1
|
Yang J, Zhang CR, Li ZX, Gao YH, Jiang L, Zhang J, Wang PY, Liu T. Spermine alleviates myocardial cell aging by inhibiting mitochondrial oxidative stress damage. Eur J Pharmacol 2025; 997:177477. [PMID: 40058754 DOI: 10.1016/j.ejphar.2025.177477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND Myocardial aging, involving oxidative stress, mitochondrial dysfunction, and cellular senescence, is crucial to DOX - induced heart failure. DOX has dose - dependent cardiotoxicity. Sper a natural polyamine with antioxidant and anti - aging effects, remains unstudied in this context. AIM This study hypothesizes Sper can alleviate DOX - induced heart failure by curbing myocardial aging and oxidative stress. It aims to assess Sper's protective impacts on cardiac function, pathology, oxidative stress, mitochondrial damage, and aging in a rat model, using captopril as a control. METHODS 80 male Sprague Dawley rats were assigned to 8 groups: normal control, 150 mg/kg Sper, DOX, and DOX +10/50/100/150 mg/kg Sper, DOX +30 mg/kg captopril. DOX was given intraperitoneally at 15 mg/kg total dose, while Sper or captopril was administered daily via gavage for six weeks. Cardiac function was evaluated using echocardiography, and histopathological changes, oxidative stress markers, mitochondrial damage, and myocardial aging were assessed via H&E staining, immunofluorescence, Western blot, and electron microscopy. RESULTS Sper boosted cardiac function in DOX - treated rats, upping EF and SV, and lessening cardiac tissue damage. It cut oxidative stress by reducing MDA levels and boosting SOD activity. Sper also eased mitochondrial damage by enhancing mitochondrial membrane potential and cutting mitochondrial fission proteins (Drp1 and Fis1). Plus, Sper held back myocardial aging by trimming β - galactosidase activity and downregulating p - P53 and p21 expression. At 150 mg/kg/day, Sper worked much like 30 mg/kg/day captopril. CONCLUSION Sper effectively eased DOX - induced heart failure by targeting oxidative stress and aging, showing potential as an adjunct therapy for DOX - related cardiotoxicity. Future research should explore Sper's molecular mechanisms and clinical efficacy.
Collapse
Affiliation(s)
- Jing Yang
- Puyang Medical College, Puyang, 457000, China.
| | - Chun-Rui Zhang
- Cardiovascular Laboratory of Xinxiang, Xinxiang, 453003, China
| | - Zi-Xuan Li
- Xinxiang University Affiliated Middle School, Xinxiang, 453000, China
| | - Yi-He Gao
- Xinxiang University Affiliated Middle School, Xinxiang, 453000, China
| | - Li Jiang
- Cardiovascular Laboratory of Xinxiang, Xinxiang, 453003, China
| | - Jing Zhang
- Puyang Medical College, Puyang, 457000, China
| | | | - Tong Liu
- Puyang Medical College, Puyang, 457000, China
| |
Collapse
|
2
|
Maar K, Thatcher JE, Karpov E, Rendeki S, Gallyas F, Bock-Marquette I. Thymosin Beta-4 Modulates Cardiac Remodeling by Regulating ROCK1 Expression in Adult Mammals. Int J Mol Sci 2025; 26:4131. [PMID: 40362372 DOI: 10.3390/ijms26094131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
Although a myocardial infarction occurs roughly every minute in the U.S. alone, medical research has yet to unlock the key to fully enabling post-hypoxic myocardial regeneration. Thymosin beta-4 (TB4), a short, secreted peptide, was shown to possess a beneficial impact regarding myocardial cell survival, coronary re-growth and progenitor cell activation following myocardial infarction in adult mammals. It equally reduces scarring, however, the precise mechanisms through which the peptide assists this phenomenon have not been properly elucidated. Accordingly, the primary aim of our study was to identify novel molecular contributors responsible for the positive impact of TB4 during the remodeling processes of the infarcted heart. We performed miRNA profiling on adult mice hearts following permanent coronary ligation with or without systemic TB4 injection and searched for targets and novel mechanisms through which TB4 may mitigate pathological scarring in the heart. Our results revealed a significant increase in miR139-5p expression and identified ROCK1 as a potential target protein aligned. Real-time PCR, Western blot and immunostaining on adult mouse hearts and human cardiac cells revealed the peptide indirectly or directly modulates ROCK1 protein levels both in vivo and in vitro. We equally discovered TB4 may reverse or inhibit fibroblast/myofibroblast transformation and the potential downstream mechanisms by which TB4 alters cellular responses through ROCK1 are cell type specific. Given the beneficial effects of ROCK1 inhibition in various cardiac pathologies, we propose a potential utilization for TB4 as a ROCK1 inhibitor in the future.
Collapse
Affiliation(s)
- Klaudia Maar
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary
| | - Jeffrey E Thatcher
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Egor Karpov
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary
| | - Szilard Rendeki
- Department of Anesthesiology and Intensive Therapy, University of Pecs Medical School, 7624 Pecs, Hungary
- Medical Skills Education and Innovation Centre, University of Pecs Medical School, 7624 Pecs, Hungary
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary
| | - Ildiko Bock-Marquette
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
3
|
Scariot DB, Staneviciute A, Machado RRB, Yuk SA, Liu YG, Sharma S, Almunif S, Arona Mbaye EH, Nakamura CV, Engman DM, Scott EA. Efficacy of benznidazole delivery during Chagas disease nanotherapy is dependent on the nanocarrier morphology. Biomaterials 2025; 322:123358. [PMID: 40318604 DOI: 10.1016/j.biomaterials.2025.123358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 04/18/2025] [Accepted: 04/21/2025] [Indexed: 05/07/2025]
Abstract
The causative agent of Chagas disease, the protozoan Trypanosoma cruzi, is an obligate intracellular parasite that is typically treated with daily oral administration of Benznidazole (BNZ), a parasiticidal pro-drug with considerable side effects. Previously, we effectively targeted intracellular parasites using ∼100 nm diameter BNZ-loaded poly(ethylene glycol)-b-poly(propylene sulfide) (PEG-b-PPS) vesicular nanocarriers (a.k.a. polymersomes) in a T. cruzi-infected mouse model, without causing the typical side effects associated with standard BNZ treatment. Here, we exploit the structural versatility of the PEG-b-PPS system to investigate the impact of nanocarrier structure on the efficacy of BNZ nanotherapy. Despite sharing the same surface chemistry and oxidation-sensitive biodegradation, solid core ∼25 nm PEG-b-PPS micelles failed to produce in vivo trypanocidal effects. By applying the Förster Resonance Energy Transfer strategy, we demonstrated that PEG-b-PPS polymersomes promoted sustained intracellular drug release and enhanced tissue accumulation, offering a significant advantage for intracellular drug delivery compared to micelles with the same surface chemistry. Our studies further revealed that the lack of parasiticidal effect in PEG-b-PPS micelles is likely due to their slower rate of accumulation into solid tissues, consistent with the prolonged circulation time of intact micelles. Considering the cardiac damage typically induced by T. cruzi infection, this study also investigated the contributions of cardiac cellular biodistribution and payload release for both nanocarriers to the treatment outcomes of BNZ delivery. Our findings emphasize the crucial role of cardiac macrophages in the parasiticidal effect of BNZ formulations and highlight the critical importance of nanobiomaterial structure during therapeutic delivery.
Collapse
Affiliation(s)
- Debora B Scariot
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; Department of Biomedical Engineering, NanoSTAR Institute, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Austeja Staneviciute
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Rayanne R B Machado
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; Department of Biological Sciences, State University of Maringa, Parana, 87020-900, Brazil
| | - Simseok A Yuk
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Yu-Gang Liu
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Swagat Sharma
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Sultan Almunif
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; Bioengineering Institute, King Abdulaziz City for Science and Technology, Riyadh, 12354, Saudi Arabia
| | - El Hadji Arona Mbaye
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Celso Vataru Nakamura
- Department of Biological Sciences, State University of Maringa, Parana, 87020-900, Brazil
| | - David M Engman
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; Department of Pathology, Northwestern University, Chicago, IL, 60611, USA
| | - Evan A Scott
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; Department of Biomedical Engineering, NanoSTAR Institute, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA.
| |
Collapse
|
4
|
Kreutz L, Gaab A, Dona M, Pinto AR, Tallquist MD, Groneberg D, Friebe A. Analysis of cellular NO-GC expression in the murine heart and lineage determination in angiotensin II-induced fibrosis. iScience 2025; 28:111615. [PMID: 39829679 PMCID: PMC11742323 DOI: 10.1016/j.isci.2024.111615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/22/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025] Open
Abstract
NO-sensitive guanylyl cyclase (NO-GC) is involved in the (patho)physiology of the mammalian heart. However, little is known about the individual cardiac cell types that express NO-GC and the role of the enzyme in cardiac fibrosis. Here, we describe the cellular expression of NO-GC in healthy and fibrotic murine myocardium; these data were compared with scRNA-seq data. In healthy myocardium, NO-GC is strongly expressed in pericytes and smooth muscle cells but not in endothelial cells or cardiomyocytes. Angiotensin II induced cardiac hypertrophy and fibrosis; fibrotic lesions contained cells positive for NO-GC identified as activated fibroblasts. Lineage tracing indicates that NO-GC-expressing activated fibroblasts originate from PDGFRβ- and Tcf21-positive fibroblast precursors. Our data indicate NO-GC expression in cardiac pericytes and SMC in naive myocardium and in activated fibroblast in fibrotic heart tissue. NO-mediated signaling may modulate fibrotic responses underlying the action of NO-GC stimulators used in the therapy of heart failure.
Collapse
Affiliation(s)
- Lennart Kreutz
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Annika Gaab
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Malathi Dona
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | | | - Michelle D. Tallquist
- Center for Cardiovascular Research, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Dieter Groneberg
- Translational Center for Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research (ISC), 97082 Würzburg, Germany
| | - Andreas Friebe
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Zhang Z, Wang R, Chen L. Drug Delivery System Targeting Cancer-Associated Fibroblast for Improving Immunotherapy. Int J Nanomedicine 2025; 20:483-503. [PMID: 39816375 PMCID: PMC11734509 DOI: 10.2147/ijn.s500591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a heterogeneous population of non-malignant cells that play a crucial role in the tumor microenvironment, increasingly recognized as key contributors to cancer progression, metastasis, and treatment resistance. So, targeting CAFs has always been considered an important part of cancer immunotherapy. However, targeting CAFs to improve the efficacy of tumor therapy is currently a major challenge. Nanomaterials show their unique advantages in the whole process. At present, nanomaterials have achieved significant accomplishments in medical applications, particularly in the field of cancer-targeted therapy, showing enormous potential. It has been confirmed that nanomaterials can not only directly target CAFs, but also interact with the tumor microenvironment (TME) and immune cells to affect tumorigenesis. As for the cancer treatment, nanomaterials could enhance the therapeutic effect in many ways. Therefore, in this review, we first summarized the current understanding of the complex interactions between CAFs and TME, immune cells, and tumor cells. Next, we discussed common nanomaterials in modern medicine and their respective impacts on the TME, CAFs, and interactions with tumors. Finally, we focus on the application of nano drug delivery system targeting CAFs in cancer therapy.
Collapse
Affiliation(s)
- Zhongsong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610550, People’s Republic of China
| | - Rong Wang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610550, People’s Republic of China
| | - Long Chen
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, 610550, People’s Republic of China
| |
Collapse
|
6
|
Reilly-O’Donnell B, Ferraro E, Tikhomirov R, Nunez-Toldra R, Shchendrygina A, Patel L, Wu Y, Mitchell AL, Endo A, Adorini L, Chowdhury RA, Srivastava PK, Ng FS, Terracciano C, Williamson C, Gorelik J. Protective effect of UDCA against IL-11- induced cardiac fibrosis is mediated by TGR5 signalling. Front Cardiovasc Med 2024; 11:1430772. [PMID: 39691494 PMCID: PMC11650366 DOI: 10.3389/fcvm.2024.1430772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/24/2024] [Indexed: 12/19/2024] Open
Abstract
Introduction Cardiac fibrosis occurs in a wide range of cardiac diseases and is characterised by the transdifferentiation of cardiac fibroblasts into myofibroblasts these cells produce large quantities of extracellular matrix, resulting in myocardial scar. The profibrotic process is multi-factorial, meaning identification of effective treatments has been limited. The antifibrotic effect of the bile acid ursodeoxycholic acid (UDCA) is established in cases of liver fibrosis however its mechanism and role in cardiac fibrosis is less well understood. Methods In this study, we used cellular models of cardiac fibrosis and living myocardial slices to characterise the macroscopic and cellular responses of the myocardium to UDCA treatment. We complemented this approach by conducting RNA-seq on cardiac fibroblasts isolated from dilated cardiomyopathy patients. This allowed us to gain insights into the mechanism of action and explore whether the IL-11 and TGFβ/WWP2 profibrotic networks are influenced by UDCA. Finally, we used fibroblasts from a TGR5 KO mouse to confirm the mechanism of action. Results and discussion We found that UDCA reduced myofibroblast markers in rat and human fibroblasts and in living myocardial slices, indicating its antifibrotic action. Furthermore, we demonstrated that the treatment of UDCA successfully reversed the profibrotic IL-11 and TGFβ/WWP2 gene networks. We also show that TGR5 is the most highly expressed UDCA receptor in cardiac fibroblasts. Utilising cells isolated from a TGR5 knock-out mouse, we identified that the antifibrotic effect of UDCA is attenuated in the KO fibroblasts. This study combines cellular studies with RNA-seq and state-of-the-art living myocardial slices to offer new perspectives on cardiac fibrosis. Our data confirm that TGR5 agonists, such as UDCA, offer a unique pathway of action for the treatment of cardiac fibrosis. Medicines for cardiac fibrosis have been slow to clinic and have the potential to be used in the treatment of multiple cardiac diseases. UDCA is well tolerated in the treatment of other diseases, indicating it is an excellent candidate for further in-human trials.
