1
|
Alhammadi MA, Ilce BY, Bhamidimarri PM, Bouzid A, Ali N, Alhamidi RS, Hamad AM, Mahfood M, Tlili A, Talaat IM, Hamoudi R. Analysis of Genotype and Expression of FTO and ALKBH5 in a MENA-Region Renal Cell Carcinoma Cohort. Cancers (Basel) 2025; 17:1395. [PMID: 40361322 PMCID: PMC12070863 DOI: 10.3390/cancers17091395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/14/2025] [Accepted: 04/19/2025] [Indexed: 05/15/2025] Open
Abstract
Background/Objectives: RNA-modifying proteins play a crucial role in the progression of cancer. The fat mass and obesity-associated protein (FTO) and alkB homolog 5 RNA demethylase (ALKBH5) are RNA-demethylating proteins that have contrasting effects in renal cell carcinoma (RCC) among different populations. This research investigates the genotype and expression levels of FTO and ALKBH5 in RCC patients from the Middle East and Northern Africa (MENA) region. Methods: Formalin-fixed paraffin-embedded samples from the kidney biopsies of RCC patients and controls were examined using targeted DNA sequencing, whole transcriptome profiling, and immunohistochemistry. Results: Our findings show that the rs11075995T variant in FTO is associated with a heightened risk of clear-cell RCC (ccRCC). ALKBH5 and FTO protein expression were significantly lower in ccRCC and chromophobe RCC (chRCC) patients but not in papillary RCC (pRCC) patients. In ccRCC, transcriptomic data revealed a significant downregulation of FTO (log2FC = -5.2, q < 0.001) and ALKBH5 (log2FC = -4.7, q < 0.001) compared to controls. A significant negative correlation was found in ccRCC between FTO expression and T allele frequency in rs11075995, suggesting that FTO expression is affected. Conclusions: This is the first demonstration of the association of the dysregulated expression of FTO and ALKBH5 in ccRCC and chRCC patients from the MENA region. FTO variant rs11075995T increased the risk of ccRCC and was negatively associated with FTO protein expression.
Collapse
Affiliation(s)
- Muna Abdalla Alhammadi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (M.A.A.); (B.Y.I.); (P.M.B.); (A.B.); (N.A.); (R.S.A.); (A.M.H.)
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Burcu Yener Ilce
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (M.A.A.); (B.Y.I.); (P.M.B.); (A.B.); (N.A.); (R.S.A.); (A.M.H.)
| | - Poorna Manasa Bhamidimarri
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (M.A.A.); (B.Y.I.); (P.M.B.); (A.B.); (N.A.); (R.S.A.); (A.M.H.)
| | - Amal Bouzid
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (M.A.A.); (B.Y.I.); (P.M.B.); (A.B.); (N.A.); (R.S.A.); (A.M.H.)
| | - Nival Ali
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (M.A.A.); (B.Y.I.); (P.M.B.); (A.B.); (N.A.); (R.S.A.); (A.M.H.)
| | - Reem Sami Alhamidi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (M.A.A.); (B.Y.I.); (P.M.B.); (A.B.); (N.A.); (R.S.A.); (A.M.H.)
| | - Alaa Mohamed Hamad
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (M.A.A.); (B.Y.I.); (P.M.B.); (A.B.); (N.A.); (R.S.A.); (A.M.H.)
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates
| | - Mona Mahfood
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (M.M.); (A.T.)
| | - Abdelaziz Tlili
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (M.M.); (A.T.)
- Human Genetics and Stem Cell Research Group, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Iman M. Talaat
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (M.A.A.); (B.Y.I.); (P.M.B.); (A.B.); (N.A.); (R.S.A.); (A.M.H.)
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| | - Rifat Hamoudi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (M.A.A.); (B.Y.I.); (P.M.B.); (A.B.); (N.A.); (R.S.A.); (A.M.H.)
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London NW3 2PS, UK
- Center of Excellence for Precision Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Biomedically Informed Artificial Intelligence Laboratory (BIMAI-Lab), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| |
Collapse
|
2
|
Luo R, Liu H, Duan X, Hu X, Li X, Zuo Y. Intraoperative dexmedetomidine and acute kidney injury in paediatric noncardiac surgery: a retrospective propensity score-matched analysis. Br J Anaesth 2025; 134:453-460. [PMID: 39668054 DOI: 10.1016/j.bja.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 09/20/2024] [Accepted: 10/14/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND Paediatric acute kidney injury (AKI) is common and linked to longer hospitalisation and mortality. We investigated whether a continuous intraoperative infusion of dexmedetomidine, which increases renal blood flow, was associated with a lower risk of postoperative AKI in paediatric patients undergoing noncardiac surgery. METHODS This retrospective cohort study included paediatric patients undergoing noncardiac surgery between January 2019 and July 2021. Propensity score matching, based on the participants' baseline characteristics, was used to minimise the potential bias. The primary outcome was AKI within 7 days after surgery. The secondary outcomes included ICU admission, in-hospital mortality, length of hospitalisation, intraoperative bradycardia, and hypotension. The exposure of interest was continuous intraoperative infusion of dexmedetomidine at any dosage or duration. Multivariable logistic regression and linear regression analyses were further used to adjust for residual imbalanced intraoperative factors in the matched cohort. RESULTS After propensity score matching, we identified 1858/4091 paediatric patients who had received intraoperative dexmedetomidine infusion. Intraoperative dexmedetomidine infusion was associated with a lower risk of AKI (1.4% vs 3.2%; odds ratio 0.43, 95% confidence interval 0.27-0.66; P<0.001), postoperative ICU admission (odds ratio 0.35, 95% confidence interval 0.30-0.42; P<0.001), and shorter hospitalisation (7 [5-10] vs 9 [6-13] days; P<0.001). Intraoperative bradycardia, hypotension, and in-hospital mortality were similar between the matched groups. CONCLUSIONS This retrospective analysis of a single-centre paediatric noncardiac surgery cohort suggests that intraoperative dexmedetomidine infusion was associated with a lower incidence of AKI within 7 days after surgery. CLINICAL TRIAL REGISTRATION ChiCTR2300069115.
Collapse
Affiliation(s)
- Rong Luo
- Department of Anaesthesiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Anaesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anaesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Haibei Liu
- Department of Anaesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoya Duan
- Department of Anaesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojun Hu
- Department of Anaesthesiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Anaesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anaesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xuehan Li
- Department of Anaesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yunxia Zuo
- Department of Anaesthesiology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Wang D, Wang J, Yang L, Wang X, Huang S. Dexmedetomidine plays a protective role in sepsis-associated myocardial injury by repressing PRMT5-mediated ferroptosis. Toxicol Res (Camb) 2025; 14:tfaf010. [PMID: 39902345 PMCID: PMC11787764 DOI: 10.1093/toxres/tfaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/26/2024] [Accepted: 01/16/2025] [Indexed: 02/05/2025] Open
Abstract
Sepsis rapidly contributed to multiorgan failure, most typically damaging the cardiovascular system, and there were no effective treatments. Dexmedetomidine (Dex) has good therapeutic effects on sepsis-induced organ injury. Our work aimed to probe the pharmacological effects of Dex on ferroptosis in sepsis-associated myocardial injury (S-MI) and define underlying mechanism of action. Cardiomyocytes were exposed to lipopolysaccharide (LPS) for mimicking S-MI model in vitro. The septic mice were constructed by cecum ligation and puncture operation. The mRNA and protein expressions were assessed using quantitative real-time polymerase chain reaction or western blot. Cell survival was determined by cell counting kit-8, lactic dehydrogenase release, and flow cytometry assays. 2',7'-Dichlorodihydrofluorescein diacetate staining measured cellular reactive oxygen species level. The secretion levels of inflammatory cytokines, ferroptosis-related indicators were analyzed by enzyme-linked immunosorbent assay. The N6-methyladenosine (m6A) modification level of protein arginine methyltransferase 5 (PRMT5) mRNA was examined by methylated RNA binding protein immunoprecipitation (Me-RIP) assay. The interaction between methyltransferase like 3 (METTL3)/fat mass and obesity-associated protein (FTO) and PRMT5 was analyzed by RNA immunoprecipitation assay. Dex treatment alleviated LPS-induced cardiomyocyte injury and ferroptosis, while these effects of Dex were reversed by Erastin treatment. Mechanically, Dex ameliorated PRMT5 expression in LPS-induced cardiomyocytes by regulating METTL3/FTO catalyzed m6A modification on PRMT5 mRNA. Rescue experiments confirmed that PRMT5 overexpression abolished Dex-mediated inhibitory roles on LPS-induced cardiomyocyte injury and ferroptosis. Moreover, Dex administration alleviated inflammation, ferroptosis, and myocardial injury in septic mice. Taken together, Dex repressed PMRT5 expression in a m6A-dependent manner, thus lightening LPS-triggered ferroptosis to alleviate cardiomyocyte injury.
