1
|
Ren J, Wang Y, Zhang Y, Jin H, Cheng J, Tao F, Zhu Y. Placental Transcriptomic Signatures of Prenatal Phthalate Exposure and Identification of Placenta-Brain Genes Associated with the Effects of Phthalate Exposure on Neurodevelopment in Children. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19141-19151. [PMID: 39392919 DOI: 10.1021/acs.est.4c04082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Prenatal exposure to phthalates may affect placental function and fetal development, but the underlying mechanisms are unclear. The aim of our study was to explore the alterations in the placental transcriptome associated with prenatal phthalate exposure and to further analyze whether the placental-brain axis (PBA) genes play a mediating role in the association between prenatal phthalate exposure and children's neurodevelopment. We included 172 participants from the Ma'anshan Birth Cohort and collected data on seven phthalate metabolites in urine during pregnancy, placental tissue RNA-seq, and neurodevelopment of offspring. Bioinformatics analysis revealed that aberrant regulation of the placental transcriptome was associated with prenatal phthalate exposure. Exposure to phthalates during pregnancy was found to be associated with neurodevelopmental delay in children aged 6, 18, and 48 months using the multiple linear regression model. Meanwhile, employing mediation analysis, nine PBA genes were identified that mediate the association between exposure to phthalates during pregnancy and the neurodevelopment of children. Our study will provide a basis for potential mechanisms by which prenatal exposure to phthalates affects placental function and children's neurodevelopment.
Collapse
Affiliation(s)
- Jiawen Ren
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yifan Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yimin Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei 230032, Anhui, China
| | - Heyue Jin
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei 230032, Anhui, China
| | - Jingjing Cheng
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei 230032, Anhui, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yumin Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei 230032, Anhui, China
- Medical School, Nanjing University, Nanjing 210093, Jiangsu, China
| |
Collapse
|
2
|
Massey S, Ang CS, Davidson NM, Quigley A, Rollo B, Harris AR, Kapsa RMI, Christodoulou J, Van Bergen NJ. Novel CDKL5 targets identified in human iPSC-derived neurons. Cell Mol Life Sci 2024; 81:347. [PMID: 39136782 PMCID: PMC11335273 DOI: 10.1007/s00018-024-05389-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024]
Abstract
CDKL5 Deficiency Disorder (CDD) is a debilitating epileptic encephalopathy disorder affecting young children with no effective treatments. CDD is caused by pathogenic variants in Cyclin-Dependent Kinase-Like 5 (CDKL5), a protein kinase that regulates key phosphorylation events in neurons. For therapeutic intervention, it is essential to understand molecular pathways and phosphorylation targets of CDKL5. Using an unbiased phosphoproteomic approach we identified novel targets of CDKL5, including GTF2I, PPP1R35, GATAD2A and ZNF219 in human iPSC-derived neuronal cells. The phosphoserine residue in the target proteins lies in the CDKL5 consensus motif. We validated direct phosphorylation of GTF2I and PPP1R35 by CDKL5 using complementary approaches. GTF2I controls axon guidance, cell cycle and neurodevelopment by regulating expression of neuronal genes. PPP1R35 is critical for centriole elongation and cilia morphology, processes that are impaired in CDD. PPP1R35 interacts with CEP131, a known CDKL5 phospho-target. GATAD2A and ZNF219 belong to the Nucleosome Remodelling Deacetylase (NuRD) complex, which regulates neuronal activity-dependent genes and synaptic connectivity. In-depth knowledge of molecular pathways regulated by CDKL5 will allow a better understanding of druggable disease pathways to fast-track therapeutic development.
Collapse
Affiliation(s)
- Sean Massey
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - Ching-Seng Ang
- The Bio21 Institute of Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Nadia M Davidson
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Anita Quigley
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
| | - Ben Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Alexander R Harris
- Department of Biomedical Engineering, University of Melbourne, Melbourne, 3010, Australia
| | - Robert M I Kapsa
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Nicole J Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia.
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia.
- Department of Paediatrics, University of Melbourne, c/o MCRI, 50 Flemington Road, Parkville, VIC, 3052, Australia.
| |
Collapse
|
3
|
Abedini SS, Akhavantabasi S, Liang Y, Heng JIT, Alizadehsani R, Dehzangi I, Bauer DC, Alinejad-Rokny H. A critical review of the impact of candidate copy number variants on autism spectrum disorder. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108509. [PMID: 38977176 DOI: 10.1016/j.mrrev.2024.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/14/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder (NDD) influenced by genetic, epigenetic, and environmental factors. Recent advancements in genomic analysis have shed light on numerous genes associated with ASD, highlighting the significant role of both common and rare genetic mutations, as well as copy number variations (CNVs), single nucleotide polymorphisms (SNPs) and unique de novo variants. These genetic variations disrupt neurodevelopmental pathways, contributing to the disorder's complexity. Notably, CNVs are present in 10 %-20 % of individuals with autism, with 3 %-7 % detectable through cytogenetic methods. While the role of submicroscopic CNVs in ASD has been recently studied, their association with genomic loci and genes has not been thoroughly explored. In this review, we focus on 47 CNV regions linked to ASD, encompassing 1632 genes, including protein-coding genes and long non-coding RNAs (lncRNAs), of which 659 show significant brain expression. Using a list of ASD-associated genes from SFARI, we detect 17 regions harboring at least one known ASD-related protein-coding gene. Of the remaining 30 regions, we identify 24 regions containing at least one protein-coding gene with brain-enriched expression and a nervous system phenotype in mouse mutants, and one lncRNA with both brain-enriched expression and upregulation in iPSC to neuron differentiation. This review not only expands our understanding of the genetic diversity associated with ASD but also underscores the potential of lncRNAs in contributing to its etiology. Additionally, the discovered CNVs will be a valuable resource for future diagnostic, therapeutic, and research endeavors aimed at prioritizing genetic variations in ASD.
Collapse
Affiliation(s)
- Seyedeh Sedigheh Abedini
- UNSW BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia; School of Biotechnology & Biomolecular Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Shiva Akhavantabasi
- Department of Molecular Biology and Genetics, Yeni Yuzyil University, Istanbul, Turkey; Ghiaseddin Jamshid Kashani University, Andisheh University Town, Danesh Blvd, 3441356611, Abyek, Qazvin, Iran
| | - Yuheng Liang
- UNSW BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Julian Ik-Tsen Heng
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6845, Australia
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Victoria, Australia
| | - Iman Dehzangi
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA; Department of Computer Science, Rutgers University, Camden, NJ 08102, USA
| | - Denis C Bauer
- Transformational Bioinformatics, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Sydney, Australia; Applied BioSciences, Faculty of Science and Engineering, Macquarie University, Macquarie Park, Australia
| | - Hamid Alinejad-Rokny
- UNSW BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia; Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia.
| |
Collapse
|
4
|
Adams JW, Vinokur A, de Souza JS, Austria C, Guerra BS, Herai RH, Wahlin KJ, Muotri AR. Loss of GTF2I promotes neuronal apoptosis and synaptic reduction in human cellular models of neurodevelopment. Cell Rep 2024; 43:113867. [PMID: 38416640 PMCID: PMC11002531 DOI: 10.1016/j.celrep.2024.113867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/04/2024] [Accepted: 02/09/2024] [Indexed: 03/01/2024] Open
Abstract
Individuals with Williams syndrome (WS), a neurodevelopmental disorder caused by hemizygous loss of 26-28 genes at 7q11.23, characteristically portray a hypersocial phenotype. Copy-number variations and mutations in one of these genes, GTF2I, are associated with altered sociality and are proposed to underlie hypersociality in WS. However, the contribution of GTF2I to human neurodevelopment remains poorly understood. Here, human cellular models of neurodevelopment, including neural progenitors, neurons, and three-dimensional cortical organoids, are differentiated from CRISPR-Cas9-edited GTF2I-knockout (GTF2I-KO) pluripotent stem cells to investigate the role of GTF2I in human neurodevelopment. GTF2I-KO progenitors exhibit increased proliferation and cell-cycle alterations. Cortical organoids and neurons demonstrate increased cell death and synaptic dysregulation, including synaptic structural dysfunction and decreased electrophysiological activity on a multielectrode array. Our findings suggest that changes in synaptic circuit integrity may be a prominent mediator of the link between alterations in GTF2I and variation in the phenotypic expression of human sociality.
Collapse
Affiliation(s)
- Jason W Adams
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA; Department of Neurosciences, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA; Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, CA 92093, USA
| | - Annabelle Vinokur
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA
| | - Janaína S de Souza
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA
| | - Charles Austria
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA
| | - Bruno S Guerra
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA; Experimental Multiuser Laboratory, Pontifícia Universidade Católica do Paraná, Curitiba, PR 80215-901, Brazil
| | - Roberto H Herai
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA; Experimental Multiuser Laboratory, Pontifícia Universidade Católica do Paraná, Curitiba, PR 80215-901, Brazil
| | - Karl J Wahlin
- Shiley Eye Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alysson R Muotri
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA; Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
5
|
Gnanadesikan GE, Tandon D, Bray EE, Kennedy BS, Tennenbaum SR, MacLean EL, vonHoldt BM. Transposons in the Williams-Beuren Syndrome Critical Region are Associated with Social Behavior in Assistance Dogs. Behav Genet 2024; 54:196-211. [PMID: 38091228 DOI: 10.1007/s10519-023-10166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 11/08/2023] [Indexed: 02/13/2024]
Abstract
A strong signature of selection in the domestic dog genome is found in a five-megabase region of chromosome six in which four structural variants derived from transposons have previously been associated with human-oriented social behavior, such as attentional bias to social stimuli and social interest in strangers. To explore these genetic associations in more phenotypic detail-as well as their role in training success in a specialized assistance dog program-we genotyped 1001 assistance dogs from Canine Companions for Independence®, including both successful graduates and dogs released from the training program for behaviors incompatible with their working role. We collected phenotypes on each dog using puppy-raiser questionnaires, trainer questionnaires, and both cognitive and behavioral tests. Using Bayesian mixed models, we found strong associations (95% credibility intervals excluding zero) between genotypes and certain behavioral measures, including separation-related problems, aggression when challenged or corrected, and reactivity to other dogs. Furthermore, we found moderate differences in the genotypes of dogs who graduated versus those who did not; insertions in GTF2I showed the strongest association with training success (β = 0.23, CI95% = - 0.04, 0.49), translating to an odds-ratio of 1.25 for one insertion. Our results provide insight into the role of each of these four transposons in canine sociability and may inform breeding and training practices for working dog organizations. Furthermore, the observed importance of the gene GTF2I supports the emerging consensus that variation in GTF2I genotypes and expression have important consequences for social behavior broadly.
Collapse
Affiliation(s)
- Gitanjali E Gnanadesikan
- School of Anthropology, University of Arizona, Tucson, AZ, 85721, USA.
- Cognitive Science Program, University of Arizona, Tucson, AZ, 85721, USA.
