1
|
Sakashita H, Bando Y, Nagasaka A, Sakiyama K, Onozawa G, Taira F, Ogasawara Y, Owada Y, Sakashita H, Amano O. Spatial and chronological localization of septoclasts in the mouse Meckel's cartilage. Histochem Cell Biol 2022; 157:569-580. [PMID: 35195769 DOI: 10.1007/s00418-022-02085-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2022] [Indexed: 11/04/2022]
Abstract
Meckel's cartilage (MC) in the first branchial arch of mammals is a transient structure that disappears before birth, except for the most anterior and posterior portions. Recent studies reported that some congenital abnormalities in craniofacial regions are linked with the persistence or dysplasia of MC. However, the mechanisms underlying the resorption of MC have not been elucidated. Cartilage resorption in endochondral ossification is performed by multinuclear osteoclasts/chondroclasts as well as mononuclear septoclasts, which were newly added to the list of cartilage phagocytes. Septoclasts located exclusively at the chondro-osseous junction of the growth plate resorb the uncalcified cartilage matrix. We hypothesized that septoclasts participate in the resorption of MC and attempted to clarify the localization and roles of septoclasts in MC of mouse using a specific immunohistochemistry marker, epidermal type-fatty acid-binding protein (E-FABP/FABP5). E-FABP-immunopositive septoclasts were detected for the first time at the beginning of MC resorption and localized along the resorption surface. Septoclasts of MC in embryonic mice possessed several processes that elongated toward the uncalcified cartilage matrix, expressed cathepsin B, and exhibited characteristic pericapillary localization. Additionally, they localized between hypertrophied cartilage and osteoclasts/chondroclasts in the resorption surface. Confocal laser-scanning microscopy revealed a decrease in the numbers of septoclasts and their processes with the progression of MC disappearance before birth. The present study showed that E-FABP-immunopositive septoclasts participated in the disappearance of MC through the resorption of the uncalcified cartilage matrix and that they have different roles from osteoclasts/chondroclasts.
Collapse
Affiliation(s)
- Hide Sakashita
- Division of Anatomy/Histology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan.,Division of Oral and Maxillofacial Surgery, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan
| | - Yasuhiko Bando
- Division of Anatomy/Histology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan
| | - Arata Nagasaka
- Division of Anatomy/Histology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan
| | - Koji Sakiyama
- Division of Anatomy/Histology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan
| | - Go Onozawa
- Division of Anatomy/Histology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan.,Division of Oral and Maxillofacial Surgery, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan
| | - Fuyoko Taira
- Division of Anatomy/Histology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan.,Division of Oral and Maxillofacial Surgery, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan
| | - Yudai Ogasawara
- Division of Anatomy/Histology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan.,Division of Oral and Maxillofacial Surgery, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 9808575, Japan
| | - Hideaki Sakashita
- Division of Oral and Maxillofacial Surgery, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan
| | - Osamu Amano
- Division of Anatomy/Histology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan.
| |
Collapse
|
2
|
Tian H, Ren P, Liu K, Qiu C, Fan L, Li J, Hou J. Transcriptomic comparison of ovarian granulosa cells between adult sheep and prepubertal lambs. BMC Genomics 2022; 23:151. [PMID: 35189817 PMCID: PMC8862527 DOI: 10.1186/s12864-022-08379-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The oocyte development ability of prepubertal animals is significantly lower than that of adult animals. Granulosa cells (GCs) have an important function on regulation of follicular and oocyte development. Therefore, analysis of GC characteristics can be used to explore the developmental mechanism of follicles and oocytes. RESULTS In order to understand the possible reasons for the differences in follicle and oocyte development between lambs and adult sheep, we utilized high-throughput sequencing technique to analyze the transcriptome of GCs from follicle-stimulating hormone (FSH) superstimulated adult ewes and prepubertal lambs. Adult ewes were treated with FSH for 3 days (group A) and lambs were FSH-treated for 2 days (group B) or 3 days (group C). Transcriptome analysis of GCs showed that there were 405 and 159 differentially expressed genes from A vs. B and A vs. C, respectively. The results indicated that prolonging the FSH-treatment of lambs made the GC state of lambs more similar to the adult ewes, but there were still a large number of differentially expressed genes between adult ewes and lambs. Further analysis showed that many differently expressed genes were implicated in cell proliferation and apoptosis, oocyte development and follicular ovulation. Cellular examination demonstrated that fatty acid binding protein 4 (FABP4), which was highly expressed in lamb GCs, had a potential of promoting cell apoptosis. Cytoplasmic phospholipase A2 (PLA2G4A), which was expressed lowly in lamb GCs, may be responsible for reduced synthesis of prostaglandins in cells and impaired follicle/oocyte development. In contrast, glutathione S-transferase β-1 (GSTT2B) and forkhead boxO6 (FOXO6) had no apparent effect on the proliferation and apoptosis of GCs. CONCLUSIONS Our study found dramatic transcriptomic differences in GCs between lambs and adult sheep, which may explain the possible reasons for the defects of follicle and oocyte development in lambs compared to adult sheep. Our data provides important information for further understanding the mechanism of follicular development in prepubertal animals and improving their oocyte developmental competence.