Collapse
Affiliation(s)
- B. Reilly-O’Donnell
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - E. Ferraro
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - R. Tikhomirov
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - R. Nunez-Toldra
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - A. Shchendrygina
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - L. Patel
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Y. Wu
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - A. L. Mitchell
- Department of Women and Children’s Health, King’s College London, London, United Kingdom
| | - A. Endo
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - L. Adorini
- Intercept Pharmaceuticals Inc., New York, NY, United States
| | - R. A. Chowdhury
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - P. K. Srivastava
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - F. S. Ng
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - C. Terracciano
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - C. Williamson
- Department of Women and Children’s Health, King’s College London, London, United Kingdom
| | - J. Gorelik
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
7
|
Zhang Y, Lu F. Molecular mechanism of triptolide in myocardial fibrosis through the Wnt/β-catenin signaling pathway. SCAND CARDIOVASC J 2024; 58:2295785. [PMID: 38164796 DOI: 10.1080/14017431.2023.2295785] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/24/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Objective. Myocardial fibrosis (MF) is a common manifestation of end-stage cardiovascular diseases. Triptolide (TP) provides protection against cardiovascular diseases. This study was to explore the functional mechanism of TP in MF rats via the Wnt/β-catenin pathway. Methods. The MF rat model was established via subcutaneous injection of isoproterenol (ISO) and treated with low/medium/high doses of TP (L-TP/M-TP/H-TP) or Wnt agonist BML-284. Cardiac function was examined by echocardiography. Pathological changes of myocardial tissues were observed by HE and Masson staining. Col-I/Col-III/Vimentin/α-SMA levels were detected by immunohistochemistry, RT-qPCR, and Western blot. Collagen volume fraction content was measured. Expression levels of the Wnt/β-catenin pathway-related proteins (β-catenin/c-myc/Cyclin D1) were detected by Western blot. Rat cardiac fibroblasts were utilized for in vitro validation experiments. Results. MF rats had enlarged left ventricle, decreased systolic and diastolic function and cardiac dysfunction, elevated collagen fiber distribution, collagen volume fraction and hydroxyproline content. Levels of Col-I/Col-III/Vimentin/α-SMA, and protein levels of β-catenin/c-myc/Cyclin D1 were increased in MF rats. The Wnt/β-catenin pathway was activated in the myocardial tissues of MF rats. TP treatment alleviated impairments of cardiac function and myocardial tissuepathological injury, decreased collagen fibers, collagen volume fraction, Col-I, Col-III, α-SMA and Vimentin levels, HYP content, inhibited Wnt/β-catenin pathway, with H-TP showing the most significant effects. Wnt agonist BML-284 antagonized the inhibitive effect of TP on MF. TP inhibited the Wnt/β-catenin pathway to repress the proliferation and differentiation of mouse cardiac fibroblasts in vitro. Conclusions. TP was found to ameliorate ISO-induced MF in rats by inhibiting the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yiwen Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Feng Lu
- Cardiovascular Internal Medicine, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
8
|
Morihara H, Yokoe S, Wakabayashi S, Takai S. TMEM182 inhibits myocardial differentiation of human iPS cells by maintaining the activated state of Wnt/β-catenin signaling through an increase in ILK expression. FASEB Bioadv 2024; 6:565-579. [PMID: 39512841 PMCID: PMC11539028 DOI: 10.1096/fba.2024-00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/19/2024] [Accepted: 10/04/2024] [Indexed: 11/15/2024] Open
Abstract
Transmembrane protein 182 (TMEM182) is notably abundant in muscle and adipose tissue, but its role in the heart remains unknown. This study examined the contribution of TMEM182 in the differentiation of human induced pluripotent stem cells (hiPSCs) into cardiomyocytes. For this, we generated hiPSCs overexpressing TMEM182 in a doxycycline-inducible manner and induced their differentiation into cardiomyocytes. On Day 12 of differentiation, expression of the cardiomyocyte markers, TNNT2 and MYH6, was significantly decreased in TMEM182-overexpressing cells. Additionally, we found that phosphorylation of GSK-3β (Ser9) and β-catenin (Ser552) was increased during TMEM182 overexpression, suggesting activation of Wnt/β-catenin signaling. We further focused on integrin-linked kinase (ILK) as the mechanism by which TMEM182 activates Wnt/β-catenin signaling. Evaluation showed that ILK expression was increased in cells overexpressing TMEM182. These results suggest that TMEM182 maintains Wnt/β-catenin signaling in an activated state after mesoderm formation by increasing ILK expression, thereby suppressing hiPSCs differentiation into cardiomyocytes.
Collapse
Affiliation(s)
- Hirofumi Morihara
- Department of Pharmacology, Faculty of MedicineOsaka Medical and Pharmaceutical UniversityTakatsukiJapan
| | - Shunichi Yokoe
- Department of Pharmacology, Faculty of MedicineOsaka Medical and Pharmaceutical UniversityTakatsukiJapan
| | - Shigeo Wakabayashi
- Department of Pharmacology, Faculty of MedicineOsaka Medical and Pharmaceutical UniversityTakatsukiJapan
- Department of Nursing, Faculty of Health SciencesOsaka Aoyama UniversityMinohJapan
| | - Shinji Takai
- Department of Pharmacology, Faculty of MedicineOsaka Medical and Pharmaceutical UniversityTakatsukiJapan
- Department of Innovative Medicine, Graduate School of MedicineOsaka Medical and Pharmaceutical UniversityTakatsukiJapan
| |
Collapse
|
9
|
Zhou H, Liu P, Guo X, Fang W, Wu C, Zhang M, Ji Z. Fibroblast-derived miR-425-5p alleviates cardiac remodelling in heart failure via inhibiting the TGF-β1/Smad signalling. J Cell Mol Med 2024; 28:e70199. [PMID: 39527465 PMCID: PMC11552651 DOI: 10.1111/jcmm.70199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/15/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
The pathological activation of cardiac fibroblasts (CFs) plays a crucial role in the development of pressure overload-induced cardiac remodelling and subsequent heart failure (HF). Growing evidence demonstrates that multiple microRNAs (miRNAs) are abnormally expressed in the pathophysiologic process of cardiovascular diseases, with miR-425 recently reported to be potentially involved in HF. In this study, we aimed to investigate the effects of fibroblast-derived miR-425-5p in pressure overload-induced HF and explore the underlying mechanisms. C57BL/6 mice were injected with a recombinant adeno-associated virus specifically designed to overexpress miR-425-5p in CFs, followed by transverse aortic constriction (TAC) surgery. Neonatal mouse CFs (NMCFs) were transfected with miR-425-5p mimics and subsequently stimulated with angiotensin II (Ang II). We found that miR-425-5p levels were significantly downregulated in HF mice and Ang II-treated NMCFs. Notably, fibroblast-specific overexpression of miR-425-5p markedly inhibited the proliferation and differentiation of CFs, thereby alleviating myocardial fibrosis, cardiac hypertrophy and systolic dysfunction. Mechanistically, the cardioprotective actions of miR-425-5p may be achieved by targeting the TGF-β1/Smad signalling. Interestingly, miR-425-5p mimics-treated CFs could also indirectly affect cardiomyocyte hypertrophy in this course. Together, our findings suggest that fibroblast-derived miR-425-5p mitigates TAC-induced HF, highlighting miR-425-5p as a potential diagnostic and therapeutic target for treating HF patients.
Collapse
Affiliation(s)
- Haijia Zhou
- Department of CardiologyTangdu Hospital, Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Pengyun Liu
- Department of CardiologyTangdu Hospital, Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Xuelin Guo
- Department of CardiologyTangdu Hospital, Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Wei Fang
- Department of CardiologyTangdu Hospital, Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Chan Wu
- Department of CardiologyTangdu Hospital, Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Mingming Zhang
- Department of CardiologyTangdu Hospital, Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Zhaole Ji
- Department of CardiologyTangdu Hospital, Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| |
Collapse
|
10
|
Yoshida S, Yoshida T, Inukai K, Kato K, Yura Y, Hattori T, Enomoto A, Ohashi K, Okumura T, Ouchi N, Kawase H, Wettschureck N, Offermanns S, Murohara T, Takefuji M. Protein kinase N promotes cardiac fibrosis in heart failure by fibroblast-to-myofibroblast conversion. Nat Commun 2024; 15:7638. [PMID: 39266515 PMCID: PMC11392935 DOI: 10.1038/s41467-024-52068-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/26/2024] [Indexed: 09/14/2024] Open
Abstract
Chronic fibrotic tissue disrupts various organ functions. Despite significant advances in therapies, mortality and morbidity due to heart failure remain high, resulting in poor quality of life. Beyond the cardiomyocyte-centric view of heart failure, it is now accepted that alterations in the interstitial extracellular matrix (ECM) also play a major role in the development of heart failure. Here, we show that protein kinase N (PKN) is expressed in cardiac fibroblasts. Furthermore, PKN mediates the conversion of fibroblasts into myofibroblasts, which plays a central role in secreting large amounts of ECM proteins via p38 phosphorylation signaling. Fibroblast-specific deletion of PKN led to a reduction of myocardial fibrotic changes and cardiac dysfunction in mice models of ischemia-reperfusion or heart failure with preserved ejection fraction. Our results indicate that PKN is a therapeutic target for cardiac fibrosis in heart failure.
Collapse
Affiliation(s)
- Satoya Yoshida
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Tatsuya Yoshida
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Kohei Inukai
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Katsuhiro Kato
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Yoshimitsu Yura
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Tomoki Hattori
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University School of Medicine, Nagoya, Japan
| | - Koji Ohashi
- Department of Molecular Medicine and Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Takahiro Okumura
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Noriyuki Ouchi
- Department of Molecular Medicine and Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Haruya Kawase
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Mikito Takefuji
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan.
| |
Collapse
|
11
|
Riazi G, Brizais C, Garali I, Al-rifai R, Quelquejay H, Monceau V, Vares G, Ould-Boukhitine L, Aubeleau D, Gilain F, Gloaguen C, Dos Santos M, Ait-Oufella H, Ebrahimian T. Effects of moderate doses of ionizing radiation on experimental abdominal aortic aneurysm. PLoS One 2024; 19:e0308273. [PMID: 39088551 PMCID: PMC11293671 DOI: 10.1371/journal.pone.0308273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/18/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND Exposure to ionizing radiation has been linked to cardiovascular diseases. However, the impact of moderate doses of radiation on abdominal aortic aneurysm (AAA) remains unknown. METHODS Angiotensin II-infused Apoe-/- mice were irradiated (acute, 1 Gray) either 3 days before (Day-3) or 1 day after (Day+1) pomp implantation. Isolated primary aortic vascular smooth muscle cells (VSMCs) were irradiated (acute 1 Gray) for mechanistic studies and functional testing in vitro. RESULTS Day-3 and Day+1 irradiation resulted in a significant reduction in aorta dilation (Control: 1.39+/-0.12; Day-3: 1.12+/-0.11; Day+1: 1.15+/-0.08 mm, P<0.001) and AAA incidence (Control: 81.0%; Day-3: 33.3%, Day+1: 53.3%) compared to the non-irradiated group. Day-3 and Day+1 irradiation led to an increase in collagen content in the adventitia (Thickness control: 23.64+/-2.9; Day-3: 54.39+/-15.5; Day+1 37.55+/-10.8 mm, P = 0.006). However, the underlying protective mechanisms were different between Day-3 and Day+1 groups. Irradiation before Angiotensin II (AngII) infusion mainly modulated vascular smooth muscle cell (VSMC) phenotype with a decrease in contractile profile and enhanced proliferative and migratory activity. Irradiation after AngII infusion led to an increase in macrophage content with a local anti-inflammatory phenotype characterized by the upregulation of M2-like gene and IL-10 expression. CONCLUSION Moderate doses of ionizing radiation mitigate AAA either through VSCM phenotype or inflammation modulation, depending on the time of irradiation.
Collapse
MESH Headings
- Animals
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/etiology
- Mice
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/radiation effects
- Muscle, Smooth, Vascular/pathology
- Radiation, Ionizing
- Angiotensin II/pharmacology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/radiation effects
- Myocytes, Smooth Muscle/pathology
- Male
- Disease Models, Animal
- Interleukin-10/metabolism
- Interleukin-10/genetics
- Collagen/metabolism
- Cell Proliferation/radiation effects
Collapse
Affiliation(s)
- Goran Riazi
- Experimental Radiotoxicology and Radiobiology Laboratory (LRTOX), Institute for Radiobiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Chloe Brizais
- Experimental Radiotoxicology and Radiobiology Laboratory (LRTOX), Institute for Radiobiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Imene Garali
- Experimental Radiotoxicology and Radiobiology Laboratory (LRTOX), Institute for Radiobiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Rida Al-rifai
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, Paris, France
| | - Helene Quelquejay
- Experimental Radiotoxicology and Radiobiology Laboratory (LRTOX), Institute for Radiobiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Virginie Monceau
- Experimental Radiotoxicology and Radiobiology Laboratory (LRTOX), Institute for Radiobiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Guillaume Vares
- Experimental Radiotoxicology and Radiobiology Laboratory (LRTOX), Institute for Radiobiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Lea Ould-Boukhitine
- Experimental Radiotoxicology and Radiobiology Laboratory (LRTOX), Institute for Radiobiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Damien Aubeleau
- Experimental Radiotoxicology and Radiobiology Laboratory (LRTOX), Institute for Radiobiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Florian Gilain
- Experimental Radiotoxicology and Radiobiology Laboratory (LRTOX), Institute for Radiobiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Celine Gloaguen
- Experimental Radiotoxicology and Radiobiology Laboratory (LRTOX), Institute for Radiobiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Morgane Dos Santos
- Accidental Exposure Radiobiology Laboratory (LRACC), Institute for Radiobiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Hafid Ait-Oufella
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, Paris, France
- Medical Intensive Care Unit, Hôpital Saint-Antoine, AP-HP, Sorbonne Université, Paris, France
| | - Teni Ebrahimian
- Experimental Radiotoxicology and Radiobiology Laboratory (LRTOX), Institute for Radiobiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| |
Collapse
|
12
|
Ouyang Q, Wang C, Sang T, Tong Y, Zhang J, Chen Y, Wang X, Wu L, Wang X, Liu R, Chen P, Liu J, Shen W, Feng Z, Zhang L, Sun X, Cai G, Li LL, Chen X. Depleting profibrotic macrophages using bioactivated in vivo assembly peptides ameliorates kidney fibrosis. Cell Mol Immunol 2024; 21:826-841. [PMID: 38871810 PMCID: PMC11291639 DOI: 10.1038/s41423-024-01190-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/23/2024] [Indexed: 06/15/2024] Open
Abstract
Managing renal fibrosis is challenging owing to the complex cell signaling redundancy in diseased kidneys. Renal fibrosis involves an immune response dominated by macrophages, which activates myofibroblasts in fibrotic niches. However, macrophages exhibit high heterogeneity, hindering their potential as therapeutic cell targets. Herein, we aimed to eliminate specific macrophage subsets that drive the profibrotic immune response in the kidney both temporally and spatially. We identified the major profibrotic macrophage subset (Fn1+Spp1+Arg1+) in the kidney and then constructed a 12-mer glycopeptide that was designated as bioactivated in vivo assembly PK (BIVA-PK) to deplete these cells. BIVA-PK specifically binds to and is internalized by profibrotic macrophages. By inducing macrophage cell death, BIVA-PK reshaped the renal microenvironment and suppressed profibrotic immune responses. The robust efficacy of BIVA-PK in ameliorating renal fibrosis and preserving kidney function highlights the value of targeting macrophage subsets as a potential therapy for patients with CKD.