- Department of Anthropology, Emory University, Atlanta, GA, 30332, USA.
| | - Dhriti Tandon
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Emily E Bray
- School of Anthropology, University of Arizona, Tucson, AZ, 85721, USA
- Canine Companions for Independence, National Headquarters, Santa Rosa, CA, 95402, USA
- College of Veterinary Medicine, University of Arizona, Oro Valley, AZ, 85737, USA
- Department of Psychology, University of Arizona, Tucson, AZ, 85721, USA
| | - Brenda S Kennedy
- Canine Companions for Independence, National Headquarters, Santa Rosa, CA, 95402, USA
| | - Stavi R Tennenbaum
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Evan L MacLean
- School of Anthropology, University of Arizona, Tucson, AZ, 85721, USA
- Cognitive Science Program, University of Arizona, Tucson, AZ, 85721, USA
- College of Veterinary Medicine, University of Arizona, Oro Valley, AZ, 85737, USA
- Department of Psychology, University of Arizona, Tucson, AZ, 85721, USA
| | - Bridgett M vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
6
|
Nir Sade A, Levy G, Schokoroy Trangle S, Elad Sfadia G, Bar E, Ophir O, Fischer I, Rokach M, Atzmon A, Parnas H, Rosenberg T, Marco A, Elroy Stein O, Barak B. Neuronal Gtf2i deletion alters mitochondrial and autophagic properties. Commun Biol 2023; 6:1269. [PMID: 38097729 PMCID: PMC10721858 DOI: 10.1038/s42003-023-05612-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Gtf2i encodes the general transcription factor II-I (TFII-I), with peak expression during pre-natal and early post-natal brain development stages. Because these stages are critical for proper brain development, we studied at the single-cell level the consequences of Gtf2i's deletion from excitatory neurons, specifically on mitochondria. Here we show that Gtf2i's deletion resulted in abnormal morphology, disrupted mRNA related to mitochondrial fission and fusion, and altered autophagy/mitophagy protein expression. These changes align with elevated reactive oxygen species levels, illuminating Gtf2i's importance in neurons mitochondrial function. Similar mitochondrial issues were demonstrated by Gtf2i heterozygous model, mirroring the human condition in Williams syndrome (WS), and by hemizygous neuronal Gtf2i deletion model, indicating Gtf2i's dosage-sensitive role in mitochondrial regulation. Clinically relevant, we observed altered transcript levels related to mitochondria, hypoxia, and autophagy in frontal cortex tissue from WS individuals. Our study reveals mitochondrial and autophagy-related deficits shedding light on WS and other Gtf2i-related disorders.
Collapse
Affiliation(s)
- Ariel Nir Sade
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Gilad Levy
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Sari Schokoroy Trangle
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Galit Elad Sfadia
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ela Bar
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Omer Ophir
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Inbar Fischer
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - May Rokach
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Andrea Atzmon
- The Shmunis School of Biomedicine & Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hadar Parnas
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tali Rosenberg
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Asaf Marco
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Orna Elroy Stein
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The Shmunis School of Biomedicine & Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Boaz Barak
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
7
|
Roy AL. Role of the multifunctional transcription factor TFII-I in DNA damage repair. DNA Repair (Amst) 2021; 106:103175. [PMID: 34280590 DOI: 10.1016/j.dnarep.2021.103175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/07/2021] [Indexed: 11/27/2022]
Abstract
The multifunctional transcription factor TFII-I, encoded by the GTF2I gene, is implicated in various biological pathways, and associated with multiple human disorders. Evidence is also mounting to suggest that TFII-I is involved in DNA damage repair pathways. Here I bring together these recent observations and suggest a connection between transcriptional and DNA repair functions of TFII-I.
Collapse
Affiliation(s)
- Ananda L Roy
- National Institutes of Health, Laboratory of Molecular Biology and Immunology, Biomedical Research Center, National Institute on Aging, Baltimore, MD, United States.
| |
Collapse
|
8
|
Dai L, Weiss RB, Dunn DM, Ramirez A, Paul S, Korenberg JR. Core transcriptional networks in Williams syndrome: IGF1-PI3K-AKT-mTOR, MAPK and actin signaling at the synapse echo autism. Hum Mol Genet 2021; 30:411-429. [PMID: 33564861 DOI: 10.1093/hmg/ddab041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Gene networks for disorders of social behavior provide the mechanisms critical for identifying therapeutic targets and biomarkers. Large behavioral phenotypic effects of small human deletions make the positive sociality of Williams syndrome (WS) ideal for determining transcriptional networks for social dysfunction currently based on DNA variations for disorders such as autistic spectrum disorder (ASD) and schizophrenia (SCHZ). Consensus on WS networks has been elusive due to the need for larger cohort size, sensitive genome-wide detection and analytic tools. We report a core set of WS network perturbations in a cohort of 58 individuals (34 with typical, 6 atypical deletions and 18 controls). Genome-wide exon-level expression arrays robustly detected changes in differentially expressed gene (DEG) transcripts from WS deleted genes that ranked in the top 11 of 12 122 transcripts, validated by quantitative reverse transcription PCR, RNASeq and western blots. WS DEG's were strictly dosed in the full but not the atypical deletions that revealed a breakpoint position effect on non-deleted CLIP2, a caveat for current phenotypic mapping based on copy number variants. Network analyses tested the top WS DEG's role in the dendritic spine, employing GeneMANIA to harmonize WS DEGs with comparable query gene-sets. The results indicate perturbed actin cytoskeletal signaling analogous to the excitatory dendritic spines. Independent protein-protein interaction analyses of top WS DEGs generated a 100-node graph annotated topologically revealing three interacting pathways, MAPK, IGF1-PI3K-AKT-mTOR/insulin and actin signaling at the synapse. The results indicate striking similarity of WS transcriptional networks to genome-wide association study-based ASD and SCHZ risk suggesting common network dysfunction for these disorders of divergent sociality.
Collapse
Affiliation(s)
- Li Dai
- Center for Integrated Neuroscience and Human Behavior, Brain Institute, Department of Pediatrics, University of Utah, Salt Lake City, UT 84112, USA
| | - Robert B Weiss
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Diane M Dunn
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Anna Ramirez
- Center for Integrated Neuroscience and Human Behavior, Brain Institute, Department of Pediatrics, University of Utah, Salt Lake City, UT 84112, USA
| | - Sharan Paul
- Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA
| | - Julie R Korenberg
- Center for Integrated Neuroscience and Human Behavior, Brain Institute, Department of Pediatrics, University of Utah, Salt Lake City, UT 84112, USA.,Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
9
|
Qaiser F, Yin Y, Mervis CB, Morris CA, Klein-Tasman BP, Tam E, Osborne LR, Yuen RKC. Rare and low frequency genomic variants impacting neuronal functions modify the Dup7q11.23 phenotype. Orphanet J Rare Dis 2021; 16:6. [PMID: 33407644 PMCID: PMC7788915 DOI: 10.1186/s13023-020-01648-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/14/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND 7q11.23 duplication (Dup7) is one of the most frequent recurrent copy number variants (CNVs) in individuals with autism spectrum disorder (ASD), but based on gold-standard assessments, only 19% of Dup7 carriers have ASD, suggesting that additional genetic factors are necessary to manifest the ASD phenotype. To assess the contribution of additional genetic variants to the Dup7 phenotype, we conducted whole-genome sequencing analysis of 20 Dup7 carriers: nine with ASD (Dup7-ASD) and 11 without ASD (Dup7-non-ASD). RESULTS We identified three rare variants of potential clinical relevance for ASD: a 1q21.1 microdeletion (Dup7-non-ASD) and two deletions which disrupted IMMP2L (one Dup7-ASD, one Dup7-non-ASD). There were no significant differences in gene-set or pathway variant burden between the Dup7-ASD and Dup7-non-ASD groups. However, overall intellectual ability negatively correlated with the number of rare loss-of-function variants present in nervous system development and membrane component pathways, and adaptive behaviour standard scores negatively correlated with the number of low-frequency likely-damaging missense variants found in genes expressed in the prenatal human brain. ASD severity positively correlated with the number of low frequency loss-of-function variants impacting genes expressed at low levels in the brain, and genes with a low level of intolerance. CONCLUSIONS Our study suggests that in the presence of the same pathogenic Dup7 variant, rare and low frequency genetic variants act additively to contribute to components of the overall Dup7 phenotype.
Collapse
Affiliation(s)
- Farah Qaiser
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
- Genetics & Genome Biology Program, The Hospital for Sick Children, 686 Bay St., Toronto, ON M5G 0A4 Canada
| | - Yue Yin
- Genetics & Genome Biology Program, The Hospital for Sick Children, 686 Bay St., Toronto, ON M5G 0A4 Canada
| | - Carolyn B. Mervis
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY USA
| | - Colleen A. Morris
- Department of Pediatrics, UNLV School of Medicine, Las Vegas, NV USA
| | | | - Elaine Tam
- Department of Medicine, University of Toronto, Toronto, ON Canada
| | - Lucy R. Osborne
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
- Department of Medicine, University of Toronto, Toronto, ON Canada
| | - Ryan K. C. Yuen
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
- Genetics & Genome Biology Program, The Hospital for Sick Children, 686 Bay St., Toronto, ON M5G 0A4 Canada
| |
Collapse
|
10
|
Cavallo F, Troglio F, Fagà G, Fancelli D, Shyti R, Trattaro S, Zanella M, D'Agostino G, Hughes JM, Cera MR, Pasi M, Gabriele M, Lazzarin M, Mihailovich M, Kooy F, Rosa A, Mercurio C, Varasi M, Testa G. High-throughput screening identifies histone deacetylase inhibitors that modulate GTF2I expression in 7q11.23 microduplication autism spectrum disorder patient-derived cortical neurons. Mol Autism 2020; 11:88. [PMID: 33208191 PMCID: PMC7677843 DOI: 10.1186/s13229-020-00387-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/01/2020] [Indexed: 12/27/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental condition affecting almost 1% of children, and represents a major unmet medical need with no effective drug treatment available. Duplication at 7q11.23 (7Dup), encompassing 26–28 genes, is one of the best characterized ASD-causing copy number variations and offers unique translational opportunities, because the hemideletion of the same interval causes Williams–Beuren syndrome (WBS), a condition defined by hypersociability and language strengths, thereby providing a unique reference to validate treatments for the ASD symptoms. In the above-indicated interval at 7q11.23, defined as WBS critical region, several genes, such as GTF2I, BAZ1B, CLIP2 and EIF4H, emerged as critical for their role in the pathogenesis of WBS and 7Dup both from mouse models and human studies. Methods We performed a high-throughput screening of 1478 compounds, including central nervous system agents, epigenetic modulators and experimental substances, on patient-derived cortical glutamatergic neurons differentiated from our cohort of induced pluripotent stem cell lines (iPSCs), monitoring the transcriptional modulation of WBS interval genes, with a special focus on GTF2I, in light of its overriding pathogenic role. The hits identified were validated by measuring gene expression by qRT-PCR and the results were confirmed by western blotting. Results We identified and selected three histone deacetylase inhibitors (HDACi) that decreased the abnormal expression level of GTF2I in 7Dup cortical glutamatergic neurons differentiated from four genetically different iPSC lines. We confirmed this effect also at the protein level. Limitations In this study, we did not address the molecular mechanisms whereby HDAC inhibitors act on GTF2I. The lead compounds identified will now need to be advanced to further testing in additional models, including patient-derived brain organoids and mouse models recapitulating the gene imbalances of the 7q11.23 microduplication, in order to validate their efficacy in rescuing phenotypes across multiple functional layers within a translational pipeline towards clinical use. Conclusions These results represent a unique opportunity for the development of a specific class of compounds for treating 7Dup and other forms of intellectual disability and autism.