Collapse
Affiliation(s)
- Hao Tian
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, China
| | - Panyu Ren
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, China
| | - Kailing Liu
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, China
| | - Chunjuan Qiu
- Inner Mongolia, Sino Sheep Breeding Co. Ltd, Wulanchabu, Inner Mongolia, China
| | - Lihong Fan
- Inner Mongolia, Sino Sheep Breeding Co. Ltd, Wulanchabu, Inner Mongolia, China
| | - Junlong Li
- Inner Mongolia, Sino Sheep Breeding Co. Ltd, Wulanchabu, Inner Mongolia, China
| | - Jian Hou
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, Beijing, China.
| |
Collapse
|
3
|
Yamamoto Y, Owada Y. Possible involvement of fatty acid binding proteins in psychiatric disorders. Anat Sci Int 2021; 96:333-342. [PMID: 33604770 DOI: 10.1007/s12565-020-00598-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/26/2020] [Indexed: 12/19/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are essential for brain development and function. Increasing evidence has shown that an imbalance of PUFAs is associated with various human psychiatric disorders, including autism and schizophrenia. However, the mechanisms underlying the effects of PUFAs on brain functions at cellular and molecular levels remain unclear. Since PUFAs are insoluble in water, specific transporters are required to deliver PUFAs to appropriate intracellular compartments. Fatty acid-binding proteins (FABPs), the cellular chaperones of PUFAs, are involved in PUFA intracellular trafficking, signal transduction, and gene transcription. Therefore, we focused on the relationship between FABP-regulated PUFA homeostasis in the brain and neuronal plasticity. The authors previously reported that FABP3, which preferentially binds to n-6 PUFAs, is strongly expressed in the gamma-aminobutyric acid (GABAergic) inhibitory interneurons of the adult mouse anterior cingulate cortex (ACC), which is a component of the limbic cortex and is important for the coordination of cognitive and emotional behaviors. Interestingly, Fabp3 KO mice show increased GABA synthesis and abnormal excitatory/inhibitory balance in the ACC. In addition, studies have indicated that FABP7, which preferentially binds to n-3 PUFAs, controls lipid raft function in astrocytes, and astrocytic Fabp7 deficiency results in an altered response of astrocytes to external stimuli. Furthermore, Fabp7 KO mice exhibit aberrant dendritic morphology, and decreased spine density and excitatory synaptic transmission in pyramidal neurons. This review summarizes relationship between PUFAs or FABPs and human psychiatric disorders and discusses recent progress in elucidating the function of FABPs, especially FABP3 and 7, in the brain.
Collapse
Affiliation(s)
- Yui Yamamoto
- Department of Organ Anatomy, Tohoku University, Seiryo-machi Aoba-ku, Sendai, 980-8575, Japan. .,Department of Anatomy, Tohoku Medical and Pharmaceutical University, Fukumuro Miyagino-ku, Sendai, 980-8578, Japan.
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University, Seiryo-machi Aoba-ku, Sendai, 980-8575, Japan
| |
Collapse
|
4
|
Trojnar M, Patro-Małysza J, Kimber-Trojnar Ż, Leszczyńska-Gorzelak B, Mosiewicz J. Associations between Fatty Acid-Binding Protein 4⁻A Proinflammatory Adipokine and Insulin Resistance, Gestational and Type 2 Diabetes Mellitus. Cells 2019; 8:cells8030227. [PMID: 30857223 PMCID: PMC6468522 DOI: 10.3390/cells8030227] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/03/2019] [Accepted: 03/03/2019] [Indexed: 12/12/2022] Open
Abstract
There is ample scientific evidence to suggest a link between the fatty acid-binding protein 4 (FABP4) and insulin resistance, gestational (GDM), and type 2 (T2DM) diabetes mellitus. This novel proinflammatory adipokine is engaged in the regulation of lipid metabolism at the cellular level. The molecule takes part in lipid oxidation, the regulation of transcription as well as the synthesis of membranes. An involvement of FABP4 in the pathogenesis of obesity and insulin resistance seems to be mediated via FABP4-dependent peroxisome proliferator-activated receptor γ (PPARγ) inhibition. A considerable number of studies have shown that plasma concentrations of FABP4 is increased in obesity and T2DM, and that circulating FABP4 levels are correlated with certain clinical parameters, such as body mass index, insulin resistance, and dyslipidemia. Since plasma-circulating FABP4 has the potential to modulate the function of several types of cells, it appears to be of extreme interest to try to develop potential therapeutic strategies targeting the pathogenesis of metabolic diseases in this respect. In this manuscript, representing a detailed review of the literature on FABP4 and the abovementioned metabolic disorders, various mechanisms of the interaction of FABP4 with insulin signaling pathways are thoroughly discussed. Clinical aspects of insulin resistance in diabetic patients, including women diagnosed with GDM, are analyzed as well.
