1
|
Bae JY, Hong SS, Kim MJ. Antioxidant activity and anti-adipogenic effect of ethyl acetate fraction of cumin seeds on 3T3-L1 adipocytes differentiation. Food Sci Biotechnol 2025; 34:1699-1711. [PMID: 40151608 PMCID: PMC11936850 DOI: 10.1007/s10068-024-01746-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 03/29/2025] Open
Abstract
Cumin seeds were fractionated with various solvents to evaluate their antioxidant activity and anti-adipogenic effects in 3T3-L1 adipocytes. In vitro antioxidant assays such as DPPH, ABTS cation scavenger, FRAP, ORAC, and TPC, and 3T3-L1 adipocytes differentiation were performed. The results of these assays show that ethyl acetate fraction of cumin seeds (CSEA) had significantly superior antioxidant activity compared to other cumin seeds fractions. Thymol, benzyl alcohol, and 2-methyl-3-phenylpropanal were analyzed as major volatile components in CSEA. Treatment of 50 and 75 μg/mL CSEA inhibited fat accumulation in 3T3-L1 adipocytes significantly (p < 0.05). When 3T3-L1 adipocytes were treated with CSEA at 75 μg/mL, the expressions of genes and proteins related to fat differentiation and accumulation were significantly reduced (p < 0.05). Therefore, CSEA could be used as antioxidants and as a functional ingredient in anti-adipogenic formulations.
Collapse
Affiliation(s)
- Ji-Yun Bae
- Department of Food and Nutrition, College of Health Science, Kangwon National University, Samcheok, Gangwon 25949 Republic of Korea
| | - Sung-Sil Hong
- Department of Nursing, College of Health Science, Kangwon National University, Samcheok, Gangwon 25949 Republic of Korea
| | - Mi-Ja Kim
- Department of Food and Nutrition, College of Health Science, Kangwon National University, Samcheok, Gangwon 25949 Republic of Korea
| |
Collapse
|
2
|
Carneiro JNP, Dos Santos ATL, Fonseca VJA, de Freitas MA, Dos Santos Silva F, de Souza LAL, Araújo NMS, de Oliveira Bezerra de Sousa D, Silva RGG, da Silva Neto JX, de Menezes IRA, Coutinho HDM, Morais-Braga MFB. Antifungal Action of Valencene and Nootkatone Compounds in Association with Fluconazole and Their Mechanism of Action Against Candida spp. and Pichia kudriavzevii Strains. Curr Microbiol 2025; 82:168. [PMID: 40038128 DOI: 10.1007/s00284-025-04133-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 01/30/2025] [Indexed: 03/06/2025]
Abstract
Candidemia is a public health challenge as it causes thousands of annual deaths and combating it has become difficult due to the development of resistance in Candida spp. Compounds derived from natural products may counter this resistance. Therefore, we evaluate the intrinsic and combined antifungal activity of valencene and nootkatone compounds and their possible mechanism of action against Candida spp. Using the microdilution method, the antifungal effect of sesquiterpenes and their combination with fluconazole was determined. The results comprised the yeast growth curve and its 50% Inhibitory Concentration (IC50). They showed that the compounds alone inhibited microbial growth at a concentration of 1024 µg/mL for valencene being able to kill the fungus Pichia kudriavzevii (Candida krusei), for nootkatone the inhibition occurred at 512 µg/mL and was able to kill the species P. kudriavzevii and Candida tropicalis. Combined with the antifungal, the inhibition occurred at low concentrations (2 and 4 µg/mL) against all strains except P. kudriavzevii, which the combination with nootkatone inhibited at 512 µg/mL. The IC50 revealed inhibition of the strains at higher concentrations in the compounds and fluconazole alone compared to the combination concentrations. In addition, both compounds acted through the production of reactive oxygen species, helping the antifungal against C. albicans and P. kudriavzevii, contributing minimally to compromising membrane viability. Thus, the compounds show promise for combined activity with fluconazole.
Collapse
|
3
|
Subudhi L, Thatoi H, Banerjee A. Anti-inflammatory activity of essential oil from medicinal plants: An insight into molecular mechanism, in-silico studies and signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156364. [PMID: 39862791 DOI: 10.1016/j.phymed.2025.156364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/14/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Medicinal plants have historically been the cornerstone of treatment for a myriad of ailments. With modern pharmacology, many contemporary drugs have been derived from traditional medicine practices. Essential oils from these plants, known for their anti-inflammatory capabilities, have played a significant role in treating conditions such as cardiovascular and inflammatory skin diseases, as well as joint inflammation. This study revisits these ancient remedies to further explore their efficacy and mechanisms in the modern context. FOCUS AREA This review focuses on identifying and analysing the primary phytochemical in medicinal plants that exhibit anti-inflammatory properties. The chemical classes of interest include alkaloids, polyphenols, terpenoids, flavonoids, saponins, and tannins, which are prevalent in the essential oils derived from therapeutic plants. By understanding their role in modulating molecular pathways, this study aims to highlight their potential in the treatment of inflammatory diseases. METHODS The study employs in silico techniques such as molecular modelling and docking to examine the pharmacokinetics and toxicity profiles of selected phytochemical. This approach facilitates a deeper understanding of how these natural compounds interact at the molecular level, either as activators or inhibitors, which can influence various biochemical pathways related to inflammation. RESULTS Preliminary findings suggest that specific phytochemical significantly modulate inflammatory pathways, offering potential therapeutic targets. The analysis reveals that these natural substances can effectively reduce inflammation without the adverse side effects commonly associated with synthetic drugs. The study provides a detailed characterization of the active components within essential oils and their respective anti-inflammatory actions. CONCLUSION The review underscores the immense potential for medicinal plants as a source for developing new and safer pharmaceuticals aimed at treating inflammatory conditions. By harnessing the power of natural phytochemical, there is a promising avenue for creating innovative drug therapies. This study encourages further research into the utilization of natural plant products, promoting a broader application in medicinal treatments and a return to nature-centric solutions in healthcare.
Collapse
Affiliation(s)
- Lopamudra Subudhi
- Centre for Industrial Biotechnology Research, Siksha 'O' Anusandhan Deemed to be University, Campus 2, Kalinganagar, Bhubaneswar-751003, Odisha, India
| | - Hrudayanath Thatoi
- Centre for Industrial Biotechnology Research, Siksha 'O' Anusandhan Deemed to be University, Campus 2, Kalinganagar, Bhubaneswar-751003, Odisha, India
| | - Amrita Banerjee
- Centre for Industrial Biotechnology Research, Siksha 'O' Anusandhan Deemed to be University, Campus 2, Kalinganagar, Bhubaneswar-751003, Odisha, India.
| |
Collapse
|
4
|
Zhang G, Shang R, Zhong X, Lv S, Yi Y, Lu Y, Xu Z, Wang Y, Teng J. Natural products target pyroptosis for ameliorating neuroinflammation: A novel antidepressant strategy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156394. [PMID: 39826285 DOI: 10.1016/j.phymed.2025.156394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/19/2024] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Depression is a common mental disorder characterized by prolonged loss of interest and low mood, accompanied by symptoms such as sleep disturbances and cognitive impairments. In severe cases, there may be a tendency toward suicide. Depression can be caused by a series of highly complex pathological mechanisms; However, its key pathogenic mechanism remains unclear. As a novel programmed cell death (PCD) pathway and inflammatory cell death mode, pyroptosis involves a series of tightly regulated gene expression events. It may play a significant role in the pathogenesis and management of depression by modulating neuroinflammatory processes. In addition, a large number of studies have shown that various pharmacologically active natural products can regulate pyroptosis through multiple targets and pathways, demonstrating significant potential in the treatment of depression. These natural products offer advantages such as low costs and minimal side effects, making them a viable supplement or alternative to traditional antidepressants. In this review, we summarized recent research on natural products that regulate pyroptosis and neuroinflammation to improve depression. The aim of this review was to contribute to a scientific basis for the discovery and development of more natural antidepressants in the future. METHODS To review the antidepressant effects of natural products targeting pyroptosis-mediated neuroinflammation, data were collected from the Web of Science, ScienceDirect databases, and PubMed to classify and summarize the relationship between pyroptosis and neuroinflammation in depression, as well as the pharmacological mechanisms of natural products. RESULTS Multiple researches have revealed that pyroptosis-mediated neuroinflammation serves as a pivotal contributory factor in the pathological process of depression. Natural products, such as terpenoids, terpenes, phenylethanol glycosides, and alkaloids, have antidepressant effects by regulating pyroptosis to alleviate neuroinflammation. CONCLUSION We comprehensively reviewed the regulatory effects of natural products in depression-related pyroptosis pathways, providing a uniquely insightful perspective for the research, development, and application of natural antidepressants. However, future research should further explore the modulatory mechanisms of natural products in regulating pyroptosis, which is of great importance for the genration of effective antidepressants.
Collapse
Affiliation(s)
- Guangheng Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Ruirui Shang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Xia Zhong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Shimeng Lv
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Yunhao Yi
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Yitong Lu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Zhiwei Xu
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Yilin Wang
- Affiliated Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200135, China
| | - Jing Teng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China.
| |
Collapse
|
5
|
de Almada-Vilhena AO, dos Santos OVM, Machado MDA, Nagamachi CY, Pieczarka JC. Prospecting Pharmacologically Active Biocompounds from the Amazon Rainforest: In Vitro Approaches, Mechanisms of Action Based on Chemical Structure, and Perspectives on Human Therapeutic Use. Pharmaceuticals (Basel) 2024; 17:1449. [PMID: 39598361 PMCID: PMC11597570 DOI: 10.3390/ph17111449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
The Amazon rainforest is an important reservoir of biodiversity, offering vast potential for the discovery of new bioactive compounds from plants. In vitro studies allow for the investigation of biological processes and interventions in a controlled manner, making them fundamental for pharmacological and biotechnological research. These approaches are faster and less costly than in vivo studies, providing standardized conditions that enhance the reproducibility and precision of data. However, in vitro methods have limitations, including the inability to fully replicate the complexity of a living organism and the absence of a complete physiological context. Translating results to in vivo models is not always straightforward, due to differences in pharmacokinetics and biological interactions. In this context, the aim of this literature review is to assess the advantages and disadvantages of in vitro approaches in the search for new drugs from the Amazon, identifying the challenges and limitations associated with these methods and comparing them with in vivo testing. Thus, bioprospecting in the Amazon involves evaluating plant extracts through bioassays to investigate pharmacological, antimicrobial, and anticancer activities. Phenolic compounds and terpenes are frequently identified as the main bioactive agents, exhibiting antioxidant, anti-inflammatory, and antineoplastic activities. Chemical characterization, molecular modifications, and the development of delivery systems, such as nanoparticles, are highlighted to improve therapeutic efficacy. Therefore, the Amazon rainforest offers great potential for the discovery of new drugs; however, significant challenges, such as the standardization of extraction methods and the need for in vivo studies and clinical trials, must be overcome for these compounds to become viable medications.
Collapse
Affiliation(s)
| | | | | | | | - Julio C. Pieczarka
- Center for Advanced Biodiversity Studies, Cell Culture Laboratory, Institute of Biological Sciences, Federal University of Pará/Guamá Science and Technology Park, Avenida Perimetral da Ciência Km 01—Guamá, Belém 66075-750, PA, Brazil; (A.O.d.A.-V.); (O.V.M.d.S.); (M.d.A.M.); (C.Y.N.)
| |
Collapse
|
6
|
Kulkarni P, Yeram PB, Vora A. Terpenes in the management of chronic kidney disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6351-6368. [PMID: 38683370 DOI: 10.1007/s00210-024-03098-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024]
Abstract
Chronic kidney disease (CKD) is a chronic and progressive systemic condition that characterizes irreversible alterations in the kidneys' function and structure over an extended period, spanning months to years. CKD is the one of the major causes of mortality worldwide. However, very limited treatment options are available in the market for management of the CKD. Diabetes and hypertension are the key risk factors for the progression of CKD. It is majorly characterised by glomerulosclerosis, tubular atrophy, and interstitial fibrosis. Plants are considered safe and effective in treating various chronic conditions. A diverse group of phytoconstituents, including polyphenols, flavonoids, alkaloids, tannins, saponins, and terpenes, have found significant benefits in managing chronic ailments. Terpenes constitute a diverse group of plant compounds with various therapeutic benefits. Evidence-based pharmacological studies underscore the crucial role played by terpenes in preventing and managing CKD. These substances demonstrate the capacity to hinder detrimental pathways, such as oxidative stress, inflammation and fibrosis, thereby demonstrating benefit in renal dysfunction. This review offers a comprehensive overview of the roles and positive attributes of commonly occurring terpenes in managing the causes and risk factors of CKD and the associated conditions.