Collapse
Affiliation(s)
- Francesca Cavallo
- Department of Oncology and Hemato-Oncology, University of Milan, c/o High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Flavia Troglio
- High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Giovanni Fagà
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Daniele Fancelli
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Reinald Shyti
- High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Sebastiano Trattaro
- Department of Oncology and Hemato-Oncology, University of Milan, c/o High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Matteo Zanella
- High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,Evotec SE, Hamburg, Germany
| | - Giuseppe D'Agostino
- High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - James M Hughes
- High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,FPO - IRCCS, Candiolo Cancer Institute, SP 142 Km 3.95, 10060, Candiolo, TO, Italy
| | - Maria Rosaria Cera
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Maurizio Pasi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Michele Gabriele
- High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, USA
| | - Maddalena Lazzarin
- Department of Oncology and Hemato-Oncology, University of Milan, c/o High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Marija Mihailovich
- Department of Oncology and Hemato-Oncology, University of Milan, c/o High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Alessandro Rosa
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy.,Center for Life Nano Science, Istituto Italiano Di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Ciro Mercurio
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Mario Varasi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Giuseppe Testa
- High Definition Disease Modelling Lab: Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy. .,Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy. .,Human Technopole, Via Cristina Belgioioso, 171, 20157, Milan, Italy.
| |
Collapse
|
11
|
Niego A, Benítez-Burraco A. Autism and Williams syndrome: Dissimilar socio-cognitive profiles with similar patterns of abnormal gene expression in the blood. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2020; 25:464-489. [PMID: 33143449 DOI: 10.1177/1362361320965074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
LAY ABSTRACT Autism spectrum disorders and Williams syndrome are complex cognitive conditions exhibiting quite opposite features in the social domain: whereas people with autism spectrum disorders are mostly hyposocial, subjects with Williams syndrome are usually reported as hypersocial. At the same time, autism spectrum disorders and Williams syndrome share some common underlying behavioral and cognitive deficits. It is not clear, however, which genes account for the attested differences (and similarities) in the socio-cognitive domain. In this article, we adopted a comparative molecular approach and looked for genes that might be differentially (or similarly) regulated in the blood of people with these conditions. We found a significant overlap between genes dysregulated in the blood of patients compared to neurotypical controls, with most of them being upregulated or, in some cases, downregulated. Still, genes with similar expression trends can exhibit quantitative differences between conditions, with most of them being more dysregulated in Williams syndrome than in autism spectrum disorders. Differentially expressed genes are involved in aspects of brain development and function (particularly dendritogenesis) and are expressed in brain areas (particularly the cerebellum, the thalamus, and the striatum) of relevance for the autism spectrum disorder and the Williams syndrome etiopathogenesis. Overall, these genes emerge as promising candidates for the similarities and differences between the autism spectrum disorder and the Williams syndrome socio-cognitive profiles.
Collapse
|
12
|
Serrano-Juárez CA, Prieto-Corona B, Rodríguez-Camacho M, Venegas-Vega CA, Yáñez-Téllez MG, Silva-Pereyra J, Salgado-Ceballos H, Arias-Trejo N, De León Miranda MA. An Exploration of Social Cognition in Children with Different Degrees of Genetic Deletion in Williams Syndrome. J Autism Dev Disord 2020; 51:1695-1704. [PMID: 32812194 DOI: 10.1007/s10803-020-04656-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
An explanation for the social dysfunction observed in Williams syndrome may be deficits in social cognition. This study explored aspects of social cognition in children with Williams syndrome with different genotypes. The 12 participants included one with a 1.1 Mb deletion that retained the GTF2IRD1, GTF2I, and GTF2IRD2 genes, seven with a 1.5 Mb deletion that preserved the GTF2IRD2 gene, and four with a 1.8 Mb deletion with loss of all three genes. The participant retaining all three genes was found to have better performance on social judgment and first-order theory of mind tasks than the group with loss of all three genes. These results may reflect the influence of the GTF2I gene family on social cognition in Williams syndrome.
Collapse
Affiliation(s)
- Carlos Alberto Serrano-Juárez
- Laboratorio de Neurometría, Grupo de Neurociencias, FES Iztacala, UNAM, Av. De los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. Méx, 54090, CDMX, México.,Iskalti Atención y Educación Psicológica SC, CDMX, México
| | - Belén Prieto-Corona
- Laboratorio de Neurometría, Grupo de Neurociencias, FES Iztacala, UNAM, Av. De los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. Méx, 54090, CDMX, México.
| | - Mario Rodríguez-Camacho
- Laboratorio de Neurometría, Grupo de Neurociencias, FES Iztacala, UNAM, Av. De los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. Méx, 54090, CDMX, México
| | | | - Ma Guillermina Yáñez-Téllez
- Laboratorio de Neurometría, Grupo de Neurociencias, FES Iztacala, UNAM, Av. De los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. Méx, 54090, CDMX, México
| | - Juan Silva-Pereyra
- Laboratorio de Neurometría, Grupo de Neurociencias, FES Iztacala, UNAM, Av. De los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Edo. Méx, 54090, CDMX, México
| | | | | | | |
Collapse
|
13
|
López-Tobón A, Trattaro S, Testa G. The sociability spectrum: evidence from reciprocal genetic copy number variations. Mol Autism 2020; 11:50. [PMID: 32546261 PMCID: PMC7298749 DOI: 10.1186/s13229-020-00347-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/11/2020] [Indexed: 02/14/2023] Open
Abstract
Sociability entails some of the most complex behaviors processed by the central nervous system. It includes the detection, integration, and interpretation of social cues and elaboration of context-specific responses that are quintessentially species-specific. There is an ever-growing accumulation of molecular associations to autism spectrum disorders (ASD), from causative genes to endophenotypes across multiple functional layers; these however, have rarely been put in context with the opposite manifestation featured in hypersociability syndromes. Genetic copy number variations (CNVs) allow to investigate the relationships between gene dosage and its corresponding phenotypes. In particular, CNVs of the 7q11.23 locus, which manifest diametrically opposite social behaviors, offer a privileged window to look into the molecular substrates underlying the developmental trajectories of the social brain. As by definition sociability is studied in humans postnatally, the developmental fluctuations causing social impairments have thus far remained a black box. Here, we review key evidence of molecular players involved at both ends of the sociability spectrum, focusing on genetic and functional associations of neuroendocrine regulators and synaptic transmission pathways. We then proceed to propose the existence of a molecular axis centered around the paradigmatic dosage imbalances at the 7q11.23 locus, regulating networks responsible for the development of social behavior in humans and highlight the key role that neurodevelopmental models from reprogrammed pluripotent cells will play for its understanding.
Collapse
Affiliation(s)
- Alejandro López-Tobón
- Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy.
- Department of Oncology and Hemato-oncology, Università degli studi di Milano, Milan, Italy.
| | - Sebastiano Trattaro
- Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy.
- Department of Oncology and Hemato-oncology, Università degli studi di Milano, Milan, Italy.
| | - Giuseppe Testa
- Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy.
- Department of Oncology and Hemato-oncology, Università degli studi di Milano, Milan, Italy.
- Human Technopole, Via Cristina Belgioioso 171, Milan, Italy.
| |
Collapse
|
14
|
Cai M, Lin N, Su L, Wu X, Xie X, Li Y, Chen X, Lin Y, Huang H, Xu L. Copy number variations associated with fetal congenital kidney malformations. Mol Cytogenet 2020; 13:11. [PMID: 32211073 PMCID: PMC7092440 DOI: 10.1186/s13039-020-00481-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/17/2020] [Indexed: 01/19/2023] Open
Abstract
Background Congenital anomalies of the kidney and urinary tract (CAKUT) constitute 20–30% of all congenital malformations. Within the CAKUT phenotypic spectrum, renal hypodysplasia (RHD) is particularly severe. This study aimed to evaluate the applicability of single-nucleotide polymorphism (SNP) array test in prenatal diagnosis of RHD for improving prenatal genetic counseling and to search for evidence of a possible causative role of copy-number variations (CNVs) in RHD. Results We performed a systematic survey of CNV burden in 120 fetuses with RHD: 103 cases were isolated RHD and 17 were non-isolated RHD. Single-nucleotide polymorphism (SNP) array test was performed using the Affymetrix CytoScan HD platform. All annotated CNVs were validated by fluorescence in situ hybridization. We identified abnormal CNVs in 15 (12.5%) cases of RHD; of these CNVs, 11 were pathogenic and 4 were variants of uncertain significance. The detection rate of abnormal CNVs in non-isolated RHD was higher (29.4%, 5/17) than that in isolated RHD (9.7%, 10/103) (P = 0.060). Parents are more inclined to terminate the pregnancy if the fetuses have pathogenic results of the SNP-array test. Conclusions The variable phenotypes that abnormal CNVs may cause indicate the genetic counseling is needed for RHD cases.
Collapse
Affiliation(s)
- Meiying Cai
- Department of the Prenatal Diagnosis Center, Fujian Provincial Maternity and Children's Hospital, affiliated hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Na Lin
- Department of the Prenatal Diagnosis Center, Fujian Provincial Maternity and Children's Hospital, affiliated hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Linjuan Su
- Department of the Prenatal Diagnosis Center, Fujian Provincial Maternity and Children's Hospital, affiliated hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Xiaoqing Wu
- Department of the Prenatal Diagnosis Center, Fujian Provincial Maternity and Children's Hospital, affiliated hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Xiaorui Xie
- Department of the Prenatal Diagnosis Center, Fujian Provincial Maternity and Children's Hospital, affiliated hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Ying Li
- Department of the Prenatal Diagnosis Center, Fujian Provincial Maternity and Children's Hospital, affiliated hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Xuemei Chen
- Department of the Prenatal Diagnosis Center, Fujian Provincial Maternity and Children's Hospital, affiliated hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Yuan Lin
- Department of the Prenatal Diagnosis Center, Fujian Provincial Maternity and Children's Hospital, affiliated hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Hailong Huang
- Department of the Prenatal Diagnosis Center, Fujian Provincial Maternity and Children's Hospital, affiliated hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Liangpu Xu
- Department of the Prenatal Diagnosis Center, Fujian Provincial Maternity and Children's Hospital, affiliated hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| |
Collapse
|
15
|
Wassman ER, Ho KS, Bertrand D, Davis KW, Martin MM, Page S, Peiffer A, Prasad A, Serrano MA, Twede H, Vanzo R, Scherer SW, Uddin M, Hensel CH. Critical exon indexing improves clinical interpretation of copy number variants in neurodevelopmental disorders. NEUROLOGY-GENETICS 2019; 5:e378. [PMID: 32042908 PMCID: PMC6927359 DOI: 10.1212/nxg.0000000000000378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/11/2019] [Indexed: 11/15/2022]
Abstract
Objective To evaluate a new tool to aid interpretation of copy number variants (CNVs) in individuals with neurodevelopmental disabilities. Methods Critical exon indexing (CEI) was used to identify genes with critical exons (CEGs) from clinically reported CNVs, which may contribute to neurodevelopmental disorders (NDDs). The 742 pathogenic CNVs and 1,363 variants of unknown significance (VUS) identified by chromosomal microarray analysis in 5,487 individuals with NDDs were subjected to CEI to identify CEGs. CEGs identified in a subsequent random series of VUS were evaluated for relevance to CNV interpretation. Results CEI identified a total of 2,492 unique CEGs in pathogenic CNVs and 953 in VUS compared with 259 CEGs in 6,965 CNVs from 873 controls. These differences are highly significant (p < 0.00001) whether compared as frequency, average, or normalized by CNV size. Twenty-one percent of VUS CEGs were not represented in Online Mendelian Inheritance in Man, highlighting limitations of existing resources for identifying potentially impactful genes within CNVs. CEGs were highly correlated with other indices and known pathways of relevance. Separately, 136 random VUS reports were reevaluated, and 76% of CEGs had not been commented on. In multiple cases, further investigation yielded additional relevant literature aiding interpretation. As one specific example, we discuss GTF2I as a CEG, which likely alters interpretation of several reported duplication VUS in the Williams-Beuren region. Conclusions Application of CEI to CNVs in individuals with NDDs can identify genes of potential clinical relevance, aid laboratories in effectively searching the clinical literature, and support the clinical reporting of poorly annotated VUS.
