bax) and executor apoptosis-related cysteine peptidase 3 (caspase-3) were significantly up-regulated and the gene expression of B-cell lymphoma-2 (bcl-2) was significantly down-regulated both in the liver and intestine in the HC group compared with those in the CC group (P < 0.05). Inclusion of dietary biotin significantly decreased the bax and caspase-3 mRNA levels and increased bcl-2 mRNA level in the liver and intestine (P < 0.05). In conclusion, high dietary carbohydrate (26.9% vs 18.6%) induced inflammation and apoptosis in liver and intestine. Supplementation of biotin (1.62 mg/kg vs 0.05 mg/kg) in diet can alleviate the high-dietary-carbohydrate-induced hepatic and intestinal inflammation as well as inhibit apoptosis in turbot. The present study provides basic data for the application of biotin into feed, especially the high-carbohydrate feed for turbot.
Collapse
Affiliation(s)
- Mingzhu Pan
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Danni Liu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China; Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Jiahuan Liu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Xinxin Li
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Dong Huang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Kai Luo
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Yue Liu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Zhenhua Wu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Wenbing Zhang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Wen Hai Road, Qingdao, 266237, China.
| | - Kangsen Mai
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Wen Hai Road, Qingdao, 266237, China
| |
Collapse
|