Collapse
Affiliation(s)
- Qing Ouyang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China.
| | - Chao Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
- Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Tian Sang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Yan Tong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Jian Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Yulan Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Xue Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Lingling Wu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Xu Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Ran Liu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Pu Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Jiaona Liu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Wanjun Shen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Zhe Feng
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Li Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Xuefeng Sun
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China.
| | - Li-Li Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China.
| |
Collapse
|
13
|
Qin M, Ou R, He W, Han H, Zhang Y, Huang Y, Chen Z, Pan X, Chi Y, He S, Gao L. Salvianolic acid B enhances tissue repair and regeneration by regulating immune cell migration and Caveolin-1-mediated blastema formation in zebrafish. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155553. [PMID: 38820664 DOI: 10.1016/j.phymed.2024.155553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/01/2024] [Accepted: 03/19/2024] [Indexed: 06/02/2024]
Abstract
INTRODUCTION Non-healing wounds resulting from trauma, surgery, and chronic diseases annually affect millions of individuals globally, with limited therapeutic strategies available due to the incomplete understanding of the molecular processes governing tissue repair and regeneration. Salvianolic acid B (Sal B) has shown promising bioactivities in promoting angiogenesis and inhibiting inflammation. However, its regulatory mechanisms in tissue regeneration remain unclear. PURPOSE This study aims to investigate the effects of Sal B on wound healing and regeneration processes, along with its underlying molecular mechanisms, by employing zebrafish as a model organism. METHODS In this study, we employed a multifaceted approach to evaluate the impact of Sal B on zebrafish tail fin regeneration. We utilized whole-fish immunofluorescence, TUNEL staining, mitochondrial membrane potential (MMP), and Acridine Orange (AO) probes to analyze the tissue repair and regenerative under Sal B treatment. Additionally, we utilized transgenic zebrafish strains to investigate the migration of inflammatory cells during different phases of fin regeneration. To validate the importance of Caveolin-1 (Cav1) in tissue regeneration, we delved into its functional role using molecular docking and Morpholino-based gene knockdown techniques. Additionally, we quantified Cav1 expression levels through the application of in situ hybridization. RESULTS Our findings demonstrated that Sal B expedites zebrafish tail fin regeneration through a multifaceted mechanism involving the promotion of cell proliferation, suppression of apoptosis, and enhancement of MMP. Furthermore, Sal B was found to exert regulatory control over the dynamic aggregation and subsequent regression of immune cells during tissue regenerative processes. Importantly, we observed that the knockdown of Cav1 significantly compromised tissue regeneration, leading to an excessive infiltration of immune cells and increased levels of apoptosis. Moreover, the knockdown of Cav1 also affects blastema formation, a critical process influenced by Cav1 in tissue regeneration. CONCLUSION The results of this study showed that Sal B facilitated tissue repair and regeneration through regulating of immune cell migration and Cav1-mediated fibroblast activation, promoting blastema formation and development. This study highlighted the potential pharmacological effects of Sal B in promoting tissue regeneration. These findings contributed to the advancement of regenerative medicine research and the development of novel therapeutic approaches for trauma.
Collapse
Affiliation(s)
- Mengchen Qin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Rouxuan Ou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Weiyi He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Haoyang Han
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuxue Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yan Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhaohan Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoyan Pan
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yali Chi
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University (SMU), Guangzhou, China.
| | - Songqi He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
14
|
Xing X, Rodeo SA. Emerging roles of non-coding RNAs in fibroblast to myofibroblast transition and fibrotic diseases. Front Pharmacol 2024; 15:1423045. [PMID: 39114349 PMCID: PMC11303237 DOI: 10.3389/fphar.2024.1423045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
The transition of fibroblasts to myofibroblasts (FMT) represents a pivotal process in wound healing, tissue repair, and fibrotic diseases. This intricate transformation involves dynamic changes in cellular morphology, gene expression, and extracellular matrix remodeling. While extensively studied at the molecular level, recent research has illuminated the regulatory roles of non-coding RNAs (ncRNAs) in orchestrating FMT. This review explores the emerging roles of ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in regulating this intricate process. NcRNAs interface with key signaling pathways, transcription factors, and epigenetic mechanisms to fine-tune gene expression during FMT. Their functions are critical in maintaining tissue homeostasis, and disruptions in these regulatory networks have been linked to pathological fibrosis across various tissues. Understanding the dynamic roles of ncRNAs in FMT bears therapeutic promise. Targeting specific ncRNAs holds potential to mitigate exaggerated myofibroblast activation and tissue fibrosis. However, challenges in delivery and specificity of ncRNA-based therapies remain. In summary, ncRNAs emerge as integral regulators in the symphony of FMT, orchestrating the balance between quiescent fibroblasts and activated myofibroblasts. As research advances, these ncRNAs appear to be prospects for innovative therapeutic strategies, offering hope in taming the complexities of fibrosis and restoring tissue equilibrium.
Collapse
Affiliation(s)
- Xuewu Xing
- Department of Orthopaedics, Tianjin First Central Hospital, Tianjin, China
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY, United States
| | - Scott A. Rodeo
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY, United States
| |
Collapse
|
15
|
Ju X, Wang K, Wang C, Zeng C, Wang Y, Yu J. Regulation of myofibroblast dedifferentiation in pulmonary fibrosis. Respir Res 2024; 25:284. [PMID: 39026235 PMCID: PMC11264880 DOI: 10.1186/s12931-024-02898-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/29/2024] [Indexed: 07/20/2024] Open
Abstract
Idiopathic pulmonary fibrosis is a lethal, progressive, and irreversible condition that has become a significant focus of medical research due to its increasing incidence. This rising trend presents substantial challenges for patients, healthcare providers, and researchers. Despite the escalating burden of pulmonary fibrosis, the available therapeutic options remain limited. Currently, the United States Food and Drug Administration has approved two drugs for the treatment of pulmonary fibrosis-nintedanib and pirfenidone. However, their therapeutic effectiveness is limited, and they cannot reverse the fibrosis process. Additionally, these drugs are associated with significant side effects. Myofibroblasts play a central role in the pathophysiology of pulmonary fibrosis, significantly contributing to its progression. Consequently, strategies aimed at inhibiting myofibroblast differentiation or promoting their dedifferentiation hold promise as effective treatments. This review examines the regulation of myofibroblast dedifferentiation, exploring various signaling pathways, regulatory targets, and potential pharmaceutical interventions that could provide new directions for therapeutic development.
Collapse
Affiliation(s)
- Xuetao Ju
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Kai Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Congjian Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Chenxi Zeng
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Yi Wang
- Department of Pulmonary and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China.
| | - Jun Yu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China.
| |
Collapse
|
16
|
Łuszczyński K, Soszyńska M, Komorowski M, Lewandowska P, Zdanowski R, Sobiepanek A, Brytan M, Malejczyk J, Lutyńska A, Ścieżyńska A. Markers of Dermal Fibroblast Subpopulations for Viable Cell Isolation via Cell Sorting: A Comprehensive Review. Cells 2024; 13:1206. [PMID: 39056788 PMCID: PMC11274970 DOI: 10.3390/cells13141206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Fibroblasts are among the most abundant cell types in the human body, playing crucial roles in numerous physiological processes, including the structural maintenance of the dermis, production of extracellular matrix components, and mediation of inflammatory responses. Despite their importance, fibroblasts remain one of the least characterized cell populations. The advent of single-cell analysis techniques, particularly single-cell RNA sequencing (scRNA-seq) and fluorescence-activated cell sorting (FACS), has enabled detailed investigations into fibroblast biology. In this study, we present an extensive analysis of fibroblast surface markers suitable for cell sorting and subsequent functional studies. We reviewed over three thousand research articles describing fibroblast populations and their markers, characterizing and comparing subtypes based on their surface markers, as well as their intra- and extracellular proteins. Our detailed analysis identified a variety of distinct fibroblast subpopulations, each with unique markers, characteristics dependent on their location, and the physiological or pathophysiological environment. These findings underscore the diversity of fibroblasts as a cellular population and could lead to the development of novel diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Krzysztof Łuszczyński
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 128 Szaserów Street, 04-141 Warsaw, Poland; (K.Ł.); (R.Z.); (A.L.)
| | - Marta Soszyńska
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland; (M.S.); (M.K.); (P.L.); (J.M.)
| | - Michał Komorowski
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland; (M.S.); (M.K.); (P.L.); (J.M.)
| | - Paulina Lewandowska
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland; (M.S.); (M.K.); (P.L.); (J.M.)
| | - Robert Zdanowski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 128 Szaserów Street, 04-141 Warsaw, Poland; (K.Ł.); (R.Z.); (A.L.)
| | - Anna Sobiepanek
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland;
| | - Marek Brytan
- Department of Pharmacology and Toxicology, Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland;
| | - Jacek Malejczyk
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland; (M.S.); (M.K.); (P.L.); (J.M.)
| | - Anna Lutyńska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 128 Szaserów Street, 04-141 Warsaw, Poland; (K.Ł.); (R.Z.); (A.L.)
| | - Aneta Ścieżyńska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 128 Szaserów Street, 04-141 Warsaw, Poland; (K.Ł.); (R.Z.); (A.L.)
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland; (M.S.); (M.K.); (P.L.); (J.M.)
| |
Collapse
|
17
|
Li SS, Pan L, Zhang ZY, Zhou MD, Chen XF, Qian LL, Dai M, Lu J, Yu ZM, Dang S, Wang RX. Diabetes Promotes Myocardial Fibrosis via AMPK/EZH2/PPAR-γ Signaling Pathway. Diabetes Metab J 2024; 48:716-729. [PMID: 38408883 PMCID: PMC11307123 DOI: 10.4093/dmj.2023.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 11/13/2023] [Indexed: 02/28/2024] Open
Abstract
BACKGRUOUND Diabetes-induced cardiac fibrosis is one of the main mechanisms of diabetic cardiomyopathy. As a common histone methyltransferase, enhancer of zeste homolog 2 (EZH2) has been implicated in fibrosis progression in multiple organs. However, the mechanism of EZH2 in diabetic myocardial fibrosis has not been clarified. METHODS In the current study, rat and mouse diabetic model were established, the left ventricular function of rat and mouse were evaluated by echocardiography and the fibrosis of rat ventricle was evaluated by Masson staining. Primary rat ventricular fibroblasts were cultured and stimulated with high glucose (HG) in vitro. The expression of histone H3 lysine 27 (H3K27) trimethylation, EZH2, and myocardial fibrosis proteins were assayed. RESULTS In STZ-induced diabetic ventricular tissues and HG-induced primary ventricular fibroblasts in vitro, H3K27 trimethylation was increased and the phosphorylation of EZH2 was reduced. Inhibition of EZH2 with GSK126 suppressed the activation, differentiation, and migration of cardiac fibroblasts as well as the overexpression of the fibrotic proteins induced by HG. Mechanical study demonstrated that HG reduced phosphorylation of EZH2 on Thr311 by inactivating AMP-activated protein kinase (AMPK), which transcriptionally inhibited peroxisome proliferator-activated receptor γ (PPAR-γ) expression to promote the fibroblasts activation and differentiation. CONCLUSION Our data revealed an AMPK/EZH2/PPAR-γ signal pathway is involved in HG-induced cardiac fibrosis.
Collapse
Affiliation(s)
- Shan-Shan Li
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Lu Pan
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Zhen-Ye Zhang
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Meng-Dan Zhou
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Xu-Fei Chen
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Ling-Ling Qian
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Min Dai
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Juan Lu
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Zhi-Ming Yu
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Shipeng Dang
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Ru-Xing Wang
- Department of Cardiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| |
Collapse
|
18
|
Kriedemann N, Triebert W, Teske J, Mertens M, Franke A, Ullmann K, Manstein F, Drakhlis L, Haase A, Halloin C, Martin U, Zweigerdt R. Standardized production of hPSC-derived cardiomyocyte aggregates in stirred spinner flasks. Nat Protoc 2024; 19:1911-1939. [PMID: 38548938 DOI: 10.1038/s41596-024-00976-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/17/2024] [Indexed: 07/10/2024]
Abstract
A promising cell-therapy approach for heart failure aims at differentiating human pluripotent stem cells (hPSCs) into functional cardiomyocytes (CMs) in vitro to replace the disease-induced loss of patients' heart muscle cells in vivo. But many challenges remain for the routine clinical application of hPSC-derived CMs (hPSC-CMs), including good manufacturing practice (GMP)-compliant production strategies. This protocol describes the efficient generation of hPSC-CM aggregates in suspension culture, emphasizing process simplicity, robustness and GMP compliance. The strategy promotes clinical translation and other applications that require large numbers of CMs. Using a simple spinner-flask platform, this protocol is applicable to a broad range of users with general experience in handling hPSCs without extensive know-how in biotechnology. hPSCs are expanded in monolayer to generate the required cell numbers for process inoculation in suspension culture, followed by stirring-controlled formation of cell-only aggregates at a 300-ml scale. After 48 h at checkpoint (CP) 0, chemically defined cardiac differentiation is induced by WNT-pathway modulation through use of the glycogen-synthase kinase-3 inhibitor CHIR99021 (WNT agonist), which is replaced 24 h later by the chemical WNT-pathway inhibitor IWP-2. The exact application of the described process parameters is important to ensure process efficiency and robustness. After 10 d of differentiation (CP I), the production of ≥100 × 106 CMs is expected. Moreover, to 'uncouple' cell production from downstream applications, continuous maintenance of CM aggregates for up to 35 d in culture (CP II) is demonstrated without a reduction in CM content, supporting downstream logistics while potentially overcoming the requirement for cryopreservation.
Collapse
Affiliation(s)
- Nils Kriedemann
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany.
| | - Wiebke Triebert
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
- Evotec, Hamburg, Germany
| | - Jana Teske
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
| | - Mira Mertens
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
| | - Annika Franke
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
| | - Kevin Ullmann
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
| | - Felix Manstein
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
- Evotec, Hamburg, Germany
| | - Lika Drakhlis
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
| | - Alexandra Haase
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
| | - Caroline Halloin
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
- Department of Cell Therapy Process Technology, Novo Nordisk, Måløv, Denmark
| | - Ulrich Martin
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany
| | - Robert Zweigerdt
- Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO); REBIRTH-Research Center for Translational Regenerative Medicine; Hannover Medical School (MHH), Hannover, Germany.
| |
Collapse
|
19
|
Ma T, Ren R, Lv J, Yang R, Zheng X, Hu Y, Zhu G, Wang H. Transdifferentiation of fibroblasts into muscle cells to constitute cultured meat with tunable intramuscular fat deposition. eLife 2024; 13:RP93220. [PMID: 38771186 PMCID: PMC11108645 DOI: 10.7554/elife.93220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Current studies on cultured meat mainly focus on the muscle tissue reconstruction in vitro, but lack the formation of intramuscular fat, which is a crucial factor in determining taste, texture, and nutritional contents. Therefore, incorporating fat into cultured meat is of superior value. In this study, we employed the myogenic/lipogenic transdifferentiation of chicken fibroblasts in 3D to produce muscle mass and deposit fat into the same cells without the co-culture or mixture of different cells or fat substances. The immortalized chicken embryonic fibroblasts were implanted into the hydrogel scaffold, and the cell proliferation and myogenic transdifferentiation were conducted in 3D to produce the whole-cut meat mimics. Compared to 2D, cells grown in 3D matrix showed elevated myogenesis and collagen production. We further induced fat deposition in the transdifferentiated muscle cells and the triglyceride content could be manipulated to match and exceed the levels of chicken meat. The gene expression analysis indicated that both lineage-specific and multifunctional signalings could contribute to the generation of muscle/fat matrix. Overall, we were able to precisely modulate muscle, fat, and extracellular matrix contents according to balanced or specialized meat preferences. These findings provide new avenues for customized cultured meat production with desired intramuscular fat contents that can be tailored to meet the diverse demands of consumers.