Collapse
Affiliation(s)
- E Robert Wassman
- Lineagen Inc. (E.R.W., K.S.H., D.B., K.W.D., M.M.M., S.P., A. Peiffer, A. Prasad, M.A.S., H.T., R.V., C.H.H.); Life Designs Ventures (E.R.W.), Park City, UT; Department of Pediatrics (K.S.H., A. Peiffer), University of Utah; The Centre for Applied Genomics (S.W.S., M.U.), The Hospital for Sick Children, Toronto, Ontario, Canada; Program in Genetics and Genome Biology (S.W.S), The Hospital for Sick Children; McLaughlin Centre (S.W.S), University of Toronto, Toronto, Ontario, Canada; and Department of Molecular Genetics (S.W.S), University of Toronto, Toronto, Ontario, Canada
| | - Karen S Ho
- Lineagen Inc. (E.R.W., K.S.H., D.B., K.W.D., M.M.M., S.P., A. Peiffer, A. Prasad, M.A.S., H.T., R.V., C.H.H.); Life Designs Ventures (E.R.W.), Park City, UT; Department of Pediatrics (K.S.H., A. Peiffer), University of Utah; The Centre for Applied Genomics (S.W.S., M.U.), The Hospital for Sick Children, Toronto, Ontario, Canada; Program in Genetics and Genome Biology (S.W.S), The Hospital for Sick Children; McLaughlin Centre (S.W.S), University of Toronto, Toronto, Ontario, Canada; and Department of Molecular Genetics (S.W.S), University of Toronto, Toronto, Ontario, Canada
| | - Diana Bertrand
- Lineagen Inc. (E.R.W., K.S.H., D.B., K.W.D., M.M.M., S.P., A. Peiffer, A. Prasad, M.A.S., H.T., R.V., C.H.H.); Life Designs Ventures (E.R.W.), Park City, UT; Department of Pediatrics (K.S.H., A. Peiffer), University of Utah; The Centre for Applied Genomics (S.W.S., M.U.), The Hospital for Sick Children, Toronto, Ontario, Canada; Program in Genetics and Genome Biology (S.W.S), The Hospital for Sick Children; McLaughlin Centre (S.W.S), University of Toronto, Toronto, Ontario, Canada; and Department of Molecular Genetics (S.W.S), University of Toronto, Toronto, Ontario, Canada
| | - Kyle W Davis
- Lineagen Inc. (E.R.W., K.S.H., D.B., K.W.D., M.M.M., S.P., A. Peiffer, A. Prasad, M.A.S., H.T., R.V., C.H.H.); Life Designs Ventures (E.R.W.), Park City, UT; Department of Pediatrics (K.S.H., A. Peiffer), University of Utah; The Centre for Applied Genomics (S.W.S., M.U.), The Hospital for Sick Children, Toronto, Ontario, Canada; Program in Genetics and Genome Biology (S.W.S), The Hospital for Sick Children; McLaughlin Centre (S.W.S), University of Toronto, Toronto, Ontario, Canada; and Department of Molecular Genetics (S.W.S), University of Toronto, Toronto, Ontario, Canada
| | - Megan M Martin
- Lineagen Inc. (E.R.W., K.S.H., D.B., K.W.D., M.M.M., S.P., A. Peiffer, A. Prasad, M.A.S., H.T., R.V., C.H.H.); Life Designs Ventures (E.R.W.), Park City, UT; Department of Pediatrics (K.S.H., A. Peiffer), University of Utah; The Centre for Applied Genomics (S.W.S., M.U.), The Hospital for Sick Children, Toronto, Ontario, Canada; Program in Genetics and Genome Biology (S.W.S), The Hospital for Sick Children; McLaughlin Centre (S.W.S), University of Toronto, Toronto, Ontario, Canada; and Department of Molecular Genetics (S.W.S), University of Toronto, Toronto, Ontario, Canada
| | - Stephanie Page
- Lineagen Inc. (E.R.W., K.S.H., D.B., K.W.D., M.M.M., S.P., A. Peiffer, A. Prasad, M.A.S., H.T., R.V., C.H.H.); Life Designs Ventures (E.R.W.), Park City, UT; Department of Pediatrics (K.S.H., A. Peiffer), University of Utah; The Centre for Applied Genomics (S.W.S., M.U.), The Hospital for Sick Children, Toronto, Ontario, Canada; Program in Genetics and Genome Biology (S.W.S), The Hospital for Sick Children; McLaughlin Centre (S.W.S), University of Toronto, Toronto, Ontario, Canada; and Department of Molecular Genetics (S.W.S), University of Toronto, Toronto, Ontario, Canada
| | - Andreas Peiffer
- Lineagen Inc. (E.R.W., K.S.H., D.B., K.W.D., M.M.M., S.P., A. Peiffer, A. Prasad, M.A.S., H.T., R.V., C.H.H.); Life Designs Ventures (E.R.W.), Park City, UT; Department of Pediatrics (K.S.H., A. Peiffer), University of Utah; The Centre for Applied Genomics (S.W.S., M.U.), The Hospital for Sick Children, Toronto, Ontario, Canada; Program in Genetics and Genome Biology (S.W.S), The Hospital for Sick Children; McLaughlin Centre (S.W.S), University of Toronto, Toronto, Ontario, Canada; and Department of Molecular Genetics (S.W.S), University of Toronto, Toronto, Ontario, Canada
| | - Aparna Prasad
- Lineagen Inc. (E.R.W., K.S.H., D.B., K.W.D., M.M.M., S.P., A. Peiffer, A. Prasad, M.A.S., H.T., R.V., C.H.H.); Life Designs Ventures (E.R.W.), Park City, UT; Department of Pediatrics (K.S.H., A. Peiffer), University of Utah; The Centre for Applied Genomics (S.W.S., M.U.), The Hospital for Sick Children, Toronto, Ontario, Canada; Program in Genetics and Genome Biology (S.W.S), The Hospital for Sick Children; McLaughlin Centre (S.W.S), University of Toronto, Toronto, Ontario, Canada; and Department of Molecular Genetics (S.W.S), University of Toronto, Toronto, Ontario, Canada
| | - Moises A Serrano
- Lineagen Inc. (E.R.W., K.S.H., D.B., K.W.D., M.M.M., S.P., A. Peiffer, A. Prasad, M.A.S., H.T., R.V., C.H.H.); Life Designs Ventures (E.R.W.), Park City, UT; Department of Pediatrics (K.S.H., A. Peiffer), University of Utah; The Centre for Applied Genomics (S.W.S., M.U.), The Hospital for Sick Children, Toronto, Ontario, Canada; Program in Genetics and Genome Biology (S.W.S), The Hospital for Sick Children; McLaughlin Centre (S.W.S), University of Toronto, Toronto, Ontario, Canada; and Department of Molecular Genetics (S.W.S), University of Toronto, Toronto, Ontario, Canada
| | - Hope Twede
- Lineagen Inc. (E.R.W., K.S.H., D.B., K.W.D., M.M.M., S.P., A. Peiffer, A. Prasad, M.A.S., H.T., R.V., C.H.H.); Life Designs Ventures (E.R.W.), Park City, UT; Department of Pediatrics (K.S.H., A. Peiffer), University of Utah; The Centre for Applied Genomics (S.W.S., M.U.), The Hospital for Sick Children, Toronto, Ontario, Canada; Program in Genetics and Genome Biology (S.W.S), The Hospital for Sick Children; McLaughlin Centre (S.W.S), University of Toronto, Toronto, Ontario, Canada; and Department of Molecular Genetics (S.W.S), University of Toronto, Toronto, Ontario, Canada
| | - Rena Vanzo
- Lineagen Inc. (E.R.W., K.S.H., D.B., K.W.D., M.M.M., S.P., A. Peiffer, A. Prasad, M.A.S., H.T., R.V., C.H.H.); Life Designs Ventures (E.R.W.), Park City, UT; Department of Pediatrics (K.S.H., A. Peiffer), University of Utah; The Centre for Applied Genomics (S.W.S., M.U.), The Hospital for Sick Children, Toronto, Ontario, Canada; Program in Genetics and Genome Biology (S.W.S), The Hospital for Sick Children; McLaughlin Centre (S.W.S), University of Toronto, Toronto, Ontario, Canada; and Department of Molecular Genetics (S.W.S), University of Toronto, Toronto, Ontario, Canada
| | - Stephen W Scherer
- Lineagen Inc. (E.R.W., K.S.H., D.B., K.W.D., M.M.M., S.P., A. Peiffer, A. Prasad, M.A.S., H.T., R.V., C.H.H.); Life Designs Ventures (E.R.W.), Park City, UT; Department of Pediatrics (K.S.H., A. Peiffer), University of Utah; The Centre for Applied Genomics (S.W.S., M.U.), The Hospital for Sick Children, Toronto, Ontario, Canada; Program in Genetics and Genome Biology (S.W.S), The Hospital for Sick Children; McLaughlin Centre (S.W.S), University of Toronto, Toronto, Ontario, Canada; and Department of Molecular Genetics (S.W.S), University of Toronto, Toronto, Ontario, Canada
| | - Mohammed Uddin
- Lineagen Inc. (E.R.W., K.S.H., D.B., K.W.D., M.M.M., S.P., A. Peiffer, A. Prasad, M.A.S., H.T., R.V., C.H.H.); Life Designs Ventures (E.R.W.), Park City, UT; Department of Pediatrics (K.S.H., A. Peiffer), University of Utah; The Centre for Applied Genomics (S.W.S., M.U.), The Hospital for Sick Children, Toronto, Ontario, Canada; Program in Genetics and Genome Biology (S.W.S), The Hospital for Sick Children; McLaughlin Centre (S.W.S), University of Toronto, Toronto, Ontario, Canada; and Department of Molecular Genetics (S.W.S), University of Toronto, Toronto, Ontario, Canada
| | - Charles H Hensel
- Lineagen Inc. (E.R.W., K.S.H., D.B., K.W.D., M.M.M., S.P., A. Peiffer, A. Prasad, M.A.S., H.T., R.V., C.H.H.); Life Designs Ventures (E.R.W.), Park City, UT; Department of Pediatrics (K.S.H., A. Peiffer), University of Utah; The Centre for Applied Genomics (S.W.S., M.U.), The Hospital for Sick Children, Toronto, Ontario, Canada; Program in Genetics and Genome Biology (S.W.S), The Hospital for Sick Children; McLaughlin Centre (S.W.S), University of Toronto, Toronto, Ontario, Canada; and Department of Molecular Genetics (S.W.S), University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Cai M, Lin N, Su L, Wu X, Xie X, Li Y, Chen X, Dai Y, Lin Y, Huang H, Xu L. Detection of copy number disorders associated with congenital anomalies of the kidney and urinary tract in fetuses via single nucleotide polymorphism arrays. J Clin Lab Anal 2019; 34:e23025. [PMID: 31506986 PMCID: PMC6977156 DOI: 10.1002/jcla.23025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 12/17/2022] Open
Abstract
Background While congenital anomalies of the kidney and urinary tract (CAKUT) constitute one‐third of all congenital malformations, the mechanisms underlying their development are poorly understood. Some studies have reported an association between CAKUT and copy number variations (CNVs) in children and adults, but few have focused on chromosomal microarray analysis (CMA) findings in fetuses with CAKUT. Therefore, we aimed to perform a CMA on fetuses with CAKUT and normal karyotypes in the presence and absence of other structural anomalies. Method The study was conducted in 147 fetuses with CAKUT and normal karyotypes between January 2016 and January 2019 in the Fujian Provincial Maternal and Child Health Hospital. Single nucleotide polymorphism (SNP) analysis was performed using the Affymetrix CytoScan HD platform. Results The SNP array identified abnormal CNVs in 13 cases (8.8%): Six were pathogenic, and seven were variations of uncertain clinical significance (VOUS). The detection rate of abnormal CNVs in non‐isolated CAKUT was higher than that in isolated CAKUT (22.7% vs 6.4%, P = .038). Within the abnormal CNV groups, the highest frequency of CNVs was identified in fetuses with polycystic kidney dysplasia (13.5%), followed by those with renal agenesis (10.5%). Conclusion SNP array is effective for identifying chromosomal abnormalities in CNVs in fetuses with CAKUT and normal karyotypes, and help counseling.