Collapse
Affiliation(s)
- Dan Wang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Furong District, Changsha, Hunan Province 410011, P.R. China
| | - Jun Wang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Furong District, Changsha, Hunan Province 410011, P.R. China
| | - Li Yang
- Department of Neurology, The Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Furong District, Changsha, Hunan Province 410011, P.R. China
| | - Xin Wang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Furong District, Changsha, Hunan Province 410011, P.R. China
| | - Sijian Huang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, No. 139 Middle Renmin Road, Furong District, Changsha, Hunan Province 410011, P.R. China
| |
Collapse
|
4
|
Fang M, Ye L, Zhu Y, Huang L, Xu S. M6A Demethylase ALKBH5 in Human Diseases: From Structure to Mechanisms. Biomolecules 2025; 15:157. [PMID: 40001461 PMCID: PMC11853652 DOI: 10.3390/biom15020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/05/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
N6-methyladenosine (m6A) is the most abundant, dynamically reversible, and evolutionarily conserved internal chemical modification in eukaryotic RNA. It is emerging as critical for regulating gene expression at the post-transcriptional level by affecting RNA metabolism through, for example, pre-mRNA processing, mRNA decay, and translation. ALKBH5 has recently been identified as an endogenous m6A demethylase implicated in a multitude of biological processes. This review provides an overview of the structural and functional characteristics of ALKBH5 and the involvement of ALKBH5 in diverse human diseases, including metabolic, immune, reproductive, and nervous system disorders, as well as the development of inhibitors. In summation, this review highlights the current understanding of the structure, functions, and detailed mechanisms of ALKBH5 in various physiological and pathological processes and provides valuable insights for clinical applications and foundational research within related fields.
Collapse
Affiliation(s)
| | | | | | | | - Shun Xu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Songshan Lake, Dongguan 523808, China; (M.F.); (L.Y.); (Y.Z.); (L.H.)
| |
Collapse
|
5
|
Ye C, Huang X, Tong Y, Chen Y, Zhao X, Xie W, Wang Y, Wang J, Zhang A, Mo Y. Overexpression of ALKBH5 alleviates LPS induced neuroinflammation via increasing NFKBIA. Int Immunopharmacol 2025; 144:113598. [PMID: 39571266 DOI: 10.1016/j.intimp.2024.113598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/13/2024] [Accepted: 11/06/2024] [Indexed: 12/15/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is a serious condition in which the immune system uncontrollably responds to infection, causing organ dysfunction. Neuroinflammation is one of the primary mechanisms underlying SAE. N6-methyladenosine (m6A) methylation is a common and reversible chemical modification of RNA molecules. Increasing evidence suggests that this modification plays a vital role in the inflammatory immune response. AlkB homolog 5 (ALKBH5) is an enzyme responsible for removing m6A modifications from RNA molecules and is known as a demethylase. However, the specific role of ALKBH5 in neuroinflammation remains unclear. To explore the role of ALKBH5 in neuroinflammation, researchers have used lipopolysaccharide (LPS) to induce inflammation in BV2 cells and mice. This study found that treatment of BV2 cells with LPS (1 μg/mL) significantly increased the total RNA m6A level and the ALKBH5 protein decreased significantly. Meanwhile, the NF-κB inflammatory signaling pathway was activated, leading to an obvious increase in IL-1β, IL-6, and TNF-α mRNA. The LPS-induced inflammatory response was alleviated when ALKBH5 was overexpressed in BV2 cells. This is due to a slower degradation rate of NFKBIA mRNA, an increase in NFKBIA protein levels, and inhibition of the NF-κB inflammatory signal pathway. When ALKBH5 was overexpressed in mice, as expected, there was an improvement in behavioral abnormalities induced by LPS. Compared to healthy volunteers, ALKBH5 mRNA levels were significantly decreased in peripheral blood mononuclear cells (PBMCs) from patients with sepsis and correlated with GCS and IL-6 levels. In summary, this study suggested that ALKBH5 is a potential therapeutic target for enhancing NFKBIA mRNA stability and alleviating neuroinflammation. Thus, ALKBH5 may provide new insights into the diagnosis and treatment of SAE.
Collapse
Affiliation(s)
- Changzhou Ye
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, China
| | | | - Yao Tong
- Wenzhou Medical University, China
| | | | - Xinyu Zhao
- Zhejiang Provincial People's Hospital, China
| | - Wenjing Xie
- The First People's Hospital of Yuhang District, Hangzhou, China
| | | | - Junlu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, China
| | - Anqi Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, China
| | - Yunchang Mo
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, China
| |
Collapse
|
6
|
Zhao X, Liang Z, Zhao W, Tao Y, Hao Y, Liu Y, Wang J, Yu J, Ji H, Jiang H, Xu S, Gu J, Yuan Y, Du Z. ALKBH5 deletion ameliorates inflammation by regulating IRF3 signaling in an m 6A-dependent manner after myocardial infarction. Biochem Biophys Res Commun 2025; 742:151039. [PMID: 39642705 DOI: 10.1016/j.bbrc.2024.151039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/03/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024]
Abstract
AlkB homolog 5 (ALKBH5) plays an important role in ischemia/reperfusion (I/R), cardiac hypertrophy and other cardiovascular diseases (CVDs). However, whether ALKBH5 regulates the inflammatory response by mediating M1/M2 macrophage conversion after myocardial infarction (MI) is unclear. In this study, we found that ALKBH5 protein expression was significantly downregulated in MI mice. To investigate the role of ALKBH5 in the inflammatory response after MI, we assessed the expression of interleukin-6 (Il-6), interleukin-1β (Il-1β), tumor necrosis factor-α (Tnf-α) and interferon-Ⅰ (Ifn-Ⅰ) by qRT‒PCR and found that ALKBH5 knockout improved cardiac function, reduced pro-inflammatory cytokine release and decreased cardiomyocyte apoptosis. In addition, the knockdown of ALKBH5 significantly inhibited the release of pro-inflammatory cytokines and the migration of RAW264.7 macrophages treated with lipopolysaccharide (LPS). Mechanistically, our results suggested that ALKBH5 potentially recognized the m6A binding site on interferon regulatory factor 3 (IRF3) and regulated the IRF3 expression to influence macrophage M1/M2 phenotypic transition and inflammatory cytokine release. In conclusion, our results indicated that ALKBH5 ablation inhibited inflammation by regulating the transcription of IRF3. This study provides new insights into the clinical management of the inflammatory response after MI.
Collapse
Affiliation(s)
- Xiuye Zhao
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (National Key Laboratory of Frigid Cardiovascular Disease), 150081, Harbin, China
| | - Zhen Liang
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (National Key Laboratory of Frigid Cardiovascular Disease), 150081, Harbin, China
| | - Wei Zhao
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (National Key Laboratory of Frigid Cardiovascular Disease), 150081, Harbin, China
| | - Yiping Tao
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (National Key Laboratory of Frigid Cardiovascular Disease), 150081, Harbin, China
| | - Yan Hao
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (National Key Laboratory of Frigid Cardiovascular Disease), 150081, Harbin, China
| | - Yunqi Liu
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (National Key Laboratory of Frigid Cardiovascular Disease), 150081, Harbin, China
| | - Jiapan Wang
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (National Key Laboratory of Frigid Cardiovascular Disease), 150081, Harbin, China
| | - Jie Yu
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (National Key Laboratory of Frigid Cardiovascular Disease), 150081, Harbin, China
| | - Hongyu Ji
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (National Key Laboratory of Frigid Cardiovascular Disease), 150081, Harbin, China
| | - Huiwei Jiang
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (National Key Laboratory of Frigid Cardiovascular Disease), 150081, Harbin, China
| | - Silun Xu
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (National Key Laboratory of Frigid Cardiovascular Disease), 150081, Harbin, China
| | - Jintao Gu
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (National Key Laboratory of Frigid Cardiovascular Disease), 150081, Harbin, China
| | - Ye Yuan
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (National Key Laboratory of Frigid Cardiovascular Disease), 150081, Harbin, China
| | - Zhimin Du
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (National Key Laboratory of Frigid Cardiovascular Disease), 150081, Harbin, China; State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, 999078, Macau, China.
| |
Collapse
|
7
|
Huang J, Zhao Y, Luo X, Luo Y, Ji J, Li J, Lai J, Liu Z, Chen Y, Lin Y, Liu J. Dexmedetomidine inhibits ferroptosis and attenuates sepsis-induced acute kidney injury via activating the Nrf2/SLC7A11/FSP1/CoQ10 pathway. Redox Rep 2024; 29:2430929. [PMID: 39581576 PMCID: PMC11587839 DOI: 10.1080/13510002.2024.2430929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
OBJECTIVES The molecular mechanism underlying the protective effects of DEX against sepsis-induced acute kidney injury (SAKI) remains to be elucidated. METHODS We established S-AKI models in vivo via CLP and in vitro with LPS-induced HK-2 cells. RESULTS The Nrf2/SLC7A11/FSP1/CoQ10 pathway was inhibited in S-AKI both in vitro and in vivo. The overexpression of Nrf2 inhibited LPS-induced ferroptosis by activating the SLC7A11/FSP1/CoQ10 pathway. DEX ameliorated kidney tissue damage, as determined by a decrease in BUN, Cr, and inflammatory factor levels, along with renal tubule vacuolation and inflammatory cell infiltration in S-AKI mice. Additionally, DEX treatment significantly ameliorated ferroptosis in S-AKI in vitro and in vivo, as indicated by an improvement in mitochondrial shrinkage and disruption of cristae, a decrease in iron, ROS, MDA, and 4-HNE levels, and an increase in GSH and GPX4 levels. Mechanistically, DEX treatment restored the reduction of Nrf2 expression and nuclear translocation in S-AKI, as well as, the levels of downstream SLC7A11, FSP1, and CoQ10. Knocking down Nrf2 in vitro and administering brusatol in vivo eliminated the protective effect of DEX against S-AKI. CONCLUSIONS DEX mitigated ferroptosis and attenuated S-AKI by activating the Nrf2/SLC7A11/FSP1/CoQ10 pathway. Abbreviation: CLP: Cecal ligation puncture; LPS: Lipopolysaccharide; Nrf2: Nuclear factor-erythroid- 2-related factor 2; SLC7A11: Solute carrier family 7 member 11; FSP1: Ferroptosis suppressor protein 1; CoQ10: Coenzyme Q10; BUN: Blood urea nitrogen; Cr: Serum creatinine; ROS: Reactive oxygen species; MDA: Malondialdehyde; 4-HNE: 4-hydroxynonenal; GSH: Hlutathione; GPX4: Glutathione peroxidase 4.