Collapse
Affiliation(s)
- Piyusha Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, 400056, India
| | - Pranali B Yeram
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, 400056, India
| | - Amisha Vora
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, 400056, India.
| |
Collapse
|
7
|
Yuan F, Yan S, Zhao J. Elucidating the Phytochemical Landscape of Leaves, Stems, and Tubers of Codonopsis convolvulacea through Integrated Metabolomics. Molecules 2024; 29:3193. [PMID: 38999145 PMCID: PMC11243170 DOI: 10.3390/molecules29133193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
Codonopsis convolvulacea is a highly valued Chinese medicinal plant containing diverse bioactive compounds. While roots/tubers have been the main medicinal parts used in practice, leaves and stems may also harbor valuable phytochemicals. However, research comparing volatiles across tissues is lacking. This study performed metabolomic profiling of leaves, stems, and tubers of C. convolvulacea to elucidate tissue-specific accumulation patterns of volatile metabolites. Ultra-high performance liquid chromatography-tandem mass spectrometry identified 302 compounds, belonging to 14 classes. Multivariate analysis clearly differentiated the metabolic profiles of the three tissues. Numerous differentially accumulated metabolites (DAMs) were detected, especially terpenoids and esters. The leaves contained more terpenoids, ester, and alcohol. The stems accumulated higher levels of terpenoids, heterocyclics, and alkaloids with pharmaceutical potential. The tubers were enriched with carbohydrates like sugars and starch, befitting their storage role, but still retained reasonable amounts of valuable volatiles. The characterization of tissue-specific metabolic signatures provides a foundation for the selective utilization of C. convolvulacea parts. Key metabolites identified include niacinamide, p-cymene, tridecanal, benzeneacetic acid, benzene, and carveol. Leaves, stems, and tubers could be targeted for antioxidants, drug development, and tonics/nutraceuticals, respectively. The metabolomic insights can also guide breeding strategies to enhance the bioactive compound content in specific tissues. This study demonstrates the value of tissue-specific metabolite profiling for informing the phytochemical exploitation and genetic improvement of medicinal plants.
Collapse
Affiliation(s)
- Fang Yuan
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610065, China
- Key Laboratory of Tibetan Medicine Resources Conservation and Utilization of Tibet Autonomous Region, Tibet Agriculture and Animal Husbandry University, Nyingchi 860000, China
| | - Shiying Yan
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jian Zhao
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
8
|
Monyela S, Kayoka PN, Ngezimana W, Nemadodzi LE. Evaluating the Metabolomic Profile and Anti-Pathogenic Properties of Cannabis Species. Metabolites 2024; 14:253. [PMID: 38786730 PMCID: PMC11122914 DOI: 10.3390/metabo14050253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
The Cannabis species is one of the potent ancient medicinal plants acclaimed for its medicinal properties and recreational purposes. The plant parts are used and exploited all over the world for several agricultural and industrial applications. For many years Cannabis spp. has proven to present a highly diverse metabolomic profile with a pool of bioactive metabolites used for numerous pharmacological purposes ranging from anti-inflammatory to antimicrobial. Cannabis sativa has since been an extensive subject of investigation, monopolizing the research. Hence, there are fewer studies with a comprehensive understanding of the composition of bioactive metabolites grown in different environmental conditions, especially C. indica and a few other Cannabis strains. These pharmacological properties are mostly attributed to a few phytocannabinoids and some phytochemicals such as terpenoids or essential oils which have been tested for antimicrobial properties. Many other discovered compounds are yet to be tested for antimicrobial properties. These phytochemicals have a series of useful properties including anti-insecticidal, anti-acaricidal, anti-nematicidal, anti-bacterial, anti-fungal, and anti-viral properties. Research studies have reported excellent antibacterial activity against Gram-positive and Gram-negative multidrug-resistant bacteria as well as methicillin-resistant Staphylococcus aureus (MRSA). Although there has been an extensive investigation on the antimicrobial properties of Cannabis, the antimicrobial properties of Cannabis on phytopathogens and aquatic animal pathogens, mostly those affecting fish, remain under-researched. Therefore, the current review intends to investigate the existing body of research on metabolomic profile and anti-microbial properties whilst trying to expand the scope of the properties of the Cannabis plant to benefit the health of other animal species and plant crops, particularly in agriculture.
Collapse
Affiliation(s)
- Shadrack Monyela
- Department of Agriculture and Animal Health, University of South Africa, Science Campus, Florida, Johannesburg 1710, South Africa
| | - Prudence Ngalula Kayoka
- Department of Agriculture and Animal Health, University of South Africa, Science Campus, Florida, Johannesburg 1710, South Africa
| | - Wonder Ngezimana
- Department of Horticulture, Faculty of Plant and Animal Sciences and Technology, Marondera University of Agricultural Sciences and Technology, Marondera P.O. Box 35, Zimbabwe
| | - Lufuno Ethel Nemadodzi
- Department of Agriculture and Animal Health, University of South Africa, Science Campus, Florida, Johannesburg 1710, South Africa
| |
Collapse
|
9
|
Vyas PJ, Wagh SS, Kalaskar MG, Patil KR, Sharma AK, Kazmi I, Al-Abbasi FA, Alzarea SI, Afzal O, Altamimi ASA, Gupta G, Patil CR. Volatile Oil Containing Plants as Phytopharmaceuticals to Treat Psoriasis: A Review. Curr Pharm Biotechnol 2024; 25:313-339. [PMID: 37287299 DOI: 10.2174/1389201024666230607140404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 06/09/2023]
Abstract
INTRODUCTION Psoriasis is a chronic skin condition caused by an autoimmune response that accelerates the life cycle of skin cells, resulting in the characteristic symptoms of scaling, inflammation, and itching. METHODS Palliative treatment options for psoriasis often prioritize the use of volatile oils. These oils contain monoterpenes, sesquiterpenes, and phenylpropanoids that are intricately linked to the molecular cascades involved in the pathogenesis and symptoms of psoriasis. To evaluate the antipsoriatic efficacy of volatile oils and their components, we conducted a systematic review of scientific studies. Our literature search encompassed various online databases, including PubMed, BIREME, SCIELO, Open Grey, Scopus, and ScienceDirect. The selected studies included experimental in vitro/in vivo assessments as well as clinical studies that examined the potential of volatile oils and their extracts as antipsoriatic agents. We excluded conference proceedings, case reports, editorials, and abstracts. Ultimately, we identified and evaluated a total of 12 studies for inclusion in our analysis. RESULTS The data collected, compiled, and analyzed strongly support the interaction between volatile oils and their constituents with the key molecular pathways involved in the pathogenesis of psoriasis and the development of its symptoms. Volatile oils play a significant role in the palliative treatment of psoriasis, while their chemical constituents have the potential to reduce the symptoms and recurrence of this condition. CONCLUSION The current review highlights that the constituents found in volatile oils offer distinct chemical frameworks that can be regarded as promising starting points for the exploration and development of innovative antipsoriatic agents.
Collapse
Affiliation(s)
- Priyanka J Vyas
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, District-Dhule, 425405, India
| | - Shivani S Wagh
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, District-Dhule, 425405, India
| | - Mohan G Kalaskar
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, District-Dhule, 425405, India
| | - Kalpesh R Patil
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, District-Dhule, 425405, India
| | - Ajay K Sharma
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University, New Delhi, 110017, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | - Gaurav Gupta
- Department of Pharmacology, School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatputa, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Chandragouda R Patil
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University, New Delhi, 110017, India
| |
Collapse
|
10
|
Denis AA, Toledo D, Hakim QA, Quintana AA, Escobar CR, Oluwole SA, Costa A, Garcia EG, Hill AR, Agatemor C. Ligand-Independent Activation of Aryl Hydrocarbon Receptor and Attenuation of Glutamine Levels by Natural Deep Eutectic Solvent. Chembiochem 2023; 24:e202300540. [PMID: 37615422 DOI: 10.1002/cbic.202300540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
Natural deep eutectic solvents (NADESs) are emerging sustainable alternatives to conventional organic solvents. Beyond their role as laboratory solvents, NADESs are increasingly explored in drug delivery and as therapeutics. Their increasing applications notwithstanding, our understanding of how they interact with biomolecules at multiple levels - metabolome, proteome, and transcriptome - within human cell remain poor. Here, we deploy integrated metabolomics, proteomics, and transcriptomics to probe how NADESs perturb the molecular landscape of human cells. In a human cell line model, we found that an archetypal NADES derived from choline and geranic acid (CAGE) significantly altered the metabolome, proteome, and transcriptome. CAGE upregulated indole-3-lactic acid and 4-hydroxyphenyllactic acid levels, resulting in ligand-independent activation of aryl hydrocarbon receptor to signal the transcription of genes with implications for inflammation, immunomodulation, cell development, and chemical detoxification. Further, treating the cell line with CAGE downregulated glutamine biosynthesis, a nutrient rapidly proliferating cancer cells require. CAGE's ability to attenuate glutamine levels is potentially relevant for cancer treatment. These findings suggest that NADESs, even when derived from natural components like choline, can indirectly modulate cell biology at multiple levels, expanding their applications beyond chemistry to biomedicine and biotechnology.
Collapse
Affiliation(s)
| | - Daniela Toledo
- Department of Chemistry, University of Miami, Miami, FL-33146, USA
| | | | | | | | | | - Arthur Costa
- Department of Chemistry, University of Miami, Miami, FL-33146, USA
| | | | - Anaya Rose Hill
- Department of Biology, University of Miami, Miami, FL-33146, USA
| | - Christian Agatemor
- Department of Chemistry, University of Miami, Miami, FL-33146, USA
- Department of Biology, University of Miami, Miami, FL-33146, USA
- Sylvester Comprehensive Cancer Center, University of Miami Health System, University of Miami, Miami, FL-33136, USA
| |
Collapse
|
11
|
Chen S, Meng C, He Y, Xu H, Qu Y, Wang Y, Fan Y, Huang X, You H. An in vitro and in vivo study: Valencene protects cartilage and alleviates the progression of osteoarthritis by anti-oxidative stress and anti-inflammatory effects. Int Immunopharmacol 2023; 123:110726. [PMID: 37536183 DOI: 10.1016/j.intimp.2023.110726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/14/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is a heterogeneous disease involving the whole joint. The pathogenesis involves oxidative stress levels and chronic inflammation, and Valencene (VA) has excellent anti-inflammatory and antioxidant stress abilities. PURPOSE The objective was to study the effects of VA therapy on combating oxidative stress and to evaluate the protective effect of chondrocytes to alleviate the progression of OA. METHODS C57BL6J mouse chondrocytes were used as the primary cells in this study. Mouse chondrocytes were stimulated with IL-1β, and VA was administered in different concentrations. Reactive oxygen species (ROS) assay kits, western blotting, cellular immunofluorescence, and scanning microscopy were used to evaluate VA's antioxidant stress mechanism, anti-inflammatory effect, and cartilage protective ability. The mouse arthritis model constructed by destabilization of medial meniscus (DMM) was observed by micro-CT scan and histology after different treatments. RESULTS We found that VA can reverse the rise of ROS under IL-1β, the degeneration of the cartilage extracellular matrix, and the production of inflammatory mediators. In terms of mechanism, VA activated NRF2/HO-1/NQO1 pathway, thus enhancing ROS clearance. The phosphorylation of IκBα is inhibited, which further reduces the downstream phosphorylation of P65 in nuclear factor-κB (NF-κB) signaling. In addition, VA inhibited mitogen-activated protein kinase (MAPK) signaling molecules P-JNK, P-ERK, and P-P38, inhibiting the production of inflammatory mediators and thus inhibiting Aggrecan and Collagen Type II (COL2)degeneration. In vivo, VA reduced DMM-induced osteophytes and spurs, suppressed subchondral bone destruction, and reduced articular cartilage erosion. CONCLUSION Our study demonstrated that VA is an effective candidate for OA treatment.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chen Meng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yi He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hanqing Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yunkun Qu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yingguang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yunhui Fan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaojian Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Hongbo You
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
12
|
El-Zeftawy M, Ghareeb D. Pharmacological bioactivity of Ceratonia siliqua pulp extract: in vitro screening and molecular docking analysis, implication of Keap-1/Nrf2/NF-ĸB pathway. Sci Rep 2023; 13:12209. [PMID: 37500735 PMCID: PMC10374561 DOI: 10.1038/s41598-023-39034-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
Inflammation is interfaced with various metabolic disorders. Ceratonia siliqua (CS) has a higher pharmaceutical purpose. The research aimed to investigate the biofunction of CS pulp aqueous extract (CS-PAE) with an emphasis on its integrated computational approaches as opposed to different specific receptors contributing to inflammation. The extract was assessed for its chemical and phenolic components via GC-MS, LC-MS, HPLC, and total phenolic and flavonoid content. In vitro, bioactivities and molecular docking were analyzed. Findings indicate that CS-PAE demonstrated higher scavenging activities of nitric oxide, 1,1-diphenyl-2-picrylhydrazyl radical, superoxide anion, hydrogen peroxide, and anti-lipid peroxidation (IC50 values were 5.29, 3.04, 0.63, 7.35 and 9.6 mg/dl, respectively). The extract revealed potent inhibition of RBCs hemolysis, acetylcholine esterase, monoamine oxidase-B, and α-glucosidase enzymes (IC50 was 13.44, 9.31, 2.45, and 1.5 mg/dl, respectively). The extract exhibited a cytotoxic effect against prostate cancer Pc3, liver cancer HepG2, colon cancer Caco2, and lung cancer A549 cell lines. Moreover, CS-PAE owned higher antiviral activity against virus A and some bacteria. When contrasting data from molecular docking, it was reported that both apigenin-7-glucoside and rutin in CS-PAE have a good affinity toward the Keap-1/Nrf2/ NF-ĸB pathway. In conclusion, CS-PAE showed promise in therapeutic activity in metabolic conditions.