Collapse
Affiliation(s)
- Tongtong Ma
- College of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, Ministry of Agriculture and Rural Affairs, Shandong Agricultural UniversityTaianChina
| | - Ruimin Ren
- College of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, Ministry of Agriculture and Rural Affairs, Shandong Agricultural UniversityTaianChina
- College of Animal Science and Technology, Huazhong Agricultural UniversityWuhanChina
| | - Jianqi Lv
- College of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, Ministry of Agriculture and Rural Affairs, Shandong Agricultural UniversityTaianChina
| | - Ruipeng Yang
- College of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, Ministry of Agriculture and Rural Affairs, Shandong Agricultural UniversityTaianChina
| | - Xinyi Zheng
- College of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, Ministry of Agriculture and Rural Affairs, Shandong Agricultural UniversityTaianChina
| | - Yang Hu
- College of Food Science and Technology, Huazhong Agricultural UniversityWuhanChina
| | - Guiyu Zhu
- College of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, Ministry of Agriculture and Rural Affairs, Shandong Agricultural UniversityTaianChina
| | - Heng Wang
- College of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, Ministry of Agriculture and Rural Affairs, Shandong Agricultural UniversityTaianChina
| |
Collapse
|
20
|
Faverio P, Maloberti A, Rebora P, Intravaia RCM, Tognola C, Toscani G, Amato A, Leoni V, Franco G, Vitarelli F, Spiti S, Luppi F, Valsecchi MG, Pesci A, Giannattasio C. Cardiovascular Structural and Functional Parameters in Idiopathic Pulmonary Fibrosis at Disease Diagnosis. High Blood Press Cardiovasc Prev 2024; 31:289-297. [PMID: 38739257 PMCID: PMC11161536 DOI: 10.1007/s40292-024-00638-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/02/2024] [Indexed: 05/14/2024] Open
Abstract
INTRODUCTION Prevalence of cardiac and vascular fibrosis in patients with Idiopathic Pulmonary Fibrosis (IPF) has not been extensively evaluated. AIM In this study, we aimed to evaluate the heart and vessels functional and structural properties in patients with IPF compared to healthy controls. An exploratory analysis regarding disease severity in IPF patients has been done. METHODS We enrolled 50 patients with IPF (at disease diagnosis before antifibrotic therapy initiation) and 50 controls matched for age and gender. Heart was evaluated through echocardiography and plasmatic NT-pro-brain natriuretic peptide that, together with patients' symptoms, allow to define the presence of Heart Failure (HF) and diastolic dysfunction. Vessels were evaluated through Flow Mediated Dilation (FMD - endothelial function) and Pulse Wave Velocity (PWV-arterial stiffness) RESULTS: Patients with IPF had a prevalence of diastolic disfunction of 83.8%, HF of 37.8% and vascular fibrosis of 76.6%. No statistically significant difference was observed in comparison to the control group who showed prevalence of diastolic disfunction, HF and vascular fibrosis of 67.3%, 24.5% and 84.8%, respectively. Disease severity seems not to affect PWV, FMD, diastolic dysfunction and HF. CONCLUSIONS Patients with IPF early in the disease course do not present a significant CV fibrotic involvement when compared with age- and sex-matched controls. Bigger and adequately powered studies are needed to confirm our preliminary data and longitudinal studies are required in order to understand the time of appearance and progression rate of heart and vascular involvement in IPF subjects.
Collapse
Affiliation(s)
- Paola Faverio
- U.O.C. di Pneumologia, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, Università degli Studi di Milano Bicocca, Milan, Italy
| | - Alessandro Maloberti
- School of Medicine and Surgery, Università degli Studi di Milano Bicocca, Milan, Italy.
- Cardiology IV, ACardio Center, SST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, 20159, Milan, Italy.
| | - Paola Rebora
- School of Medicine and Surgery, Center of Biostatistics for Clinical Epidemiology, Università degli Studi di Milano Bicocca, Milan, Italy
| | - Rita Cristina Myriam Intravaia
- Cardiology IV, ACardio Center, SST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, 20159, Milan, Italy
| | - Chiara Tognola
- Cardiology IV, ACardio Center, SST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, 20159, Milan, Italy
| | - Giorgio Toscani
- School of Medicine and Surgery, Università degli Studi di Milano Bicocca, Milan, Italy
| | - Anna Amato
- School of Medicine and Surgery, Center of Biostatistics for Clinical Epidemiology, Università degli Studi di Milano Bicocca, Milan, Italy
| | - Valerio Leoni
- School of Medicine and Surgery, Università degli Studi di Milano Bicocca, Milan, Italy
- Laboratory of Clinical Pathology, Hospital Pio XI of Desio, ASST-Brianza, 20832, Desio, Italy
| | - Giovanni Franco
- U.O.C. di Pneumologia, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, Università degli Studi di Milano Bicocca, Milan, Italy
| | - Federica Vitarelli
- School of Medicine and Surgery, Università degli Studi di Milano Bicocca, Milan, Italy
- Laboratory of Clinical Pathology, Hospital Pio XI of Desio, ASST-Brianza, 20832, Desio, Italy
| | - Simona Spiti
- Laboratory of Clinical Pathology, Hospital Pio XI of Desio, ASST-Brianza, 20832, Desio, Italy
| | - Fabrizio Luppi
- U.O.C. di Pneumologia, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, Università degli Studi di Milano Bicocca, Milan, Italy
| | - Maria Grazia Valsecchi
- School of Medicine and Surgery, Center of Biostatistics for Clinical Epidemiology, Università degli Studi di Milano Bicocca, Milan, Italy
| | - Alberto Pesci
- School of Medicine and Surgery, Università degli Studi di Milano Bicocca, Milan, Italy
| | - Cristina Giannattasio
- School of Medicine and Surgery, Università degli Studi di Milano Bicocca, Milan, Italy
- Cardiology IV, ACardio Center, SST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, 20159, Milan, Italy
| |
Collapse
|
21
|
Costa CRR, Chalgoumi R, Baker A, Guillou C, Yamaguti PM, Simancas Escorcia V, Abbad L, Amorin BR, de Lima CL, Cannaya V, Benassarou M, Berdal A, Chatziantoniou C, Cases O, Cosette P, Kozyraki R, Acevedo AC. Gingival proteomics reveals the role of TGF beta and YAP/TAZ signaling in Raine syndrome fibrosis. Sci Rep 2024; 14:9497. [PMID: 38664418 PMCID: PMC11045870 DOI: 10.1038/s41598-024-59713-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Raine syndrome (RNS) is a rare autosomal recessive osteosclerotic dysplasia. RNS is caused by loss-of-function disease-causative variants of the FAM20C gene that encodes a kinase that phosphorylates most of the secreted proteins found in the body fluids and extracellular matrix. The most common RNS clinical features are generalized osteosclerosis, facial dysmorphism, intracerebral calcifications and respiratory defects. In non-lethal RNS forms, oral traits include a well-studied hypoplastic amelogenesis imperfecta (AI) and a much less characterized gingival phenotype. We used immunomorphological, biochemical, and siRNA approaches to analyze gingival tissues and primary cultures of gingival fibroblasts of two unrelated, previously reported RNS patients. We showed that fibrosis, pathological gingival calcifications and increased expression of various profibrotic and pro-osteogenic proteins such as POSTN, SPARC and VIM were common findings. Proteomic analysis of differentially expressed proteins demonstrated that proteins involved in extracellular matrix (ECM) regulation and related to the TGFβ/SMAD signaling pathway were increased. Functional analyses confirmed the upregulation of TGFβ/SMAD signaling and subsequently uncovered the involvement of two closely related transcription cofactors important in fibrogenesis, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). Knocking down of FAM20C confirmed the TGFβ-YAP/TAZ interplay indicating that a profibrotic loop enabled gingival fibrosis in RNS patients. In summary, our in vivo and in vitro data provide a detailed description of the RNS gingival phenotype. They show that gingival fibrosis and calcifications are associated with, and most likely caused by excessed ECM production and disorganization. They furthermore uncover the contribution of increased TGFβ-YAP/TAZ signaling in the pathogenesis of the gingival fibrosis.
Collapse
Affiliation(s)
- Cláudio Rodrigues Rezende Costa
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France
- Oral Center for Inherited Diseases, University Hospital of Brasília, Oral Histopathology Laboratory, Department of Dentistry, Health Sciences Faculty, University of Brasília (UnB), Brasília, Brazil
- Department of Dentistry, Health Group of Natal (GSAU-NT), Brazilian Air Force, Natal, Parnamirim, Brazil
| | - Rym Chalgoumi
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France
| | - Amina Baker
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France
| | - Clément Guillou
- Rouen University, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, 76000, Rouen, France
- Rouen University, INSERM US51, CNRS UAR 2026, HeRacles PISSARO, 76000, Rouen, France
| | - Paulo Marcio Yamaguti
- Oral Center for Inherited Diseases, University Hospital of Brasília, Oral Histopathology Laboratory, Department of Dentistry, Health Sciences Faculty, University of Brasília (UnB), Brasília, Brazil
| | - Victor Simancas Escorcia
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France
- Grupo de Investigación GENOMA, Universidad del Sinú, Cartagena, Colombia
| | - Lilia Abbad
- MRS1155, INSERM, Sorbonne Université, 75020, Paris, France
| | - Bruna Rabelo Amorin
- Oral Center for Inherited Diseases, University Hospital of Brasília, Oral Histopathology Laboratory, Department of Dentistry, Health Sciences Faculty, University of Brasília (UnB), Brasília, Brazil
| | - Caroline Lourenço de Lima
- Oral Center for Inherited Diseases, University Hospital of Brasília, Oral Histopathology Laboratory, Department of Dentistry, Health Sciences Faculty, University of Brasília (UnB), Brasília, Brazil
| | - Vidjea Cannaya
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France
| | - Mourad Benassarou
- Service de Chirurgie Maxillo-Faciale et Stomatologie, Hôpital de La Pitié Salpétrière, Sorbonne Université, 75006, Paris, France
| | - Ariane Berdal
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France
- CRMR O-RARES, Hôpital Rothshild, UFR d'Odontologie-Garancière, Université de Paris Cité, 75012, Paris, France
| | | | - Olivier Cases
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France
| | - Pascal Cosette
- Rouen University, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, 76000, Rouen, France
- Rouen University, INSERM US51, CNRS UAR 2026, HeRacles PISSARO, 76000, Rouen, France
| | - Renata Kozyraki
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France.
- CRMR O-RARES, Hôpital Rothshild, UFR d'Odontologie-Garancière, Université de Paris Cité, 75012, Paris, France.
- Rouen University, UFR SANTE ROUEN NORMANDIE, Inserm 1096, 76000, Rouen, France.
| | - Ana Carolina Acevedo
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France
- Oral Center for Inherited Diseases, University Hospital of Brasília, Oral Histopathology Laboratory, Department of Dentistry, Health Sciences Faculty, University of Brasília (UnB), Brasília, Brazil
| |
Collapse
|
22
|
Huang Y, Liu R, Meng T, Zhang B, Ma J, Liu X. The TGFβ1/SMADs/Snail1 signaling axis mediates pericyte-derived fibrous scar formation after spinal cord injury. Int Immunopharmacol 2024; 128:111482. [PMID: 38237223 DOI: 10.1016/j.intimp.2023.111482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/20/2023] [Accepted: 12/31/2023] [Indexed: 02/08/2024]
Abstract
AIMS The deposition of fibrous scars after spinal cord injury (SCI) affects axon regeneration and the recovery of sensorimotor function. It has been reported that microvascular pericytes in the neurovascular unit are the main source of myofibroblasts after SCI, but the specific molecular targets that regulate pericyte participation in the formation of fibrous scars remain to be clarified. METHODS In this study, a rat model of spinal cord dorsal hemisection injury was used. After SCI, epigallocatechin gallate (EGCG) was intraperitoneally injected to block the TGFβ1 signaling pathway or LV-Snail1-shRNA was immediately injected near the core of the injury using a microsyringe to silence Snail1 expression. Western blotting and RT-qPCR were used to analyze protein expression and transcription levels in tissues. Nissl staining and immunofluorescence analysis were used to analyze neuronal cell viability, scar tissue, and axon regeneration after SCI. Finally, the recovery of hind limb function after SCI was evaluated. RESULTS The results showed that targeted inhibition of Snail1 could block TGFβ1-induced pericyte-myofibroblast differentiation in vitro. In vivo experiments showed that timely blockade of Snail1 could reduce fibrous scar deposition after SCI, promote axon regeneration, improve neuronal survival, and facilitate the recovery of lower limb motor function. CONCLUSION In summary, Snail1 promotes the deposition of fibrous scars and inhibits axonal regeneration after SCI by inducing the differentiation of pericytes into myofibroblasts. Snail1 may be a promising therapeutic target for SCI.
Collapse
Affiliation(s)
- Yan Huang
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, People 's Republic of China
| | - Renzhong Liu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, People 's Republic of China
| | - Tingyang Meng
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, People 's Republic of China
| | - Bin Zhang
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, People 's Republic of China
| | - Jingxing Ma
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, People 's Republic of China.
| | - Xuqiang Liu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, People 's Republic of China.
| |
Collapse
|
23
|
Hilliard BA, Amin M, Popoff SN, Barbe MF. Potentiation of Collagen Deposition by the Combination of Substance P with Transforming Growth Factor Beta in Rat Skin Fibroblasts. Int J Mol Sci 2024; 25:1862. [PMID: 38339140 PMCID: PMC10855312 DOI: 10.3390/ijms25031862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
A role for substance P has been proposed in musculoskeletal fibrosis, with effects mediated through transforming growth factor beta (TGFβ). We examined the in vitro effects of substance P on proliferation, collagen secretion, and collagen deposition in rat primary dermal fibroblasts cultured in medium containing 10% fetal bovine serum, with or without TGFβ. In six-day cultures, substance P increased cell proliferation at concentrations from 0.0002 to 100 nM. TGFβ increased proliferation at concentrations from 0.0002 to 2 pg/mL, although higher concentrations inhibited proliferation. Substance P treatment alone at concentrations of 100, 0.2, and 0.00002 nM did not increase collagen deposition per cell, yet when combined with TGFβ (5 ng/mL), increased collagen deposition compared to TGFβ treatment alone. Substance P treatment (100 nM) also increased smooth muscle actin (SMA) expression at 72 h of culture at a level similar to 5 ng/mL of TGFβ; only TGFβ increased SMA at 48 h of culture. Thus, substance P may play a role in potentiating matrix deposition in vivo when combined with TGFβ, although this potentiation may be dependent on the concentration of each factor. Treatments targeting substance P may be a viable strategy for treating fibrosis where both substance P and TGFβ play roles.