Collapse
Affiliation(s)
- Jiao Huang
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Yang Zhao
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People’s Republic of China
| | - Xi Luo
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Yunpeng Luo
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, Guiyang, People’s Republic of China
| | - Jiemei Ji
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Jia Li
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Jian Lai
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Ziru Liu
- Department of Anesthesiology, Yueyang Central Hospital, Yueyang, People’s Republic of China
| | - Yuanyuan Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Yunan Lin
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Jingchen Liu
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| |
Collapse
|
8
|
Zhao HH, Chen CL, Chen FF, Zhang LL, Li MM, He ZB. Molecular mechanism of ALKBH5-mediated m6A demethylation regulating lipopolysaccharide-induced epithelial-mesenchymal transition in sepsis-induced acute kidney injury. Kaohsiung J Med Sci 2024; 40:985-995. [PMID: 39287046 DOI: 10.1002/kjm2.12892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
This study explored the mechanism by which the m6A demethylase ALKBH5 mediates epithelial-mesenchymal transition (EMT) in sepsis-associated acute kidney injury (SA-AKI) and AKI-chronic kidney disease (CKD) transition. HK-2 cells were stimulated with lipopolysaccharide (LPS) to establish an in vitro model of SA-AKI. ALKBH5 expression was reduced through the transfection of si-ALKBH5. Cell viability, apoptosis, and migration were detected by CCK-8 assay, TUNEL staining, and Transwell. The levels of TNF-α, IL-1β, and IL-6 were measured by enzyme-linked immunosorbent assay. Quantitative real-time polymerase chain reaction or Western blotting was performed to determine the expressions of ALKBH5, miR-205-5p, DDX5, E-cadherin, and α-SMA. The m6A level was quantitatively analyzed. The expression of pri-miR-205 bound to DGCR8 and m6A-modified pri-miR-205 after intervention with ALKBH5 expression was detected by RNA immunoprecipitation. A dual-luciferase assay confirmed the binding between miR-205-5p and DDX5. ALKBH5 was highly expressed in LPS-induced HK-2 cells. Inhibition of ALKBH5 increased cell viability, repressed apoptosis, and reduced EMT. Inhibition of ALKBH5 increased the m6A modification level, thereby promoting DGCR8 binding to pri-miR-205 to increase miR-205-5p expression and eventually targeting DDX5 expression. Low expression of miR-205-5p or overexpression of DDX5 partially abolished the inhibitory effect of ALKBH5 silencing on EMT. In conclusion, ALKBH5 represses miR-205-5p expression by removing m6A modification to upregulate DDX5 expression, thereby promoting EMT and AKI-CKD transition after SA-AKI.
Collapse
Affiliation(s)
- Hai-Hong Zhao
- Department of Infectious Diseases, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
- Department of Infectious Diseases, Enze Hospital, Taizhou Enze Medical Center (Group), Taizhou, China
| | - Chun-Ling Chen
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| | - Fen-Fang Chen
- Department of Infectious Diseases, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
- Department of Infectious Diseases, Enze Hospital, Taizhou Enze Medical Center (Group), Taizhou, China
| | - Lu-Lu Zhang
- Department of Infectious Diseases, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
- Department of Infectious Diseases, Enze Hospital, Taizhou Enze Medical Center (Group), Taizhou, China
| | - Mei-Mei Li
- Department of Infectious Diseases, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
- Department of Infectious Diseases, Enze Hospital, Taizhou Enze Medical Center (Group), Taizhou, China
| | - Ze-Bao He
- Department of Infectious Diseases, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
- Department of Infectious Diseases, Enze Hospital, Taizhou Enze Medical Center (Group), Taizhou, China
| |
Collapse
|
9
|
Tang XY, Shu ZH, Zhao PC, Wei W, Fan CL, Yao ZH, Yao XS, Dai Y. A novel strategy with in vivo characterization, extraction, isolation and activity evaluation for discovery of absorbed anti-inflammatory oligosaccharides from Zhu-Ling decoction. Carbohydr Polym 2024; 342:122422. [PMID: 39048245 DOI: 10.1016/j.carbpol.2024.122422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
Zhu-Ling decoction (ZLD), a classical traditional Chinese medicine (TCM) formula, is used for the treatment of chronic kidney diseases. However, the structure and activity of absorbed oligosaccharides (OSs) in ZLD are not clear. In this study, a novel strategy with in vivo characterization, extraction, isolation, activity evaluation was established and applied to identify absorbed anti-inflammatory OSs in ZLD. The results revealed that 30 OSs (22 reducing and 8 non-reducing OSs) and 11 OSs (7 reducing and 4 non-reducing OS) were characterized from ZLD in vitro and in vivo by using UPLC/Q-TOF-MS with PMP derivatization, respectively. Among them, a series of -1 → 3-β-D-Glcp-OSs were isolated and identified by HPLC-HILIC-UVD-ELSD, SPHPLC-HILIC-RID, monosaccharide composition, MS and 1D/2D-NMR spectroscopy, including laminaritriose, laminaritetraose, laminaripentaose, laminarihexaose, laminariheptaose, laminarioctaose and laminarinonaose. Moreover, the 4 non-reducing absorbed OSs were identified by comparison with reference standards, including sucrose, trehalose, raffinose and stachyose. Among them, laminaritriose, laminaritetraose and laminaripentaose significantly inhibited TNF-α and IL-6 levels in LPS-induced HK-2 cell and exerted significant anti-inflammatory effects via the NF-κB and Akt/mTOR signaling pathways. Together, our work provides a novel strategy for discovery of absorbed anti-inflammatory OSs and broadens new horizons for the discovery of in vivo pharmacodynamic substances in TCM formulas.
Collapse
Affiliation(s)
- Xi-Yang Tang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, PR China
| | - Zhi-Heng Shu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, PR China
| | - Peng-Cheng Zhao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, PR China
| | - Wen Wei
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, PR China
| | - Cai-Lian Fan
- College of Medicine, Henan Engineering Research Center of Funiu Mountain's Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan, Henan 467000, PR China..
| | - Zhi-Hong Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, PR China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, PR China
| | - Yi Dai
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
10
|
Jiang X, Yan F, Geng Y, Cheng X, Zhang S, Zhao T, Guo J, Dai Z, Gao J, Yue X, Zhao M, Zhu L. ALKBH5 deficiency attenuates oxygen-glucose deprivation-induced injury in mouse brain microvascular endothelial cells in an m6A dependent manner. Exp Neurol 2024; 380:114910. [PMID: 39098715 DOI: 10.1016/j.expneurol.2024.114910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
Structural and functional alterations in brain microvascular endothelial cells (BMECs) caused by oxygen-glucose deprivation (OGD) are involved in the pathogenesis of various brain disorders. AlkB homolog 5 (ALKBH5) is a primary m6A demethylase that regulates various cell processes, but its distinct roles in BMEC function remain to be clarified. In the present study, in mouse middle cerebral artery occlusion (MCAO) model, knockout of ALKBH5 reduced neurological deficits, infarct volumes and tissue apoptosis caused by ischemia/reperfusion injury. Evans blue leakage and decreased expression of the tight junction protein ZO-1 and Occludin were also attenuated by ALKBH5 knockout. During the exploration of the underlying mechanisms of the role of ALKBH5 in BMECs, we found that the expression of ALKBH5 was induced at both the mRNA and protein levels by hypoxia; however, its protein stability was impaired by OGD treatment. Knockdown of ALKBH5 expression increased total m6A levels and alleviated OGD-induced BMEC injury. At the same time, the selective ALKBH5 inhibitor Cpd 20m also exhibited a protective effect on cell injury. In contrast, overexpression of ALKBH5 increased the sensitivity of BMECs to OGD. Interestingly, the m6A sequencing data revealed that knockdown of ALKBH5altered the expression of many genes via m6A upregulation. The gene expression alterations were verified by real-time PCR. Taken together, our results suggest that ALKBH5, as well as its target genes, plays important roles in the regulation of brain microvascular endothelial cell function through its RNA demethylase activity.