Collapse
Affiliation(s)
- Meiying Cai
- Department of the Prenatal Diagnosis Center, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Na Lin
- Department of the Prenatal Diagnosis Center, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Linjuan Su
- Department of the Prenatal Diagnosis Center, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Xiaoqing Wu
- Department of the Prenatal Diagnosis Center, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Xiaorui Xie
- Department of the Prenatal Diagnosis Center, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Ying Li
- Department of the Prenatal Diagnosis Center, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Xuemei Chen
- Department of the Prenatal Diagnosis Center, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Yifang Dai
- Department of the Prenatal Diagnosis Center, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Yuan Lin
- Department of the Prenatal Diagnosis Center, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Hailong Huang
- Department of the Prenatal Diagnosis Center, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Liangpu Xu
- Department of the Prenatal Diagnosis Center, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| |
Collapse
|
17
|
Tebbenkamp ATN, Varela L, Choi J, Paredes MI, Giani AM, Song JE, Sestan-Pesa M, Franjic D, Sousa AMM, Liu ZW, Li M, Bichsel C, Koch M, Szigeti-Buck K, Liu F, Li Z, Kawasawa YI, Paspalas CD, Mineur YS, Prontera P, Merla G, Picciotto MR, Arnsten AFT, Horvath TL, Sestan N. The 7q11.23 Protein DNAJC30 Interacts with ATP Synthase and Links Mitochondria to Brain Development. Cell 2019; 175:1088-1104.e23. [PMID: 30318146 DOI: 10.1016/j.cell.2018.09.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/01/2018] [Accepted: 09/10/2018] [Indexed: 12/24/2022]
Abstract
Despite the known causality of copy-number variations (CNVs) to human neurodevelopmental disorders, the mechanisms behind each gene's contribution to the constellation of neural phenotypes remain elusive. Here, we investigated the 7q11.23 CNV, whose hemideletion causes Williams syndrome (WS), and uncovered that mitochondrial dysfunction participates in WS pathogenesis. Dysfunction is facilitated in part by the 7q11.23 protein DNAJC30, which interacts with mitochondrial ATP-synthase machinery. Removal of Dnajc30 in mice resulted in hypofunctional mitochondria, diminished morphological features of neocortical pyramidal neurons, and altered behaviors reminiscent of WS. The mitochondrial features are consistent with our observations of decreased integrity of oxidative phosphorylation supercomplexes and ATP-synthase dimers in WS. Thus, we identify DNAJC30 as an auxiliary component of ATP-synthase machinery and reveal mitochondrial maladies as underlying certain defects in brain development and function associated with WS.
Collapse
Affiliation(s)
- Andrew T N Tebbenkamp
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Luis Varela
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jinmyung Choi
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Miguel I Paredes
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Alice M Giani
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jae Eun Song
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Matija Sestan-Pesa
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Daniel Franjic
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - André M M Sousa
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Zhong-Wu Liu
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mingfeng Li
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Candace Bichsel
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Marco Koch
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Klara Szigeti-Buck
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Fuchen Liu
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Zhuo Li
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yuka I Kawasawa
- Institute for Personalized Medicine and Departments of Biochemistry and Molecular Biology and Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Constantinos D Paspalas
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yann S Mineur
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA
| | - Paolo Prontera
- Medical Genetics Unit, Hospital "Santa Maria della Misericordia," 06129 Perugia, Italy
| | - Giuseppe Merla
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Hospital, 71013 San Giovanni Rotondo, Foggia, Italy
| | - Marina R Picciotto
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA
| | - Amy F T Arnsten
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA
| | - Tamas L Horvath
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Anatomy and Histology, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Nenad Sestan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA; Departments of Genetics and of Comparative Medicine, Program in Cellular Neuroscience, Neurodegeneration and Repair, and Yale Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
18
|
The chromatin basis of neurodevelopmental disorders: Rethinking dysfunction along the molecular and temporal axes. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:306-327. [PMID: 29309830 DOI: 10.1016/j.pnpbp.2017.12.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/19/2017] [Accepted: 12/24/2017] [Indexed: 12/13/2022]
Abstract
The complexity of the human brain emerges from a long and finely tuned developmental process orchestrated by the crosstalk between genome and environment. Vis à vis other species, the human brain displays unique functional and morphological features that result from this extensive developmental process that is, unsurprisingly, highly vulnerable to both genetically and environmentally induced alterations. One of the most striking outcomes of the recent surge of sequencing-based studies on neurodevelopmental disorders (NDDs) is the emergence of chromatin regulation as one of the two domains most affected by causative mutations or Copy Number Variations besides synaptic function, whose involvement had been largely predicted for obvious reasons. These observations place chromatin dysfunction at the top of the molecular pathways hierarchy that ushers in a sizeable proportion of NDDs and that manifest themselves through synaptic dysfunction and recurrent systemic clinical manifestation. Here we undertake a conceptual investigation of chromatin dysfunction in NDDs with the aim of systematizing the available evidence in a new framework: first, we tease out the developmental vulnerabilities in human corticogenesis as a structuring entry point into the causation of NDDs; second, we provide a much needed clarification of the multiple meanings and explanatory frameworks revolving around "epigenetics", highlighting those that are most relevant for the analysis of these disorders; finally we go in-depth into paradigmatic examples of NDD-causing chromatin dysregulation, with a special focus on human experimental models and datasets.
Collapse
|
19
|
Klein-Tasman BP, Mervis CB. Autism Spectrum Symptomatology Among Children with Duplication 7q11.23 Syndrome. J Autism Dev Disord 2018; 48:1982-1994. [PMID: 29307037 PMCID: PMC6003247 DOI: 10.1007/s10803-017-3439-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gold-standard diagnostic assessments of autism spectrum disorder (ASD) symptomatology were conducted on 63 children (mean CA: 8.81 years) with 7q11.23 duplication syndrome, one of the copy number variants identified by Sanders et al. (Neuron 70:863-885, 2011a) as associated with ASD. ASD classification rate was 39.6% for the Autism Diagnostic Interview-Revised and 25.4% for the Autism Diagnostic Observation Schedule-2 (ADOS-2). Based on these assessments combined with clinical judgment, 19.0% of children were diagnosed with ASD. Reasons for these discrepancies are discussed, as are differences in rate of diagnosis as a function of sex, age, and ADOS-2 module administered and differences in intellectual and adaptive behavior abilities as a function of presence or absence of ASD diagnosis and ADOS-2 module administered. Implications are addressed.
Collapse
Affiliation(s)
- Bonita P Klein-Tasman
- Department of Psychology, University of Wisconsin-Milwaukee, PO Box 413, Milwaukee, WI, 53201, USA.
| | - Carolyn B Mervis
- Department of Psychological and Brain Sciences, University of Louisville, 317 Life Sciences Building, Louisville, KY, 40292, USA
| |
Collapse
|
20
|
Chailangkarn T, Noree C, Muotri AR. The contribution of GTF2I haploinsufficiency to Williams syndrome. Mol Cell Probes 2018; 40:45-51. [PMID: 29305905 DOI: 10.1016/j.mcp.2017.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/19/2017] [Accepted: 12/28/2017] [Indexed: 01/14/2023]
Abstract
Williams syndrome (WS) is a neurodevelopmental disorder involving hemideletion of as many as 26-28 genes, resulting in a constellation of unique physical, cognitive and behavior phenotypes. The haploinsufficiency effect of each gene has been studied and correlated with phenotype(s) using several models including WS subjects, animal models, and peripheral cell lines. However, links for most of the genes to WS phenotypes remains unclear. Among those genes, general transcription factor 2I (GTF2I) is of particular interest as its haploinsufficiency is possibly associated with hypersociability in WS. Here, we describe studies of atypical WS cases as well as mouse models focusing on GTF2I that support a role for this protein in the neurocognitive and behavioral profiles of WS individuals. We also review collective studies on diverse molecular functions of GTF2I that may provide mechanistic explanation for phenotypes recently reported in our relevant cellular model, namely WS induced pluripotent stem cell (iPSC)-derived neurons. Finally, in light of the progress in gene-manipulating approaches, we suggest their uses in revealing the neural functions of GTF2I in the context of WS.
Collapse
Affiliation(s)
- Thanathom Chailangkarn
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Virology and Cell Technology Laboratory, Pathum Thani, 12120, Thailand.
| | - Chalongrat Noree
- Institute of Molecular Biosciences, Mahidol University, 25/25 Phuttamonthon 4 Road, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Alysson R Muotri
- University of California San Diego, School of Medicine, UCSD Stem Cell Program, Department of Pediatrics/Rady Children's Hospital San Diego, La Jolla, CA 92037, USA; University of California San Diego, School of Medicine, Department of Cellular & Molecular Medicine, La Jolla, CA 92037, USA; Center for Academic Research and Training in Anthropogeny (CARTA), La Jolla, CA 92093, USA
| |
Collapse
|
21
|
Martin LA, Iceberg E, Allaf G. Consistent hypersocial behavior in mice carrying a deletion of Gtf2i but no evidence of hyposocial behavior with Gtf2i duplication: Implications for Williams-Beuren syndrome and autism spectrum disorder. Brain Behav 2018; 8:e00895. [PMID: 29568691 PMCID: PMC5853625 DOI: 10.1002/brb3.895] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/09/2017] [Indexed: 12/14/2022] Open
Abstract
Introduction Williams-Beuren syndrome (WBS) is a developmental disorder caused by hemizygous deletion of human chromosome 7q11.23. Hypersocial behavior is one symptom of WBS and contrasts with hyposociality observed in autism spectrum disorder (ASD). Interestingly, duplications of 7q11.23 have been associated with ASD. The social phenotype of WBS has been linked to GTF2I or general transcription factor IIi (TFII-I). Duplication of GTF2I has also been associated with ASD. Methods We compared mice having either a deletion (Gtf2i+/- ) or duplication (Gtf2i+/dup ) of Gtf2i to wild-type (Gtf2i+/+ ) littermate controls in a series of behavioral tasks including open-field activity monitoring, olfactory probes, a social choice task, social transmission of food preference, habituation-dishabituation, and operant social motivation paradigms. Results In open-field observations, Gtf2i+/- and Gtf2i+/dup mice demonstrated normal activity and thigmotaxis, and surprisingly, each strain showed a significant preference for a stimulus mouse that was not observed in Gtf2i+/+ siblings. Both Gtf2i+/- and Gtf2i+/dup mice demonstrated normal olfaction in buried food probes, but the Gtf2i+/- mice spent significantly more time investigating urine scent versus water, which was not observed in the other strains. Gtf2i+/- mice also spent significantly more time in nose-to-nose contact compared to Gtf2i+/+ siblings during the open-field encounter of the social transmission of food preference task. In operant tasks of social motivation, Gtf2i+/- mice made significantly more presses for social rewards than Gtf2i+/+ siblings, while there was no difference in presses for the Gtf2i+/dup mice. Discussion Results were remarkably consistent across testing paradigms supporting a role for GTF2i in the hypersocial phenotype of WBS and more broadly in the regulation of social behavior. Support was not observed for the role of GTF2i in ASD.