Collapse
Affiliation(s)
- Brendan A. Hilliard
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (M.A.); (M.F.B.)
| | - Mamta Amin
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (M.A.); (M.F.B.)
| | - Steven N. Popoff
- Department of Biomedical Education, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA;
| | - Mary F. Barbe
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (M.A.); (M.F.B.)
| |
Collapse
|
24
|
Bao H, Wang X, Zhou H, Zhou W, Liao F, Wei F, Yang S, Luo Z, Li W. PCSK9 regulates myofibroblast transformation through the JAK2/STAT3 pathway to regulate fibrosis after myocardial infarction. Biochem Pharmacol 2024; 220:115996. [PMID: 38154546 DOI: 10.1016/j.bcp.2023.115996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
Cardiac fibrosis is pivotal in the progression of numerous cardiovascular diseases. This phenomenon is hallmarked by an excessive deposition of ECM protein secreted by myofibroblasts, leading to increased myocardial stiffness. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a serine protease that belongs to the proprotein-converting enzyme family. It has emerged as a viable therapeutic target for reducing plasma low-density lipoprotein cholesterol. However, the exact mechanism via which PCSK9 impacts cardiac fibrosis remains unclear. In the present research, an increase in circulating PCSK9 protein levels was observed in individuals with myocardial infarction and rat models of myocardial infarction. Moreover, the inhibition of circulating PCSK9 in rats was found to reduce post-infarction fibrosis. In vitro experiments further demonstrated that overexpression of PCSK9 or stimulation by extracellular PCSK9 recombinant protein enhanced the transformation of cardiac fibroblasts to myofibroblasts. This process also elevated collagen Ⅰ, and Ⅲ, as well as α-SMA protein levels. However, these effects were countered when co-incubated with the STAT3 inhibitor S3I-201. This study suggests that PCSK9 may function as a novel regulator of myocardial fibrosis, primarily via the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Hailong Bao
- Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China; Department of Cardiovascular Medicine, Gui Qian International General Hospital, Guiyang 550018, Guizhou, China
| | - Xu Wang
- Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China; The Key Laboratory of Myocardial Remodeling Research, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Haiyan Zhou
- Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China; The Key Laboratory of Myocardial Remodeling Research, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Wei Zhou
- Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China; The Key Laboratory of Myocardial Remodeling Research, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Fujun Liao
- Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China; The Key Laboratory of Myocardial Remodeling Research, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Fang Wei
- Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China; The Key Laboratory of Myocardial Remodeling Research, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Shiyu Yang
- Department of Cardiovascular Medicine, Gui Qian International General Hospital, Guiyang 550018, Guizhou, China
| | - Zhenhua Luo
- Department of Central Lab, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China.
| | - Wei Li
- Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China; The Key Laboratory of Myocardial Remodeling Research, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China.
| |
Collapse
|
25
|
Pakanen L, Appel H, Ahtikoski A, Holm PH, Kreus M, Olsen KB, Banner J, Winkel BG, Huikuri H, Kaarteenaho R, Junttila J. Primary myocardial fibrosis - a distinct entity characterized by heterogeneous histology. Cardiovasc Pathol 2023; 67:107573. [PMID: 37683738 DOI: 10.1016/j.carpath.2023.107573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Primary myocardial fibrosis (PMF), defined as myocardial fibrosis in the absence of identifiable causes, may represent a common alternative phenotype in various cardiomyopathies and contribute to sudden cardiac death (SCD). No previous definitions of histopathological characteristics exist for PMF. We aimed to evaluate whether common features of fibrosis could be identified. PMF cases (n = 28) were selected from the FinGesture cohort consisting of 5,869 SCD victims that underwent a medicolegal autopsy. Twelve trauma controls and 10 ischemic heart disease cases were selected as reference groups. Further 3 PMF cases and 5 ischemic heart disease cases from autopsies performed in the University of Copenhagen, Denmark, were selected for a validation substudy. Relative area of fibrosis, amount of diffuse and perivascular fibrosis, and location of fibrosis were assessed from left ventricle myocardial samples stained with Masson trichrome. Further evaluations were performed with alpha-smooth muscle actin (α-SMA), vimentin, and CD68 stainings. Mean relative area of fibrosis was 5.8 ± 10.7%, 1.0 ± 0.7%, and 7.0 ± 7.4% in PMF, trauma controls, and ischemic cases, respectively. Fibrosis in the PMF group was mostly located in other sites than the endocardium. Most cases with fibrosis had vimentin-positive but α-SMA-negative stromal cells within fibrotic areas. Histopathologically, PMF represents a heterogeneous entity with variable fibrotic lesions affecting the whole myocardium and a suggested significant role of fibroblasts. These findings may bring validation to PMF being a common manifestation of cardiomyopathies. Evidently, PMF stands out as a particular entity demanding special attention as a cause of SCD.
Collapse
Affiliation(s)
- Lasse Pakanen
- Forensic Medicine Unit, Finnish Institute for Health and Welfare, Oulu, Finland; Department of Forensic Medicine, Research Unit of Biomedicine and Internal Medicine, Medical Research Center (MRC) Oulu, University of Oulu, Oulu, Finland.
| | - Henrik Appel
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center (MRC) Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Anne Ahtikoski
- Department of Pathology, The Welfare District of Southwest Finland, Turku University Hospital and University of Turku, Turku, Finland
| | - Pernille Heimdal Holm
- Section of Forensic Pathology, Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mervi Kreus
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center (MRC) Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland; Center of Internal Medicine and Respiratory Medicine, Medical Research Center (MRC) Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Kristine Boisen Olsen
- Section of Forensic Pathology, Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jytte Banner
- Section of Forensic Pathology, Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Heikki Huikuri
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center (MRC) Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Riitta Kaarteenaho
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center (MRC) Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland; Center of Internal Medicine and Respiratory Medicine, Medical Research Center (MRC) Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Juhani Junttila
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center (MRC) Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
26
|
Wang J, Zhou C, Zhang Q, Liu Z. Metabolomic profiling of amino acids study reveals a distinct diagnostic model for diabetic kidney disease. Amino Acids 2023; 55:1563-1572. [PMID: 37736814 PMCID: PMC10689543 DOI: 10.1007/s00726-023-03330-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023]
Abstract
Diabetic kidney disease (DKD), a highly prevalent complication of diabetes mellitus, is a major cause of mortality in patients. However, identifying circulatory markers to diagnose DKD requires a thorough understanding of the metabolic mechanisms of DKD. In this study, we performed ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) to reveal altered metabolic profiles of amino acids (AAs) in patients with DKD. We found decreased plasma levels of histidine and valine, increased urine levels of proline, decreased urine levels of histidine and valine, and increased saliva levels of arginine in patients with DKD compared with the levels in patients with type 2 diabetes mellitus (T2DM) and in healthy controls. Our analyses of the key metabolites and metabolic enzymes involved in histidine and valine metabolism indicated that the AAs level alterations may be due to enhanced carnosine hydrolysis, decreased degradation of homocarnosine and anserine, enhanced histidine methylation, and systemic enhancement of valine metabolism in patients with DKD. Notably, we generated a distinct diagnostic model with an AUC of 0.957 and an accuracy up to 92.2% on the basis of the AA profiles in plasma, urine and saliva differing in patients with DKD using logistic regression and receiver operating characteristic analyses. In conclusion, our results suggest that altered AA metabolic profiles are associated with the progression of DKD. Our DKD diagnostic model on the basis of AA levels in plasma, urine, and saliva may provide a theoretical basis for innovative strategies to diagnose DKD that may replace cumbersome kidney biopsies.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450000, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450000, China
| | - Chunyu Zhou
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450000, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450000, China
- Blood Purification Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Qing Zhang
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450000, China.
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450000, China.
| | - Zhangsuo Liu
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450000, China.
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450000, China.
- Blood Purification Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
27
|
Xu Y, Huang Y, Cheng X, Hu B, Jiang D, Wu L, Peng S, Hu J. Mechanotransductive receptor Piezo1 as a promising target in the treatment of fibrosis diseases. Front Mol Biosci 2023; 10:1270979. [PMID: 37900917 PMCID: PMC10602816 DOI: 10.3389/fmolb.2023.1270979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Fibrosis could happen in every organ, leading to organic malfunction and even organ failure, which poses a serious threat to global health. Early treatment of fibrosis has been reported to be the turning point, therefore, exploring potential correlates in the pathogenesis of fibrosis and how to reverse fibrosis has become a pressing issue. As a mechanism-sensitive cationic calcium channel, Piezo1 turns on in response to changes in the lipid bilayer of the plasma membrane. Piezo1 exerts multiple biological roles, including inhibition of inflammation, cytoskeletal stabilization, epithelial-mesenchymal transition, stromal stiffness, and immune cell mechanotransduction, interestingly enough. These processes are closely associated with the development of fibrotic diseases. Recent studies have shown that deletion or knockdown of Piezo1 attenuates the onset of fibrosis. Therefore, in this paper we comprehensively describe the biology of this gene, focusing on its potential relevance in pulmonary fibrosis, renal fibrosis, pancreatic fibrosis, and cardiac fibrosis diseases, except for the role of drugs (agonists), increased intracellular calcium and mechanical stress using this gene in alleviating fibrosis.
Collapse
Affiliation(s)
- Yi Xu
- The Second Affiliated Hospital of Nanchang University, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Yiqian Huang
- The Second Affiliated Hospital of Nanchang University, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Xiaoqing Cheng
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Danling Jiang
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lidong Wu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
28
|
Li Y, Johnson JP, Yang Y, Yu D, Kubo H, Berretta RM, Wang T, Zhang X, Foster M, Yu J, Tilley DG, Houser SR, Chen X. Effects of maternal hypothyroidism on postnatal cardiomyocyte proliferation and cardiac disease responses of the progeny. Am J Physiol Heart Circ Physiol 2023; 325:H702-H719. [PMID: 37539452 PMCID: PMC10659327 DOI: 10.1152/ajpheart.00320.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
Maternal hypothyroidism (MH) could adversely affect the cardiac disease responses of the progeny. This study tested the hypothesis that MH reduces early postnatal cardiomyocyte (CM) proliferation so that the adult heart of MH progeny has a smaller number of larger cardiac myocytes, which imparts adverse cardiac disease responses following injury. Thyroidectomy (TX) was used to establish MH. The progeny from mice that underwent sham or TX surgery were termed Ctrl (control) or MH (maternal hypothyroidism) progeny, respectively. MH progeny had similar heart weight (HW) to body weight (BW) ratios and larger CM size consistent with fewer CMs at postnatal day 60 (P60) compared with Ctrl (control) progeny. MH progeny had lower numbers of EdU+, Ki67+, and phosphorylated histone H3 (PH3)+ CMs, which suggests they had a decreased CM proliferation in the postnatal timeframe. RNA-seq data showed that genes related to DNA replication were downregulated in P5 MH hearts, including bone morphogenetic protein 10 (Bmp10). Both in vivo and in vitro studies showed Bmp10 treatment increased CM proliferation. After transverse aortic constriction (TAC), the MH progeny had more severe cardiac pathological remodeling compared with the Ctrl progeny. Thyroid hormone (T4) treatment for MH mothers preserved their progeny's postnatal CM proliferation capacity and prevented excessive pathological remodeling after TAC. Our results suggest that CM proliferation during early postnatal development was significantly reduced in MH progeny, resulting in fewer CMs with hypertrophy in adulthood. These changes were associated with more severe cardiac disease responses after pressure overload.NEW & NOTEWORTHY Our study shows that compared with Ctrl (control) progeny, the adult progeny of mothers who have MH (MH progeny) had fewer CMs. This reduction of CM numbers was associated with decreased postnatal CM proliferation. Gene expression studies showed a reduced expression of Bmp10 in MH progeny. Bmp10 has been linked to myocyte proliferation. In vivo and in vitro studies showed that Bmp10 treatment of MH progeny and their myocytes could increase CM proliferation. Differences in CM number and size in adult hearts of MH progeny were linked to more severe cardiac structural and functional remodeling after pressure overload. T4 (synthetic thyroxine) treatment of MH mothers during their pregnancy, prevented the reduction in CM number in their progeny and the adverse response to disease stress.
Collapse
Affiliation(s)
- Yijia Li
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Jaslyn P Johnson
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Yijun Yang
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Daohai Yu
- Department of Biomedical Education and Data Science, Center for Biostatistics and Epidemiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Hajime Kubo
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Remus M Berretta
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Tao Wang
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Xiaoying Zhang
- Department of Cardiovascular Sciences, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Cardiovascular Research Center, Philadelphia, Pennsylvania, United States
| | - Michael Foster
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Jun Yu
- Department of Cardiovascular Sciences, Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Cardiovascular Research Center, Philadelphia, Pennsylvania, United States
| | - Douglas G Tilley
- Department of Cardiovascular Sciences, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Cardiovascular Research Center, Philadelphia, Pennsylvania, United States
| | - Steven R Houser
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Xiongwen Chen
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
29
|
Chu L, Xie D, Xu D. Epigenetic Regulation of Fibroblasts and Crosstalk between Cardiomyocytes and Non-Myocyte Cells in Cardiac Fibrosis. Biomolecules 2023; 13:1382. [PMID: 37759781 PMCID: PMC10526373 DOI: 10.3390/biom13091382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/10/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Epigenetic mechanisms and cell crosstalk have been shown to play important roles in the initiation and progression of cardiac fibrosis. This review article aims to provide a thorough overview of the epigenetic mechanisms involved in fibroblast regulation. During fibrosis, fibroblast epigenetic regulation encompasses a multitude of mechanisms, including DNA methylation, histone acetylation and methylation, and chromatin remodeling. These mechanisms regulate the phenotype of fibroblasts and the extracellular matrix composition by modulating gene expression, thereby orchestrating the progression of cardiac fibrosis. Moreover, cardiac fibrosis disrupts normal cardiac function by imposing myocardial mechanical stress and compromising cardiac electrical conduction. This review article also delves into the intricate crosstalk between cardiomyocytes and non-cardiomyocytes in the heart. A comprehensive understanding of the mechanisms governing epigenetic regulation and cell crosstalk in cardiac fibrosis is critical for the development of effective therapeutic strategies. Further research is warranted to unravel the precise molecular mechanisms underpinning these processes and to identify potential therapeutic targets.
Collapse
Affiliation(s)
| | | | - Dachun Xu
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 315 Yanchang Middle Road, Shanghai 200072, China; (L.C.); (D.X.)
| |
Collapse
|
30
|
Han J, Zhang Y, Peng H. Fucoxanthin inhibits cardiac fibroblast transdifferentiation by alleviating oxidative stress through downregulation of BRD4. PLoS One 2023; 18:e0291469. [PMID: 37699016 PMCID: PMC10497131 DOI: 10.1371/journal.pone.0291469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Myocardial fibrosis can lead to ischemic damage of the myocardium, which can be life-threatening in severe cases. Cardiac fibroblast (CF) transdifferentiation is an important process in myocardial fibrosis. Fucoxanthin (FX) plays a key role in ameliorating myocardial fibrosis; however, its mechanism of action is not fully understood. This study investigated the role of FX in the angiotensin II (Ang II)-induced transdifferentiation of CFs and its potential mechanisms of action. We found that FX inhibited Ang II-induced transdifferentiation of CFs. Simultaneously, FX downregulated bromodomain-containing protein 4 (BRD4) expression in CFs and increased nuclear expression of nuclear factorerythroid 2-related factor 2 (Nrf2). FX reverses AngII-induced inhibition of the Keap1/Nrf2/HO-1 pathway and elevates the level of reactive oxygen species (ROS). FX failed to reverse Ang II-induced changes in fibrosis-associated proteins and ROS levels after Nrf2 silencing. BRD4 silencing reversed the inhibitory effect of Ang II on the Keap1/Nrf2/HO-1 antioxidant signalling pathway. In conclusion, we demonstrated that FX inhibited Ang II-induced transdifferentiation of CFs and that this effect may be related to the activation of the Keap1/Nrf2/HO-1 pathway by reducing BRD4 expression and, ultimately, oxidative stress.
Collapse
Affiliation(s)
- Jinxia Han
- Shaoxing Seventh People’s Hospital, Shaoxing, China
| | | | - Haisheng Peng
- Department of pharmacology, Medical college, Shaoxing University, Shaoxing, China
| |
Collapse
|
31
|
Noval MG, Spector SN, Bartnicki E, Izzo F, Narula N, Yeung ST, Damani-Yokota P, Dewan MZ, Mezzano V, Rodriguez-Rodriguez BA, Loomis C, Khanna KM, Stapleford KA. MAVS signaling is required for preventing persistent chikungunya heart infection and chronic vascular tissue inflammation. Nat Commun 2023; 14:4668. [PMID: 37537212 PMCID: PMC10400619 DOI: 10.1038/s41467-023-40047-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Chikungunya virus (CHIKV) infection has been associated with severe cardiac manifestations, yet, how CHIKV infection leads to heart disease remains unknown. Here, we leveraged both mouse models and human primary cardiac cells to define the mechanisms of CHIKV heart infection. Using an immunocompetent mouse model of CHIKV infection as well as human primary cardiac cells, we demonstrate that CHIKV directly infects and actively replicates in cardiac fibroblasts. In immunocompetent mice, CHIKV is cleared from cardiac tissue without significant damage through the induction of a local type I interferon response from both infected and non-infected cardiac cells. Using mice deficient in major innate immunity signaling components, we found that signaling through the mitochondrial antiviral-signaling protein (MAVS) is required for viral clearance from the heart. In the absence of MAVS signaling, persistent infection leads to focal myocarditis and vasculitis of the large vessels attached to the base of the heart. Large vessel vasculitis was observed for up to 60 days post infection, suggesting CHIKV can lead to vascular inflammation and potential long-lasting cardiovascular complications. This study provides a model of CHIKV cardiac infection and mechanistic insight into CHIKV-induced heart disease, underscoring the importance of monitoring cardiac function in patients with CHIKV infections.