Collapse
Affiliation(s)
- Xiufang Jiang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Feng Yan
- Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yanan Geng
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiang Cheng
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Shaojie Zhang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China; Chinese PLA Medical School, Beijing 100853, China
| | - Tong Zhao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Jianjun Guo
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Zhonghua Dai
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Jiayue Gao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiangpei Yue
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Ming Zhao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Lingling Zhu
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China; School of Pharmaceutical Sciences, University of South China, Hengyang 421001, China.
| |
Collapse
|
11
|
Zeng H, Xu J, Wu R, Wang X, Jiang Y, Wang Q, Guo J, Xiao F. FTO alleviated ferroptosis in septic cardiomyopathy via mediating the m6A modification of BACH1. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167307. [PMID: 38897256 DOI: 10.1016/j.bbadis.2024.167307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/28/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Sepsis is a global health challenge that results in systemic inflammation, oxidative stress, and multi-organ dysfunction, with the heart being particularly susceptible. This study aimed to elucidate the effect of FTO, a key regulator in m6A methylation in septic cardiomyopathy, and its potential therapeutic implications. Cellular and animal models of septic myocardial injury were established. Moreover, it was revealed that ferroptosis, which is a form of programmed necrosis occurring with iron dependence, was activated within cardiomyocytes during septic conditions. The overexpression of FTO-suppressed ferroptosis alleviated heart inflammation and dysfunction and improved survival rates in vivo. However, the protective effects of FTO were attenuated by the overexpression of BACH1, which is a molecule negatively correlated with FTO. Mechanistically, FTO modulated the m6A modification of BACH1, suggesting a complex interplay in the regulation of cardiomyocyte damage and sepsis. Our findings reveal the potential of targeting the FTO/BACH1 axis and ferroptosis inhibitors as therapeutic strategies for sepsis-induced cardiac injuries.
Collapse
Affiliation(s)
- Hua Zeng
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Junmei Xu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Rui Wu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xin Wang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yaqing Jiang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Qing Wang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jiali Guo
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Feng Xiao
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
12
|
Xiao F, Yao H, Qian J, Huang J, Xia G. Dexmedetomidine improves mitophagy and pyroptosis through the ALKBH5/FUNDC1 axis during epidural-related maternal fever. Adv Med Sci 2024; 69:272-280. [PMID: 38815927 DOI: 10.1016/j.advms.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/30/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
PURPOSE Epidural analgesia has emerged as a commonly used method for relieving labor pain. However, epidural-related maternal fever (ERMF) is characterized by a high occurrence rate and can have detrimental consequences for the well-being of both the mother and the fetus. This study aimed to investigate the functional role and underlying mechanism of dexmedetomidine (DEX) in ERMF. MATERIALS AND METHODS Ropivacaine (ROP)-induced human umbilical vein endothelial cells (HUVECs) were treated with DEX and/or transfected with ALKBH5 or FUNDC1 overexpression plasmid. qPCR and Western blot were adopted for mitophagy and pyroptosis marker protein detection. Autophagosomes were observed through electron microscopy, Caspase-1/PI double-positive cells were determined using flow cytometry. Inflammation-related factors were quantified using ELISA. The N6-methyladenosine (m6A) modification of FUNDC1 mRNA was examined using methylated RNA immunoprecipitation (MeRIP) and the binding between ALKBH5 and FUNDC1 mRNA was confirmed by RNA immunoprecipitation (RIP). RESULTS In ROP-induced HUVECs, there was a significant upregulation in ALKBH5 and FUNDC1, resulting in a notable increase in inflammation, pyroptosis, and mitophagy. The administration of DEX demonstrated the ability to alleviate ROP-induced pyroptosis and promote protective mitophagy. Interestingly, DEX treatment significantly reduced the interaction between ALKBH5 and FUNDC1 mRNA, while simultaneously increasing the m6A level of FUNDC1 mRNA in ROP-treated cells. Moreover, the overexpression of FUNDC1 partially reversed the effects of ALKBH5 overexpression on mitophagy and pyroptosis in HUVECs. CONCLUSIONS DEX can promote mitophagy and inhibit pyroptosis through the ALKBH5/FUNDC1 axis in ERMF, indicating its potential as a therapeutic strategy for clinical ERMF treatment.
Collapse
Affiliation(s)
- Fei Xiao
- Department of Anesthesia, Jiaxing University Affiliated Women and Children Hospital, Jiaxing, Zhejiang Province, PR China
| | - Hanqing Yao
- Department of Anesthesia, Jiaxing University Affiliated Women and Children Hospital, Jiaxing, Zhejiang Province, PR China
| | - Jing Qian
- Department of Anesthesia, Jiaxing University Affiliated Women and Children Hospital, Jiaxing, Zhejiang Province, PR China
| | - Jiayue Huang
- Department of Anesthesia, Jiaxing University Affiliated Women and Children Hospital, Jiaxing, Zhejiang Province, PR China
| | - Guangfa Xia
- Department of Breast Surgery, Jiaxing University Affiliated Women and Children Hospital, Jiaxing, Zhejiang Province, PR China.
| |
Collapse
|
13
|
Zhu L, Zhang H, Zhang X, Xia L. RNA m6A methylation regulators in sepsis. Mol Cell Biochem 2024; 479:2165-2180. [PMID: 37659034 DOI: 10.1007/s11010-023-04841-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
N6-methyladenosine (m6A) modification is a class of epitope modifications that has received significant attention in recent years, particularly in relation to its role in various diseases, including sepsis. Epigenetic research has increasingly focused on m6A modifications, which is influenced by the dynamic regulation of three protein types: ‟Writers" (such as METTL3/METTL14/WTAP)-responsible for m6A modification; ‟Erasers" (FTO and ALKBH5)-involved in m6A de-modification; and ‟Readers" (YTHDC1/2, YTHDF1/2/3)-responsible for m6A recognition. Sepsis, a severe and fatal infectious disease, has garnered attention regarding the crucial effect of m6A modifications on its development. In this review, we attempted to summarize the recent studies on the involvement of m6A and its regulators in sepsis, as well as the significance of m6A modifications and their regulators in the development of novel drugs and clinical treatment. The potential value of m6A modifications and modulators in the diagnosis, treatment, and prognosis of sepsis has also been discussed.
Collapse
Affiliation(s)
- Lin Zhu
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Hairong Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Third Hospital, Jinan, 250031, People's Republic of China.
| | - Xiaoyu Zhang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Lei Xia
- Department of Pathology, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China.
| |
Collapse
|
14
|
Liao Z, Wang J, Xu M, Li X, Xu H. The role of RNA m6A demethylase ALKBH5 in the mechanisms of fibrosis. Front Cell Dev Biol 2024; 12:1447135. [PMID: 39220683 PMCID: PMC11362088 DOI: 10.3389/fcell.2024.1447135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
ALKBH5 is one of the demethylases involved in the regulation of RNA m6A modification. In addition to its role in the dynamic regulation of RNA m6A modification, ALKBH5 has been found to play important roles in various tissues fibrosis processes in recent years. However, the mechanisms and effects of ALKBH5 in fibrosis have been reported inconsistently. Multiple cell types, including parenchymal cells, immune cells (neutrophils and T cells), macrophages, endothelial cells, and fibroblasts, play roles in various stages of fibrosis. Therefore, this review analyzes the mechanisms by which ALKBH5 regulates these cells, its impact on their functions, and the outcomes of fibrosis. Furthermore, this review summarizes the role of ALKBH5 in fibrotic diseases such as pulmonary fibrosis, liver fibrosis, cardiac fibrosis, and renal fibrosis, and discusses various ALKBH5 inhibitors that have been discovered to date, exploring the potential of ALKBH5 as a clinical target for fibrosis.
Collapse
Affiliation(s)
| | | | | | - Xiaoyan Li
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongming Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Wang R, Liang J, Wang Q, Zhang Y, Lu Y, Zhan X, Wang S, Gu Q. m6A mRNA methylation-mediated MAPK signaling modulates the nasal mucosa inflammatory response in allergic rhinitis. Front Immunol 2024; 15:1344995. [PMID: 39011034 PMCID: PMC11246857 DOI: 10.3389/fimmu.2024.1344995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/10/2024] [Indexed: 07/17/2024] Open
Abstract
Background Allergic rhinitis (AR) is a complex disease in which gene-environment interactions contribute to its pathogenesis. Epigenetic modifications, such as N6-methyladenosine (m6A) modification of mRNA, play important roles in regulating gene expression in multiple physiological and pathological processes. However, the function of m6A modification in AR and the inflammatory response is poorly understood. Methods We used the ovalbumin (OVA) and aluminum hydroxide to induce an AR mouse model. Nasal symptoms, histopathology, and serum cytokines were examined. We performed combined m6A and RNA sequencing to analyze changes in m6A modification profiles. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and methylated RNA immunoprecipitation sequencing qPCR (MeRIP-qPCR) were used to verify differential methylation of mRNAs and the m6A methylation level. Knockdown or inhibition of Alkbh5 in nasal mucosa of mice was mediated by lentiviral infection or IOX1 treatment. Results We showed that m6A was enriched in a group of genes involved in MAPK signaling pathway. Moreover, we identified a MAPK pathway involving Map3k8, Erk2, and Nfκb1 that may play a role in the disrupted inflammatory response associated with nasal inflammation. The m6A eraser, Alkbh5, was highly expressed in the nasal mucosa of AR model mice. Furthermore, knockdown of Alkbh5 expression by lentiviral infection resulted in high MAPK pathway activity and a significant nasal mucosa inflammatory response. Our findings indicate that ALKBH5-mediated m6A dysregulation likely contributes to a nasal inflammatory response via the MAPK pathway. Conclusion Together, our data show that m6A dysregulation mediated by ALKBH5, is likely to contribute to inflammation of the nasal mucosa via the MAPK signaling pathway, suggesting that ALKBH5 is a potential biomarker for AR treatment.