Collapse
Affiliation(s)
- Marcin Trojnar
- Chair and Department of Internal Medicine, Medical University of Lublin, 20-081 Lublin, Poland.
| | - Jolanta Patro-Małysza
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland.
| | - Żaneta Kimber-Trojnar
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland.
| | | | - Jerzy Mosiewicz
- Chair and Department of Internal Medicine, Medical University of Lublin, 20-081 Lublin, Poland.
| |
Collapse
|
5
|
Abstract
Fatty acid-binding proteins (FABPs), a family of lipid chaperones, contribute to systemic metabolic regulation via several lipid signaling pathways. Fatty acid-binding protein 4 (FABP4), known as adipocyte FABP (A-FABP) or aP2, is mainly expressed in adipocytes and macrophages and plays important roles in the development of insulin resistance and atherosclerosis in relation to metabolically driven low-grade and chronic inflammation, referred to as ‘metaflammation’. FABP4 is secreted from adipocytes in a non-classical pathway associated with lipolysis and acts as an adipokine for the development of insulin resistance and atherosclerosis. Circulating FABP4 levels are associated with several aspects of metabolic syndrome and cardiovascular disease. Ectopic expression and function of FABP4 in cells and tissues are also related to the pathogenesis of several diseases. Pharmacological modification of FABP4 function by specific inhibitors, neutralizing antibodies or antagonists of unidentified receptors would be novel therapeutic strategies for several diseases, including obesity, diabetes mellitus, atherosclerosis and cardiovascular disease. Significant roles of FABP4 as a lipid chaperone in physiological and pathophysiological conditions and the possibility of FABP4 being a therapeutic target for metabolic and cardiovascular diseases are discussed in this review.
Collapse
Affiliation(s)
- Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine
| |
Collapse
|
6
|
Ning H, Tao H, Weng Z, Zhao X. Plasma fatty acid-binding protein 4 (FABP4) as a novel biomarker to predict gestational diabetes mellitus. Acta Diabetol 2016; 53:891-898. [PMID: 27147422 DOI: 10.1007/s00592-016-0867-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 04/18/2016] [Indexed: 12/13/2022]
Abstract
AIMS Fatty acid-binding protein 4 (FABP4) is mainly expressed in adipocytes and macrophages and is demonstrated to be elevated in diabetes patients. The aim of this study was to evaluate the possible role of FABP4 in the diagnosis of GDM and to investigate the relationship between FABP4 and overweight, insulin resistance and inflammatory marker TNF-α. METHODS A total of 46 women with GDM and 55 age-matched pregnant women without GDM (non-GDM) were eligible for the study. Demographic and biochemical parameters and fasting venous blood samples of two groups were collected from all cases. Serum concentrations of FABP4 were determined using enzyme-linked immunosorbent assay (ELISA). The predictive value of Serum FABP4 level was evaluated using receiver operating characteristic curve (ROC curve) analysis. RESULTS We found that the serum FABP4 levels were significantly higher in GDM compared to the non-GDM group. The area under the ROC curve assay yielded a satisfactory result of 0.94 (95 % confidence interval 0.90-0.98; p < 0.001). The best compromise between 86.96 % specificity and 89.09 % sensitivity was obtained with a cutoff value of 1.96 ng/mL for GDM diagnosis. Moreover, a significant positive correlation was observed between FABP4 and overweight, insulin resistance and TNF-α in pregnant women with GDM. CONCLUSIONS These results suggest that serum FABP4 may potentially serve as a novel biomarker for the prediction of GDM.
Collapse
Affiliation(s)
- Hui Ning
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250012, Shandong, China
- Department of Obstetrics and Gynaecology, Qingdao Municipal Hospital, Qingdao, 266000, Shandong, China
| | - Hong Tao
- Department of Obstetrics and Gynaecology, Qingdao Municipal Hospital, Qingdao, 266000, Shandong, China
| | - Zhanping Weng
- Department of Obstetrics and Gynaecology, Qingdao Municipal Hospital, Qingdao, 266000, Shandong, China
| | - Xingbo Zhao
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
7
|
Abali R, Temel Yuksel I, Yuksel MA, Bulut B, Imamoglu M, Emirdar V, Unal F, Guzel S, Celik C. Implications of circulating irisin and Fabp4 levels in patients with polycystic ovary syndrome. J OBSTET GYNAECOL 2016; 36:897-901. [PMID: 27184575 DOI: 10.3109/01443615.2016.1174200] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aim of the study was to evaluate the fatty acid-binding protein-4 (FABP4) and irisin concentrations in women with polycystic ovary syndrome (PCOS). Forty-nine women with PCOS, diagnosed according to Rotterdam criteria and 39 healthy women matched for body mass index (BMI) and age. Serum irisin and plasma FABP4 concentrations were measured in both groups. The association of irisin and FABP4 concentrations with metabolic parameters were also tested. Women with PCOS had significantly lower mean serum irisin concentrations than control subjects (158.5 ± 123.3 versus 222.9 ± 152.2 ng/ml, p < 0.05). Concentrations of FABP4 in PCOS and control groups were not significantly different (10.5 ± 4.4 versus 10.9 ± 4.2 ng/ml, p > 0.05). FABP4 concentrations were correlated with BMI, waist-hip ratio (WHR) and HOMA-IR (r = 0.57, p = 0.001; r = 0.26, p = 0.03; r = 0.26, p = 0.03, respectively). No associations between irisin and all the others parameters except serum levels of LH were found. Serum irisin concentrations of women with PCOS were lower compared to the controls. Moreover, there were no difference in plasma FABP4 concentrations between women with PCOS and controls.