Collapse
Affiliation(s)
- Loren A. Martin
- Department of Graduate PsychologyAzusa Pacific UniversityAzusaCAUSA
| | - Erica Iceberg
- Department of Graduate PsychologyAzusa Pacific UniversityAzusaCAUSA
| | - Gabriel Allaf
- Department of Biology and ChemistryAzusa Pacific UniversityAzusaCAUSA
| |
Collapse
|
22
|
Procyshyn TL, Spence J, Read S, Watson NV, Crespi BJ. The Williams syndrome prosociality gene GTF2I mediates oxytocin reactivity and social anxiety in a healthy population. Biol Lett 2017; 13:rsbl.2017.0051. [PMID: 28424317 DOI: 10.1098/rsbl.2017.0051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/30/2017] [Indexed: 11/12/2022] Open
Abstract
The neurohormone oxytocin plays a central role in human social behaviour and cognition, and oxytocin dysregulation may contribute to psychiatric disorders. However, genetic factors influencing individual variation in the oxytocinergic system remain poorly understood. We genotyped 169 healthy adults for a functional polymorphism in GTF2I (general transcription factor II-I), a gene associated with high prosociality and reduced social anxiety in Williams syndrome, a condition reported to involve high oxytocin levels and reactivity. Participants' salivary oxytocin levels were measured before and after watching a validated empathy-inducing video. Oxytocin reactivity, defined as pre- to post-video percentage change in salivary oxytocin, varied substantially and significantly between individuals with different GTF2I genotypes, with, additionally, a trend towards an interaction between genotype and sex. Individuals with more oxytocin-reactive genotypes also reported significantly lower social anxiety. These findings suggest a model whereby GTF2I has a continuum of effects on human sociality, from the extreme social phenotypes and oxytocin dysregulation associated with gene deletion in Williams syndrome, to individual differences in oxytocin reactivity and sociality associated with common polymorphisms in healthy populations.
Collapse
Affiliation(s)
- Tanya L Procyshyn
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, Canada V5A 1S6
| | - Jason Spence
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, Canada V5A 1S6
| | - Silven Read
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, Canada V5A 1S6
| | - Neil V Watson
- Department of Psychology, Simon Fraser University, 8888 University Drive, Burnaby, Canada V5A 1S6
| | - Bernard J Crespi
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, Canada V5A 1S6
| |
Collapse
|
23
|
Crespi BJ, Procyshyn TL. Williams syndrome deletions and duplications: Genetic windows to understanding anxiety, sociality, autism, and schizophrenia. Neurosci Biobehav Rev 2017; 79:14-26. [DOI: 10.1016/j.neubiorev.2017.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/06/2017] [Accepted: 05/06/2017] [Indexed: 12/30/2022]
|
24
|
Reilly J, Gallagher L, Chen JL, Leader G, Shen S. Bio-collections in autism research. Mol Autism 2017; 8:34. [PMID: 28702161 PMCID: PMC5504648 DOI: 10.1186/s13229-017-0154-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/23/2017] [Indexed: 01/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a group of complex neurodevelopmental disorders with diverse clinical manifestations and symptoms. In the last 10 years, there have been significant advances in understanding the genetic basis for ASD, critically supported through the establishment of ASD bio-collections and application in research. Here, we summarise a selection of major ASD bio-collections and their associated findings. Collectively, these include mapping ASD candidate genes, assessing the nature and frequency of gene mutations and their association with ASD clinical subgroups, insights into related molecular pathways such as the synapses, chromatin remodelling, transcription and ASD-related brain regions. We also briefly review emerging studies on the use of induced pluripotent stem cells (iPSCs) to potentially model ASD in culture. These provide deeper insight into ASD progression during development and could generate human cell models for drug screening. Finally, we provide perspectives concerning the utilities of ASD bio-collections and limitations, and highlight considerations in setting up a new bio-collection for ASD research.
Collapse
Affiliation(s)
- Jamie Reilly
- Regenerative Medicine Institute, School of Medicine, BioMedical Sciences Building, National University of Ireland (NUI), Galway, Ireland
| | - Louise Gallagher
- Trinity Translational Medicine Institute and Department of Psychiatry, Trinity Centre for Health Sciences, St. James Hospital Street, Dublin 8, Ireland
| | - June L. Chen
- Department of Special Education, Faculty of Education, East China Normal University, Shanghai, 200062 China
| | - Geraldine Leader
- Irish Centre for Autism and Neurodevelopmental Research (ICAN), Department of Psychology, National University of Ireland Galway, University Road, Galway, Ireland
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, BioMedical Sciences Building, National University of Ireland (NUI), Galway, Ireland
| |
Collapse
|
25
|
Roy AL. Pathophysiology of TFII-I: Old Guard Wearing New Hats. Trends Mol Med 2017; 23:501-511. [PMID: 28461154 DOI: 10.1016/j.molmed.2017.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/30/2017] [Accepted: 04/05/2017] [Indexed: 12/23/2022]
Abstract
The biochemical properties of the signal-induced multifunctional transcription factor II-I (TFII-I) indicate that it is involved in a variety of gene regulatory processes. Although gene ablation in murine models and cell-based assays show that it is encoded by an essential gene, GTF2I/Gtf2i, its physiologic role in human disorders was relatively unknown until recently. Novel studies show that it is involved in an array of human diseases including neurocognitive disorders, systemic lupus erythematosus (SLE), and cancer. Here I bring together these diverse observations to illustrate its multiple pathophysiologic functions and further conjecture on how these could be related to its known biochemical properties. I expect that a better understanding of these 'structure-function' relationships would lead to future diagnostic and/or therapeutic potential.
Collapse
Affiliation(s)
- Ananda L Roy
- Laboratory of Molecular Biology and Immunology, Biomedical Research Center, National Institutes of Health/National Institute on Aging, 251 Bayview Blvd, Baltimore, MD 21224, USA.
| |
Collapse
|
26
|
Role of Splice Variants of Gtf2i, a Transcription Factor Localizing at Postsynaptic Sites, and Its Relation to Neuropsychiatric Diseases. Int J Mol Sci 2017; 18:ijms18020411. [PMID: 28212274 PMCID: PMC5343945 DOI: 10.3390/ijms18020411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/01/2017] [Accepted: 02/09/2017] [Indexed: 12/17/2022] Open
Abstract
We previously reported that various mRNAs were associated with postsynaptic density (PSD) purified from rat forebrain. Among the thousands of PSD-associated mRNAs, we highlight the biology of the general transcription factor II-I (Gtf2i) mRNA, focusing on the significance of its versatile splicing for targeting its own mRNA into dendrites, regulation of translation, and the effects of Gtf2i expression level as well as its relationship with neuropsychiatric disorders.
Collapse
|
27
|
Schweiger JI, Meyer-Lindenberg A. Common Variation in the GTF2I Gene: A Promising Neurogenetic Mechanism for Affiliative Drive and Social Anxiety. Biol Psychiatry 2017; 81:175-176. [PMID: 28024705 DOI: 10.1016/j.biopsych.2016.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 11/21/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Janina I Schweiger
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany.
| |
Collapse
|
28
|
Kolaitis G, Bouwkamp CG, Papakonstantinou A, Otheiti I, Belivanaki M, Haritaki S, Korpa T, Albani Z, Terzioglou E, Apostola P, Skamnaki A, Xaidara A, Kosma K, Kitsiou-Tzeli S, Tzetis M. A boy with conduct disorder (CD), attention deficit hyperactivity disorder (ADHD), borderline intellectual disability, and 47,XXY syndrome in combination with a 7q11.23 duplication, 11p15.5 deletion, and 20q13.33 deletion. Child Adolesc Psychiatry Ment Health 2016; 10:33. [PMID: 27651829 PMCID: PMC5024517 DOI: 10.1186/s13034-016-0121-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/01/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND This is a case with multiple chromosomal aberrations which are likely etiological for the observed psychiatric phenotype consisting of attention deficit hyperactivity and conduct disorders. CASE PRESENTATION We report on an 11 year-old boy, admitted to the pediatric hospital for behavioral difficulties and a delayed neurodevelopmental trajectory. A cytogenetic analysis and high-resolution microarray comparative genomic hybridization (CGH) analysis was performed. The cytogenetic analysis revealed 47,XYY syndrome, while CGH analysis revealed an additional duplication and two deletions. The 7q11.23 duplication is associated with speech and language delay and behavioral symptoms, a 20q13.33 deletion is associated with autism and early onset schizophrenia and the 11p15.5 microdeletion is associated with developmental delay, autism, and epilepsy. The patient underwent a psychiatric history, physical examination, laboratory testing, and a detailed cognitive, psychiatric, and occupational therapy evaluation which are reported here in detail. CONCLUSIONS In the case of psychiatric patients presenting with complex genetic aberrations and additional psychosocial problems, traditional psychiatric and psychological approaches can lead to significantly improved functioning. Genetic diagnostic testing can be highly informative in the diagnostic process and may be applied to patients in psychiatry in case of complex clinical presentations.
Collapse
Affiliation(s)
- Gerasimos Kolaitis
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Christian G. Bouwkamp
- Department of Psychiatry and Department of Clinical Genetics, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Alexia Papakonstantinou
- Department of Child Psychiatry, Medical School, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece
| | - Ioanna Otheiti
- Department of Child Psychiatry, Medical School, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece
| | - Maria Belivanaki
- Department of Child Psychiatry, Medical School, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece
| | - Styliani Haritaki
- Department of Child Psychiatry, Medical School, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece
| | - Terpsihori Korpa
- Department of Child Psychiatry, Medical School, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece
| | - Zinovia Albani
- Department of Child Psychiatry, Medical School, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece
| | - Elena Terzioglou
- Department of Child Psychiatry, Medical School, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece
| | - Polyxeni Apostola
- Department of Child Psychiatry, Medical School, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece
| | - Aggeliki Skamnaki
- Department of Child Psychiatry, Medical School, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece
| | - Athena Xaidara
- 1st Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece
| | - Konstantina Kosma
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, Athens, 11527 Greece
| | - Sophia Kitsiou-Tzeli
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, Athens, 11527 Greece
| | - Maria Tzetis
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, Athens, 11527 Greece
| |
Collapse
|
29
|
Benítez-Burraco A, Lattanzi W, Murphy E. Language Impairments in ASD Resulting from a Failed Domestication of the Human Brain. Front Neurosci 2016; 10:373. [PMID: 27621700 PMCID: PMC5002430 DOI: 10.3389/fnins.2016.00373] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/02/2016] [Indexed: 11/16/2022] Open
Abstract
Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders entailing social and cognitive deficits, including marked problems with language. Numerous genes have been associated with ASD, but it is unclear how language deficits arise from gene mutation or dysregulation. It is also unclear why ASD shows such high prevalence within human populations. Interestingly, the emergence of a modern faculty of language has been hypothesized to be linked to changes in the human brain/skull, but also to the process of self-domestication of the human species. It is our intention to show that people with ASD exhibit less marked domesticated traits at the morphological, physiological, and behavioral levels. We also discuss many ASD candidates represented among the genes known to be involved in the “domestication syndrome” (the constellation of traits exhibited by domesticated mammals, which seemingly results from the hypofunction of the neural crest) and among the set of genes involved in language function closely connected to them. Moreover, many of these genes show altered expression profiles in the brain of autists. In addition, some candidates for domestication and language-readiness show the same expression profile in people with ASD and chimps in different brain areas involved in language processing. Similarities regarding the brain oscillatory behavior of these areas can be expected too. We conclude that ASD may represent an abnormal ontogenetic itinerary for the human faculty of language resulting in part from changes in genes important for the “domestication syndrome” and, ultimately, from the normal functioning of the neural crest.