Collapse
Affiliation(s)
- Ruikun Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
- Capital Institute of Pediatrics, Peking University Teaching Hospital, Beijing, China
| | - Jieqiong Liang
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Qian Wang
- Graduate School of Peking Union Medical College, Capital Institute of Pediatrics, Beijing, China
| | - Yiming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Yingxia Lu
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Xiaojun Zhan
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Qinglong Gu
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
16
|
Ge Y, Chen R, Ling T, Liu B, Huang J, Cheng Y, Lin Y, Chen H, Xie X, Xia G, Luo G, Yuan S, Xu A. Elevated WTAP promotes hyperinflammation by increasing m6A modification in inflammatory disease models. J Clin Invest 2024; 134:e177932. [PMID: 39007267 PMCID: PMC11245160 DOI: 10.1172/jci177932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/15/2024] [Indexed: 07/16/2024] Open
Abstract
Emerging evidence has linked the dysregulation of N6-methyladenosine (m6A) modification to inflammation and inflammatory diseases, but the underlying mechanism still needs investigation. Here, we found that high levels of m6A modification in a variety of hyperinflammatory states are p65-dependent because Wilms tumor 1-associated protein (WTAP), a key component of the "writer" complex, is transcriptionally regulated by p65, and its overexpression can lead to increased levels of m6A modification. Mechanistically, upregulated WTAP is more prone to phase separation to facilitate the aggregation of the writer complex to nuclear speckles and the deposition of m6A marks on transcriptionally active inflammatory transcripts, thereby accelerating the proinflammatory response. Further, a myeloid deficiency in WTAP attenuates the severity of LPS-induced sepsis and DSS-induced IBD. Thus, the proinflammatory effect of WTAP is a general risk-increasing mechanism, and interrupting the assembly of the m6A writer complex to reduce the global m6A levels by targeting the phase separation of WTAP may be a potential and promising therapeutic strategy for alleviating hyperinflammation.
Collapse
Affiliation(s)
- Yong Ge
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Rong Chen
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Tao Ling
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Biaodi Liu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jingrong Huang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Youxiang Cheng
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Yi Lin
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Hongxuan Chen
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xiongmei Xie
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Guomeng Xia
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Guanzheng Luo
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shaochun Yuan
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Anlong Xu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
17
|
Gao X, Wu Y. Perioperative acute kidney injury: The renoprotective effect and mechanism of dexmedetomidine. Biochem Biophys Res Commun 2024; 695:149402. [PMID: 38159412 DOI: 10.1016/j.bbrc.2023.149402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Dexmedetomidine (DEX) is a highly selective and potent α2-adrenoceptor (α2-AR) agonist that is widely used as a clinical anesthetic to induce anxiolytic, sedative, and analgesic effects. In recent years, a growing body of evidence has demonstrated that DEX protects against acute kidney injury (AKI) caused by sepsis, drugs, surgery, and ischemia-reperfusion (I/R) in organs or tissues, indicating its potential role in the prevention and treatment of AKI. In this review, we summarized the evidence of the renoprotective effects of DEX on different models of AKI and explored the mechanism. We found that the renoprotective effects of DEX mainly involved antisympathetic effects, reducing inflammatory reactions and oxidative stress, reducing apoptosis, increasing autophagy, reducing ferroptosis, protecting renal tubular epithelial cells (RTECs), and inhibiting renal fibrosis. Thus, the use of DEX is a promising strategy for the management and treatment of perioperative AKI. The aim of this review is to further clarify the renoprotective mechanism of DEX to provide a theoretical basis for its use in basic research in various AKI models, clinical management, and the treatment of perioperative AKI.
Collapse
Affiliation(s)
- Xiong Gao
- Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yaohua Wu
- Department of Anesthesiology, Huanggang Central Hospital, Huanggang, Hube, China.
| |
Collapse
|
18
|
Qi S, Song J, Chen L, Weng H. The role of N-methyladenosine modification in acute and chronic kidney diseases. Mol Med 2023; 29:166. [PMID: 38066436 PMCID: PMC10709953 DOI: 10.1186/s10020-023-00764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
N6-methyladenosine (m6A) modification is a kind of RNA modification in which methylation occurs at the sixth N position in adenosine in RNA, which can occur in various RNAs such as mRNAs, lncRNAs and miRNAs. This is one of the most prominent and frequent posttranscriptional modifications within organisms and has been shown to function dynamically and reversibly in a variety of ways, including splicing, export, attenuation and translation initiation efficiency to regulate RNA expression. There are three main enzymes associated with m6A modification: writers, readers and erasers. Increasing evidence has shown that m6A modification is associated with the onset and development of kidney disease. In this article, we address the important physiological and pathological roles of m6A modification in kidney diseases (uremia, ischemia-reperfusion kidney injury, drug-induced kidney injury, and diabetic nephropathy) and its molecular mechanisms to provide reference for the diagnosis and clinical management of kidney diseases.
Collapse
Affiliation(s)
- Saiqi Qi
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, People's Republic of China
| | - Jie Song
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, People's Republic of China
| | - Linjun Chen
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, People's Republic of China.
| | - Huachun Weng
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, People's Republic of China.
| |
Collapse
|
19
|
Wang W, Wang H, Sun T. N 6-methyladenosine modification: Regulatory mechanisms and therapeutic potential in sepsis. Biomed Pharmacother 2023; 168:115719. [PMID: 37839108 DOI: 10.1016/j.biopha.2023.115719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection and is characterized by multiple biological and clinical features. N6-methyladenosine (m6A) modification is the most common type of RNA modifications in eukaryotes and plays an important regulatory role in various biological processes. Recently, m6A modification has been found to be involved in the regulation of immune responses in sepsis. In addition, several studies have shown that m6A modification is involved in sepsis-induced multiple organ dysfunctions, including cardiovascular dysfunction, acute lung injury (ALI), acute kidney injury (AKI) and etc. Considering the complex pathogenesis of sepsis and the lack of specific therapeutic drugs, m6A modification may be the important bond in the pathophysiological process of sepsis and even therapeutic targets. This review systematically highlights the recent advances regarding the roles of m6A modification in sepsis and sheds light on their use as treatment targets for sepsis.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Huaili Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Tongwen Sun
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, Henan, China.
| |
Collapse
|
20
|
Wang Q, Fan X, Sheng Q, Yang M, Zhou P, Lu S, Gao Y, Kong Z, Shen N, Lv Z, Wang R. N6-methyladenosine methylation in kidney injury. Clin Epigenetics 2023; 15:170. [PMID: 37865763 PMCID: PMC10590532 DOI: 10.1186/s13148-023-01586-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
Multiple mechanisms are involved in kidney damage, among which the role of epigenetic modifications in the occurrence and development of kidney diseases is constantly being revealed. However, N6-methyladenosine (M6A), a well-known post-transcriptional modification, has been regarded as the most prevalent epigenetic modifications in higher eukaryotic, which is involved in various biological processes of cells such as maintaining the stability of mRNA. The role of M6A modification in the mechanism of kidney damage has attracted widespread attention. In this review, we mainly summarize the role of M6A modification in the progression of kidney diseases from the following aspects: the regulatory pattern of N6-methyladenosine, the critical roles of N6-methyladenosine in chronic kidney disease, acute kidney injury and renal cell carcinoma, and then reveal its potential significance in the diagnosis and treatment of various kidney diseases. A better understanding of this field will be helpful for future research and clinical treatment of kidney diseases.
Collapse
Affiliation(s)
- Qimeng Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Xiaoting Fan
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Qinghao Sheng
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Meilin Yang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ping Zhou
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Shangwei Lu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ying Gao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Zhijuan Kong
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ning Shen
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
| |
Collapse
|
21
|
Xie W, Zhang A, Huang X, Zhou H, Ying H, Ye C, Ren M, Qian M, Liu X, Mo Y. SILENCING M 6 A READER YTHDC1 REDUCES INFLAMMATORY RESPONSE IN SEPSIS-INDUCED CARDIOMYOPATHY BY INHIBITING SERPINA3N EXPRESSION. Shock 2023; 59:791-802. [PMID: 36877222 DOI: 10.1097/shk.0000000000002106] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
ABSTRACT Sepsis-induced cardiomyopathy (SIC) is one of the most common complications of infection-induced sepsis. An imbalance in inflammatory mediators is the main factor leading to SIC . N 6 -methyladenosine (m 6 A) is closely related to the occurrence and development of sepsis. N 6 -methyladenosine reader YTH domain containing 1 (YTHDC1) is an m 6 A N 6 -methyladenosine recognition protein. However, the role of YTHDC1 in SIC remains unclear. Herein, we demonstrated that YTHDC1-shRNA inhibits inflammation, reduces inflammatory mediators, and improves cardiac function in a LPS-induced SIC mouse model. Based on the Gene Expression Omnibus database analysis, serine protease inhibitor A3N is a differential gene of SIC. Furthermore, RNA immunoprecipitation indicated that serine protease inhibitor A3N (SERPINA3N) mRNA can bind to YTHDC1, which regulates the expression of SERPINA3N. Serine protease inhibitor A3N-siRNA reduced LPS-induced inflammation of cardiac myocytes. In conclusion, the m 6 A reader YTHDC1 regulates SERPINA3N mRNA expression to mediate the levels of inflammation in SIC. Such findings add to the relationship between m 6 A reader YTHDC1 and SIC, providing a new research avenue for the therapeutic mechanism of SIC.