Collapse
Affiliation(s)
- Remzi Abali
- a Department of Obstetrics and Gynecology , Namik Kemal University School of Medicine , Tekirdag , Turkey
| | - Ilkbal Temel Yuksel
- b Department of Obstetrics and Gynecology , Okmeydani Research and Education Hospital , Istanbul , Turkey
| | - Mehmet Aytac Yuksel
- c Department of Obstetrics and Gynecology , Istanbul University Cerrahpasa School of Medicine , Istanbul , Turkey
| | - Berk Bulut
- b Department of Obstetrics and Gynecology , Okmeydani Research and Education Hospital , Istanbul , Turkey
| | - Metehan Imamoglu
- c Department of Obstetrics and Gynecology , Istanbul University Cerrahpasa School of Medicine , Istanbul , Turkey
| | - Volkan Emirdar
- d Department of Obstetrics and Gynecology , Izmir University School of Medicine , Izmir , Turkey
| | - Fehmi Unal
- e Department of Obstetrics and Gynecology , Istanbul Research and Education Hospital , Istanbul , Turkey
| | - Savas Guzel
- a Department of Obstetrics and Gynecology , Namik Kemal University School of Medicine , Tekirdag , Turkey
| | - Cem Celik
- a Department of Obstetrics and Gynecology , Namik Kemal University School of Medicine , Tekirdag , Turkey
| |
Collapse
|
8
|
Zhao YP, Li L, Ma JP, Chen G, Bai JH. LXRalpha gene downregulation by lentiviral-based RNA interference enhances liver function after fatty liver transplantation in rats. Hepatobiliary Pancreat Dis Int 2015; 14:386-93. [PMID: 26256083 DOI: 10.1016/s1499-3872(15)60347-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Steatotic liver grafts, although accepted, increase the risk of poor posttransplantation liver function. However, the growing demand for adequate donor organs has led to the increased use of so-called marginal grafts. Liver X receptor alpha (LXRalpha) is important in fatty acid metabolism and interrelated with the specific ischemia-reperfusion injury in fatty liver transplantation. This study aimed to investigate whether LXRalpha RNA interference (RNAi) could improve the organ function of liver transplant recipients. METHODS Fifty Sprague-Dawley rats were fed with a high-fat diet and 56% alcohol. The livers of these animals had greater than 60% macrovesicular steatosis and were used as liver donors. The experimental donors were treated with 7X107 TU LXRalpha-RNAi-LV of a mixture injection and control donors with negative control-LV vector injection into the portal vein 72 hours before the operation. The effects of LXRalpha-RNAi-LV were assessed by serum aminotransferases, histology, immunostaining, and protein levels. The transcription of LXRalpha mRNA was assessed by reverse transcription-polymerase chain reaction. RESULTS Compared with controls, LXRalpha RNAi inhibited the expression of LXRalpha at the mRNA (0.53+/-0.03 vs 0.94+/-0.02, P<0.05) and protein levels (0.51+/-0.08 vs 1.09+/-0.12, P<0.05). LXRalpha RNAi also decreased the expressions of sterol regulatory element-binding protein 1c (SREBP-1c) and CD36. LXRalpha RNAi consequently reduced fatty acid accumulation in hepatocytes. Compared with control animals, LXRalpha RNAi-treated group had lower serum alanine aminotransferase, aspartate aminotransferase, interleukin-1beta, and tumor necrosis factor-alpha levels and milder pathologic damages. TUNEL analysis revealed a significant reduction of apoptosis in the livers of rats treated with LXRalpha-RNAi-LV, and overall survival as determined by the Kaplan-Meier method was improved among rats treated with LXRalpha-RNAi-LV (P<0.05). CONCLUSION LXRalpha-RNAi-LV treatment significantly downregulated LXRalpha expression and improve steatotic liver graft function and recipient survival after a fatty liver transplantation in rats.