Collapse
Affiliation(s)
- Marwa El-Zeftawy
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, New Valley University, El-Kharga, New Valley, Egypt.
| | - Doaa Ghareeb
- Biological Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
13
|
Fonseca Hernández D, Mojica L, Berhow MA, Brownstein K, Lugo Cervantes E, Gonzalez de Mejia E. Black and pinto beans (Phaseolus vulgaris L.) unique mexican varieties exhibit antioxidant and anti-inflammatory potential. Food Res Int 2023; 169:112816. [PMID: 37254392 DOI: 10.1016/j.foodres.2023.112816] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/14/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
Oxidative stress and inflammation play a key role in diverse pathological conditions such as cancer and metabolic disorders. The objective of this study was to determine the antioxidant and anti-inflammatory potentials of crude extract (CE) and phenolic-enriched extract (PHE) obtained from the seed coats (SCs) of black bean (BB) and pinto bean (PB) varieties. Delphinidin-3-O-glucoside (46 mg/g SC), malvidin-3-O-glucoside (29.9 mg/g SC), and petunidin-3-O-glucoside (7.5 mg/g SC) were found in major concentrations in the PHE-BB. Pelargonidin (0.53 mg/g SC) was only identified in the PHE-PB. PHE from both varieties showed antioxidant and radical scavenging capacities, with strong correlations associated with total phenolic content (TPC). Polyphenolics, including catechin, myricetin, kaempferol, quercetin, and isorhamnetin glucosides, were identified in the extracts. In terms of the anti-inflammatory potentials, PHE-PB had an IC50 of 10.5 µg dry extract/mL (µg DE/mL) for cyclooxygenase-2 (COX-2) inhibition. The inhibition values for cyclooxygenase-1 (COX-1) ranged from 118.1 to 162.7 µg DE/mL. Regarding inducible nitric oxide synthase (iNOS) inhibition, PHE-BB had an IC50 of 62.6 µg DE/mL. As determined via in silico analysis, pelargonidin showed binding affinities of -7.8 and -8.5 kcal/mol for COX-1 and iNOS, respectively, and catechin had a value of -8.3 kcal/mol for COX-2. Phenolic-enriched extracts from seed coats of black and pinto beans showed good antioxidant and anti-inflammatory potential that warrants in vitro and in vivo studies.
Collapse
Affiliation(s)
- David Fonseca Hernández
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Guadalajara 44270, Mexico; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA.
| | - Luis Mojica
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Guadalajara 44270, Mexico.
| | - Mark A Berhow
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Function Food Research, 1815 N University, Peoria, IL 61604, USA
| | | | - Eugenia Lugo Cervantes
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Guadalajara 44270, Mexico
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA.
| |
Collapse
|
14
|
Bastos TS, Souza CMM, Kaelle GCB, do Nascimento MQ, de Oliveira SG, Félix AP. Diet supplemented with Saccharomyces cerevisiae from different fermentation media modulates the faecal microbiota and the intestinal fermentative products in dogs. J Anim Physiol Anim Nutr (Berl) 2023. [PMID: 37129233 DOI: 10.1111/jpn.13824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 03/09/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
This study aimed at evaluating the coefficients of total tract apparent digestibility (CTTAD) of nutrients, metabolisable energy (ME), diet palatability, faecal fermentative products and microbiota of dogs fed yeasts from different fermentation media and its fractions. Four diets were evaluated: control, without yeast (CO); diet with 10 g/kg brewer's yeast (BY); diet with 10 g/kg brewer's yeast + corn yeast (BCY); and diet with 10 g/kg BCY + cell wall fractions (BCYF). Twelve adult dogs were distributed in a randomized block design (periods). Each of the four diets was fed to a group of three dogs per period of 20 days, totalling two periods and six repetitions per treatment. Sixteen adult dogs were used for the palatability test, which compared the CO diet versus each one of the yeast diets. Data with normal distribution were subjected to analysis of variance (p < 0.05). Means were compared by orthogonal contrasts (p < 0.05): (A) CO diet versus BY, BCY and BCYF diets; (B) BY diet versus BCY and BCYF diets; (C) BCY diet versus BCYF diet. There was no difference in the CTTAD and ME of the diets (p > 0.05). Yeast diets reduced faecal odour and indole peak area (p < 0.05). Faecal short-chain fatty acids concentration was greater in dogs fed yeast diets compared to those fed the CO (p < 0.05). Yeast diets showed a higher intake ratio compared to the CO (p < 0.05). The BCY and BCYF diets resulted in a greater abundance of Bacteroides, Faecalibacterium, Coprococcus, and Phascolarctobacterium in relation to the CO (p < 0.05). Our results suggest that dietary yeast supplementation results in beneficial changes in intestinal functionality indicators, mainly with the combination of yeasts from brewers and corn fermentation media. In addition, yeast supplementation improves diet palatability without compromising nutrient digestibility.
Collapse
Affiliation(s)
- Taís Silvino Bastos
- Department of Animal Science, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | | | | | | | - Ananda Portella Félix
- Department of Animal Science, Federal University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
15
|
Islam MA, Huq Atanu MS, Siraj MA, Acharyya RN, Ahmed KS, Dev S, Uddin SJ, Das AK. Supplementation of syringic acid-rich Phrynium pubinerve leaves imparts protection against allergic inflammatory responses by downregulating iNOS, COX-2, and NF-κB expressions. Heliyon 2023; 9:e13343. [PMID: 36816283 PMCID: PMC9932742 DOI: 10.1016/j.heliyon.2023.e13343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 12/24/2022] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Background The present study was designed to characterize the role of ethanolic leaf extract of Phrynium pubinerve Blume (EPP) supplement in attenuating allergic inflammation, encouraged by the presence of syringic acid in it, as this phenolic acid is reportedly promising in suppressing serum immunoglobulin E (IgE) and inflammatory cytokine levels. Materials and methods HPLC-DAD dereplication analysis was performed to determine the presence of the vital polyphenolic metabolites. The efficacy of EPP against lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 cells was evaluated by measuring its inhibitory effects on NO and ROS/RNS production. The expressions of major inflammation-associated molecules (iNOS, COX-2, NF-κB, IL-6, and TNF-α) in RAW 264.7 cells were assessed through Western blot. Physiological and behavioral changes, BMI, and different biochemical parameters in mice blood serum were investigated in the toxicological assays. Formaldehyde-induced paw edema test in mice was conducted using established animal model. TDI-induced allergic model in mice was carried out to determine different allergy-like symptoms, and differential white blood cell (WBC) counts in blood and bronchoalveolar lavage (BAL) fluid. The intermolecular interaction analysis of the identified major metabolite of EPP with H1R and iNOS was studied by molecular docking. Results HPLC-DAD analysis showed the presence of syringic acid (89.19 mg/100 g EPP) and a few other compounds. LPS-induced NO generation was reduced by EPP in a concentration-dependent manner, showing IC50 of 28.20 ± 0.27 μg/mL. EPP exhibited a similar inhibitory effect on ROS/RNS production with IC50 of 29.47 ± 2.19 μg/mL. Western blotting revealed that EPP significantly downregulated the expressions of iNOS, COX-2, NF-κB, IL-6, and TNF-α in RAW 264.7 cells when challenged with LPS. The toxicological assays confirmed the dosage and organ-specific safety of EPP. In the formaldehyde-induced paw edema test, EPP caused a 66.41% reduction in mice paw volume at 500 mg/kg dose. It ameliorated TDI-induced allergy-like symptoms and decreased different inflammatory WBCs in mice's blood and BAL fluid in a dose-dependent manner. Finally, syringic acid demonstrated mentionable intermolecular binding affinity towards H1R (-6.6 Kcal/moL) and iNOS (-6.7 Kcal/moL). Conclusions Collectively, considerable scientific reasoning was obtained in favor of the suppressive potential of EPP against allergic inflammatory responses that are proposed to be exerted via the downregulation of iNOS, COX-2, and NF-κB expressions, H1R antagonism and suppression of cytokines, such as IL-6, and TNF-α.
Collapse
Affiliation(s)
- Md Arman Islam
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | | | - Md Afjalus Siraj
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
- Department of Pharmacy, Gono Bishwabidyalay, Savar, Dhaka 1344, Bangladesh
| | | | - Khondoker Shahin Ahmed
- Chemical Research Division, BCSIR Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Shrabanti Dev
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Asish Kumar Das
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| |
Collapse
|
16
|
Zhang LL, Chen Y, Li ZJ, Fan G, Li X. Production, Function, and Applications of the Sesquiterpenes Valencene and Nootkatone: a Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:121-142. [PMID: 36541855 DOI: 10.1021/acs.jafc.2c07543] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Valencene and nootkatone, two sesquiterpenes, extracted from natural sources, have great market potential with diverse applications. This paper aims to comprehensively review the recent advances in valencene and nootkatone, including source, production, physicochemical and biological properties, safety and pharmacokinetics evaluation, potential uses, and their industrial applications as well as future research directions. Microbial biosynthesis offers a promising alternative approach for sustainable production of valencene and nootkatone. Both compounds exert various beneficial activities, including antimicrobial, insecticidal, antioxidant, anti-inflammatory, anticancer, cardioprotective, neuroprotective, hepatoprotective, and nephroprotective and other activities. However, most of the studies are performed in animals and in vitro, making it difficult to give a conclusive description about their health benefits and extend their application. Hence, more attention should be paid to in vivo and long-term clinical studies in the future. Moreover, valencene and nootkatone are considered safe for consumption and show great promise in the applications of food, cosmetic, pharmaceutical, chemical, and agricultural industries.
Collapse
Affiliation(s)
- Lu-Lu Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Yan Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Zhi-Jian Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xiao Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
17
|
Molecular Mechanisms Underlying the Anti-Inflammatory Properties of (R)-(-)-Carvone: Potential Roles of JNK1, Nrf2 and NF-κB. Pharmaceutics 2023; 15:pharmaceutics15010249. [PMID: 36678878 PMCID: PMC9865770 DOI: 10.3390/pharmaceutics15010249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
To explore the molecular mechanisms underlying the anti-inflammatory activity of (R)-(-)-carvone, we evaluated its ability to inhibit the signaling pathways involving the mitogen-activated protein kinases (MAPKs) and the transcription factor, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). (R)-(-)-carvone significantly decreased c-Jun N-terminal kinase (JNK) 1phosphorylation, but not that of the other MAPKs, induced by bacterial lipopolysaccharides (LPS) in the RAW 264.7 macrophage cell line. Although (R)-(-)-carvone significantly inhibited resynthesis of the inhibitor of NF-κB (IκB)-α induced by LPS, it did not interfere with the canonical NF-κB activation pathway, suggesting that it may interfere with its transcriptional activity. (R)-(-)-carvone also showed a tendency to decrease the levels of acetylated NF-κB/p65 in the nucleus, without affecting the activity and protein levels of Sirtuin-1, the major NF-κB/p65 deacetylating enzyme. Interestingly, the nuclear protein levels of the transcription factor, nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and the expression of its target,, heme oxygenase-1 (HO-1), an antioxidant enzyme, also showed a tendency to increase in the presence of (R)-(-)-carvone. Taken together, these results suggest that the ability of (R)-(-)-carvone to inhibit JNK1 and to activate Nrf2 can underlie its capacity to inhibit the transcriptional activity of NF-κB and the expression of its target genes. This study highlights the diversity of molecular mechanisms that can be involved in the anti-inflammatory activity of monoterpenes.
Collapse
|
18
|
Chacon FT, Raup-Konsavage WM, Vrana KE, Kellogg JJ. Secondary Terpenes in Cannabis sativa L.: Synthesis and Synergy. Biomedicines 2022; 10:biomedicines10123142. [PMID: 36551898 PMCID: PMC9775512 DOI: 10.3390/biomedicines10123142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Cannabis is a complex biosynthetic plant, with a long history of medicinal use. While cannabinoids have received the majority of the attention for their psychoactive and pharmacological activities, cannabis produces a diverse array of phytochemicals, such as terpenes. These compounds are known to play a role in the aroma and flavor of cannabis but are potent biologically active molecules that exert effects on infectious as well as chronic diseases. Furthermore, terpenes have the potential to play important roles, such as synergistic and/or entourage compounds that modulate the activity of the cannabinoids. This review highlights the diversity and bioactivities of terpenes in cannabis, especially minor or secondary terpenes that are less concentrated in cannabis on a by-mass basis. We also explore the question of the entourage effect in cannabis, which studies to date have supported or refuted the concept of synergy in cannabis, and where synergy experimentation is headed, to better understand the interplay between phytochemicals within Cannabis sativa L.