Collapse
Affiliation(s)
| | - Wanda Lattanzi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Elliot Murphy
- Division of Psychology and Language Sciences, University College London London, UK
| |
Collapse
|
30
|
Murphy E, Benítez-Burraco A. Language deficits in schizophrenia and autism as related oscillatory connectomopathies: An evolutionary account. Neurosci Biobehav Rev 2016; 83:742-764. [PMID: 27475632 DOI: 10.1016/j.neubiorev.2016.07.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/23/2016] [Accepted: 07/25/2016] [Indexed: 01/28/2023]
Abstract
Schizophrenia (SZ) and autism spectrum disorders (ASD) are characterised by marked language deficits, but it is not clear how these arise from gene mutations associated with the disorders. Our goal is to narrow the gap between SZ and ASD and, ultimately, give support to the view that they represent abnormal (but related) ontogenetic itineraries for the human faculty of language. We will focus on the distinctive oscillatory profiles of the SZ and ASD brains, in turn using these insights to refine our understanding of how the brain implements linguistic computations by exploring a novel model of linguistic feature-set composition. We will argue that brain rhythms constitute the best route to interpreting language deficits in both conditions and mapping them to neural dysfunction and risk alleles of the genes. Importantly, candidate genes for SZ and ASD are overrepresented among the gene sets believed to be important for language evolution. This translational effort may help develop an understanding of the aetiology of SZ and ASD and their high prevalence among modern populations.
Collapse
Affiliation(s)
- Elliot Murphy
- Division of Psychology and Language Sciences, University College London, London, United Kingdom.
| | | |
Collapse
|
31
|
Enkhmandakh B, Stoddard C, Mack K, He W, Kaback D, Yee SP, Bayarsaihan D. Generation of a mouse model for a conditional inactivation of Gtf2i allele. Genesis 2016; 54:407-12. [PMID: 27194223 DOI: 10.1002/dvg.22948] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/15/2016] [Accepted: 05/16/2016] [Indexed: 01/10/2023]
Abstract
The multifunctional transcription factor TFII-I encoded by the Gtf2i gene is expressed at the two-cell stage, inner cell mass, trophectoderm, and early gastrula stages of the mouse embryo. In embryonic stem cells, TFII-I colocalizes with bivalent domains and depletion of Gtf2i causes embryonic lethality, neural tube closure, and craniofacial defects. To gain insight into the function of TFII-I during late embryonic and postnatal stages, we have generated a conditional Gtf2i null allele by flanking exon 3 with loxP sites. Crossing the floxed line with the Hprt-Cre transgenic mice resulted in inactivation of Gtf2i in one-cell embryo. The Cre-mediated deletion of exon 3 recapitulates a genetic null phenotype, indicating that the conditional Gtf2i line is a valuable tool for studying TFII-I function during embryonic development. genesis 54:407-412, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Badam Enkhmandakh
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut
| | - Chris Stoddard
- Gene Targeting and Transgenic Facility, University of Connecticut Health Center, Farmington, Connecticut
| | - Kris Mack
- Gene Targeting and Transgenic Facility, University of Connecticut Health Center, Farmington, Connecticut
| | - Wei He
- Gene Targeting and Transgenic Facility, University of Connecticut Health Center, Farmington, Connecticut
| | - Deb Kaback
- Gene Targeting and Transgenic Facility, University of Connecticut Health Center, Farmington, Connecticut
| | - Siu-Pok Yee
- Gene Targeting and Transgenic Facility, University of Connecticut Health Center, Farmington, Connecticut
| | - Dashzeveg Bayarsaihan
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
32
|
Abbas E, Cox DM, Smith T, Butler MG. The 7q11.23 Microduplication Syndrome: A Clinical Report with Review of Literature. J Pediatr Genet 2016; 5:129-40. [PMID: 27617154 DOI: 10.1055/s-0036-1584361] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/11/2016] [Indexed: 12/11/2022]
Abstract
We report a 14-year-old adolescent girl with selective mutism (SM) and a 7q11.23 microduplication detected by chromosomal microarray (CMA) analysis and reviewed the literature from 18 published clinical reports. Our patient had specific phobias, SM, extreme anxiety, obesity, cutis marmorata, and a round appearing face with a short neck and over folded ears. We reviewed the published clinical, cognitive, behavioral, and cytogenetic findings grouped by speech and language delay, growth and development, craniofacial, clinical, and behavior and cognitive features due to the 7q11.23 microduplication. This microduplication syndrome is characterized by speech delay (91%), social anxiety (42%), attention deficit hyperactivity disorder (ADHD, 37%), autism spectrum disorder (29%), and separation anxiety (13%). Other findings include abnormal brain imaging (80%), congenital heart and vascular defects (54%), and mild intellectual disability (38%). We then compared the phenotype with Williams-Beuren syndrome (WBS) which is due to a deletion of the same chromosome region. Both syndromes have abnormal brain imaging, hypotonia, delayed motor development, joint laxity, mild intellectual disability, ADHD, autism, and poor visuospatial skills but opposite or dissimilar findings regarding speech and behavioral patterns, cardiovascular problems, and social interaction. Those with WBS are prone to have hyperverbal speech, lack of stranger anxiety, and supravalvular aortic stenosis while those with the 7q11.23 microduplication have speech delay, SM, social anxiety, and are prone to aortic dilatation.
Collapse
Affiliation(s)
- Elham Abbas
- Departments of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Devin M Cox
- Departments of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, Kansas, United States; Department of Pediatrics, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Teri Smith
- Departments of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Merlin G Butler
- Departments of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, Kansas, United States; Department of Pediatrics, University of Kansas Medical Center, Kansas City, Kansas, United States
| |
Collapse
|
33
|
Barak B, Feng G. Neurobiology of social behavior abnormalities in autism and Williams syndrome. Nat Neurosci 2016; 19:647-655. [PMID: 29323671 PMCID: PMC4896837 DOI: 10.1038/nn.4276] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 02/22/2016] [Indexed: 12/14/2022]
Abstract
Social behavior is a basic behavior mediated by multiple brain regions and neural circuits, and is crucial for the survival and development of animals and humans. Two neuropsychiatric disorders that have prominent social behavior abnormalities are autism spectrum disorders (ASD), which is characterized mainly by hyposociability, and Williams syndrome (WS), whose subjects exhibit hypersociability. Here we review the unique properties of social behavior in ASD and WS, and discuss the major theories in social behavior in the context of these disorders. We conclude with a discussion of the research questions needing further exploration to enhance our understanding of social behavior abnormalities.
Collapse
Affiliation(s)
- Boaz Barak
- McGovern Institute for Brain Research, MIT, Cambridge, Massachusetts, USA
- Department of Brain &Cognitive Sciences, MIT, Cambridge, Massachusetts, USA
| | - Guoping Feng
- McGovern Institute for Brain Research, MIT, Cambridge, Massachusetts, USA
- Department of Brain &Cognitive Sciences, MIT, Cambridge, Massachusetts, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
34
|
Schuch JB, Paixão-Côrtes VR, Friedrich DC, Tovo-Rodrigues L. The contribution of protein intrinsic disorder to understand the role of genetic variants uncovered by autism spectrum disorders exome studies. Am J Med Genet B Neuropsychiatr Genet 2016; 171B:479-91. [PMID: 26892727 DOI: 10.1002/ajmg.b.32431] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 02/04/2016] [Indexed: 01/09/2023]
Abstract
Several autism spectrum disorders (ASD) exome studies suggest that coding single nucleotide variants (SNVs) play an important role on ASD etiology. Usually, the pathogenic effect of missense mutations is estimated through predictors that lose accuracy for those SNVs placed in intrinsically disordered regions of protein. Here, we used bioinformatics tools to investigate the effect of mutations described in ASD published exome studies (549 mutations) in protein disorder, considering post-translational modification, PEST and Molecular Recognition Features (MoRFs) motifs. Schizophrenia and type 2 diabetes (T2D) datasets were created for comparison purposes. The frequency of mutations predicted as disordered was comparable among the three datasets (38.1% in ASD, 35.7% in schizophrenia, 46.4% in T2D). However, the frequency of SNVs predicted to lead a gain or loss of functional sites or change intrinsic disorder tendencies was higher in ASD and schizophrenia than T2D (46.9%, 36.4%, and 23.1%, respectively). The results obtained by SIFT and PolyPhen-2 indicated that 38.9% and 34.4% of the mutations predicted, respectively, as tolerated and benign showed functional alterations in disorder properties. Given the frequency of mutations placed in IDRs and their functional impact, this study suggests that alterations in intrinsic disorder properties might play a role in ASD and schizophrenia etiologies. They should be taken into consideration when researching the pathogenicity of mutations in neurodevelopmental and psychiatric diseases. Finally, mutations with functional alterations in disorder properties must be potential targets for in vitro and in vivo functional studies.
Collapse
Affiliation(s)
- Jaqueline Bohrer Schuch
- Department of Genetics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Deise C Friedrich
- Department of Cellular and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Luciana Tovo-Rodrigues
- Postgraduate Program in Epidemiology, Federal University of Pelotas (UFPel), Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
35
|
Array CGH - A Powerful Tool in Molecular Diagnostic of Pathogenic Microdeletions - Williams-Beuren Syndrome - A Case Report. CURRENT HEALTH SCIENCES JOURNAL 2016; 42:207-212. [PMID: 30568834 PMCID: PMC6256167 DOI: 10.12865/chsj.42.02.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/19/2016] [Indexed: 11/25/2022]
Abstract
ABSTRACT: Williams-Beuren syndrome (WBS) (OMIM 194050) is caused by interstitial deletions or duplications of the 7q11.23 chromosomal region and characterised through a complex phenotype. We described a case diagnosed clinically and genetically confirmed through aCGH. Genetic assessment identified three microdeletions with a total size of 1.35 Mb located at 7q11.23. The deleted regions encompasses more than 30 genes including several protein coding genes such as ELN, LIMK1, FZDS, WBSCR22, WBSCR27, WBSCR28, STX1A, CLDN3, CLDN4, LAT2, ABHD11 or EIF4H .