Collapse
Affiliation(s)
- Wenjing Xie
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Li F, Zhang Y, Peng Z, Wang Y, Zeng Z, Tang Z. Diagnostic, clustering, and immune cell infiltration analysis of m6A regulators in patients with sepsis. Sci Rep 2023; 13:2532. [PMID: 36781867 PMCID: PMC9925440 DOI: 10.1038/s41598-022-27039-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 12/23/2022] [Indexed: 02/15/2023] Open
Abstract
RNA N6-methladenosine (m6A) regulators are required for a variety of biological processes, including immune responses, and increasing evidence indicates that their dysregulation is closely associated with many diseases. However, the potential roles of m6A regulators in sepsis remain unknown. We comprehensively analyzed the transcriptional variations in and interactions of 26 m6A regulators in sepsis based on the Gene Expression Omnibus (GEO) database. A random forest (RF) model and nomogram were established to predict the occurrence and risk of sepsis in patients. Then, two different m6A subtypes were defined by consensus clustering analysis, and we explored the correlation between the subtypes and immune cells. We found that 17 of the 26 m6A regulators were significantly differentially expressed between patients with and without sepsis, and strong correlations among these 17 m6A regulators were revealed. Compared with the support vector machine (SVM) model, the RF model had better predictive ability, and therefore was used to construct a reliable nomogram containing 10 candidate m6A regulators to predict the risk of sepsis in patients. In addition, a consensus clustering algorithm was used to identify two different subtypes of m6A, which helped us distinguish different levels of immune cell infiltration and inflammation in patients with sepsis. Comprehensive analysis of m6A regulators in sepsis revealed their potential roles in sepsis occurrence, immune cell infiltration and inflammation in patients with sepsis. This study may contribute to the development of follow-up treatment strategies for sepsis.
Collapse
Affiliation(s)
- Fenghui Li
- Intensive Care Unit, Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong Province, China
| | - Yuan Zhang
- Intensive Care Unit, Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong Province, China
| | - Zhiyun Peng
- Intensive Care Unit, Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong Province, China
| | - Yingjing Wang
- Intensive Care Unit, Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong Province, China
| | - Zhaoshang Zeng
- Intensive Care Unit, Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong Province, China
| | - Zhongxiang Tang
- Intensive Care Unit, Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong Province, China.
| |
Collapse
|
23
|
Ni WJ, Lu H, Ma NN, Hou BB, Zeng J, Zhou H, Shao W, Meng XM. RNA N 6 -methyladenosine modifications and potential targeted therapeutic strategies in kidney disease. Br J Pharmacol 2023; 180:5-24. [PMID: 36196023 DOI: 10.1111/bph.15968] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/13/2022] [Accepted: 09/27/2022] [Indexed: 12/14/2022] Open
Abstract
Epigenetic modifications have received increasing attention and have been shown to be extensively involved in kidney development and disease progression. Among them, the most common RNA modification, N6 -methyladenosine (m6 A), has been shown to dynamically and reversibly exert its functions in multiple ways, including splicing, export, decay and translation initiation efficiency to regulate mRNA fate. Moreover, m6 A has also been reported to exert biological effects by destabilizing base pairing to modulate various functions of RNAs. Most importantly, an increasing number of kidney diseases, such as renal cell carcinoma, acute kidney injury and chronic kidney disease, have been found to be associated with aberrant m6 A patterns. In this review, we comprehensively review the critical roles of m6 A in kidney diseases and discuss the possibilities and relevance of m6 A-targeted epigenetic therapy, with an integrated comprehensive description of the detailed alterations in specific loci that contribute to cellular processes that are associated with kidney diseases.
Collapse
Affiliation(s)
- Wei-Jian Ni
- Department of Pharmacy, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China.,Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, 230001, China
| | - Hao Lu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Nan-Nan Ma
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Bing-Bing Hou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Jing Zeng
- Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, 230001, China
| | - Hong Zhou
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Wei Shao
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| |
Collapse
|
24
|
Feng J, Zhang Y, Wen J, Chen Y, Tao J, Yu S, Zhu Z, Dong B, Liu Y, Fan Y, Lv L, Zhang X. Alteration of N6-methyladenosine epitranscriptome profiles in bilateral ureteral obstruction-induced obstructive nephropathy in juvenile rats. Pediatr Res 2022; 93:1509-1518. [PMID: 35986151 DOI: 10.1038/s41390-022-02228-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Urinary tract obstruction is a common cause of renal failure in children and infants, and the pathophysiological mechanisms of obstructive nephropathy are largely unclear. It has been reported that m6A modulation is involved in renal injury. However, whether m6A RNA modulation is associated with obstructive nephropathy has not yet been reported. The aim of this study was to investigate the m6A epitranscriptome profiles in the kidneys of bilateral ureteral obstruction (BUO) in young rats. METHODS The total level of m6A in the kidneys was measured by liquid chromatography-tandem mass spectrometry. The mRNAs of related genes were detected by real-time PCR. Methylated RNA immunoprecipitation sequencing was performed to map the epitranscriptome-wide m6A profile. RESULTS Global m6A levels were increased after BUO, and the mRNA expression levels of m6A methyltransferases and demethylases were significantly decreased in BUO group rat kidneys; the expression levels of EGFR and Brcal were significantly upregulated, while the mRNA expression levels of Notch1 were downregulated (P < 0.05). A total of 154 genes associated with 163 m6A peaks were identified. CONCLUSION The m6A epitranscriptome was significantly altered in BUO rat kidneys, which is potentially implicated in the pathophysiological processes of obstructive nephropathy. IMPACT The m6A RNA modification was associated with the process of renal injury in ureteral obstructive nephropathy by participating in multiple dimensions. The dysregulation of m6A methyltransferases and demethylases may be related to the pathophysiological changes of BUO-induced obstructive nephropathy. The m6A RNA modulation of the genes EGFR, Brca1, and Notch1 that were related to the regulation of aquaporin2 might be the potential mechanism for the polyuresis after ureteral obstruction.
Collapse
Affiliation(s)
- Jinjin Feng
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yanping Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jianguo Wen
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yan Chen
- Department of Center for Translational Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jin Tao
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shuanbao Yu
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhaowei Zhu
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Biao Dong
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yunlong Liu
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yafeng Fan
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lei Lv
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xuepei Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
25
|
Sun J, Cheng B, Su Y, Li M, Ma S, Zhang Y, Zhang A, Cai S, Bao Q, Wang S, Zhu P. The Potential Role of m6A RNA Methylation in the Aging Process and Aging-Associated Diseases. Front Genet 2022; 13:869950. [PMID: 35518355 PMCID: PMC9065606 DOI: 10.3389/fgene.2022.869950] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/31/2022] [Indexed: 12/15/2022] Open
Abstract
N6-methyladenosine (m6A) is the most common and conserved internal eukaryotic mRNA modification. m6A modification is a dynamic and reversible post-transcriptional regulatory modification, initiated by methylase and removed by RNA demethylase. m6A-binding proteins recognise the m6A modification to regulate gene expression. Recent studies have shown that altered m6A levels and abnormal regulator expression are crucial in the ageing process and the occurrence of age-related diseases. In this review, we summarise some key findings in the field of m6A modification in the ageing process and age-related diseases, including cell senescence, autophagy, inflammation, oxidative stress, DNA damage, tumours, neurodegenerative diseases, diabetes, and cardiovascular diseases (CVDs). We focused on the biological function and potential molecular mechanisms of m6A RNA methylation in ageing and age-related disease progression. We believe that m6A modification may provide a new target for anti-ageing therapies.