Collapse
Affiliation(s)
- Francisco T. Chacon
- Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | | | - Kent E. Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Joshua J. Kellogg
- Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA
- Correspondence: ; Tel.: +1-814-865-2887
| |
Collapse
|
19
|
Citrus Essential Oils in Aromatherapy: Therapeutic Effects and Mechanisms. Antioxidants (Basel) 2022; 11:antiox11122374. [PMID: 36552586 PMCID: PMC9774566 DOI: 10.3390/antiox11122374] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Citrus is one of the main fruit crops cultivated in tropical and subtropical regions worldwide. Approximately half (40-47%) of the fruit mass is inedible and discarded as waste after processing, which causes pollution to the environment. Essential oils (EOs) are aromatic compounds found in significant quantities in oil sacs or oil glands present in the leaves, flowers, and fruit peels (mainly the flavedo part). Citrus EO is a complex mixture of ~400 compounds and has been found to be useful in aromatic infusions for personal health care, perfumes, pharmaceuticals, color enhancers in foods and beverages, and aromatherapy. The citrus EOs possess a pleasant scent, and impart relaxing, calming, mood-uplifting, and cheer-enhancing effects. In aromatherapy, it is applied either in message oils or in diffusion sprays for homes and vehicle sittings. The diffusion creates a fresh feeling and enhances relaxation from stress and anxiety and helps uplifting mood and boosting emotional and physical energy. This review presents a comprehensive outlook on the composition, properties, characterization, and mechanism of action of the citrus EOs in various health-related issues, with a focus on its antioxidant properties.
Collapse
|
20
|
Effect of Phytobiotic Composition on Production Parameters, Oxidative Stress Markers and Myokine Levels in Blood and Pectoral Muscle of Broiler Chickens. Animals (Basel) 2022; 12:ani12192625. [PMID: 36230365 PMCID: PMC9559402 DOI: 10.3390/ani12192625] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022] Open
Abstract
Simple Summary Intensive rearing of broiler chickens is accompanied with pathological processes occurring in muscle tissue that decrease meat quality. The application of common spices as feed additives for chickens may improve the birds’ health and prevent the development of myopathies. Therefore, the aim of the study was to examine the effect of the dietary level of a phytobiotic composition on the production parameters, oxidative stress markers and myokine levels in the blood and pectoral muscle of broiler chickens. The composition consisted of red pepper fruit, white mustard seed, soapwort root, calamus rhizome, and thymol, and it was tested at two levels, i.e., 60 and 100 mg/kg diet. The results showed that dietary supplementation with phytobiotic composition at the level of 100 mg/kg diet improved feed efficiency in broiler chickens and might improve the quality and economy of broiler meat production. The plant constituents exerted their beneficial effects on meat via decreasing tumor necrosis factor-α concentration in pectoral muscle and increasing interleukin-6 content in the blood of chickens. Abstract The aim of this study was to evaluate the effect of dietary level of a phytobiotic composition (PBC) on production parameters, oxidative stress markers and cytokine levels in the blood and breast muscle of broiler chickens. The experiment was performed on 48 one-day-old female Ross 308 broiler chickens divided into three groups (n = 16) fed the control diet (without PBC), and a diet supplemented with 60 or 100 mg/kg of PBC. After 35 days of feeding, blood and breast muscle samples were collected for analyses. There was no effect on final body weight and feed intake but PBC addition (100 mg/kg) improved feed efficiency as compared to the control. Also, this dietary level of PBC contributed to an increase in interlukin-6 content in blood and a reduction in tumor necrosis factor-α concentrations in pectoral muscle in comparison with the control group. In conclusion, the addition of 100 mg/kg PBC improved the production parameters of broiler chickens and beneficially influenced the regeneration and protection of pectoral muscle against pathophysiological processes that may occur during intensive rearing.
Collapse
|
21
|
Murugan R, Rajesh R, Velayutham M, Juliet A, Gopinath P, Arockiaraj J. Deacetyl epoxyazadiradione protects aminoglycoside antibiotic-induced renal cell apoptosis, in vitro. Cell Biol Int 2022; 47:123-134. [PMID: 36177496 DOI: 10.1002/cbin.11915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/02/2022] [Accepted: 09/12/2022] [Indexed: 11/07/2022]
Abstract
Aminoglycoside antibiotics such as gentamicin are used frequently to treat bacterial infections in humans. Excessive consumption of these antibiotics lead to renal dysfunction. One of the factors contributing to renal dysfunction is oxidative damage, which causes apoptosis. Hence, this study investigates the effect of the antioxidant compound deacetyl epoxyazadiradione (DEA) in reducing cell death induced by gentamicin treatment in kidney cells (Madin-Darby canine kidney cells). The antioxidant experiments showed that reactive oxygen species level is decreased up to 27.06 ± 0.18% in 150 µM of DEA treatment. At this concentration, the activity of antioxidant enzymes such as superoxide dismutase increased from 0.4 ± 0.04 to 1.46 ± 0.05 µmol/min/L and catalase increased from 7.48 ± 0.39 to 17.6 ± 0.74 U/mg. The relative folds of gene expression of mitochondrial enzymes such as GST, GPx and GR restored from 0.596 ± 0.019, 0.521 ± 0.013 and 0.775 ± 0.014 to 0.866 ± 0.013, 0.669 ± 0.015 and 0.8615 ± 0.028, respectively. Consequently, the percentage of cell viability increases upto 91.8 ± 2.01 from 61.93 ± 1.63 with much less fragmentation in genomic DNA. Additionally, molecular docking results showed that DEA could bind to Bax, Bcl- 2, Caspase- 3 and Caspase- 9 proteins. These results indicate that DEA could reduce cell apoptosis by reducing oxidative stress due to antibiotics and interrupting the apoptotic signal pathway in kidney cells.
Collapse
Affiliation(s)
- Raghul Murugan
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - Ravi Rajesh
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - Manikandan Velayutham
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - Annie Juliet
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Pushparathinam Gopinath
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| |
Collapse
|
22
|
Dantas LB, Alcântara IS, Júnior CPS, de Oliveira MRC, Martins AO, Dantas TM, Ribeiro-Filho J, Coutinho HDM, Passos FR, Quintans-Júnior LJ, Almeida JRG, Cruz-Martins N, Kim B, de Menezes IRA. In vivo and in silico anti-inflammatory properties of the sesquiterpene valencene. Biomed Pharmacother 2022; 153:113478. [DOI: 10.1016/j.biopha.2022.113478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/13/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022] Open
|
23
|
Carvalho GR, Braz DS, Gonçalves TCO, Aires R, Côco LZ, Guidoni M, Fronza M, Endringer DC, Júnior ADS, Campos-Toimil M, Nogueira BV, Vasquez EC, Campagnaro BP, Pereira TMC. Development and Evaluation of Virola oleifera Formulation for Cutaneous Wound Healing. Antioxidants (Basel) 2022; 11:antiox11091647. [PMID: 36139721 PMCID: PMC9495449 DOI: 10.3390/antiox11091647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022] Open
Abstract
In regions adjacent to the Brazilian Atlantic Forest, Virola oleifera (VO) resin extract has been popularly used for decades as a skin and mucosal healing agent. However, this antioxidant-rich resin has not yet been investigated in wound healing, whose physiological process might also be aggravated by oxidative stress-related diseases (e.g., hypertension/diabetes). Our aim, therefore, was to investigate whether VO resin presents healing effects through an innovative cream for topical applications. For this, adult male Wistar rats were divided into four groups. Then, four 15 mm excisions were performed on the shaved skin. All treatments were applied topically to the wound area daily. At the end of experiments (0, 3rd, and 10th days) macroscopic analysis of wound tissue contraction and histological analysis of inflammatory cell parameters were performed. The group treated with VO cream showed the best wound contraction (15%, p < 0.05) and reduced levels of lipid peroxidation and protein oxidation (118% and 110%, p < 0.05, respectively) compared to the control group. Our results demonstrated the healing capacity of a new formulation prepared with VO, which could be, at least in part, justified by antioxidant mechanisms that contribute to re-epithelialization, becoming a promising dermo-cosmetic for the treatment of wound healing.
Collapse
Affiliation(s)
- Glaucimeire R. Carvalho
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, Brazil
| | - Débora S. Braz
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, Brazil
| | - Talita C. O. Gonçalves
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, Brazil
| | - Rafaela Aires
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, Brazil
| | - Larissa Z. Côco
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, Brazil
| | - Marcio Guidoni
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, Brazil
| | - Marcio Fronza
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, Brazil
| | - Denise C. Endringer
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, Brazil
| | - Antonio D. S. Júnior
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, Brazil
| | - Manuel Campos-Toimil
- Physiology and Pharmacology of Chronic Diseases (FIFAEC), Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Breno V. Nogueira
- Laboratory of Translational Physiology, Physiological Sciences Graduate Program, Federal University of Espírito Santo, Vitoria 29047-105, Brazil
| | - Elisardo C. Vasquez
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, Brazil
- Physiology and Pharmacology of Chronic Diseases (FIFAEC), Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Bianca P. Campagnaro
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, Brazil
| | - Thiago M. C. Pereira
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, Brazil
- Federal Institute of Education, Science and Technology (IFES), Vila Velha 29106-010, Brazil
- Correspondence: ; Tel.: +55-(27)-3421-2001
| |
Collapse
|
24
|
Campos-Xolalpa N, Esquivel-Campos AL, Martínez-Casares RM, Pérez-Gutiérrez S, Pérez-Ramos J, Sánchez-Mendoza E. Anti-Inflammatory Activity of Piquerol Isolated from Piqueria trinervia Cav. Pharmaceuticals (Basel) 2022; 15:ph15070771. [PMID: 35890070 PMCID: PMC9324079 DOI: 10.3390/ph15070771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Inflammation is a complex process as a response to several stimuli, such as infection, a chemical irritant, and the attack of a foreign body. Piquerol was isolated from Piqueria trinervia, and its anti-inflammatory activity was evaluated using in vivo and in vitro models. Methods: Piquerol is a monoterpene that was identified using NMR, FT-IR spectroscopy, and mass spectrometry analysis. The anti-inflammatory activity was tested in vivo in ear edema induced with TPA in mice. Piquerol was also tested on J774A.1 macrophages stimulated with lipopolysaccharide (LPS), and the levels of NO, NF-κB, TNF-α, IL-1β, IL-6, and IL-10 were determined using ELISA. Results: The results show that piquerol diminished ear edema (66.19%). At 150.51 µM, it also inhibited the levels of NO (31.7%), TNF-α (49.8%), IL-1β (69.9%), IL-6 (47.5%), and NF-κB (26.7%), and increased the production of IL-10 (62.3%). Piquerol has a membrane stabilization property in erythrocyte, and at 100 µg/mL, the membrane protection was of 86.17%. Conclusions: Piquerol has anti-inflammatory activity, and its possible mechanism of action is through the inhibition of pro-inflammatory mediators. This compound could be a candidate in the development of new drugs to treat inflammatory problems.
Collapse
|
25
|
Advancements in Skin Delivery of Natural Bioactive Products for Wound Management: A Brief Review of Two Decades. Pharmaceutics 2022; 14:pharmaceutics14051072. [PMID: 35631658 PMCID: PMC9143175 DOI: 10.3390/pharmaceutics14051072] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023] Open
Abstract
Application of modern delivery techniques to natural bioactive products improves their permeability, bioavailability, and therapeutic efficacy. Many natural products have desirable biological properties applicable to wound healing but are limited by their inability to cross the stratum corneum to access the wound. Over the past two decades, modern systems such as microneedles, lipid-based vesicles, hydrogels, composite dressings, and responsive formulations have been applied to natural products such as curcumin or aloe vera to improve their delivery and efficacy. This article reviews which natural products and techniques have been formulated together in the past two decades and the success of these applications for wound healing. Many cultures prefer natural-product-based traditional therapies which are often cheaper and more available than their synthetic counterparts. Improving natural products’ effect can provide novel wound-healing therapies for those who trust traditional compounds over synthetic drugs to reduce medical inequalities.
Collapse
|
26
|
Pina LTS, Serafini MR, Oliveira MA, Sampaio LA, Guimarães JO, Guimarães AG. Carvone and its pharmacological activities: A systematic review. PHYTOCHEMISTRY 2022; 196:113080. [PMID: 34999510 DOI: 10.1016/j.phytochem.2021.113080] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/07/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Natural products from plants have gained prominence in the search for therapeutic alternatives. Monoterpenes, such as carvone, are suggested as candidates for the treatment of several diseases. Therefore, the objective of this study is to review the pharmacological activities of carvone in experimental models in vitro and in vivo. For this, the searches were carried out in May 2020 (upgraded in July 2021) in the databases of PubMed, Web of Science and Scopus and gathered studies on the pharmacological activities of carvone. Two independent reviewers performed the selection of articles using the Rayyan application, extracted the relevant data and assessed the methodological quality of the selected studies using Syrcle's risk of bias tool. Ninety-one articles were selected that described 10 pharmacological activities of carvone, such as antimicrobial, antispasmodic, anti-inflammatory, antioxidant, antinociceptive, anticonvulsant, among others. The evaluation of the methodological quality presented an uncertain risk of bias for most studies. In light of that, carvone stands out as a viable and promising alternative in the treatment of several pathological conditions. However, carrying out studies to evaluate possible mechanisms of action and the safety of this monoterpene is recommended.