Collapse
Affiliation(s)
- Ying-Peng Zhao
- Department of Hepatobiliary and Transplantation Surgery, Ganmei Affiliated Hospital, Kunming Medical University, Kunming 650011, China.
| | | | | | | | | |
Collapse
|
9
|
Duggavathi R, Siddappa D, Schuermann Y, Pansera M, Menard IJ, Praslickova D, Agellon LB. The fatty acid binding protein 6 gene (Fabp6) is expressed in murine granulosa cells and is involved in ovulatory response to superstimulation. J Reprod Dev 2015; 61:237-40. [PMID: 25754072 PMCID: PMC4498371 DOI: 10.1262/jrd.2014-139] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fatty acid binding protein 6 (Fabp6) is commonly regarded as a bile acid binding protein found in the distal portion of the small intestine and has been shown to be important in maintaining bile acid homeostasis. Previous studies have also reported the presence of Fabp6 in human, rat and fish ovaries, but the significance of Fabp6 in this organ is largely unknown. Therefore, we surveyed murine ovaries for Fabp6 gene expression and evaluated its role in ovarian function using mice with whole body Fabp6 deficiency. Here we show that the Fabp6 gene is expressed in granulosa and luteal cells of the mouse ovary. Treatment with gonadotropins stimulated Fabp6 gene expression in large antral follicles. The ovulation rate in response to superovulatory treatment in Fabp6-deficient mice was markedly decreased compared to wildtype (C57BL/6) mice. The results of this study suggest that expression of Fabp6 gene in
granulosa cells serves an important and previously unrecognized function in fertility.
Collapse
Affiliation(s)
- Raj Duggavathi
- Department of Animal Sciences, McGill University, Quebec H9X 3V9, Canada
| | | | | | | | | | | | | |
Collapse
|
10
|
Furuhashi M, Saitoh S, Shimamoto K, Miura T. Fatty Acid-Binding Protein 4 (FABP4): Pathophysiological Insights and Potent Clinical Biomarker of Metabolic and Cardiovascular Diseases. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2015; 8:23-33. [PMID: 25674026 PMCID: PMC4315049 DOI: 10.4137/cmc.s17067] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/16/2014] [Accepted: 12/16/2014] [Indexed: 12/13/2022]
Abstract
Over the past decade, evidences of an integration of metabolic and inflammatory pathways, referred to as metaflammation in several aspects of metabolic syndrome, have been accumulating. Fatty acid-binding protein 4 (FABP4), also known as adipocyte FABP (A-FABP) or aP2, is mainly expressed in adipocytes and macrophages and plays an important role in the development of insulin resistance and atherosclerosis in relation to metaflammation. Despite lack of a typical secretory signal peptide, FABP4 has been shown to be released from adipocytes in a non-classical pathway associated with lipolysis, possibly acting as an adipokine. Elevation of circulating FABP4 levels is associated with obesity, insulin resistance, diabetes mellitus, hypertension, cardiac dysfunction, atherosclerosis, and cardiovascular events. Furthermore, ectopic expression and function of FABP4 in several types of cells and tissues have been recently demonstrated. Here, we discuss both the significant role of FABP4 in pathophysiological insights and its usefulness as a biomarker of metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shigeyuki Saitoh
- Department of Nursing, Division of Medical and Behavioral Subjects, Sapporo Medical University School of Health Sciences, Sapporo, Japan
| | | | - Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
11
|
Bando Y, Yamamoto M, Sakiyama K, Inoue K, Takizawa S, Owada Y, Iseki S, Kondo H, Amano O. Expression of epidermal fatty acid binding protein (E-FABP) in septoclasts in the growth plate cartilage of mice. J Mol Histol 2014; 45:507-18. [PMID: 24879443 DOI: 10.1007/s10735-014-9576-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 05/21/2014] [Indexed: 12/25/2022]
Abstract
n-3 Polyunsaturated fatty acids play a role in regulating the growth of the long bones. Fatty acid-binding proteins (FABPs) bind and transport hydrophobic long-chain fatty acids intracellularly, and epidermal-type FABP (E-FABP) has an affinity for n-3 fatty acids. This study aimed to clarify the localization of E-FABP in the growth plate of the mouse tibia. At the chondro-osseous junction (COJ) of the growth plate, E-FABP-immunoreactivity was exclusively localized in mononuclear, spindle-shaped cells with several long processes. These E-FABP-immunoreactive cells were identified as being septoclasts, i.e., cells that resorb uncalcified transverse septa. The processes of these immunoreactive septoclasts terminated between the longitudinal and transverse septa. E-FABP-immunoreactivity was found in the entire cytoplasm and on the mitochondrial outer membrane. In ontogeny, immunoreactive septoclasts were observed immediately after emergence of the primary ossifying center and were distributed not only at the COJ but also in the metaphysis near the COJ. The number of septoclasts increased at the postnatal age of 1 week (P1w)-P2w, and thereafter gradually decreased; and the cells became concentrated at the COJ after P3w-P4w. The immunoreactivity for peroxisome proliferator-activated receptor (PPAR)β/δ was detected in these E-FABP-immunoreactive septoclasts. The present results suggest that fatty acids, preferably n-3 ones, are intracellularly transported by E-FABP to various targets, including mitochondria and nucleus, in which PPARβ/δ may play functional roles in the transcriptional regulation of genes involved in the endochondral ossification.