Collapse
Affiliation(s)
- Jin Sun
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Bokai Cheng
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Yongkang Su
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Man Li
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Shouyuan Ma
- Department of Geriatric Cardiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yan Zhang
- Department of Outpatient, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Anhang Zhang
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Shuang Cai
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Qiligeer Bao
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Shuxia Wang
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Ping Zhu
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| |
Collapse
|
26
|
Yang L, Wang B, Ma L, Fu P. An Update of Long-Noncoding RNAs in Acute Kidney Injury. Front Physiol 2022; 13:849403. [PMID: 35350698 PMCID: PMC8957988 DOI: 10.3389/fphys.2022.849403] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/15/2022] [Indexed: 02/05/2023] Open
Abstract
Acute kidney injury (AKI) is a global public health concern with high morbidity, mortality, and medical costs. Despite advances in medicine, effective therapeutic regimens for AKI remain limited. Long non-coding RNAs (lncRNAs) are a subtype of non-coding RNAs, which longer than 200 nucleotides and perform extremely diverse functions in biological processes. Recently, lncRNAs have emerged as promising biomarkers and key mediators to AKI. Meanwhile, existing research reveals that the aberrant expression of lncRNAs has been linked to major pathological processes in AKI, including the inflammatory response, cell proliferation, and apoptosis, via forming the lncRNA/microRNA/target gene regulatory axis. Following a comprehensive and systematic search of the available literature, 87 relevant papers spanning the years 2005 to 2021 were identified. This review aims to provide and update an overview of lncRNAs in AKI, and further shed light on their potential utility as AKI biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Lina Yang
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Bo Wang
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Liang Ma
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Ping Fu
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Zhuo R, Xu M, Wang X, Zhou B, Wu X, Leone V, Chang EB, Zhong X. The regulatory role of N 6 -methyladenosine modification in the interaction between host and microbes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1725. [PMID: 35301791 DOI: 10.1002/wrna.1725] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/21/2022] [Accepted: 02/21/2022] [Indexed: 01/02/2023]
Abstract
N6 -methyladenosine (m6 A) is the most prevalent posttranscriptional modification in eukaryotic mRNAs. Dynamic and reversible m6 A modification regulates gene expression to control cellular processes and diverse biological functions. Growing evidence indicated that m6 A modification is involved in the homeostasis of host and microbes (mostly viruses and bacteria). Disturbance of m6 A modification affects the life cycles of viruses and bacteria, however, these microbes could in turn change host m6 A modification leading to human disease including autoimmune diseases and cancer. Thus, we raise the concept that m6 A could be a "messenger" molecule to participate in the interactions between host and microbes. In this review, we summarize the regulatory mechanisms of m6 A modification on viruses and commensal microbiota, highlight the roles of m6 A methylation in the interaction of host and microbes, and finally discuss drugs development targeting m6 A modification. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Ruhao Zhuo
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Menghui Xu
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaoyun Wang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Bin Zhou
- Joint International Research Laboratory of Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xin Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Vanessa Leone
- Department of Animal Biologics and Metabolism, University of Wisconsin, Madison, Wisconsin, USA.,Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Eugene B Chang
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Xiang Zhong
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
28
|
Zhang W, Zhang L, Cai XJ, Li D, Cao FJ, Zuo ZG, Song Y, Yu XJ, Liu S. Dexmedetomidine inhibits the growth and metastasis of esophageal cancer cells by down-regulation of lncRNA MALAT1. Kaohsiung J Med Sci 2022; 38:585-593. [PMID: 35199933 DOI: 10.1002/kjm2.12506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/19/2021] [Accepted: 01/12/2022] [Indexed: 12/19/2022] Open
Abstract
This study aims to evaluate the effect of dexmedetomidine (DEX)-on esophageal cancer (EC) via regulating long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). The effect of DEX on MALAT1 expression and EC cell viability was detected. EC cells were divided into Blank, DEX, scrambled/MALAT1 siRNA, and DEX + control/MALAT1 groups, followed by a series of experiments including quantitative reverse-transcription polymerase chain reaction (qRT-PCR), western blotting, 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT), Annexin V-FITC/PI staining, wound healing, and Transwell assays. Additionally, mice were subjected to the subcutaneous injection of Eca109 cells transfected by control/MALAT1 activation lentiviral vector to construct EC models with the DEX treatment, and then the tumor volume and the expression of Ki-67 and active caspase-3 were determined. DEX reduced the expression of MALAT1 in EC cells in a dose-dependent manner. DEX inhibited the viability of EC cells, but increased the cell apoptosis, which, however, was reversed by MALAT1 overexpression. Moreover, MALAT1 overexpression abolished the inhibitory effect of DEX on the epithelial-mesenchymal transition (EMT) of EC cells, with enhanced migration and invasion. Furthermore, DEX succeeded in decreasing the tumor volume with the down-regulation of MALAT1. In comparison with the DEX group, mice in the DEX + MALAT1 group had larger tumors, with the up-regulation of Ki-67 and the down-regulation of active caspase-3. DEX can reduce the expression of MALAT1 in EC cells, thereby inhibiting the proliferation, invasion and migration, as well as EMT, and promoting the apoptosis of EC cells.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Li Zhang
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiao-Jun Cai
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Dong Li
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Feng-Jun Cao
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhi-Gang Zuo
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Ying Song
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiong-Jie Yu
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Shan Liu
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
29
|
Yan L, Chen J, Fang W. Exosomes derived from calcium oxalate-treated macrophages promote apoptosis of HK-2 cells by promoting autophagy. Bioengineered 2022; 13:2442-2450. [PMID: 35037827 PMCID: PMC8974144 DOI: 10.1080/21655979.2021.2012622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Calcium oxalate (CaOx) crystals are the main component of kidney stones. Macrophages have the function of eliminating these crystals, and the underlying mechanism remains unclear. Here, we attempted to determine the role of macrophage-derived exosomes exposed to CaOx crystals in regulating apoptosis of human proximal tubular cells (HK-2). Exosomes (CaOx-Exo) were isolated from CaOx-treated macrophages and then incubated with HK-2 cells. CaOx-Exo treatment reduced cell viability and promoted apoptosis of HK-2 cells. The expression of Caspase-3 and Bax was increased, and Bcl-2 expression was decreased in HK-2 cells following CaOx-Exo treatment. Moreover, CaOx-Exo treatment caused an increase of LC3-II/LC3-I ratio and Beclin-1 expression and a downregulation of p62 in HK-2 cells. GFP-LC3 puncta were increased in HK-2 cells following CaOx-Exo treatment. Additionally, CaOx-Exo-treated HK-2 cells were treated with 3-methyladenine (3-MA) to inhibit autophagy activity. 3-MA treatment weakened the impact of CaOx-Exo on cell viability and apoptosis of HK-2 cells. 3-MA treatment also reduced the LC3-II/LC3-I ratio and Beclin-1 expression and enhanced p62 expression in CaOx-Exo-treated HK-2 cells. In conclusion, these data demonstrated that exosomes derived from CaOx-treated macrophages promote apoptosis of HK-2 cells by promoting autophagy. Thus, this work suggests that macrophage-derived exosomes may play a vital role in CaOx-induced human proximal tubular cell damage.
Collapse
Affiliation(s)
- Lei Yan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jinhu Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Weihua Fang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
30
|
Li C, Wang W, Xie SS, Ma WX, Fan QW, Chen Y, He Y, Wang JN, Yang Q, Li HD, Jin J, Liu MM, Meng XM, Wen JG. The Programmed Cell Death of Macrophages, Endothelial Cells, and Tubular Epithelial Cells in Sepsis-AKI. Front Med (Lausanne) 2021; 8:796724. [PMID: 34926535 PMCID: PMC8674574 DOI: 10.3389/fmed.2021.796724] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a systemic inflammatory response syndrome caused by infection, following with acute injury to multiple organs. Sepsis-induced acute kidney injury (AKI) is currently recognized as one of the most severe complications related to sepsis. The pathophysiology of sepsis-AKI involves multiple cell types, including macrophages, vascular endothelial cells (ECs) and renal tubular epithelial cells (TECs), etc. More significantly, programmed cell death including apoptosis, necroptosis and pyroptosis could be triggered by sepsis in these types of cells, which enhances AKI progress. Moreover, the cross-talk and connections between these cells and cell death are critical for better understanding the pathophysiological basis of sepsis-AKI. Mitochondria dysfunction and oxidative stress are traditionally considered as the leading triggers of programmed cell death. Recent findings also highlight that autophagy, mitochondria quality control and epigenetic modification, which interact with programmed cell death, participate in the damage process in sepsis-AKI. The insightful understanding of the programmed cell death in sepsis-AKI could facilitate the development of effective treatment, as well as preventive methods.
Collapse
Affiliation(s)
- Chao Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Wei Wang
- Anhui Province Key Laboratory of Genitourinary Diseases, Department of Urology and Institute of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Shuai-Shuai Xie
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Wen-Xian Ma
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Qian-Wen Fan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ying Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yuan He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Qin Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hai-di Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Juan Jin
- Key Laboratory of Anti-inflammatory and Immunopharmacology (Ministry of Education), Department of Pharmacology, Anhui Medical University, Hefei, China
| | - Ming-Ming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
31
|
Wang Y, Xu M, Yue P, Zhang D, Tong J, Li Y. Novel Insights Into the Potential Mechanisms of N6-Methyladenosine RNA Modification on Sepsis-Induced Cardiovascular Dysfunction: An Update Summary on Direct and Indirect Evidences. Front Cell Dev Biol 2021; 9:772921. [PMID: 34869371 PMCID: PMC8633316 DOI: 10.3389/fcell.2021.772921] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a host’s dysfunctional response to infection. As is known to all, septic heart disease occurs because pathogens invading the blood stimulate the activation of endothelial cells, causing a large number of white blood cells to accumulate and trigger an immune response. However, in severe sepsis, the hematopoietic system is inhibited, and there will also be a decline in white blood cells, at which time the autoimmune system will also be suppressed. During the immune response, a large number of inflammatory factors are released into cells to participate in the inflammatory process, which ultimately damages cardiac myocytes and leads to impaired cardiac function. N6-methyladenosine (m6A) is a common RNA modification in mRNA and non-coding RNA that affects RNA splicing, translation, stability, and epigenetic effects of some non-coding RNAs. A large number of emerging evidences demonstrated m6A modification had been involved in multiple biological processes, especially for sepsis and immune disorders. Unfortunately, there are limited results provided to analyze the association between m6A modification and sepsis-induced cardiovascular dysfunction (SICD). In this review, we firstly summarized current evidences on how m6A mediates the pathophysiological process in cardiac development and cardiomyopathy to emphasize the importance of RNA methylation in maintaining heart biogenesis and homeostasis. Then, we clarified the participants of m6A modification in extended inflammatory responses and immune system activation, which are the dominant and initial changes secondary to sepsis attack. After that, we deeply analyzed the top causes of SICD and identified the activation of inflammatory cytokines, endothelial cell dysfunction, and mitochondrial failure. Thus, the highlight of this review is that we systematically collected all the related potential mechanisms between m6A modification and SICD causes. Although there is lack of direct evidences on SICD, indirect evidences had been demonstrated case by case on every particular molecular mechanism and signal transduction, which require further explorations into the potential links among the listed mechanisms. This provides novel insights into the understanding of SICD.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Miaomiao Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Peng Yue
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Jiyu Tong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Li T, Lin C, Zhu Y, Xu H, Yin Y, Wang C, Tang X, Song T, Guo A, Chen Y, Hu C. Transcriptome Profiling of m 6A mRNA Modification in Bovine Mammary Epithelial Cells Treated with Escherichia coli. Int J Mol Sci 2021; 22:ijms22126254. [PMID: 34200743 PMCID: PMC8230414 DOI: 10.3390/ijms22126254] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 01/19/2023] Open
Abstract
Mastitis is a common disease in dairy cows that is mostly caused by E. coli, and it brings massive losses to the dairy industry. N6-Methyladenosine (m6A), a methylation at the N6 position of RNA adenine, is a type of modification strongly associated with many diseases. However, the role of m6A in mastitis has not been investigated. In this study, we used MeRIP-seq to sequence the RNA of bovine mammary epithelial cells treated with inactivated E. coli for 24 h. In this in vitro infection model, there were 16,691 m6A peaks within 7066 mRNA transcripts in the Con group and 10,029 peaks within 4891 transcripts in the E. coli group. Compared with the Con group, 474 mRNAs were hypermethylated and 2101 mRNAs were hypomethylated in the E. coli group. Biological function analyses revealed differential m6A-modified genes mainly enriched in the MAPK, NF-κB, and TGF-β signaling pathways. In order to explore the relationship between m6A and mRNA expression, combined MeRIP-seq and mRNA-seq analyses revealed 212 genes with concomitant changes in the mRNA expression and m6A modification. This study is the first to present a map of RNA m6A modification in mastitis treated with E. coli, providing a basis for future research.