Collapse
Affiliation(s)
- Lícia T S Pina
- Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil.
| | - Mairim R Serafini
- Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil; Graduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Marlange A Oliveira
- Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Laeza A Sampaio
- Graduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Juliana O Guimarães
- Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Adriana G Guimarães
- Graduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
27
|
Kim SH, Lee YC. Plant-Derived Nanoscale-Encapsulated Antioxidants for Oral and Topical Uses: A Brief Review. Int J Mol Sci 2022; 23:ijms23073638. [PMID: 35409001 PMCID: PMC8998173 DOI: 10.3390/ijms23073638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Several plant-based nanoscale-encapsulated antioxidant compounds (rutin, myricetin, β-carotene, fisetin, lycopene, quercetin, genkwanin, lutein, resveratrol, eucalyptol, kaempferol, glabridin, pinene, and whole-plant bio-active compounds) are briefly introduced in this paper, along with their characteristics. Antioxidants’ bioavailability has become one of the main research topics in bio-nanomedicine. Two low patient compliance drug delivery pathways (namely, the oral and topical delivery routes), are described in detail in this paper, for nanoscale colloidal systems and gel formulations. Both routes and/or formulations seek to improve bioavailability and maximize the drug agents’ efficiency. Some well-known compounds have been robustly studied, but many remain elusive. The objective of this review is to discuss recent studies and advantages of nanoscale formulations of plant-derived antioxidant compounds.
Collapse
|
28
|
Chlorogenic acid and caffeine contents and anti-inflammatory and antioxidant activities of green beans of conilon and arabica coffees harvested with different degrees of maturation. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Guerra E Oliveira T, Trancoso IA, Lorençoni MF, Souza Júnior AD, Campagnaro BP, Coco LZ, Weitzel Dias Carneiro MT, do Espírito Santo Lemos M, Endringer DC, Fronza M. Toxicological effects of air settled particles from the Vitoria Metropolitan Area mediated by oxidative stress, pro-inflammatory mediators and NFΚB pathway. ENVIRONMENTAL RESEARCH 2022; 204:112015. [PMID: 34509484 DOI: 10.1016/j.envres.2021.112015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/16/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Atmospheric pollution is a major environmental and public health risk due to its effect on global air quality and climate. Increase in pollutants concentrations, especially particulate matter (PM), are associated with increased respiratory diseases. The pathophysiology of respiratory diseases involves molecular and cellular mechanisms as inflammatory biomarkers and reactive oxygen species production. Thus, the present study aimed to investigate the in vitro cytotoxic and pro-inflammatory effects of particulate matter (PM) of six monitoring stations (1-6) from the Vitoria Metropolitan Area (VMA), Espirito Santo, Brazil in 2018. The PM was chemically characterized by inductively coupled plasma mass spectrometry. In vitro cytotoxic effects of PM (3.12-200.0 μg/mL) were analyzed in human lung epithelial cells (A549) and macrophage cells (RAW 264.7) by MTT assay (3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide). To investigate the pro-inflammatory effects of PM in RAW 264.7 cells, the levels of proinflammatory mediators such as nitric oxide (NO), superoxide anion (O2•-), tumor necrosis factor (TNF-α), interleukin 6 (IL-6), and the activation of nuclear factor kappa B (NF- κB) were measured. The comet assay evaluated genotoxicity. Cell cycle, oxidative stress (DCF and DHE), and apoptosis were analyzed by flow cytometry. Chemical analysis of PM revealed aluminum (Al) and Iron (Fe) as the major chemical elements in all studied monitoring stations. In addition, worrying concentrations of mercury (Hg) were detected in the PM. The in vitro results showed that PM presents a dose-dependent cytotoxic effect in macrophage and pulmonary epithelial cell lines. The PM increased the production of NO, O2•-, and pro-inflammatory cytokines TNF-α and IL-6. PM also promoted alterations in the cell cycle, increased apoptosis frequency, and DNA damage. Moreover, PM increased the expression NF-κB. In addition, a positive correlation between Al and Fe and ROS production was observed. Based on the results obtained during the study period, it was concluded that the sedimented particles from the VMA might have deleterious effects on human health, which was evidenced by the increase in oxidative stress, an increase in pro-inflammatory mediators, and genotoxic effects partially mediated by the NF-κB pathway. These results add aspects to elucidate the molecular mechanisms involved in the effects of sedimented particles in vivo and in vitro.
Collapse
Affiliation(s)
- Trícia Guerra E Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Cultura de Células, Universidade Vila Velha, Vila Velha, Brazil
| | - Isabelle Araújo Trancoso
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Cultura de Células, Universidade Vila Velha, Vila Velha, Brazil
| | - Mariane Fioroti Lorençoni
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Cultura de Células, Universidade Vila Velha, Vila Velha, Brazil
| | - Antônio Domingos Souza Júnior
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Cultura de Células, Universidade Vila Velha, Vila Velha, Brazil
| | - Bianca Prandi Campagnaro
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Fisiologia Translacional, Universidade Vila Velha, Vila Velha, Brazil
| | - Larissa Zambom Coco
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Fisiologia Translacional, Universidade Vila Velha, Vila Velha, Brazil
| | | | | | - Denise Coutinho Endringer
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Cultura de Células, Universidade Vila Velha, Vila Velha, Brazil
| | - Marcio Fronza
- Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Cultura de Células, Universidade Vila Velha, Vila Velha, Brazil.
| |
Collapse
|
30
|
Pereira EWM, Heimfarth L, Santos TK, Passos FRS, Siqueira-Lima P, Scotti L, Scotti MT, Almeida JRGDS, Campos AR, Coutinho HDM, Martin P, Quintans-Júnior LJ, Quintans JSS. Limonene, a citrus monoterpene, non-complexed and complexed with hydroxypropyl-β-cyclodextrin attenuates acute and chronic orofacial nociception in rodents: Evidence for involvement of the PKA and PKC pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153893. [PMID: 35026511 DOI: 10.1016/j.phymed.2021.153893] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/05/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Chronic orofacial pain is a serious public health problem with a prevalence of 7-11% in the population. This disorder has different etiologies and characteristics that make pharmacological treatment difficult. Natural products have been shown to be a promising source of treatments for the management of chronic pain, as an example the terpenes. PURPOSE The aim of this study was to evaluate the anti-nociceptive and anti-inflammatory effects of one of these terpenes, d-limonene (LIM - a common monoterpene found in citrus fruits) alone and complexed with hydroxypropyl-β-cyclodextrin (LIM/HPβCD) in preclinical animal models. METHODS Orofacial pain was induced by the administration of hypertonic saline on the corneal surface, the injection of formalin into the temporomandibular joint (TMJ), or chronic constriction injury of the infraorbital nerve (CCI-IoN). The study used male Wistar rats and Swiss mice treated with LIM (50 mg/kg), LIM/HPβCD (50 mg/kg), vehicle (control), gabapentin or morphine, and eyes wiping (induced by hypertonic saline), face rubbing (formalin-induced in TMJ) or mechanical hyperalgesia (provoked by CCI-IoN) were assessed. Additionally, ELISA was used to measure TNF-α, and western blot analysis to assess levels of PKAcα, NFκB, p38MAPK and phosphorylated PKC substrates. Serum levels of aspartate aminotransferase (AST) and alanine transferase (ALT) were also evaluated. RESULTS LIM and LIM/HPβCD significantly reduced (p < 0.001) corneal nociception and formalin-induced TMJ nociception. In addition, both substances attenuated (p < 0.001) mechanical hyperalgesia in the CCI-IoN model. The antinociceptive effect induced by LIM and HPβCD/LIM was associated with decreased TNF-α levels, downregulation of the NFκB and p38MAPK signalling pathways and reduced PKC substrate phosphorylation and PKA immunocontent. Moreover, the results demonstrated that complexation with HPβCD was able to decrease the therapeutic dose of LIM. CONCLUSION LIM was found to be a promising molecule for the treatment of orofacial pain due to its capacity to modulate some important mediators essential to the establishment of pain, and HPβCD can be a key tool to improve the profile of LIM.
Collapse
Affiliation(s)
- Erik W M Pereira
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil
| | - Luana Heimfarth
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Tiffany Kb Santos
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Fabiolla R S Passos
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil
| | | | | | | | | | - Adriana R Campos
- Experimental Biology Centre (NUBEX). University of Fortaleza, Fortaleza, CE, Brazil
| | | | - Patrick Martin
- Univ Artois, UniLaSalle, Unité Transformations & Agroressources, Béthune, France
| | - Lucindo J Quintans-Júnior
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil
| | - Jullyana S S Quintans
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil
| |
Collapse
|
31
|
Saiki P, Yoshihara M, Kawano Y, Miyazaki H, Miyazaki K. Anti-Inflammatory Effects of Heliangin from Jerusalem Artichoke (Helianthus tuberosus) Leaves Might Prevent Atherosclerosis. Biomolecules 2022; 12:biom12010091. [PMID: 35053238 PMCID: PMC8774036 DOI: 10.3390/biom12010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 11/16/2022] Open
Abstract
Atherosclerosis is considered the major cause of cardiovascular and cerebrovascular diseases, which are the leading causes of death worldwide. Excessive nitric oxide production and inflammation result in dysfunctional vascular endothelial cells, which are critically involved in the initiation and progression of atherosclerosis. The present study aimed to identify a bioactive compound from Jerusalem artichoke leaves with anti-inflammatory activity that might prevent atherosclerosis. We isolated bioactive heliangin that inhibited NO production in LPS-induced macrophage-like RAW 264.7 cells. Heliangin suppressed ICAM-1, VCAM-1, E-selectin, and MCP-1 expression, as well as NF-κB and IκBα phosphorylation, in vascular endothelial cells stimulated with TNF-α. These results suggested that heliangin suppresses inflammation by inhibiting excessive NO production in macrophages and the expression of the factors leading to the development of atherosclerosis via the NF-κB signaling pathway in vascular endothelial cells. Therefore, heliangin in Jerusalem artichoke leaves could function in the prevention of atherosclerosis that is associated with heart attacks and strokes.
Collapse
Affiliation(s)
- Papawee Saiki
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advance Industrial Science and Technology, Tsukuba 305-8566, Japan; (Y.K.); (K.M.)
- Correspondence: ; Tel.: +81-29-861-4304
| | - Mizuki Yoshihara
- Graduate School of Life and Environment Sciences, University of Tsukuba, Tsukuba 305-8577, Japan; (M.Y.); (H.M.)
| | - Yasuhiro Kawano
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advance Industrial Science and Technology, Tsukuba 305-8566, Japan; (Y.K.); (K.M.)
| | - Hitoshi Miyazaki
- Graduate School of Life and Environment Sciences, University of Tsukuba, Tsukuba 305-8577, Japan; (M.Y.); (H.M.)
| | - Koyomi Miyazaki
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advance Industrial Science and Technology, Tsukuba 305-8566, Japan; (Y.K.); (K.M.)
| |
Collapse
|
32
|
Zhang L, Chen Y, Li Z, Li X, Fan G. Bioactive properties of the aromatic molecules of spearmint (Mentha spicata L.) essential oil: a review. Food Funct 2022; 13:3110-3132. [DOI: 10.1039/d1fo04080d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spearmint belongs to the genus Mentha in the family Labiateae (Lamiaceae), which is wildly cultivated worldwide for its remarkable aroma and commercial value. The aromatic molecules of spearmint essential oil,...
Collapse
|
33
|
In Vitro and In Vivo Antidiabetic Potential of Monoterpenoids: An Update. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010182. [PMID: 35011414 PMCID: PMC8746715 DOI: 10.3390/molecules27010182] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/20/2021] [Accepted: 12/25/2021] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus (DM) is a chronic metabolic condition characterized by persistent hyperglycemia due to insufficient insulin levels or insulin resistance. Despite the availability of several oral and injectable hypoglycemic agents, their use is associated with a wide range of side effects. Monoterpenes are compounds extracted from different plants including herbs, vegetables, and fruits and they contribute to their aroma and flavor. Based on their chemical structure, monoterpenes are classified into acyclic, monocyclic, and bicyclic monoterpenes. They have been found to exhibit numerous biological and medicinal effects such as antipruritic, antioxidant, anti-inflammatory, and analgesic activities. Therefore, monoterpenes emerged as promising molecules that can be used therapeutically to treat a vast range of diseases. Additionally, monoterpenes were found to modulate enzymes and proteins that contribute to insulin resistance and other pathological events caused by DM. In this review, we highlight the different mechanisms by which monoterpenes can be used in the pharmacological intervention of DM via the alteration of certain enzymes, proteins, and pathways involved in the pathophysiology of DM. Based on the fact that monoterpenes have multiple mechanisms of action on different targets in in vitro and in vivo studies, they can be considered as lead compounds for developing effective hypoglycemic agents. Incorporating these compounds in clinical trials is needed to investigate their actions in diabetic patients in order to confirm their ability in controlling hyperglycemia.