Collapse
Affiliation(s)
- Yasuhiko Bando
- Division of Anatomy, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan,
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Rutkowski JM, Ihm JE, Lee ST, Kilarski WW, Greenwood VI, Pasquier MC, Quazzola A, Trono D, Hubbell JA, Swartz MA. VEGFR-3 neutralization inhibits ovarian lymphangiogenesis, follicle maturation, and murine pregnancy. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1596-1607. [PMID: 24036251 DOI: 10.1016/j.ajpath.2013.07.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 07/15/2013] [Accepted: 07/31/2013] [Indexed: 11/18/2022]
Abstract
Lymphatic vessels surround follicles within the ovary, but their roles in folliculogenesis and pregnancy, as well as the necessity of lymphangiogenesis in follicle maturation and health, are undefined. We used systemic delivery of mF4-31C1, a specific antagonist vascular endothelial growth factor receptor 3 (VEGFR-3) antibody to block lymphangiogenesis in mice. VEGFR-3 neutralization for 2 weeks before mating blocked ovarian lymphangiogenesis at all stages of follicle maturation, most notably around corpora lutea, without significantly affecting follicular blood angiogenesis. The numbers of oocytes ovulated, fertilized, and implanted in the uterus were normal in these mice; however, pregnancies were unsuccessful because of retarded fetal growth and miscarriage. Fewer patent secondary follicles were isolated from treated ovaries, and isolated blastocysts exhibited reduced cell densities. Embryos from VEGFR-3-neutralized dams developed normally when transferred to untreated surrogates. Conversely, normal embryos transferred into mF4-31C1-treated dams led to the same fetal deficiencies observed with in situ gestation. Although no significant changes were measured in uterine blood or lymphatic vascular densities, VEGFR-3 neutralization reduced serum and ovarian estradiol concentrations during gestation. VEGFR-3-mediated lymphangiogenesis thus appears to modulate the folliculogenic microenvironment and may be necessary for maintenance of hormone levels during pregnancy; both of these are novel roles for the lymphatic vasculature.
Collapse
Affiliation(s)
- Joseph M Rutkowski
- Institute of Bioengineering, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Jong Eun Ihm
- Institute of Bioengineering, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Seung Tae Lee
- Institute of Bioengineering, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Witold W Kilarski
- Institute of Bioengineering, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Veronique I Greenwood
- Institute of Bioengineering, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Miriella C Pasquier
- Institute of Bioengineering, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Alexandra Quazzola
- Global Health Institute, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Didier Trono
- Global Health Institute, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Jeffrey A Hubbell
- Institute of Bioengineering, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Melody A Swartz
- Institute of Bioengineering, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
13
|
Furuhashi M, Ishimura S, Ota H, Miura T. Lipid chaperones and metabolic inflammation. Int J Inflam 2011; 2011:642612. [PMID: 22121495 PMCID: PMC3206330 DOI: 10.4061/2011/642612] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 08/18/2011] [Indexed: 11/28/2022] Open
Abstract
Over the past decade, a large body of evidence has emerged demonstrating an integration of metabolic and immune response pathways. It is now clear that obesity and associated disorders such as insulin resistance and type 2 diabetes are associated with a metabolically driven, low-grade, chronic inflammatory state, referred to as “metaflammation.” Several inflammatory cytokines as well as lipids and metabolic stress pathways can activate metaflammation, which targets metabolically critical organs and tissues including adipocytes and macrophages to adversely affect systemic homeostasis. On the other hand, inside the cell, fatty acid-binding proteins (FABPs), a family of lipid chaperones, as well as endoplasmic reticulum (ER) stress, and reactive oxygen species derived from mitochondria play significant roles in promotion of metabolically triggered inflammation. Here, we discuss the molecular and cellular basis of the roles of FABPs, especially FABP4 and FABP5, in metaflammation and related diseases including obesity, diabetes, and atherosclerosis.