Collapse
Affiliation(s)
- Maria G Noval
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Sophie N Spector
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Eric Bartnicki
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Franco Izzo
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Navneet Narula
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Stephen T Yeung
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Payal Damani-Yokota
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - M Zahidunnabi Dewan
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Valeria Mezzano
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Cynthia Loomis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, USA
| | - Kamal M Khanna
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Kenneth A Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
32
|
Lother A, Kohl P. The heterocellular heart: identities, interactions, and implications for cardiology. Basic Res Cardiol 2023; 118:30. [PMID: 37495826 PMCID: PMC10371928 DOI: 10.1007/s00395-023-01000-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
The heterocellular nature of the heart has been receiving increasing attention in recent years. In addition to cardiomyocytes as the prototypical cell type of the heart, non-myocytes such as endothelial cells, fibroblasts, or immune cells are coming more into focus. The rise of single-cell sequencing technologies enables identification of ever more subtle differences and has reignited the question of what defines a cell's identity. Here we provide an overview of the major cardiac cell types, describe their roles in homeostasis, and outline recent findings on non-canonical functions that may be of relevance for cardiology. We highlight modes of biochemical and biophysical interactions between different cardiac cell types and discuss the potential implications of the heterocellular nature of the heart for basic research and therapeutic interventions.
Collapse
Affiliation(s)
- Achim Lother
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany.
- Interdisciplinary Medical Intensive Care, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany.
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, Faculty of Medicine, University Heart Center, University of Freiburg, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
33
|
Muraoka A, Suzuki M, Hamaguchi T, Watanabe S, Iijima K, Murofushi Y, Shinjo K, Osuka S, Hariyama Y, Ito M, Ohno K, Kiyono T, Kyo S, Iwase A, Kikkawa F, Kajiyama H, Kondo Y. Fusobacterium infection facilitates the development of endometriosis through the phenotypic transition of endometrial fibroblasts. Sci Transl Med 2023; 15:eadd1531. [PMID: 37315109 DOI: 10.1126/scitranslmed.add1531] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 05/24/2023] [Indexed: 06/16/2023]
Abstract
Retrograde menstruation is a widely accepted cause of endometriosis. However, not all women who experience retrograde menstruation develop endometriosis, and the mechanisms underlying these observations are not yet understood. Here, we demonstrated a pathogenic role of Fusobacterium in the formation of ovarian endometriosis. In a cohort of women, 64% of patients with endometriosis but <10% of controls were found to have Fusobacterium infiltration in the endometrium. Immunohistochemical and biochemical analyses revealed that activated transforming growth factor-β (TGF-β) signaling resulting from Fusobacterium infection of endometrial cells led to the transition from quiescent fibroblasts to transgelin (TAGLN)-positive myofibroblasts, which gained the ability to proliferate, adhere, and migrate in vitro. Fusobacterium inoculation in a syngeneic mouse model of endometriosis resulted in a marked increase in TAGLN-positive myofibroblasts and increased number and weight of endometriotic lesions. Furthermore, antibiotic treatment largely prevented establishment of endometriosis and reduced the number and weight of established endometriotic lesions in the mouse model. Our data support a mechanism for the pathogenesis of endometriosis via Fusobacterium infection and suggest that eradication of this bacterium could be an approach to treat endometriosis.
Collapse
Affiliation(s)
- Ayako Muraoka
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Miho Suzuki
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tomonari Hamaguchi
- Division of Neurogenetics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shinya Watanabe
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kenta Iijima
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yoshiteru Murofushi
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Keiko Shinjo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Satoko Osuka
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yumi Hariyama
- Department of Obstetrics and Gynecology, Toyota Kosei Hospital, 500-1, Ihohara, Zyosui-cho, Toyota 470-0396, Japan
| | - Mikako Ito
- Division of Neurogenetics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tohru Kiyono
- Project for Prevention of HPV-related Cancer, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwanoha 6-5-1, Kashiwa 277-8577, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, 89-1 Enya-Cho, Izumo 693-8501, Japan
| | - Akira Iwase
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yutaka Kondo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
34
|
Karatsai O, Lehka L, Wojton D, Grabowska AI, Duda MK, Lenartowski R, Redowicz MJ. Unconventional myosin VI in the heart: Involvement in cardiac dysfunction progressing with age. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166748. [PMID: 37169038 DOI: 10.1016/j.bbadis.2023.166748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
Hypertrophic cardiomyopathy is the most common cardiovascular disease, which is characterized by structural and functional myocardial abnormalities. It is caused predominantly by autosomal dominant mutations, mainly in genes encoding cardiac sarcomeric proteins, resulting in diverse phenotypical patterns and a heterogenic clinical course. Unconventional myosin VI (MVI) is one of the proteins important for heart function, as it was shown that a point mutation within MYO6 is associated with left ventricular hypertrophy. Previously, we showed that MVI is expressed in the cardiac muscle, where it localizes to the sarcoplasmic reticulum and intercalated discs. Here, we addressed the mechanisms of its involvement in cardiac dysfunction in Snell's waltzer mice (natural MVI knockouts) during heart development. We showed that heart enlargement was already seen in the E14.5 embryos and newborn animals (P0), and was maintained throughout the examined lifespan (up to 12 months). The higher levels of MVI were observed in the hearts of E14.5 embryos and P0 of control heterozygous mice. A search for the mechanisms behind the observed phenotype revealed several changes, accumulation of which resulted in age-progressing heart dysfunction. The main changes that mostly contribute to this functional impairment are the increase in cardiomyocyte proliferation in newborns, disorganization of intercalated discs, and overexpression of SERCA2 in hearts isolated from 12-month-old mice, indicative of functional alterations of sarcoplasmic reticulum. Also, possible aberrations in the heart vascularization, observed in 12-month-old animals could be additional factors responsible for MVI-associated heart dysfunction.
Collapse
Affiliation(s)
- Olena Karatsai
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Lilya Lehka
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Dominika Wojton
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Anna Izabela Grabowska
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Monika Katarzyna Duda
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, 99/103 Marymoncka St., 01-813 Warsaw, Poland.
| | - Robert Lenartowski
- Faculty of Biological and Veterinary Sciences, The Nicolaus Copernicus University in Torun, 1 Lwowska St., 87-100 Torun, Poland.
| | - Maria Jolanta Redowicz
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| |
Collapse
|
35
|
Wang M, Wang M, Zhao J, Xu H, Xi Y, Yang H. Dengzhan Shengmai capsule attenuates cardiac fibrosis in post-myocardial infarction rats by regulating LTBP2 and TGF-β1/Smad3 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154849. [PMID: 37163903 DOI: 10.1016/j.phymed.2023.154849] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/17/2023] [Accepted: 05/01/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Cardiac fibrosis contributes to myocardial remodeling after myocardial infarction (MI), which may facilitate the progression to end-stage heart failure. Dengzhan Shengmai capsule (DZSMC), a traditional Chinese formula derived from Shen-mai powder, has shown remarkable therapeutic effects against cardiovascular diseases. However, the effect of DZSMC on cardiac fibrosis and its potential mechanism are ill-defined. PURPOSE To evaluate the effects of DZSMC on cardiac fibrosis after myocardial infarction (MI) and investigate its underlying mechanism. METHOD In vivo, MI rat models were established by permanently ligation of left anterior descending coronary arteries (LAD) and then were intragastrically treated with DZSMC or captopril for 5 weeks. Ex vivo, an everted intestinal sac model was used to study the intestinal absorption components of DZSMC, which were further identified through an ultra-performance liquid chromatography tandem mass spectrometry (UHPLC-MS) method. In vitro, a myocardium fibrotic model was constructed by stimulating primary cardiac fibroblasts (CFs) with 1 μM Ang II. Subsequently, the absorbent solution of DZSMC from the intestinal sac was performed on the cell models to further elucidate its anti-fibrotic effects and underling mechanism. RESULTS In vivo results showed that DZSMC significantly improved cardiac function and inhibited pathological myocardial fibrosis in post-MI rats in a dose dependent manner. Histological analysis and western blot results demonstrated that DZSMC treatment significantly reduced the expression of extracellular matrix (ECM)-related proteins, including LTBP2, TGF-βR1, Smad3 and pSmad3, in myocardial tissue of MI rats. Ex vivo results showed that 18 absorbed components were identified, mainly consisting of phenolic acids, flavonoids and lignans, which may be responsible for the anti-fibrotic effects. Further in vitro results validated that DZSMC attenuated myocardial fibrosis by suppressing the expression of LTBP2, TGF-β1 and pSmad3. CONCLUSION DZSMC ameliorates cardiac function and alleviates cardiac fibrosis, which may be mediated by inhibition of CFs activation and reduction of excessive ECM deposition via LTBP2 and TGF-β1/Smad3 pathways.
Collapse
Affiliation(s)
- Maolin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Menglan Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Jie Zhao
- Experimental Research Centre, China Academy of Chinese Medical Science, Beijing 100700, China
| | - He Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Yujie Xi
- Experimental Research Centre, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China; Experimental Research Centre, China Academy of Chinese Medical Science, Beijing 100700, China.
| |
Collapse
|
36
|
Zheng H, Peri L, Ward GK, Sanders KM, Ward SM. Cardiac PDGFRα + interstitial cells generate spontaneous inward currents that contribute to excitability in the heart. FASEB J 2023; 37:e22929. [PMID: 37086093 PMCID: PMC10402933 DOI: 10.1096/fj.202201712r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/06/2023] [Accepted: 04/05/2023] [Indexed: 04/23/2023]
Abstract
The cell types and conductance that contribute to normal cardiac functions remain under investigation. We used mice that express an enhanced green fluorescent protein (eGFP)-histone 2B fusion protein driven off the cell-specific endogenous promoter for Pdgfra to investigate the distribution and functional role of PDGFRα+ cells in the heart. Cardiac PDGFRα+ cells were widely distributed within the endomysium of atria, ventricle, and sino-atrial node (SAN) tissues. PDGFRα+ cells formed a discrete network of cells, lying in close apposition to neighboring cardiac myocytes in mouse and Cynomolgus monkey (Macaca fascicularis) hearts. Expression of eGFP in nuclei allowed unequivocal identification of these cells following enzymatic dispersion of muscle tissues. FACS purification of PDGFRα+ cells from the SAN and analysis of gene transcripts by qPCR revealed that they were a distinct population of cells that expressed gap junction transcripts, Gja1 and Gjc1. Cardiac PDGFRα+ cells generated spontaneous transient inward currents (STICs) and spontaneous transient depolarizations (STDs) that reversed at 0 mV. Reversal potential was maintained when ECl = -40 mV. [Na+ ]o replacement and FTY720 abolished STICs, suggesting they were due to a non-selective cation conductance (NSCC) carried by TRPM7. PDGFRα+ cells also express β2 -adrenoceptor gene transcripts, Adrb2. Zinterol, a selective β2 -receptor agonist, increased the amplitude and frequency of STICs, suggesting these cells could contribute to adrenergic regulation of cardiac excitability. PDGFRα+ cells in cardiac muscles generate inward currents via an NSCC. STICs generated by these cells may contribute to the integrated membrane potentials of cardiac muscles, possibly affecting the frequency of pacemaker activity.
Collapse
Affiliation(s)
- Haifeng Zheng
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Lauren Peri
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Grace K. Ward
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Kenton M. Sanders
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Sean M. Ward
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| |
Collapse
|
37
|
Li Y, Kubo H, Yu D, Yang Y, Johnson JP, Eaton DM, Berretta RM, Foster M, McKinsey TA, Yu J, Elrod JW, Chen X, Houser SR. Combining three independent pathological stressors induces a heart failure with preserved ejection fraction phenotype. Am J Physiol Heart Circ Physiol 2023; 324:H443-H460. [PMID: 36763506 PMCID: PMC9988529 DOI: 10.1152/ajpheart.00594.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/05/2023] [Accepted: 01/18/2023] [Indexed: 02/11/2023]
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is defined as HF with an ejection fraction (EF) ≥ 50% and elevated cardiac diastolic filling pressures. The underlying causes of HFpEF are multifactorial and not well-defined. A transgenic mouse with low levels of cardiomyocyte (CM)-specific inducible Cavβ2a expression (β2a-Tg mice) showed increased cytosolic CM Ca2+, and modest levels of CM hypertrophy, and fibrosis. This study aimed to determine if β2a-Tg mice develop an HFpEF phenotype when challenged with two additional stressors, high-fat diet (HFD) and Nω-nitro-l-arginine methyl ester (l-NAME, LN). Four-month-old wild-type (WT) and β2a-Tg mice were given either normal chow (WT-N, β2a-N) or HFD and/or l-NAME (WT-HFD, WT-LN, WT-HFD-LN, β2a-HFD, β2a-LN, and β2a-HFD-LN). Some animals were treated with the histone deacetylase (HDAC) (hypertrophy regulators) inhibitor suberoylanilide hydroxamic acid (SAHA) (β2a-HFD-LN-SAHA). Echocardiography was performed monthly. After 4 mo of treatment, terminal studies were performed including invasive hemodynamics and organs weight measurements. Cardiac tissue was collected. Four months of HFD plus l-NAME treatment did not induce a profound HFpEF phenotype in FVB WT mice. β2a-HFD-LN (3-Hit) mice developed features of HFpEF, including increased atrial natriuretic peptide (ANP) levels, preserved EF, diastolic dysfunction, robust CM hypertrophy, increased M2-macrophage population, and myocardial fibrosis. SAHA reduced the HFpEF phenotype in the 3-Hit mouse model, by attenuating these effects. The 3-Hit mouse model induced a reliable HFpEF phenotype with CM hypertrophy, cardiac fibrosis, and increased M2-macrophage population. This model could be used for identifying and preclinical testing of novel therapeutic strategies.NEW & NOTEWORTHY Our study shows that three independent pathological stressors (increased Ca2+ influx, high-fat diet, and l-NAME) together produce a profound HFpEF phenotype. The primary mechanisms include HDAC-dependent-CM hypertrophy, necrosis, increased M2-macrophage population, fibroblast activation, and myocardial fibrosis. A role for HDAC activation in the HFpEF phenotype was shown in studies with SAHA treatment, which prevented the severe HFpEF phenotype. This "3-Hit" mouse model could be helpful in identifying novel therapeutic strategies to treat HFpEF.