Collapse
|
34
|
Siraj MA, Islam Howlader MS, Islam MA, Irin T, Simal-Gandara J. Regulation of the redox signaling and inflammation by Terminalia myriocarpa leaves and the predictive interactions of it's major metabolites with iNOS and NF-ĸB. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114459. [PMID: 34343646 DOI: 10.1016/j.jep.2021.114459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 07/06/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The present study was designed to investigate the regulation of the redox signaling and inflammation by ethanolic leaf extract of Terminalia myriocarpaVan Heurck & Müller (ETM), inspired by the reported antioxidant potential of the plant bark and the anti-edema effect of the same genus. MATERIALS AND METHODS HPLC-DAD dereplication study was conducted to detect the major polyphenolic secondary metabolites. In-vitro DPPH free radical scavenging assay, nitric oxide (NO) scavenging assay, Fe2+ ion chelating ability assay and reducing power assay were conducted to evaluate the antioxidant capacity. The molecular mechanism of anti-inflammation was investigated via assessing the NO and NF-ĸB inhibiting properties in different cell lines. In-vivo carrageenan and histamine-induced edema tests were conducted using established animal models. Pro-inflammatory proteins iNOS and NF-κB were docked against the major metabolites of ETM in the in-silico study. RESULTS HPLC dereplication analysis revealed the presence of considerable amount of ellagic acid, where methyl-(S)-flavogallonate was previously reported in T. myriocarpa. Significant antioxidant activity was found in every in- vitro redox assay conducted. NO was reduced in RAW 264.7 cells, showing 83.67 ± 4.18% inhibitory activity at the highest tested concentration. TNF-α induced NF-κB was also observed to be reduced in 293/NF-кB-luc cells with an inhibitory activity of 66.23 ± 0.81% at the highest dose tested. In-vivo carrageenan-induced edema test demonstrated significant anti-inflammatory activity (p < 0.05; p < 0.01) at both doses of 250 and 500 mg/kg with 60.10% highest reduction in rat paw volume. Using same doses, histamine-induced edema test exhibited mentionable anti-inflammatory potential (p < 0.05; p < 0.01) with 67.91% highest reduction in rat paw volume. Moreover, ellagic acid and methyl-(S)-flavogallonate showed significant binding affinity with iNOS (-8.5 and -8.7 Kcal/moL, respectively) and NF-κB (-7.3 and -7.3 Kcal/moL, respectively). CONCLUSION Mentionable basis was found on behalf of the anti-inflammatory and antioxidant potentials of ETM which might be correlated with its NF-ĸB inhibiting properties.
Collapse
Affiliation(s)
- Md Afjalus Siraj
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, 96720, HI, USA
| | - Md Sariful Islam Howlader
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA; Department of Chemistry, Tennessee Technological University, Cookeville, TN, 38501, USA
| | - Md Arman Islam
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | - Tanzira Irin
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh; Department of Pharmacy, ASA University Bangladesh, Dhaka, 1207, Bangladesh
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004, Ourense, Spain.
| |
Collapse
|
35
|
The impact of extraction protocol on the chemical profile of cannabis extracts from a single cultivar. Sci Rep 2021; 11:21801. [PMID: 34750475 PMCID: PMC8575894 DOI: 10.1038/s41598-021-01378-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 10/13/2021] [Indexed: 11/09/2022] Open
Abstract
The last two decades have seen a dramatic shift in cannabis legislation around the world. Cannabis products are now widely available and commercial production and use of phytocannabinoid products is rapidly growing. However, this growth is outpacing the research needed to elucidate the therapeutic efficacy of the myriad of chemical compounds found primarily in the flower of the female cannabis plant. This lack of research and corresponding regulation has resulted in processing methods, products, and terminology that are variable and confusing for consumers. Importantly, the impact of processing methods on the resulting chemical profile of full spectrum cannabis extracts is not well understood. As a first step in addressing this knowledge gap we have utilized a combination of analytical approaches to characterize the broad chemical composition of a single cannabis cultivar that was processed using previously optimized and commonly used commercial extraction protocols including alcoholic solvents and super critical carbon dioxide. Significant variation in the bioactive chemical profile was observed in the extracts resulting from the different protocols demonstrating the need for further research regarding the influence of processing on therapeutic efficacy as well as the importance of labeling in the marketing of multi-component cannabis products.
Collapse
|
36
|
Preparative separation of three terpenoids from edible brown algae Sargassum fusiforme by high-speed countercurrent chromatography combined with preparative high-performance liquid chromatography. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Joghee S, Kalarikkal SP, Sundaram GM, Durai Ananda Kumar T, Chidambaram SB. Chemical profiling and in-vitro anti-inflammatory activity of bioactive fraction(s) from Trichodesma indicum (L.) R.Br. against LPS induced inflammation in RAW 264.7 murine macrophage cells. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114235. [PMID: 34044081 DOI: 10.1016/j.jep.2021.114235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/04/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Trichodesma indicum (L.) R. Br. (family: Boraginaceae) is a medicinal herb largely used to treat arthralgia, rheumatoid arthritis, wound healing, dysentery, etc. It's mechanism of anti-inflammatory activity has not been systematically analyzed yet. AIM OF THE STUDY The present study was undertaken to examine the anti-inflammatory effects of successive solvent extracts (n-hexane extract (HE), ethyl acetate extract (EA), ethanol extract (EE), aqueous extract (AE) and fractions of HE) from the aerial parts of Trichodesma indicum (TI) against lipopolysaccharide (LPS) stimulated inflammatory reaction using mouse macrophage RAW 264.7 cells. MATERIALS AND METHODS Cytotoxic effects of the extracts and fractions of TI were assessed by MTT assay. The effect of extracts and fractions on the production of nitric oxide (NO) in RAW 264.7 macrophages were measured using the Griess reagent method. IL - 6, IL - 1β, TNF-α, iNOS and COX-2 gene expressions were examined by a qRT-PCR method. RESULTS RAW 264.7 macrophages pretreated with HE, EA, EE and AE of TI showed a significant decrease in the production of proinflammatory cytokines and NO without exhibiting cytotoxicity. The potent HE was fractionated using flash chromatography into FA, FB, FC, FD and FE. Among the five fractions, FE displayed a stronger ability to reduce IL - 1β, TNF-α, iNOS, COX2 and NO importantly no cytotoxicity was observed. The phytochemical compounds present in FE were further screened by Gas chromatography - Mass spectroscopy (GC-MS). GC-MS analysis revealed that 1,2-benzenedicarboxylic acid diisooctyl ester is the major compound in FE. Molecular docking analysis showed good inhibition of 1,2-benzenedicarboxylic acid diisooctyl ester against TLR-4, NIK and TACE. CONCLUSION Our results suggested that 1,2-benzenedicarboxylic acid diisooctyl ester could be a potential candidate in alleviating inflammatory reactions in TI.
Collapse
Affiliation(s)
- Suresh Joghee
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru-570015, Karnataka, India.
| | - Sreeram P Kalarikkal
- Department of Molecular Nutrition, Central Food Technological Research Institute, Cheluvamba Mansion, Mysore-570020, Karnataka, India.
| | - Gopinath M Sundaram
- Department of Molecular Nutrition, Central Food Technological Research Institute, Cheluvamba Mansion, Mysore-570020, Karnataka, India.
| | - T Durai Ananda Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru-570015, Karnataka, India.
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru-570015, Karnataka, India; Centre for Experimental Pharmacology & Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru-570015, Karnataka, India.
| |
Collapse
|
38
|
Marchete R, Oliveira S, Bagne L, Silva JIDS, Valverde AP, Aro AAD, Figueira MM, Fronza M, Bressam TM, Goes VFFD, Gaspari de Gaspi FOD, Dos Santos GMT, Andrade TAM. Anti-inflammatory and antioxidant properties of Alternanthera brasiliana improve cutaneous wound healing in rats. Inflammopharmacology 2021; 29:1443-1458. [PMID: 34546478 DOI: 10.1007/s10787-021-00862-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/01/2021] [Indexed: 01/13/2023]
Abstract
Alternanthera brasiliana (L.) Kuntze is recognized for its healing properties; however, its therapeutic effects remain unclear. Therefore, our study aimed to elucidate the wound healing activities of A. brasiliana using in vitro and in vivo assays. In vitro assays were used to evaluate the antibacterial, anti-inflammatory, and antioxidant effects of A. brasiliana extract. For the in vivo study, two dorsal excisions were established in Wistar rats using a punch (1.5 cm in diameter), which were topically treated daily with 2% carbopol gel (Ctrl group) or 20% hydroalcoholic plant extract with 2% carbopol gel (A. brasiliana-Ab group). After the 2nd, 7th, 14th, and 21st days, inflammation, oxidative damage, antioxidants, angiogenesis, tissue formation, and re-epithelialization were evaluated. In vitro, Ab reduced nitric oxide, anion superoxide, and pro-inflammatory cytokine production. In vivo, Ab presented lower levels of inflammatory infiltrate, although increased levels of IL-1β and TGF-β1 were observed. The plant extract controlled oxidative damage by antioxidants, which favored angiogenesis, collagenesis, and wound re-epithelialization. Thus, the topical application of the hydroalcoholic extract of 20% A. brasiliana was distinguished by its important anti-inflammatory and antioxidant activities both in vivo and in vitro. The plant extract also stimulated angiogenesis and tissue formation, accelerating total re-epithelization, which is promising for wound healing.
Collapse
Affiliation(s)
- Rogério Marchete
- Graduate Program in Biomedical Sciences, University Center of Herminio Ometto Foundation-FHO, Dr. Maximiliano Baruto Ave, 500. Jardim Universitario, Araras, Sao Paulo, 13607-339, Brazil
| | - Sarah Oliveira
- Graduate Program in Biomedical Sciences, University Center of Herminio Ometto Foundation-FHO, Dr. Maximiliano Baruto Ave, 500. Jardim Universitario, Araras, Sao Paulo, 13607-339, Brazil
| | - Leonardo Bagne
- Graduate Program in Biomedical Sciences, University Center of Herminio Ometto Foundation-FHO, Dr. Maximiliano Baruto Ave, 500. Jardim Universitario, Araras, Sao Paulo, 13607-339, Brazil
| | - Jennyffer Ione de Souza Silva
- Graduate Program in Biomedical Sciences, University Center of Herminio Ometto Foundation-FHO, Dr. Maximiliano Baruto Ave, 500. Jardim Universitario, Araras, Sao Paulo, 13607-339, Brazil
| | - Ana Paula Valverde
- Graduate Program in Biomedical Sciences, University Center of Herminio Ometto Foundation-FHO, Dr. Maximiliano Baruto Ave, 500. Jardim Universitario, Araras, Sao Paulo, 13607-339, Brazil
| | - Andrea Aparecida de Aro
- Graduate Program in Biomedical Sciences, University Center of Herminio Ometto Foundation-FHO, Dr. Maximiliano Baruto Ave, 500. Jardim Universitario, Araras, Sao Paulo, 13607-339, Brazil
| | - Mariana Moreira Figueira
- Graduate Program of Pharmaceutical Sciences, Laboratory of Natural Products, University of Vila Velha-UVV, Comissario Jose Dantas de Melo Ave, 21. Boa Vista, Vila Velha, Espirito Santo, 29102‑920, Brazil
| | - Marcio Fronza
- Graduate Program of Pharmaceutical Sciences, Laboratory of Natural Products, University of Vila Velha-UVV, Comissario Jose Dantas de Melo Ave, 21. Boa Vista, Vila Velha, Espirito Santo, 29102‑920, Brazil
| | - Thainá Mikaela Bressam
- Graduate Program in Biomedical Sciences, University Center of Herminio Ometto Foundation-FHO, Dr. Maximiliano Baruto Ave, 500. Jardim Universitario, Araras, Sao Paulo, 13607-339, Brazil
| | - Vivian Fernandes Furletti de Goes
- Graduate Program in Odontology, University Center of Herminio Ometto Foundation-FHO, Dr. Maximiliano Baruto Ave, 500. Jardim Universitario, Araras, SP, 13607-339, Brazil
| | - Fernanda Oliveira de Gaspari de Gaspi
- Graduate Program in Biomedical Sciences, University Center of Herminio Ometto Foundation-FHO, Dr. Maximiliano Baruto Ave, 500. Jardim Universitario, Araras, Sao Paulo, 13607-339, Brazil.,Sao Leopoldo Mandic Faculty, Dona Renata Ave. Centro. 71, Araras, Sao Paulo, 13606-134, Brazil
| | - Gláucia Maria Tech Dos Santos
- Graduate Program in Biomedical Sciences, University Center of Herminio Ometto Foundation-FHO, Dr. Maximiliano Baruto Ave, 500. Jardim Universitario, Araras, Sao Paulo, 13607-339, Brazil
| | - Thiago Antônio Moretti Andrade
- Graduate Program in Biomedical Sciences, University Center of Herminio Ometto Foundation-FHO, Dr. Maximiliano Baruto Ave, 500. Jardim Universitario, Araras, Sao Paulo, 13607-339, Brazil.