Collapse
Affiliation(s)
- Masato Furuhashi
- Second Department of Internal Medicine, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Japan
| | | | | | | |
Collapse
|
14
|
Hu W, Qiao J. Expression and regulation of adipocyte fatty acid binding protein in granulosa cells and its relation with clinical characteristics of polycystic ovary syndrome. Endocrine 2011; 40:196-202. [PMID: 21720879 DOI: 10.1007/s12020-011-9495-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 05/28/2011] [Indexed: 01/22/2023]
Abstract
Increased expression of adipocyte fatty acid binding protein (FABP4) is associated with type 2 diabetic, high triglycerides, increased lipid peroxidation, and inflammation markers. To study the expression of FABP4 mRNA in granulosa cells of patients with polycystic ovary syndrome (PCOS) and the impact of testosterone, insulin, and PPARγ agonist rosiglitazone on granulosa cells (GCs), and to investigate the relationship of serum FABP4 levels with clinical characteristics in patients with PCOS. The expression of FABP4 mRNA in GCs of patients with PCOS and normal controls were assayed by RT-PCR. We assessed the level of FABP4 mRNA after treatment with testosterone, insulin, and rosiglitazone in GCs from normal controls. Serum FABP4 were assayed from 96 patients with PCOS (obese and nonobese 48 cases, respectively) and 80 healthy normal controls (obese and the nonobese 40 cases, respectively). The expression of FABP4 mRNA was higher in the GCs of PCOS than that of the controls (P<0.05). FABP4 mRNA expression was up-regulated by testosterone, insulin, and rosiglitazone at different dosages. Serum FABP4 levels were higher in the nonobese PCOS group than that of the nonobese controls (8.9±5.1 ng/ml vs. 4.8±0.7 ng/ml), and in the obese PCOS group than that of the obese controls (28.2±14.0 ng/ml vs. 15.6±6.6 ng/ml), respectively (P<0.05). Multiple linear regression analyses showed that serum FABP4 level was independently associated with HOMA-IR, BMI, and testosterone (P<0.05). Increased FABP4 was related to the clinical characteristics of PCOS.
Collapse
Affiliation(s)
- Weihong Hu
- Department of Gynecology and Obstetrics, Peking University Third Hospital, Beijing, 100083, China.
| | | |
Collapse
|
15
|
Bechmann LP, Gieseler RK, Sowa JP, Kahraman A, Erhard J, Wedemeyer I, Emons B, Jochum C, Feldkamp T, Gerken G, Canbay A. Apoptosis is associated with CD36/fatty acid translocase upregulation in non-alcoholic steatohepatitis. Liver Int 2010; 30:850-9. [PMID: 20408954 DOI: 10.1111/j.1478-3231.2010.02248.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Hepatocyte apoptosis is a key event in non-alcoholic steatohepatitis (NASH). We studied the effect of obesity on free fatty acid (FFA) levels, fatty acid transport proteins (FATPs) and on extrinsic and intrinsic activation of apoptosis in the liver. METHODS Liver biopsies were harvested from 52 morbidly obese patients [body mass index (BMI): 53.82+/-1.41; age: 45+/-10.50; 15 males/37 females] undergoing bariatric surgery, and were scored for NASH, evaluated for fibrosis, and investigated for intrahepatic expression of FATPs, death receptors and cytosolic apoptosis-related molecules. Findings were correlated with serum FFA levels and the degrees of intrahepatic (terminal dUTP nick end labelling) and systemic (M30) apoptosis. RESULTS In patients' liver sections, FATPs as well as select parameters of extrinsic and intrinsic apoptosis were found to be upregulated (CD36/FAT: x 11.56; FATP-5: x 1.33; CD95/Fas: x 3.18; NOXA: x 2.79). These findings correlated with significantly elevated serum FFAs (control: 14.72+/-2.32 mg/dl vs. patients: 23.03+/-1.24 mg/dl) and M30 levels (control: 83.12+/-7.46 U/L vs. patients: 212.61+/-22.16 U/L). We found correlations between FATPs and apoptosis mediators as well as with histological criteria of NASH and fibrosis. CONCLUSIONS Increased FFA and FATPs are associated with extrinsically and intrinsically induced apoptosis, liver damage and fibrosis in obese patients. Thus, FATPs may offer an interesting new approach to understand and potentially intervene NASH pathogenesis.
Collapse
Affiliation(s)
- Lars P Bechmann
- Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sharov AA, Falco G, Piao Y, Poosala S, Becker KG, Zonderman AB, Longo DL, Schlessinger D, Ko MS. Effects of aging and calorie restriction on the global gene expression profiles of mouse testis and ovary. BMC Biol 2008; 6:24. [PMID: 18522719 PMCID: PMC2426674 DOI: 10.1186/1741-7007-6-24] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 06/03/2008] [Indexed: 12/15/2022] Open
Abstract
Background The aging of reproductive organs is not only a major social issue, but of special interest in aging research. A long-standing view of 'immortal germ line versus mortal soma' poses an important question of whether the reproductive tissues age in similar ways to the somatic tissues. As a first step to understand this phenomenon, we examine global changes in gene expression patterns by DNA microarrays in ovaries and testes of C57BL/6 mice at 1, 6, 16, and 24 months of age. In addition, we compared a group of mice on ad libitum (AL) feeding with a group on lifespan-extending 40% calorie restriction (CR). Results We found that gene expression changes occurred in aging gonads, but were generally different from those in somatic organs during aging. For example, only two functional categories of genes previously associated with aging in muscle, kidney, and brain were confirmed in ovary: genes associated with complement activation were upregulated, and genes associated with mitochondrial electron transport were downregulated. The bulk of the changes in gonads were mostly related to gonad-specific functions. Ovaries showed extensive gene expression changes with age, especially in the period when ovulation ceases (from 6 to 16 months), whereas testes showed only limited age-related changes. The same trend was seen for the effects of CR: CR-mediated reversal of age-associated gene expression changes, reported in somatic organs previously, was limited to a small number of genes in gonads. Instead, in both ovary and testis, CR caused small and mostly gonad-specific effects: suppression of ovulation in ovary and activation of testis-specific genes in testis. Conclusion Overall, the results are consistent with unique modes of aging and its modification by CR in testis and ovary.