Collapse
Affiliation(s)
- Yijia Li
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Hajime Kubo
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Daohai Yu
- Department of Biomedical Education and Data Science, Center for Biostatistics and Epidemiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Yijun Yang
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Jaslyn P Johnson
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Deborah M Eaton
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Remus M Berretta
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Michael Foster
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Timothy A McKinsey
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Jun Yu
- Department of Cardiovascular Sciences, Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Cardiovascular Research Center, Philadelphia, Pennsylvania, United States
| | - John W Elrod
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
- Department of Cardiovascular Sciences, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Cardiovascular Research Center, Philadelphia, Pennsylvania, United States
| | - Xiongwen Chen
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Steven R Houser
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
38
|
Guo Q, Wu D, Jia D, Zhang X, Wu A, Lou L, Zhao M, Zhao M, Gao Y, Wang M, Liu M, Chen M, Zhang D. Bioinformatics prediction and experimental verification of a novel microRNA for myocardial fibrosis after myocardial infarction in rats. PeerJ 2023; 11:e14851. [PMID: 36788811 PMCID: PMC9922498 DOI: 10.7717/peerj.14851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/13/2023] [Indexed: 02/11/2023] Open
Abstract
Background MicroRNAs (miRNAs) are endogenous noncoding single-stranded small RNAs. Numerous studies have shown that miRNAs have pivotal roles in the occurrence and development of myocardial fibrosis (MF). However, miRNA expression profile in rats with MF after myocardial infarction (MI) is not well understood. The present study aimed to find the potential miRNA for MF post MI. Methods SPF male Sprague-Dawley (SD) rat models of acute myocardial infarction (AMI) were established by ligating the anterior descending branch of the left coronary artery, while sham-operated rats were only threaded without ligation as a control group. Hematoxylin-eosin and Masson trichrome staining were used to detect myocardial histopathological changes for model evaluation. The differentially expressed miRNAs were detected by using the Agilent Rat miRNA gene chip in the myocardial tissue of the infarct marginal zone. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed by DAVID. The expression of miR-199a-5p was verified by real-time fluorescence quantitative PCR (qRT-PCR). Transfected miR-199a-5p mimics into cardiac fibroblasts (CFs) to construct cell models of miR-199a-5p overexpression. Dual-luciferase reporter assay was employed to validate the target gene of miR-199a-5p. The protein expression of the target gene in CFs transfected with miR-199a-5p mimics were detected by Western blot. Results Myocardial fibrosis was exacerbated in the model group compared with the control group. Thirteen differentially expressed miRNAs between the two groups were screened and their expression levels in the model group were all higher than those in the control group. The expression of miR-199a-5p was significantly increased in the model group in qRT-PCR, which was consistent with the results of the gene chip. KEGG enrichment analysis showed that the target genes of miR-199a-5p were enriched in the insulin signaling pathway. Furthermore, dual-luciferase reporter assay indicated that miR-199a-5p could negatively regulate the expression of GSK-3β. After transfection, the expression of miR-199a-5p was increased in the miR-199a-5p mimics group. The protein expression of GSK-3β was decreased in CFs transfected with miR-199a-5p mimics. Conclusion Our study identified miR-199a-5p could promote the progression of myocardial fibrosis after myocardial infarction by targeting GSK-3β, which provides novel targets for diagnosis and treatment of MF.
Collapse
Affiliation(s)
- Qianqian Guo
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dandan Wu
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Dongdong Jia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyue Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Aiming Wu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lixia Lou
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mingjing Zhao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mengzhu Zhao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yijie Gao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Manman Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Menghua Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Meng Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Dongmei Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
39
|
Ma CX, Wei ZR, Sun T, Yang MH, Sun YQ, Kai KL, Shi JC, Zhou MJ, Wang ZW, Chen J, Li W, Wang TQ, Zhang SF, Xue L, Zhang M, Yin Q, Zang MX. Circ-sh3rf3/GATA-4/miR-29a regulatory axis in fibroblast-myofibroblast differentiation and myocardial fibrosis. Cell Mol Life Sci 2023; 80:50. [PMID: 36694058 PMCID: PMC11072806 DOI: 10.1007/s00018-023-04699-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023]
Abstract
The transdifferentiation from cardiac fibroblasts to myofibroblasts is an important event in the initiation of cardiac fibrosis. However, the underlying mechanism is not fully understood. Circ-sh3rf3 (circular RNA SH3 domain containing Ring Finger 3) is a novel circular RNA which was induced in hypertrophied ventricles by isoproterenol hydrochloride, and our work has established that it is a potential regulator in cardiac hypertrophy, but whether circ-sh3rf3 plays a role in cardiac fibrosis remains unclear, especially in the conversion of cardiac fibroblasts into myofibroblasts. Here, we found that circ-sh3rf3 was down-regulated in isoproterenol-treated rat cardiac fibroblasts and cardiomyocytes as well as during fibroblast differentiation into myofibroblasts. We further confirmed that circ-sh3rf3 could interact with GATA-4 proteins and reduce the expression of GATA-4, which in turn abolishes GATA-4 repression of miR-29a expression and thus up-regulates miR-29a expression, thereby inhibiting fibroblast-myofibroblast differentiation and myocardial fibrosis. Our work has established a novel Circ-sh3rf3/GATA-4/miR-29a regulatory cascade in fibroblast-myofibroblast differentiation and myocardial fibrosis, which provides a new therapeutic target for myocardial fibrosis.
Collapse
Affiliation(s)
- Cai-Xia Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Zhi-Ru Wei
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Ming-Hui Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Yu-Qie Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Kun-Lun Kai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Jia-Chen Shi
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng-Jiao Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Zi-Wei Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Jing Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Wei Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Tian-Qi Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Shan-Feng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China
| | - Lixiang Xue
- Medical Research Center, Peking University Third Hospital, 49 Huayuan North Road, Beijing, 100191, China
| | - Min Zhang
- Cardiovascular Division, Department of Cardiology, King's College London British Heart Foundation Centre of Research Excellence, London, UK
| | - Qianqian Yin
- Medical Research Center, Peking University Third Hospital, 49 Huayuan North Road, Beijing, 100191, China.
| | - Ming-Xi Zang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Ke Xue Da Dao 100, Zheng Zhou, 450001, China.
| |
Collapse
|
40
|
Sun X, Jiang Y, Li Q, Tan Q, Dong M, Cai B, Zhang D, Zhao Q. Quantitative proteomics analysis revealed the potential role of lncRNA Ftx in cardiomyocytes. Proteome Sci 2023; 21:2. [PMID: 36604692 PMCID: PMC9814437 DOI: 10.1186/s12953-022-00201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/30/2022] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE This study aims to decode the proteomic signature of cardiomyocytes in response to lncRNA Ftx knockdown and overexpression via proteomic analysis, and to study the biological role of lncRNA Ftx in cardiomyocytes. METHODS: The expression level of the lncRNA Ftx in cardiomyocytes cultured in vitro was intervened, and the changes in protein levels in cardiomyocytes were quantitatively detected by liquid chromatography-mass spectrometry. The key molecules and pathways of the lncRNA-Ftx response were further examined by GO, KEGG, and protein interaction analysis. RESULTS A total of 2828 proteins are quantified. With a 1.5-fold change threshold, 32 upregulated proteins and 49 downregulated proteins are identified in the lncRNA Ftx overexpression group, while 67 up-regulated proteins and 54 down-regulated proteins are identified in the lncRNA Ftx knockdown group. Functional clustering analysis of differential genes revealed that the lncRNA Ftx is involved in regulating cardiomyocyte apoptosis and ferroptosis and improving cellular energy metabolism. In addition, Hub genes such as ITGB1, HMGA2, STAT3, GSS, and LPCAT3 are regulated downstream by lncRNA Ftx. CONCLUSION This study demonstrates that lncRNA Ftx plays a vital role in cardiomyocytes and may be involved in the occurrence and development of various myocardial diseases. It provides a potential target for clinical protection of the myocardium and reversal of myocardial fibrosis.
Collapse
Affiliation(s)
- Xiangfei Sun
- grid.460018.b0000 0004 1769 9639Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 9677 Jingshi Road, Jinan, 250021 Shandong China ,grid.27255.370000 0004 1761 1174Department of Cardiovascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021 Shandong China
| | - Ying Jiang
- grid.460018.b0000 0004 1769 9639Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, 250021 Shandong China ,grid.27255.370000 0004 1761 1174Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Shandong 250021 Jinan, China
| | - Qingbao Li
- grid.460018.b0000 0004 1769 9639Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 9677 Jingshi Road, Jinan, 250021 Shandong China
| | - Qi Tan
- grid.460018.b0000 0004 1769 9639Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 9677 Jingshi Road, Jinan, 250021 Shandong China
| | - Mingliang Dong
- grid.460018.b0000 0004 1769 9639Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 9677 Jingshi Road, Jinan, 250021 Shandong China
| | - Bi’e Cai
- grid.479672.9Health Management Department of Preventive Treatment Center, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42, Wenhua West Road, Jinan, 250021 Shandong China
| | - Di Zhang
- grid.460018.b0000 0004 1769 9639Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, 250021 Shandong China ,grid.27255.370000 0004 1761 1174Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Shandong 250021 Jinan, China
| | - Qi Zhao
- grid.460018.b0000 0004 1769 9639Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, 250021 Shandong China ,grid.27255.370000 0004 1761 1174Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Shandong 250021 Jinan, China
| |
Collapse
|
41
|
Dalmao-Fernandez A, Aizenshtadt A, Bakke HG, Krauss S, Rustan AC, Thoresen GH, Kase ET. Development of three-dimensional primary human myospheres as culture model of skeletal muscle cells for metabolic studies. Front Bioeng Biotechnol 2023; 11:1130693. [PMID: 37034250 PMCID: PMC10076718 DOI: 10.3389/fbioe.2023.1130693] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction: Skeletal muscle is a major contributor to whole-body energy homeostasis and the utilization of fatty acids and glucose. At present, 2D cell models have been the most used cellular models to study skeletal muscle energy metabolism. However, the transferability of the results to in vivo might be limited. This project aimed to develop and characterize a skeletal muscle 3D cell model (myospheres) as an easy and low-cost tool to study molecular mechanisms of energy metabolism. Methods and results: We demonstrated that human primary myoblasts form myospheres without external matrix support and carry structural and molecular characteristics of mature skeletal muscle after 10 days of differentiation. We found significant metabolic differences between the 2D myotubes model and myospheres. In particular, myospheres showed increased lipid oxidative metabolism than the 2D myotubes model, which oxidized relatively more glucose and accumulated more oleic acid. Discussion and conclusion: These analyses demonstrate model differences that can have an impact and should be taken into consideration for studying energy metabolism and metabolic disorders in skeletal muscle.
Collapse
Affiliation(s)
- Andrea Dalmao-Fernandez
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
- *Correspondence: Andrea Dalmao-Fernandez,
| | - Aleksandra Aizenshtadt
- Hybrid Technology Hub Centre of Excellence, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hege G. Bakke
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Stefan Krauss
- Hybrid Technology Hub Centre of Excellence, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Arild C. Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - G. Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eili Tranheim Kase
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
42
|
Endothelial-cell-mediated mechanism of coronary microvascular dysfunction leading to heart failure with preserved ejection fraction. Heart Fail Rev 2023; 28:169-178. [PMID: 35266091 PMCID: PMC9902427 DOI: 10.1007/s10741-022-10224-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/23/2022] [Indexed: 02/07/2023]
Abstract
Although the prevalence of heart failure with preserved ejection fraction (HFpEF) is growing worldwide, its complex pathophysiology has yet to be fully elucidated, and multiple hypotheses have all failed to produce a viable target for therapeutic action or provide effective treatment. Cardiac remodeling has long been considered an important mechanism of HFpEF. Strong evidence has been reported over the past years that coronary microvascular dysfunction (CMD), manifesting as structural and functional abnormalities of coronary microvasculature, also contributes to the evolution of HFpEF. However, the mechanisms of CMD are still not well understood and need to be studied further. Coronary microvascular endothelial cells (CMECs) are one of the most abundant cell types in the heart by number and active players in cardiac physiology and pathology. CMECs are not only important cellular mediators of cardiac vascularization but also play an important role in disease pathophysiology by participating in the inception and progression of cardiac remodeling. CMECs are also actively involved in the pathogenesis of CMD. Numerous studies have confirmed that CMD is closely related to cardiac remodeling. ECs may serve a critical function in mediating the connection between CMD and HFpEF. It follows that CMECs participate in the mechanism of CMD leading to HFpEF. In this review article, we focus on the role of CMD in the pathogenesis of HFpEF resulting from cardiac remodeling and highlight the subsequent complexity of the EC-mediated correlation between CMD and HFpEF.
Collapse
|
43
|
Ni B, Sun M, Zhao J, Wang J, Cao Z. The role of β-catenin in cardiac diseases. Front Pharmacol 2023; 14:1157043. [PMID: 37033656 PMCID: PMC10073558 DOI: 10.3389/fphar.2023.1157043] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
The Wnt/β-catenin signaling pathway is a classical Wnt pathway that regulates the stability and nuclear localization of β-catenin and plays an important role in adult heart development and cardiac tissue homeostasis. In recent years, an increasing number of researchers have implicated the dysregulation of this signaling pathway in a variety of cardiac diseases, such as myocardial infarction, arrhythmias, arrhythmogenic cardiomyopathy, diabetic cardiomyopathies, and myocardial hypertrophy. The morbidity and mortality of cardiac diseases are increasing, which brings great challenges to clinical treatment and seriously affects patient health. Thus, understanding the biological roles of the Wnt/β-catenin pathway in these diseases may be essential for cardiac disease treatment and diagnosis to improve patient quality of life. In this review, we summarize current research on the roles of β-catenin in human cardiac diseases and potential inhibitors of Wnt/β-catenin, which may provide new strategies for cardiac disease therapies.