| |
Collapse
|
39
|
Serafim CADL, Araruna MEC, Alves Júnior EB, Silva LMO, Silva AO, da Silva MS, Alves AF, Araújo AA, Batista LM. (-)-Carveol Prevents Gastric Ulcers via Cytoprotective, Antioxidant, Antisecretory and Immunoregulatory Mechanisms in Animal Models. Front Pharmacol 2021; 12:736829. [PMID: 34497525 PMCID: PMC8419343 DOI: 10.3389/fphar.2021.736829] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Background: (-)-Carveol (p-Mentha-6,8-dien-2-ol) is a monocyclic monoterpenic alcohol, present in essential oils of plant species such as Cymbopogon giganteus, Illicium pachyphyllum and in spices such as Carum carvi (cumin). Pharmacological studies report its antitumor, antimicrobial, neuroprotective, vasorelaxant, antioxidant and anti-inflammatory activity. Hypothesis/Purpose: The objective of this study was to evaluate the acute non-clinical oral toxicity, gastroprotective activity of monoterpene (-)-Carveol in animal models and the related mechanisms of action. Methods: Acute toxicity was assessed according to OECD guide 423 in mice. Ethanol, stress, NSAIDs and pylorus ligation-induced gastric ulcer models were used to investigate antiulcer properties. The related mechanisms of action were using the ethanol-gastric lesions protocol. Results: (-)-Carveol has low toxicity, with a lethal dose 50% (LD50) equal to or greater than 2,500 mg/kg according to OECD guide nº 423. In all gastric ulcer induction methods evaluated, (-)-Carveol (25, 50, 100 and 200 mg/kg, p.o.) significantly reduced the ulcerative lesion in comparison with the respective control groups. To investigate the mechanisms involved in the gastroprotective activity, the antisecretory or neutralizing of gastric secretion, cytoprotective, antioxidant and immunoregulatory effects were evaluated. In the experimental protocol of pylorus ligation-induced gastric ulcer, (-)-Carveol (100 mg/kg) reduced (p < 0.001) the volume of gastric secretion in both routes (oral and intraduodenal). The previous administration of blockers NEM (sulfhydryl groups blocker), L-NAME (nitric oxide synthesis inhibitor), glibenclamide (KATP channel blocker) and indomethacin (cyclo-oxygenase inhibitor), significantly reduced the gastroprotection exercised by (-)-Carveol, suggesting the participation of these pathways in its gastroprotective activity. In addition, treatment with (-)-Carveol (100 mg/kg) increased (p < 0.001) mucus adhered to the gastric wall. Treatment also increased (p < 0.001) levels of reduced glutathione (GSH), superoxide dismutase (SOD) and interleukin-10 (IL-10). It also reduced (p < 0.001) malondialdehyde (MDA), myeloperoxidase (MPO), interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) levels. Conclusion: Thus, it is possible to infer that (-)-Carveol presents gastroprotective activity related to antisecretory, cytoprotective, antioxidant and immunomodulatory mechanisms.
Collapse
Affiliation(s)
- Catarina Alves de Lima Serafim
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Maria Elaine Cristina Araruna
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Edvaldo Balbino Alves Júnior
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Leiliane Macena Oliveira Silva
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Alessa Oliveira Silva
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Marcelo Sobral da Silva
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Adriano Francisco Alves
- Department of Physiology and Pathology, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Aurigena Antunes Araújo
- Department of Morphology, Histology and Basic Pathology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Leônia Maria Batista
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa, Brazil
| |
Collapse
|
40
|
Koyama S, Kondo K, Ueha R, Kashiwadani H, Heinbockel T. Possible Use of Phytochemicals for Recovery from COVID-19-Induced Anosmia and Ageusia. Int J Mol Sci 2021; 22:8912. [PMID: 34445619 PMCID: PMC8396277 DOI: 10.3390/ijms22168912] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022] Open
Abstract
The year 2020 became the year of the outbreak of coronavirus, SARS-CoV-2, which escalated into a worldwide pandemic and continued into 2021. One of the unique symptoms of the SARS-CoV-2 disease, COVID-19, is the loss of chemical senses, i.e., smell and taste. Smell training is one of the methods used in facilitating recovery of the olfactory sense, and it uses essential oils of lemon, rose, clove, and eucalyptus. These essential oils were not selected based on their chemical constituents. Although scientific studies have shown that they improve recovery, there may be better combinations for facilitating recovery. Many phytochemicals have bioactive properties with anti-inflammatory and anti-viral effects. In this review, we describe the chemical compounds with anti- inflammatory and anti-viral effects, and we list the plants that contain these chemical compounds. We expand the review from terpenes to the less volatile flavonoids in order to propose a combination of essential oils and diets that can be used to develop a new taste training method, as there has been no taste training so far. Finally, we discuss the possible use of these in clinical settings.
Collapse
Affiliation(s)
- Sachiko Koyama
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Kenji Kondo
- Department of Otolaryngology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan;
| | - Rumi Ueha
- Department of Otolaryngology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan;
- Swallowing Center, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Hideki Kashiwadani
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Thomas Heinbockel
- Department of Anatomy, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
41
|
Boutemine IM, Amri M, Dorgham K, Amir ZC, Benazzouz S, Ameur F, Layaida K, Yssel H, Touil-Boukoffa C. Beneficial role of Pistacia lentiscus aqueous extract in experimental colitis: anti-inflammatory and potential therapeutic effects. Inflammopharmacology 2021; 29:1225-1239. [PMID: 34115225 DOI: 10.1007/s10787-021-00831-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/29/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Pistacia lentiscus L. (PL) is a flowering plant traditionally used in the treatment of gastrointestinal disorders. The extracts of this plant are endowed with strong pharmacological activities. The aim of our current study was to investigate the anti-inflammatory and potential therapeutic effects of PL leaves aqueous extract (PLAE) against Dextran Sulfate Sodium (DSS)-induced acute colitis. MATERIALS AND METHODS The therapeutic effect of PLAE was evaluated after orally administration of 3% DSS alone or concomitantly with PLAE (50, 100 or 200 mg/Kg). Mucosal lesions were assessed by macroscopic and histopathological examination. In this context, hemorrhage, diarrhea, weight loss, and disease activity index (DAI) were determined daily throughout the experiment. In the same way, hematoxylin-eosin and Alcian blue staining of colonic mucosal were used to evaluate, respectively, mucosal damages and mucus production. Furthermore, the levels of nitric oxide (NO), and pro-inflammatory cytokines [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)] were measured in plasma, as well as in colonic explants and peritoneal macrophages cultures supernatants. RESULTS Administration of DSS + PLAE indicated a significant reduction in clinical score of acute colitis DAI compared to DSS alone administration. Interestingly, histological analysis of the mucosa showed that DSS + PLAE-treated groups exhibited almost normal histology evidenced by an intact epithelium structure and less inflammatory cell infiltration in the mucosa. Alcian bleu staining revealed that DSS + PLAE-treated groups displayed almost normal mucus production. Importantly, a significant decrease in pro-inflammatory mediators (NO, IL-6 and TNF-α) levels in dose-dependent manner was reported in plasma, and culture supernatants of colonic explants and peritoneal macrophages from DSS + PLAE-treated mice compared to the DSS group. CONCLUSION Our results showed that the systemic and local anti-inflammatory activities of aqueous leaves extract of PL improve the clinical signs of acute colitis. Our data suggest that PLAE has beneficial effects and could constitute a promising approach against acute ulcerative colitis by targeting the deregulated immune response.
Collapse
Affiliation(s)
- Insaf-Meriem Boutemine
- Team "Cytokines and NO Synthases", LBCM (Laboratory of Cellular and Molecular Biology), FSB (Faculty of Biological Science), USTHB (University of Sciences and Technology Houari Boumediene), BP 32, El-Alia, 16111, Algiers, Algeria
| | - Manel Amri
- Team "Cytokines and NO Synthases", LBCM (Laboratory of Cellular and Molecular Biology), FSB (Faculty of Biological Science), USTHB (University of Sciences and Technology Houari Boumediene), BP 32, El-Alia, 16111, Algiers, Algeria
| | - Karim Dorgham
- Center of Immunology and Infectious Diseases, Inserm U1135 C.E.R.V.I. La Pitié-Salpétrière Hospital, Paris, France
| | - Zine-Charaf Amir
- Pathology Departement, Mustapha Pacha Hospital, Algiers, Algeria
| | - Sara Benazzouz
- Team "Cytokines and NO Synthases", LBCM (Laboratory of Cellular and Molecular Biology), FSB (Faculty of Biological Science), USTHB (University of Sciences and Technology Houari Boumediene), BP 32, El-Alia, 16111, Algiers, Algeria
| | - Fahima Ameur
- Team "Cytokines and NO Synthases", LBCM (Laboratory of Cellular and Molecular Biology), FSB (Faculty of Biological Science), USTHB (University of Sciences and Technology Houari Boumediene), BP 32, El-Alia, 16111, Algiers, Algeria
| | - Karim Layaida
- Gastroenterology Department, Mustapha Pacha Hospital, Algiers, Algeria
| | - Hans Yssel
- Center of Immunology and Infectious Diseases, Inserm U1135 C.E.R.V.I. La Pitié-Salpétrière Hospital, Paris, France
| | - Chafia Touil-Boukoffa
- Team "Cytokines and NO Synthases", LBCM (Laboratory of Cellular and Molecular Biology), FSB (Faculty of Biological Science), USTHB (University of Sciences and Technology Houari Boumediene), BP 32, El-Alia, 16111, Algiers, Algeria.
| |
Collapse
|
42
|
Kaur R, Kaur L. Encapsulated natural antimicrobials: A promising way to reduce microbial growth in different food systems. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107678] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
43
|
Limonene-carvacrol: A combination of monoterpenes with enhanced antileishmanial activity. Toxicol In Vitro 2021; 74:105158. [PMID: 33823240 DOI: 10.1016/j.tiv.2021.105158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/16/2021] [Accepted: 04/02/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Leishmaniasis is a parasitosis with a wide incidence in developing countries. The drugs which are indicated for the treatment of this infection usually are able to promote high toxicity. PURPOSE A combination of limonene and carvacrol, monoterpenes present in plants with antiparasitic activity may constitute an alternative for the treatment of these diseases. METHODS In this study, the antileishmania activity against Leishmania major, cytotoxicity tests, assessment of synergism, parasite membrane damage tests as well as molecular docking and immunomodulatory activity of limonene-carvacrol (Lim-Car) combination were evaluated. RESULTS The Lim-Car combination (5:0; 1:1; 1:4; 2:3; 3:2; 4:1 and 0:5) showed potential antileishmania activity, with mean inhibitory concentration (IC50) ranging from 5.8 to 19.0 μg.mL-1. They demonstrated mean cytotoxic concentration (CC50) ranging from 94.1 to 176.0 μg.mL-1, and did not show significant hemolytic effect. In the investigation of synergistic interaction, the 4:1 Lim-Car combination showed better fractional inhibitory concentration (FIC) index as well as better activity on amastigotes and IS. The samples caused considerable damage to the parasite membrane this monoterpene activity seems to be more related to Trypanothione Reductase (TryR) enzyme interaction, demonstrated in the molecular docking assay. In addition, the 4:1 Lim-Car combination stimulated macrophage activation, and showed at was the best association, with reduction of infection and infectivity of parasitized macrophages. CONCLUSION The 4:1 Lim-Car combination appears to be a promising candidate as a monotherapeutic antileishmania agent.
Collapse
|
44
|
Katram N, Garlapati PK, Yadavalli C, Methal RE, Rajappa SBG, Raghavan AK. Aegle marmelos extract rich in marmelosin exacted ameliorative effect against chromium-induced oxidative stress and apoptosis through regulation of Gadd45 in HepG2 cell line. J Food Biochem 2021; 45:e13704. [PMID: 33719131 DOI: 10.1111/jfbc.13704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/03/2021] [Accepted: 03/02/2021] [Indexed: 11/28/2022]
Abstract
Hexavalent chromium [Cr (VI)] is highly toxic compared to other valence states of chromium. In the process of metabolic reduction, Cr (VI) converts to trivalent chromium. Aegle marmelos (Bael), a sacred plant of India and its fruits are being consumed as traditional formulations against various diseases such as ulcer, gastric mucosal damage, inflammations, febrile delirium, acute bronchitis, anxiety, etc. The present study assessed the protective effects of marmelosin (MAR) from Aegle marmelos against K2 Cr2 O7 -induced toxic effects in HepG2 cell line through its antiapoptotic mechanism. Results of the study revealed that pretreatment of MAR ameliorated cell viability, mitochondrial damage, and DNA damage induced by K2 Cr2 O7 in HepG2 cell line as evidenced by cell morphology, MTT, LDH, and MMP assays. Pretreatment of MAR attenuated K2 Cr2 O7 -induced oxidative stress by downregulating intracellular ROS and RNS. Further, pretreatment of MAR significantly downregulated K2 Cr2 O7 -induced apoptotic markers, such as Bax, Caspase 3, and Gadd45. Our results suggested that application of marmelosin could be beneficial in ameliorating chromium-induced apoptotic cell death by suppressing oxidative stress and regulating excessive DNA damage. PRACTICAL APPLICATIONS: The study focused on protective mechanism of marmelosin from Aegle marmelos against chromium-induced oxidative stress for the first time. In this research, we reported that marmelosin effectively ameliorated K2 Cr2 O7 -induced morphological changes such as oxidative stress and apoptotic cell death by regulating Gadd45, Bcl-2, Bax, and Caspase 3 gene expressions, and inhibition of intracellular ROS and RNS. The study provides a better understanding of the pharmacological mechanisms of Aegle marmelos and its bioactive compound, that is, marmelosin in the management of intoxication of heavy metals associated with excessive DNA damage.