Collapse
Affiliation(s)
- Alexei A Sharov
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Minge CE, Bennett BD, Norman RJ, Robker RL. Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone reverses the adverse effects of diet-induced obesity on oocyte quality. Endocrinology 2008; 149:2646-56. [PMID: 18276752 DOI: 10.1210/en.2007-1570] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity and its physiological consequences are increasingly prevalent among women of reproductive age and are associated with infertility. To investigate, female mice were fed a high-fat diet until the onset of insulin resistance, followed by assessments of ovarian gene expression, ovulation, fertilization, and oocyte developmental competence. We report defects to ovarian function associated with diet-induced obesity (DIO) that result in poor oocyte quality, subsequently reduced blastocyst survival rates, and abnormal embryonic cellular differentiation. To identify critical cellular mediators of ovarian responses to obesity induced insulin resistance, DIO females were treated for 4 d before mating with an insulin-sensitizing pharmaceutical: glucose and lipid-lowering AMP kinase activator, 5-aminoimidazole 4-carboxamide-riboside, 30 mg/kg.d; sodium salicylate, IkappaK inhibitor that reverses insulin resistance, 50 mg/kg.d; or peroxisome proliferator activated receptor-gamma agonist rosiglitazone, 10 mg/kg.d. 5-aminoimidazole 4-carboxamide-riboside or sodium salicylate treatment did not have significant effects on the reproductive parameters examined. However, embryonic development to the blastocyst stage was significantly improved when DIO mice were treated with rosiglitazone, effectively repairing development rates. Rosiglitazone also normalized DIO-associated abnormal blastomere allocation to the inner cell mass. Such improvements to oocyte quality were coupled with weight loss, improved glucose metabolism, and changes in ovarian mRNA expression of peroxisome proliferator activated receptor-regulated genes, Cd36, Scarb1, and Fabp4 cholesterol transporters. These studies demonstrate that peri-conception treatment with select insulin-sensitizing pharmaceuticals can directly influence ovarian functions and ultimately exert positive effects on oocyte developmental competence. Improved blastocyst quality in obese females treated with rosiglitazone before mating indicates that peroxisome proliferator activated receptor-gamma is a key target for metabolic regulation of ovarian function and oocyte quality.
Collapse
Affiliation(s)
- Cadence E Minge
- School of Paediatrics and Reproductive Health, Discipline of Obstetrics and Gynaecology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | | | | |
Collapse
|
18
|
Owada Y. Fatty acid binding protein: localization and functional significance in the brain. TOHOKU J EXP MED 2008; 214:213-20. [PMID: 18323691 DOI: 10.1620/tjem.214.213] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Long chain fatty acids are important nutrients for brain development and function. However, the molecular basis of their actions in the brain is still to be clarified. Fatty acid-binding proteins (FABPs) belong to the multigene family of the intracellular lipid-binding protein. FABPs bind to long chain fatty acids, being involved in the promotion of cellular uptake and transport of fatty acids, the targeting of fatty acids to specific metabolic pathways, and the regulation of gene expression. FABPs are widely expressed in mammalian tissues, with distinct expression patterns for the individual protein. Although FABPs have been implicated to serve as regulators in systemic cellular metabolic pathways, recent studies have demonstrated the ability of FABPs to regulate functions of the brain, one of the most fat-enriched tissues in the body. This review summarizes the localization of FABPs in the brain, and recent progress in elucidating the function of FABPs in the brain.
Collapse
Affiliation(s)
- Yuji Owada
- Department of Organ Anatomy, Yamaguchi University Graduate School of Medicine.
| |
Collapse
|
19
|
Madekurozwa MC, Kimaro WH. Ultrastructural features of atretic follicles in the sexually immature ostrich (Struthio camelus). Anat Histol Embryol 2008; 37:309-13. [PMID: 18312605 DOI: 10.1111/j.1439-0264.2008.00846.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this study was to describe the ultrastructural features of atresia in follicles of the immature ostrich (12-14 months old); a ratite that displays seasonal, precocious ovarian activity. The early stage of atresia in primordial, pre-vitellogenic and vitellogenic follicles was characterized by the accumulation of lipid droplets in the granulosa cells. Granulosa cells with condensed cytoplasm and nuclei were a prominent feature during the intermediate phase of atresia. The degenerating follicles were then infiltrated by stroma during the terminal stages of atresia. The results of this study provide further information on the morphology of atretic ovarian follicles in the immature ostrich.
Collapse
Affiliation(s)
- M-C Madekurozwa
- Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Private bag X04, Onderstepoort 0110, South Africa.
| | | |
Collapse
|