Collapse
|
44
|
Wu B, Huang L, Wang Y, Zeng L, Lin Y, Li J, Wang S, Zhang G, An L. Yao medicine Amydrium hainanense suppresses hepatic fibrosis by repressing hepatic stellate cell activation via STAT3 signaling. Front Pharmacol 2022; 13:1043022. [PMID: 36588728 PMCID: PMC9794994 DOI: 10.3389/fphar.2022.1043022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Ethnopharmacological relevance: Hepatic fibrosis (HF) occurs in response to chronic liver injury and may easily develop into irreversible liver cirrhosis or even liver cancer. Amydrium hainanense water extract (AHWE) is a water-soluble component extracted from the Yao medicine Amydrium hainanense (H.Li, Y.Shiao & S.L.Tseng) H.Li, which is commonly used for treating inflammatory diseases in folk. Previous evidence suggested that AHWE significantly inhibited hepatic stellate cell activation. However, little is known regarding the therapeutic effect of AHWE in HF and its underlying action mechanism. Objective: Investigation of the therapeutic effect of AHWE in HF and its underlying mechanism. Methods: The therapeutic effect of AHWE was tested in vivo using an HF mouse model via an intraperitoneal injection of carbon tetrachloride (CCl4). Histological evaluation of liver injury and fibrosis were tested by H&E staining and Masson's trichrome staining. Serum levels of ALT, AST, collagen type I (Col I), and hydroxyproline (HYP) were measured. The mRNA expression of liver fibrotic and inflammatory genes were tested, and the protein levels of alpha smooth muscle actin (α-SMA) and signal transducers and activators of transcription 3 (STAT3) were analyzed. The in vitro experiments were conducted using HSC-T6 and RAW264.7 cell lines. Results: Treatment with AHWE significantly reversed histopathological liver damage and liver function abnormalities in CCl4 mouse model. Also, the serum levels of ALT, AST, Col I, and HYP in CCl4-induced HF mice were improved in AHWE treatment. Further, AHWE showed a remarkable inhibitory effect on the expression of fibrosis markers (Acta2, Col1a1, and Col3a1) and inflammatory factors (Stat3, Tnfa, Il6, and Il1b) induced by CCl4. The results of in vitro experiments were consistent with those obtained in vivo. In addition, it is shown that STAT3 signaling was involved in the anti-fibrotic effects of AHWE as evidenced by STAT3 overexpression. Conclusion: The present study proposed a novel ethnomedicine for HF and suggested the underlying role of STAT3 signaling pathway regulation in this anti-fibrotic effect of the proposed medicine. These findings would serve as solid scientific evidence in support of the development of AHWE as a novel alternative or complementary therapy for HF prevention and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shaogui Wang
- *Correspondence: Shaogui Wang, ; Guifang Zhang, ; Lin An,
| | - Guifang Zhang
- *Correspondence: Shaogui Wang, ; Guifang Zhang, ; Lin An,
| | - Lin An
- *Correspondence: Shaogui Wang, ; Guifang Zhang, ; Lin An,
| |
Collapse
|
45
|
Moita MR, Silva MM, Diniz C, Serra M, Hoet RM, Barbas A, Simão D. Transcriptome and proteome profiling of activated cardiac fibroblasts supports target prioritization in cardiac fibrosis. Front Cardiovasc Med 2022; 9:1015473. [PMID: 36531712 PMCID: PMC9751336 DOI: 10.3389/fcvm.2022.1015473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/15/2022] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Activated cardiac fibroblasts (CF) play a central role in cardiac fibrosis, a condition associated with most cardiovascular diseases. Conversion of quiescent into activated CF sustains heart integrity upon injury. However, permanence of CF in active state inflicts deleterious heart function effects. Mechanisms underlying this cell state conversion are still not fully disclosed, contributing to a limited target space and lack of effective anti-fibrotic therapies. MATERIALS AND METHODS To prioritize targets for drug development, we studied CF remodeling upon activation at transcriptomic and proteomic levels, using three different cell sources: primary adult CF (aHCF), primary fetal CF (fHCF), and induced pluripotent stem cells derived CF (hiPSC-CF). RESULTS All cell sources showed a convergent response upon activation, with clear morphological and molecular remodeling associated with cell-cell and cell-matrix interactions. Quantitative proteomic analysis identified known cardiac fibrosis markers, such as FN1, CCN2, and Serpine1, but also revealed targets not previously associated with this condition, including MRC2, IGFBP7, and NT5DC2. CONCLUSION Exploring such targets to modulate CF phenotype represents a valuable opportunity for development of anti-fibrotic therapies. Also, we demonstrate that hiPSC-CF is a suitable cell source for preclinical research, displaying significantly lower basal activation level relative to primary cells, while being able to elicit a convergent response upon stimuli.
Collapse
Affiliation(s)
- Maria Raquel Moita
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Marta M. Silva
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Cláudia Diniz
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Margarida Serra
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - René M. Hoet
- Department of Pathology, CARIM - School of Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | | | - Daniel Simão
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| |
Collapse
|
46
|
Dewing JM, Saunders V, O’Kelly I, Wilson DI. Defining cardiac cell populations and relative cellular composition of the early fetal human heart. PLoS One 2022; 17:e0259477. [PMID: 36449524 PMCID: PMC9710754 DOI: 10.1371/journal.pone.0259477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/08/2022] [Indexed: 12/03/2022] Open
Abstract
While the adult human heart is primarily composed of cardiomyocytes, fibroblasts, endothelial and smooth muscle cells, the cellular composition during early development remains largely unknown. Reliable identification of fetal cardiac cell types using protein markers is critical to understand cardiac development and delineate the cellular composition of the developing human heart. This is the first study to use immunohistochemistry (IHC), flow cytometry and RT-PCR analyses to investigate the expression and specificity of commonly used cardiac cell markers in the early human fetal heart (8-12 post-conception weeks). The expression of previously reported protein markers for the detection of cardiomyocytes (Myosin Heavy Chain (MHC) and cardiac troponin I (cTnI), fibroblasts (DDR2, THY1, Vimentin), endothelial cells (CD31) and smooth muscle cells (α-SMA) were assessed. Two distinct populations of cTnI positive cells were identified through flow cytometry, with MHC positive cardiomyocytes showing high cTnI expression (cTnIHigh) while MHC negative non-myocytes showed lower cTnI expression (cTnILow). cTnI expression in non-myocytes was further confirmed by IHC and RT-PCR analyses, suggesting troponins are not cardiomyocyte-specific and may play distinct roles in non-muscle cells during early development. Vimentin (VIM) was expressed in cultured ventricular fibroblast populations and flow cytometry revealed VIMHigh and VIMLow cell populations in the fetal heart. MHC positive cardiomyocytes were VIMLow whilst CD31 positive endothelial cells were VIMHigh. Using markers investigated within this study, we characterised fetal human cardiac populations and estimate that 75-80% of fetal cardiac cells are cardiomyocytes and are MHC+/cTnIHigh/VIMLow, whilst non-myocytes comprise 20-25% of total cells and are MHC-/cTnILow/VIMHigh, with CD31+ endothelial cells comprising ~9% of this population. These findings show distinct differences from those reported for adult heart.
Collapse
Affiliation(s)
- Jennifer M. Dewing
- Institute for Developmental Sciences, School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- * E-mail:
| | - Vinay Saunders
- Institute for Developmental Sciences, School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ita O’Kelly
- Institute for Developmental Sciences, School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Immunocore Ltd, Abingdon, Oxford, United Kingdom
| | - David I. Wilson
- Institute for Developmental Sciences, School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
47
|
Spedicati M, Ruocco G, Zoso A, Mortati L, Lapini A, Delledonne A, Divieto C, Romano V, Castaldo C, Di Meglio F, Nurzynska D, Carmagnola I, Chiono V. Biomimetic design of bioartificial scaffolds for the in vitro modelling of human cardiac fibrosis. Front Bioeng Biotechnol 2022; 10:983872. [PMID: 36507252 PMCID: PMC9731288 DOI: 10.3389/fbioe.2022.983872] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/26/2022] [Indexed: 11/25/2022] Open
Abstract
In vitro models of pathological cardiac tissue have attracted interest as predictive platforms for preclinical validation of therapies. However, models reproducing specific pathological features, such as cardiac fibrosis size (i.e., thickness and width) and stage of development are missing. This research was aimed at engineering 2D and 3D models of early-stage post-infarct fibrotic tissue (i.e., characterized by non-aligned tissue organization) on bioartificial scaffolds with biomimetic composition, design, and surface stiffness. 2D scaffolds with random nanofibrous structure and 3D scaffolds with 150 µm square-meshed architecture were fabricated from polycaprolactone, surface-grafted with gelatin by mussel-inspired approach and coated with cardiac extracellular matrix (ECM) by 3 weeks culture of human cardiac fibroblasts. Scaffold physicochemical properties were thoroughly investigated. AFM analysis of scaffolds in wet state, before cell culture, confirmed their close surface stiffness to human cardiac fibrotic tissue. Following 3 weeks culture, biomimetic biophysical and biochemical scaffold properties triggered the activation of myofibroblast phenotype. Upon decellularization, immunostaining, SEM and two-photon excitation fluorescence microscopy showed homogeneous decoration of both 2D and 3D scaffolds with cardiac ECM. The versatility of the approach was demonstrated by culturing ventricular or atrial cardiac fibroblasts on scaffolds, thus suggesting the possibility to use the same scaffold platforms to model both ventricular and atrial cardiac fibrosis. In the future, herein developed in vitro models of cardiac fibrotic tissue, reproducing specific pathological features, will be exploited for a fine preclinical tuning of therapies.
Collapse
Affiliation(s)
- Mattia Spedicati
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
- POLITO Biomedlab, Politecnico di Torino, Torino, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Pisa, Italy
| | - Gerardina Ruocco
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
- POLITO Biomedlab, Politecnico di Torino, Torino, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Pisa, Italy
| | - Alice Zoso
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
- POLITO Biomedlab, Politecnico di Torino, Torino, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Pisa, Italy
| | - Leonardo Mortati
- Istituto Nazionale di Ricerca Metrologica (INRIM), Torino, Italy
| | - Andrea Lapini
- Istituto Nazionale di Ricerca Metrologica (INRIM), Torino, Italy
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| | - Andrea Delledonne
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| | - Carla Divieto
- Istituto Nazionale di Ricerca Metrologica (INRIM), Torino, Italy
| | - Veronica Romano
- Department of Public Health, University of Naples “Federico II”, Napoli, Italy
| | - Clotilde Castaldo
- Department of Public Health, University of Naples “Federico II”, Napoli, Italy
| | - Franca Di Meglio
- Department of Public Health, University of Naples “Federico II”, Napoli, Italy
| | - Daria Nurzynska
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Salerno, Italy
| | - Irene Carmagnola
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
- POLITO Biomedlab, Politecnico di Torino, Torino, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Pisa, Italy
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
- POLITO Biomedlab, Politecnico di Torino, Torino, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Pisa, Italy
| |
Collapse
|
48
|
Lorenzana-Carrillo MA, Gopal K, Byrne NJ, Tejay S, Saleme B, Das SK, Zhang Y, Haromy A, Eaton F, Mendiola Pla M, Bowles DE, Dyck JR, Ussher JR, Michelakis ED, Sutendra G. TRIM35-mediated degradation of nuclear PKM2 destabilizes GATA4/6 and induces P53 in cardiomyocytes to promote heart failure. Sci Transl Med 2022; 14:eabm3565. [DOI: 10.1126/scitranslmed.abm3565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pyruvate kinase M2 (PKM2) is a glycolytic enzyme that translocates to the nucleus to regulate transcription factors in different tissues or pathologic states. Although studied extensively in cancer, its biological role in the heart remains unresolved. PKM1 is more abundant than the PKM2 isoform in cardiomyocytes, and thus, we speculated that PKM2 is not genetically redundant to PKM1 and may be critical in regulating cardiomyocyte-specific transcription factors important for cardiac survival. Here, we showed that nuclear PKM2 (
S37
P-PKM2) in cardiomyocytes interacts with prosurvival and proapoptotic transcription factors, including GATA4, GATA6, and P53. Cardiomyocyte-specific PKM2-deficient mice (
Pkm2
Mut Cre
+
) developed age-dependent dilated cardiac dysfunction and had decreased amounts of GATA4 and GATA6 (GATA4/6) but increased amounts of P53 compared to Control Cre
+
hearts. Nuclear PKM2 prevented caspase-1–dependent cleavage and degradation of GATA4/6 while also providing a molecular platform for MDM2-mediated reduction of P53. In a preclinical heart failure mouse model, nuclear PKM2 and GATA4/6 were decreased, whereas P53 was increased in cardiomyocytes. Loss of nuclear PKM2 was ubiquitination dependent and associated with the induction of the E3 ubiquitin ligase TRIM35. In mice, cardiomyocyte-specific TRIM35 overexpression resulted in decreased
S37
P-PKM2 and GATA4/6 along with increased P53 in cardiomyocytes compared to littermate controls and similar cardiac dysfunction to
Pkm2
Mut Cre
+
mice. In patients with dilated left ventricles, increase in TRIM35 was associated with decreased
S37
P-PKM2 and GATA4/6 and increased P53. This study supports a previously unrecognized role for PKM2 as a molecular platform that mediates cell signaling events essential for cardiac survival.
Collapse
Affiliation(s)
- Maria Areli Lorenzana-Carrillo
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Keshav Gopal
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2H1, Canada
| | - Nikole J. Byrne
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Saymon Tejay
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Bruno Saleme
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Subhash K. Das
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Yongneng Zhang
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Alois Haromy
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Farah Eaton
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2H1, Canada
| | | | - Dawn E. Bowles
- Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Jason R. B. Dyck
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - John R. Ussher
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2H1, Canada
| | - Evangelos D. Michelakis
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Gopinath Sutendra
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
49
|
Culturing of Cardiac Fibroblasts in Engineered Heart Matrix Reduces Myofibroblast Differentiation but Maintains Their Response to Cyclic Stretch and Transforming Growth Factor β1. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9100551. [PMID: 36290519 PMCID: PMC9598692 DOI: 10.3390/bioengineering9100551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/04/2022]
Abstract
Isolation and culturing of cardiac fibroblasts (CF) induces rapid differentiation toward a myofibroblast phenotype, which is partly mediated by the high substrate stiffness of the culture plates. In the present study, a 3D model of Engineered Heart Matrix (EHM) of physiological stiffness (Youngs modulus ~15 kPa) was developed using primary adult rat CF and a natural hydrogel collagen type 1 matrix. CF were equally distributed, viable and quiescent for at least 13 days in EHM and the baseline gene expression of myofibroblast-markers alfa-smooth muscle actin (Acta2), and connective tissue growth factor (Ctgf) was significantly lower, compared to CF cultured in 2D monolayers. CF baseline gene expression of transforming growth factor-beta1 (Tgfβ1) and brain natriuretic peptide (Nppb) was higher in EHM-fibers compared to the monolayers. EHM stimulation by 10% cyclic stretch (1 Hz) increased the gene expression of Nppb (3.0-fold), Ctgf (2.1-fold) and Tgfβ1 (2.3-fold) after 24 h. Stimulation of EHM with TGFβ1 (1 ng/mL, 24 h) induced Tgfβ1 (1.6-fold) and Ctgf (1.6-fold). In conclusion, culturing CF in EHM of physiological stiffness reduced myofibroblast marker gene expression, while the CF response to stretch or TGFβ1 was maintained, indicating that our novel EHM structure provides a good physiological model to study CF function and myofibroblast differentiation.
Collapse
|
50
|
Gwanyanya A, Mubagwa K. Emerging role of transient receptor potential (TRP) ion channels in cardiac fibroblast pathophysiology. Front Physiol 2022; 13:968393. [PMID: 36277180 PMCID: PMC9583832 DOI: 10.3389/fphys.2022.968393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiac fibroblasts make up a major proportion of non-excitable cells in the heart and contribute to the cardiac structural integrity and maintenance of the extracellular matrix. During myocardial injury, fibroblasts can be activated to trans-differentiate into myofibroblasts, which secrete extracellular matrix components as part of healing, but may also induce cardiac fibrosis and pathological cardiac structural and electrical remodeling. The mechanisms regulating such cellular processes still require clarification, but the identification of transient receptor potential (TRP) channels in cardiac fibroblasts could provide further insights into the fibroblast-related pathophysiology. TRP proteins belong to a diverse superfamily, with subgroups such as the canonical (TRPC), vanilloid (TRPV), melastatin (TRPM), ankyrin (TRPA), polycystin (TRPP), and mucolipin (TRPML). Several TRP proteins form non-selective channels that are permeable to cations like Na+ and Ca2+ and are activated by various chemical and physical stimuli. This review highlights the role of TRP channels in cardiac fibroblasts and the possible underlying signaling mechanisms. Changes in the expression or activity of TRPs such as TRPCs, TRPVs, TRPMs, and TRPA channels modulate cardiac fibroblasts and myofibroblasts, especially under pathological conditions. Such TRPs contribute to cardiac fibroblast proliferation and differentiation as well as to disease conditions such as cardiac fibrosis, atrial fibrillation, and fibroblast metal toxicity. Thus, TRP channels in fibroblasts represent potential drug targets in cardiac disease.
Collapse
Affiliation(s)
- Asfree Gwanyanya
- Department of Human Biology, University of Cape Town, Cape Town, South Africa
- *Correspondence: Asfree Gwanyanya,
| | - Kanigula Mubagwa
- Department of Cardiovascular Sciences, K U Leuven, Leuven, Belgium
- Department of Basic Sciences, Faculty of Medicine, Université Catholique de Bukavu, Bukavu, Democratic Republic of Congo
| |
Collapse
|