Collapse
Affiliation(s)
- Navya Katram
- Defence Food Research Laboratory (DFRL), Defence Research and Defence Organization (DRDO), Mysore, India
| | - Phani Kumar Garlapati
- Defence Food Research Laboratory (DFRL), Defence Research and Defence Organization (DRDO), Mysore, India
| | | | - Ramya Edavalath Methal
- Defence Food Research Laboratory (DFRL), Defence Research and Defence Organization (DRDO), Mysore, India
| | | | | |
Collapse
|
45
|
Duru CE, Duru IA, Adegboyega AE. In silico identification of compounds from Nigella sativa seed oil as potential inhibitors of SARS-CoV-2 targets. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2021; 45:57. [PMID: 33727782 PMCID: PMC7952832 DOI: 10.1186/s42269-021-00517-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The growing number of cases, severity and fatality of the COVID-19 pandemic, coupled with the fact that no cure has been found has made infected individuals especially in Africa, to resort to the consumption of different natural products to alleviate their condition. One of such plant materials that have been consumed to remedy the severity of this viral infection is the oil of Nigella sativa seed commonly called black seed oil. In this study, we extracted and characterized the oil from this seed using gas chromatography coupled to a mass selective detector to identify the component phytochemicals. Site-directed multiligand docking of the identified compounds was performed on SARS-CoV-2 molecular targets- Replicase polyprotein 1a, RNA binding protein of NSP9, ADP ribose phosphatase of NSP3, 3-chymotrypsin-like protease 3CLpro, and RNA-dependent RNA polymerase RDRP, and ACE2-angiotensin-converting enzyme from the Homo sapiens. RESULTS The binding affinity of caryophyllene oxide was the highest on 3CLpro (- 6.0 kcal/mol), NSP3 (- 6.3 kcal/mol), NSP9 (- 6.3 kcal/mol), and RDRP (- 6.9 kcal/mol) targets, while α-bergamotene gave the best binding affinity on RPIA (5.7 kcal/mol) target. The binding affinity of β-bisabolene on the ACE2 target (- 8.0 kcal/mol) was almost the same as Remdesivir (- 8.1 kcal/mol). The ADMET properties of these three phytochemicals showed that they are good drug leads for these SARS-CoV-2 receptors. CONCLUSION The findings from this study strongly indicate that the reported recovery from COVID-19 infection claimed by patients who consumed black seed oil could be linked to the presence of caryophyllene oxide, α-bergamotene, and β-bisabolene in this natural product.
Collapse
Affiliation(s)
- Chidi Edbert Duru
- Surface Chemistry and Environmental Technology (SCENT) Research Unit, Department of Chemistry, Imo State University, Owerri, Imo State Nigeria
| | - Ijeoma Akunna Duru
- Department of Chemistry, Federal University of Technology, Owerri, Imo State Nigeria
| | - Abayomi Emmanuel Adegboyega
- Department of Biochemistry, Faculty of Medical Sciences, University of Jos, Jos, Plateau State Nigeria
- Africa Center of Excellence in Phytomedicine Research and Development, University of Jos, Jos, Plateau State Nigeria
| |
Collapse
|
46
|
Truong D, Ta NTA, Pham TV, Huynh TD, Do QTG, Dinh NCG, Dang CD, Nguyen TKC, Bui AV. Effects of solvent-solvent fractionation on the total terpenoid content and in vitro anti-inflammatory activity of Serevenia buxifolia bark extract. Food Sci Nutr 2021; 9:1720-1735. [PMID: 33747483 PMCID: PMC7958534 DOI: 10.1002/fsn3.2149] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/06/2021] [Accepted: 01/13/2021] [Indexed: 12/23/2022] Open
Abstract
Severinia buxifolia (Rutaceae) is often used as a traditional medical plant. The present study was carried out to estimate the effects of solvents (petroleum ether and hexane: ethyl acetate) used in liquid-liquid extraction to total terpenoid content (TTC) and in vitro anti-inflammatory activity of the extracts obtained from S. buxifolia bark. The results showed that solvent fractionation increased the TTC compared with crude extracts. The hexane: ethyl acetate bark extract fraction (HEF) had the highest TTC (731.48 µg/ml) in comparison with the petroleum ether bark extract fraction (PEF) (564.81 µg/ml) and the crude extract (CE) (184.26 µg/ml). In addition, one of composition of terpenoid of S. buxifolia, namely ursolic acid, was determined by HPLC method from the crude CE and the fractions PEF and HEF: 2.44 μg/g DW, 3.56 μg/g DW and 5.04 μg/g DW, respectively. The samples had an in vitro anti-inflammatory activity comparable with that of two reference standards (aspirin and indomethacin). Particularly, the HEF fraction had the highest in vitro anti-inflammatory activity (i.e., albumin denaturation: IC50 = 147.91 μg/mL, heat-induced hemolysis: IC50 = 159.91 μg/mL, proteinase inhibition: IC50 = 117.72 μg/mL, and lipoxygenase activity: IC50 = 90.45 μg/mL). Besides, the preliminary experiments of this study were conducted to determine the influences of maceration factors (solvent type, temperature, and time) for S. buxifolia bark extract. The TTC ranged from 453.70 to 842.59 mg linalool/g DW, and the extraction yield from 2.40% to 5.120% in all extracts. Based on TTC and EY, the hexane: acetone mixture is recommended as the optimal solvent to obtain the crude bark extract (CE) at 46°C for 24 hr of maceration. Extracts of S. buxifolia bark are a promising source for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Dieu‐Hien Truong
- Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
| | - Nhat Thuy Anh Ta
- Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
| | - Thanh Vy Pham
- Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
| | - Tan Dat Huynh
- Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
| | | | | | - Cong Danh Dang
- Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
| | - Thi Kim Chi Nguyen
- Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
| | - Anh Vo Bui
- Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
| |
Collapse
|
47
|
In vitro and in vivo anti-inflammatory activity and chemical composition of Renealmia petasites Gagnep. Inflammopharmacology 2021; 29:451-465. [PMID: 33452968 DOI: 10.1007/s10787-020-00786-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
The study aimed to investigate the chemical composition and the anti-inflammatory activity of the hydroethanolic rhizomes, stems, and leaf extracts of Renealmia petasites using in vitro and in vivo assays. The chemical composition of the extracts was characterized in a linear iron trap mass spectrometer. Total phenolic, flavonoid, and tannin content were determined by spectrophotometry analyses. In vitro anti-inflammatory activity was investigated in lipopolysaccharide-stimulated macrophages evaluating the influence on the production of superoxide anion (O2-), nitric oxide (NO), and the pro-inflammatory cytokines tumor necrosis factor (TNF-α) and interleukin-6 (IL-6). In vivo effects were determined using the air pouch model in which were inoculated carrageenan and thereafter treated with 50 mg/kg of the hydroethanolic extracts of R. petasites. After 4 and 24 h, the cellular influx, protein exudation, cytokines, and nitric oxide were evaluated. Eight compounds were tentatively identified in the R. petasites extracts, suggesting five diarylheptanoids, one flavonoid, and two fatty alcohols. The in vitro results showed that the extracts were capable of blocking free radicals and/or inhibiting their intracellular actions by inhibiting the production of important mediators of the inflammatory process, such as NO, O2-, TNF-α, and IL-6. In vivo, R. petasites significantly decrease the influx of leukocytes, mainly neutrophils, protein exudation, NO, TNF-α, and IL-6 concentration in the air pouch model. The results evidenced that R. petasites can be considered a promising alternative therapy for the treatment and management of osteoarthritis and other inflammatory diseases.
Collapse
|
48
|
Koodalingam A, Rajalakshmi A, Parthiban E. Cytotoxicity and anti-inflammatory effects of polyherbal formulations, Joint Pain Spl and Rumalaya Forte on lipopolysaccharide induced inflammation in IC-21 macrophages. Antiinflamm Antiallergy Agents Med Chem 2021; 20:290-301. [PMID: 33397275 DOI: 10.2174/1871523019999210104203252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 11/22/2022]
Abstract
AIM To test the effectiveness of marketed polyherbal formulations on lipopolysaccharide induced inflammatory conditions in macrophages. BACKGROUND Usage of herbal compounds among patients suffered by arthritis and cancer is increasing every year. Many anti-inflammatory herbal products available in the market should be screened thoroughly for their possible mechanism of action. OBJECTIVE Joint Pain Spl (JPS) is a polyherbal dietary food supplement composed of 13 herbal plants and Rumalaya Forte (RF) is a polyherbal formulation comprising of 6 herbal plants were tested for its cytotoxicity, as well as antioxidant and anti-inflammatory activity in LPS treated IC-21 peritoneal macrophages. METHODS Commercially available JPS and RF powder was used to prepare the extract. The aqueous and methanol extracts were quantified for the presence of phenolic and flavonoid compound and confirmed with HPLC. In vitro DPPH free scavenging activity was performed. Cytotoxicity was tested by MTT assay. Anti-inflammatory activity was tested using lipopolysaccharide stimulated IC-21 peritoneal macrophage cells. RESULTS The phytochemical screening showed the presence of phenolic and flavonoid compounds in JPS and RF. The aqueous and methanol extracts of JPS and RF possesses significant DPPH free radical scavenging activity. MTT assay revealed that 90.64% (aqueous extract) and 92.21% (methanol extract) of exposed macrophages are viable even after 24h exposure of maximal tested concentrations of herbal formulations. Pre-treatment of JPS and RF on LPS induced IC-21 macrophages showed an reduction in nitric oxide production (maximal 79.95%) and high level of superoxide anion scavenging activity (maximal 82.5%) over control. CONCLUSION The two tested poly herbal formulations such as JPS and RF possesses anti-inflammatory activity by modulating free radical generation in IC-21 macrophages. Thus the presence of the phenolic and flavonoid compounds may contribute to the antioxidant activity.
Collapse
Affiliation(s)
- Arunagirinathan Koodalingam
- PG & Research Department of Zoology, Sir Theagaraya College, Old Washermenpet, Chennai - 600 021, Tamilnadu,. India
| | - Arumugam Rajalakshmi
- Department of Biotechnology, Sri Sankara Arts and Science College, Enathur, Kanchipuram- 631 561, Tamilnadu,. India
| | - Ezhumalai Parthiban
- Department of Zoology, University of Madras, Guindy Campus, Chennai - 600 025,. India
| |
Collapse
|
49
|
Asle-Rousta M, Amini R, Aghazadeh S. Carvone suppresses oxidative stress and inflammation in the liver of immobilised rats. Arch Physiol Biochem 2020; 129:597-602. [PMID: 33270467 DOI: 10.1080/13813455.2020.1851726] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE The investigation of the effect of carvone (a natural monoterpene) on liver damage caused by chronic immobilisation. METHODS Male Wistar rats were divided into four groups: control, carvone, stress, and stress-carvone. To induce stress, rats were placed in a restrainer (6 h/21 day) and carvone was treated by gavage at a dose of 20 mg/kg. RESULTS Alkaline phosphatase, aspartate aminotransferase, and alanine aminotransferase activities were significantly increased in sera of immobilised rats. Chronic immobilisation also increased malondialdehyde levels and decreased reduced glutathione content, as well as increased TNF-α, IL-1β, IL-6, and NF-κB mRNA expression and also led to the infiltration of inflammatory cells in the liver parenchyma. Carvone's 21-day treatment prevented all of these changes in immobilised rats. CONCLUSION It is concluded that carvone has effectively prevented chronic immobilisation-induced liver injury, most probably through its antioxidant and anti-inflammatory capabilities.
Collapse
Affiliation(s)
- Masoumeh Asle-Rousta
- Department of Physiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
- Department of Physiology, Biology Research Center, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Rahim Amini
- Department of Biology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Safieh Aghazadeh
- Department of Biochemistry, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
50
|
Badalanloo K, Naji T, Ahmadi R. Cytotoxic and Apoptotic Effects of Celecoxib and Topotecan on AGS and HEK 293 Cell Lines. J Gastrointest Cancer 2020; 53:99-104. [PMID: 33200341 DOI: 10.1007/s12029-020-00434-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE This study is aimed to assess the anti-cancer effects of Celecoxib and topotecan against Human Gastric cancer cell line (AGS) in comparison to the control in an in-vitro study. METHODS In this experimental study, Celecoxib and topotecan was prepared at concentrations of 500, 250, 125, 62.5, 31.2, 15.6 and 7.8 mg/ml. The effect of celecoxib and topotecan separately and in mixed form were investigated on AGS and normal HEK cells. To investigate the cell survival, MTT method was used to study the pathway of apoptosis using flowcytometry and Caspase kits based on colorimetric. Finally, one-way ANOVA and t-test were used to analyze the data. RESULTS The results of this study indicated that Celecoxib was cytotoxic against AGS and HEK cell lines. The topotecan indicated a significant cytotoxicity against AGS cells and was not toxic against HEK cell line. Our results indicated that Celecoxib and topotecan have synergist effects against AGS and HEK cell lines and were more effective than separate celecoxib or topotecan. CONCLUSION The mixture of clecoxib and topotecan was more effective than celecoxib and topotecan in separate form. Our results indicated that use mixed forms of treatments can cause excellent therapeutic effects and can cause less side effects.
Collapse
Affiliation(s)
- Kimia Badalanloo
- Department of Basic Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Islamic Azad University, Tehran, Iran
| | - Tahereh Naji
- Department of Basic Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Islamic Azad University, Tehran, Iran.
| | - Rahim Ahmadi
- Department of Physiology, Faculty of Basic Sciences, Hamadan Branch, Islamic Azad University, Hamadan, Iran
| |
Collapse
|