Collapse
Affiliation(s)
- Ting Li
- Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (T.L.); (C.L.); (H.X.); (Y.Y.); (C.W.); (X.T.)
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (A.G.); (Y.C.)
| | - Changjie Lin
- Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (T.L.); (C.L.); (H.X.); (Y.Y.); (C.W.); (X.T.)
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (A.G.); (Y.C.)
| | - Yifan Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (A.G.); (Y.C.)
- Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Haojun Xu
- Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (T.L.); (C.L.); (H.X.); (Y.Y.); (C.W.); (X.T.)
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (A.G.); (Y.C.)
| | - Yiya Yin
- Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (T.L.); (C.L.); (H.X.); (Y.Y.); (C.W.); (X.T.)
| | - Chaohao Wang
- Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (T.L.); (C.L.); (H.X.); (Y.Y.); (C.W.); (X.T.)
| | - Xin Tang
- Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (T.L.); (C.L.); (H.X.); (Y.Y.); (C.W.); (X.T.)
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (A.G.); (Y.C.)
| | - Tongxing Song
- Department of Animal Nutrition and Feed Science College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (A.G.); (Y.C.)
- Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingyu Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (A.G.); (Y.C.)
- Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Changmin Hu
- Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (T.L.); (C.L.); (H.X.); (Y.Y.); (C.W.); (X.T.)
- Correspondence: ; Tel.: +86-153-2719-7602
| |
Collapse
|
33
|
Non-Coding RNAs in Kidney Diseases: The Long and Short of Them. Int J Mol Sci 2021; 22:ijms22116077. [PMID: 34199920 PMCID: PMC8200121 DOI: 10.3390/ijms22116077] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Recent progress in genomic research has highlighted the genome to be much more transcribed than expected. The formerly so-called junk DNA encodes a miscellaneous group of largely unknown RNA transcripts, which contain the long non-coding RNAs (lncRNAs) family. lncRNAs are instrumental in gene regulation. Moreover, understanding their biological roles in the physiopathology of many diseases, including renal, is a new challenge. lncRNAs regulate the effects of microRNAs (miRNA) on mRNA expression. Understanding the complex crosstalk between lncRNA–miRNA–mRNA is one of the main challenges of modern molecular biology. This review aims to summarize the role of lncRNA on kidney diseases, the molecular mechanisms involved, and their function as emerging prognostic biomarkers for both acute and chronic kidney diseases. Finally, we will also outline new therapeutic opportunities to diminish renal injury by targeting lncRNA with antisense oligonucleotides.
Collapse
|
34
|
Zheng W, Chu Q, Xu T. The long noncoding RNA NARL regulates immune responses via microRNA-mediated NOD1 downregulation in teleost fish. J Biol Chem 2021; 296:100414. [PMID: 33581111 PMCID: PMC7966872 DOI: 10.1016/j.jbc.2021.100414] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence shows that the long noncoding RNA (lncRNA) is a major regulator and participates in the regulation of various physiological and pathological processes, such as cell proliferation, differentiation, metastasis, and apoptosis. Unlike mammals, however, the study of lncRNA in lower invertebrates is just beginning and the extent of lncRNA-mediate regulation remains unclear. Here, we for the first time identify an lncRNA, termed nucleotide oligomerization domain 1 (NOD1) antibacterial and antiviral-related lncRNA (NARL), as a key regulator for innate immunity in teleost fish. We found that NOD1 plays an important role in the antibacterial and antiviral process in fish and that the microRNA miR-217-5p inhibits NOD1 expression and thus weakens the NF-κB and the IRF3-driven signaling pathway. Furthermore, our results indicated that NARL functions as a competing endogenous RNA (ceRNA) for miR-217-5p to regulate protein abundance of NOD1; thus, invading microorganisms are eliminated and immune responses are promoted. Our study also demonstrates the regulation mechanism that lncRNA NARL can competitive adsorption miR-217-5p to regulate the miR-217-5p/NOD1 axis is widespread in teleost fish. Taken together, our results reveal that NARL in fish is a critical positive regulator of innate immune responses to viral and bacterial infection by suppressing a feedback to NOD1-NF-κB/IRF3-mediated signaling.
Collapse
Affiliation(s)
- Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qing Chu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
35
|
Wang MC, McCown PJ, Schiefelbein GE, Brown JA. Secondary Structural Model of MALAT1 Becomes Unstructured in Chronic Myeloid Leukemia and Undergoes Structural Rearrangement in Cervical Cancer. Noncoding RNA 2021; 7:6. [PMID: 33450947 PMCID: PMC7838788 DOI: 10.3390/ncrna7010006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) influence cellular function through binding events that often depend on the lncRNA secondary structure. One such lncRNA, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), is upregulated in many cancer types and has a myriad of protein- and miRNA-binding sites. Recently, a secondary structural model of MALAT1 in noncancerous cells was proposed to form 194 hairpins and 13 pseudoknots. That study postulated that, in cancer cells, the MALAT1 structure likely varies, thereby influencing cancer progression. This work analyzes how that structural model is expected to change in K562 cells, which originated from a patient with chronic myeloid leukemia (CML), and in HeLa cells, which originated from a patient with cervical cancer. Dimethyl sulfate-sequencing (DMS-Seq) data from K562 cells and psoralen analysis of RNA interactions and structure (PARIS) data from HeLa cells were compared to the working structural model of MALAT1 in noncancerous cells to identify sites that likely undergo structural alterations. MALAT1 in K562 cells is predicted to become more unstructured, with almost 60% of examined hairpins in noncancerous cells losing at least half of their base pairings. Conversely, MALAT1 in HeLa cells is predicted to largely maintain its structure, undergoing 18 novel structural rearrangements. Moreover, 50 validated miRNA-binding sites are affected by putative secondary structural changes in both cancer types, such as miR-217 in K562 cells and miR-20a in HeLa cells. Structural changes unique to K562 cells and HeLa cells provide new mechanistic leads into how the structure of MALAT1 may mediate cancer in a cell-type specific manner.
Collapse
Affiliation(s)
| | | | | | - Jessica A. Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (M.C.W.); (P.J.M.); (G.E.S.)
| |
Collapse
|
36
|
Chalkias A, Barreto EF, Laou E, Kolonia K, Scheetz MH, Gourgoulianis K, Pantazopoulos I, Xanthos T. A Critical Appraisal of the Effects of Anesthetics on Immune-system Modulation in Critically Ill Patients With COVID-19. Clin Ther 2021; 43:e57-e70. [PMID: 33549310 PMCID: PMC7833032 DOI: 10.1016/j.clinthera.2021.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/26/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023]
Abstract
Purpose The aim of the present article was to briefly summarize current knowledge about the immunomodulatory effects of general anesthetics and the possible clinical effects of this immunomodulation in patients with COVID-19. Methods The PubMed, Scopus, and Google Scholar databases were comprehensively searched for relevant studies. Findings The novel coronavirus causes a wide spectrum of clinical manifestations, with a large absolute number of patients experiencing severe pneumonia and rapid progression to acute respiratory distress syndrome and multiple organ failure. In these patients, the equilibrium of the inflammatory response is a major determinant of survival. The impact of anesthetics on immune-system modulation may vary and includes both pro-inflammatory and anti-inflammatory effects. Implications Inhibition of the development of severe inflammation and/or the enhancement of inflammation resolution by anesthetics may limit organ damage and improve outcomes in patients with COVID-19.
Collapse
Affiliation(s)
- Athanasios Chalkias
- Faculty of Medicine, Department of Anesthesiology, School of Health Sciences, University of Thessaly, Larisa, Greece.
| | - Erin F Barreto
- Department of Pharmacy, Mayo Clinic, Rochester, MN, USA; Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, USA
| | - Eleni Laou
- Faculty of Medicine, Department of Anesthesiology, School of Health Sciences, University of Thessaly, Larisa, Greece
| | - Konstantina Kolonia
- Faculty of Medicine, Department of Anesthesiology, School of Health Sciences, University of Thessaly, Larisa, Greece
| | - Marc H Scheetz
- Department of Pharmacy Practice, Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, USA; Pharmacometrics Center of Excellence, Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, USA; Department of Pharmacology, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA
| | - Konstantinos Gourgoulianis
- Faculty of Medicine, Department of Respiratory Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece
| | - Ioannis Pantazopoulos
- Faculty of Medicine, Department of Emergency Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece
| | | |
Collapse
|