Collapse
|
36
|
Cupertino RB, Kappel DB, Bandeira CE, Schuch JB, da Silva BS, Müller D, Bau CHD, Mota NR. SNARE complex in developmental psychiatry: neurotransmitter exocytosis and beyond. J Neural Transm (Vienna) 2016; 123:867-83. [DOI: 10.1007/s00702-016-1514-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/20/2016] [Indexed: 12/31/2022]
|
37
|
Lalli MA, Jang J, Park JHC, Wang Y, Guzman E, Zhou H, Audouard M, Bridges D, Tovar KR, Papuc SM, Tutulan-Cunita AC, Huang Y, Budisteanu M, Arghir A, Kosik KS. Haploinsufficiency of BAZ1B contributes to Williams syndrome through transcriptional dysregulation of neurodevelopmental pathways. Hum Mol Genet 2016; 25:1294-306. [PMID: 26755828 DOI: 10.1093/hmg/ddw010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/07/2016] [Indexed: 12/31/2022] Open
Abstract
Williams syndrome (WS) is a neurodevelopmental disorder caused by a genomic deletion of ∼28 genes that results in a cognitive and behavioral profile marked by overall intellectual impairment with relative strength in expressive language and hypersocial behavior. Advancements in protocols for neuron differentiation from induced pluripotent stem cells allowed us to elucidate the molecular circuitry underpinning the ontogeny of WS. In patient-derived stem cells and neurons, we determined the expression profile of the Williams-Beuren syndrome critical region-deleted genes and the genome-wide transcriptional consequences of the hemizygous genomic microdeletion at chromosome 7q11.23. Derived neurons displayed disease-relevant hallmarks and indicated novel aberrant pathways in WS neurons including over-activated Wnt signaling accompanying an incomplete neurogenic commitment. We show that haploinsufficiency of the ATP-dependent chromatin remodeler, BAZ1B, which is deleted in WS, significantly contributes to this differentiation defect. Chromatin-immunoprecipitation (ChIP-seq) revealed BAZ1B target gene functions are enriched for neurogenesis, neuron differentiation and disease-relevant phenotypes. BAZ1B haploinsufficiency caused widespread gene expression changes in neural progenitor cells, and together with BAZ1B ChIP-seq target genes, explained 42% of the transcriptional dysregulation in WS neurons. BAZ1B contributes to regulating the balance between neural precursor self-renewal and differentiation and the differentiation defect caused by BAZ1B haploinsufficiency can be rescued by mitigating over-active Wnt signaling in neural stem cells. Altogether, these results reveal a pivotal role for BAZ1B in neurodevelopment and implicate its haploinsufficiency as a likely contributor to the neurological phenotypes in WS.
Collapse
Affiliation(s)
- Matthew A Lalli
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, Biomolecular Science and Engineering Program
| | - Jiwon Jang
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute
| | - Joo-Hye C Park
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute
| | - Yidi Wang
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute
| | - Elmer Guzman
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute
| | - Hongjun Zhou
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute
| | - Morgane Audouard
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute
| | - Daniel Bridges
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, Department of Physics, University of California, Santa Barbara, CA, USA
| | - Kenneth R Tovar
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute
| | - Sorina M Papuc
- Victor Babes National Institute of Pathology, Clinical Cytogenetics, Bucharest, Romania
| | | | - Yadong Huang
- Gladstone Institute of Neurological Disease, University of California, San Francisco, CA, USA and
| | - Magdalena Budisteanu
- Victor Babes National Institute of Pathology, Clinical Cytogenetics, Bucharest, Romania, Alexandru Obregia Clinical Hospital of Psychiatry, Neuropediatric Pathology, Bucharest, Romania
| | - Aurora Arghir
- Victor Babes National Institute of Pathology, Clinical Cytogenetics, Bucharest, Romania
| | - Kenneth S Kosik
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, Biomolecular Science and Engineering Program,
| |
Collapse
|
38
|
Morris CA, Mervis CB, Paciorkowski AP, Abdul-Rahman O, Dugan SL, Rope AF, Bader P, Hendon LG, Velleman SL, Klein-Tasman BP, Osborne LR. 7q11.23 Duplication syndrome: Physical characteristics and natural history. Am J Med Genet A 2015; 167A:2916-35. [PMID: 26333794 PMCID: PMC5005957 DOI: 10.1002/ajmg.a.37340] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/08/2015] [Indexed: 01/17/2023]
Abstract
In order to describe the physical characteristics, medical complications, and natural history of classic 7q11.23 duplication syndrome [hereafter Dup7 (MIM 609757)], reciprocal duplication of the region deleted in Williams syndrome [hereafter WS (MIM 194050)], we systematically evaluated 53 individuals aged 1.25-21.25 years and 11 affected adult relatives identified in cascade testing. In this series, 27% of probands with Dup7 had an affected parent. Seven of the 26 de novo duplications that were examined for inversions were inverted; in all seven cases one of the parents had the common inversion polymorphism of the WS region. We documented the craniofacial features of Dup7: brachycephaly, broad forehead, straight eyebrows, broad nasal tip, low insertion of the columella, short philtrum, thin upper lip, minor ear anomalies, and facial asymmetry. Approximately 30% of newborns and 50% of older children and adults had macrocephaly. Abnormalities were noted on neurological examination in 88.7% of children, while 81.6% of MRI studies showed structural abnormalities such as decreased cerebral white matter volume, cerebellar vermis hypoplasia, and ventriculomegaly. Signs of cerebellar dysfunction were found in 62.3%, hypotonia in 58.5%, Developmental Coordination Disorder in 74.2%, and Speech Sound Disorder in 82.6%. Behavior problems included anxiety disorders, ADHD, and oppositional disorders. Medical problems included seizures, 19%; growth hormone deficiency, 9.4%; patent ductus arteriosus, 15%; aortic dilation, 46.2%; chronic constipation, 66%; and structural renal anomalies, 18%. We compare these results to the WS phenotype and offer initial recommendations for medical evaluation and surveillance of individuals who have Dup7.
Collapse
Affiliation(s)
- Colleen A. Morris
- Department of Pediatrics, University of Nevada School of Medicine, Las Vegas, NV
| | - Carolyn B. Mervis
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY
| | - Alex P. Paciorkowski
- Center for Neural Development and Disease, Departments of Neurology, Pediatrics, and Biomedical Genetics, University of Rochester Medical Center, Rochester, NY
| | - Omar Abdul-Rahman
- Department of Pediatrics University of Mississippi Medical Center, Jackson, MS
| | - Sarah L. Dugan
- Division of Medical Genetics, University of Utah, Salt Lake City, UT
| | - Alan F. Rope
- Department of Medical Genetics, Kaiser Permanente, Portland OR
| | | | - Laura G. Hendon
- Department of Pediatrics University of Mississippi Medical Center, Jackson, MS
| | - Shelley L. Velleman
- Department of Communication Sciences and Disorders, University of Vermont, Burlington, VT
| | | | - Lucy R. Osborne
- Departments of Medicine and Molecular Genetics and Institute of Medical Science, University of Toronto, Toronto ON, Canada
| |
Collapse
|
39
|
Banerji J. Asparaginase treatment side-effects may be due to genes with homopolymeric Asn codons (Review-Hypothesis). Int J Mol Med 2015; 36:607-26. [PMID: 26178806 PMCID: PMC4533780 DOI: 10.3892/ijmm.2015.2285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/15/2015] [Indexed: 12/14/2022] Open
Abstract
The present treatment of childhood T-cell leukemias involves the systemic administration of prokary-otic L-asparaginase (ASNase), which depletes plasma Asparagine (Asn) and inhibits protein synthesis. The mechanism of therapeutic action of ASNase is poorly understood, as are the etiologies of the side-effects incurred by treatment. Protein expression from genes bearing Asn homopolymeric coding regions (N-hCR) may be particularly susceptible to Asn level fluctuation. In mammals, N-hCR are rare, short and conserved. In humans, misfunctions of genes encoding N-hCR are associated with a cluster of disorders that mimic ASNase therapy side-effects which include impaired glycemic control, dislipidemia, pancreatitis, compromised vascular integrity, and neurological dysfunction. This paper proposes that dysregulation of Asn homeostasis, potentially even by ASNase produced by the microbiome, may contribute to several clinically important syndromes by altering expression of N-hCR bearing genes. By altering amino acid abundance and modulating ribosome translocation rates at codon repeats, the microbiomic environment may contribute to genome decoding and to shaping the proteome. We suggest that impaired translation at poly Asn codons elevates diabetes risk and severity.
Collapse
Affiliation(s)
- Julian Banerji
- Center for Computational and Integrative Biology, MGH, Simches Research Center, Boston, MA 02114, USA
| |
Collapse
|
40
|
Mervis CB, Klein-Tasman BP, Huffman MJ, Velleman SL, Pitts CH, Henderson DR, Woodruff-Borden J, Morris CA, Osborne LR. Children with 7q11.23 duplication syndrome: psychological characteristics. Am J Med Genet A 2015; 167:1436-50. [PMID: 25900101 DOI: 10.1002/ajmg.a.37071] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/08/2015] [Indexed: 12/11/2022]
Abstract
To begin to delineate the psychological characteristics associated with classic 7q11.23 duplication syndrome (duplication of the classic Williams syndrome region; hereafter classic Dup7), we tested 63 children with classic Dup7 aged 4-17 years. Sixteen toddlers aged 18-45 months with classic Dup7 and 12 adults identified by cascade testing also were assessed. For the child group, median General Conceptual Ability (similar to IQ) on the Differential Ability Scales-II was 85.0 (low average), with a range from severe disability to high average ability. Median reading and mathematics achievement standard scores were at the low average to average level, with a range from severe impairment to high average or superior ability. Adaptive behavior was considerably more limited; median Scales of Independent Behavior-Revised Broad Independence standard score was 62.0 (mild impairment), with a range from severe adaptive impairment to average adaptive ability. Anxiety disorders were common, with 50.0% of children diagnosed with Social Phobia, 29.0% with Selective Mutism, 12.9% with Separation Anxiety Disorder, and 53.2% with Specific Phobia. In addition, 35.5% were diagnosed with Attention Deficit/Hyperactivity Disorder and 24.2% with Oppositional Defiant Disorder or Disruptive Behavior Disorder-Not Otherwise Specified. 33.3% of the children screened positive for a possible Autism Spectrum Disorder and 82.3% were diagnosed with Speech Sound Disorder. We compare these findings to previously reported results for children with Williams syndrome and argue that genotype/phenotype studies involving the Williams syndrome region offer important opportunities to understand the contribution of genes in this region to common disorders affecting the general population.
Collapse
Affiliation(s)
- Carolyn B Mervis
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, Kentucky
| | | | - Myra J Huffman
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, Kentucky
| | - Shelley L Velleman
- Department of Communication Sciences and Disorders, University of Vermont, Burlington, Vermont
| | - C Holley Pitts
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, Kentucky
| | - Danielle R Henderson
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, Kentucky
| | - Janet Woodruff-Borden
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, Kentucky
| | - Colleen A Morris
- Department of Pediatrics, University of Nevada School of Medicine, Las Vegas, Nevada
| | - Lucy R Osborne
- Departments of Medicine and Molecular Genetics and Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
41
|
Disruption of Src Is Associated with Phenotypes Related to Williams-Beuren Syndrome and Altered Cellular Localization of TFII-I. eNeuro 2015; 2:eN-NWR-0016-14. [PMID: 26464974 PMCID: PMC4596087 DOI: 10.1523/eneuro.0016-14.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 03/02/2015] [Accepted: 03/02/2015] [Indexed: 11/21/2022] Open
Abstract
Src is a nonreceptor protein tyrosine kinase that is expressed widely throughout the central nervous system and is involved in diverse biological functions. Mice homozygous for a spontaneous mutation in Src (Src (thl/thl) ) exhibited hypersociability and hyperactivity along with impairments in visuospatial, amygdala-dependent, and motor learning as well as an increased startle response to loud tones. The phenotype of Src (thl/thl) mice showed significant overlap with Williams-Beuren syndrome (WBS), a disorder caused by the deletion of several genes, including General Transcription Factor 2-I (GTF2I). Src phosphorylation regulates the movement of GTF2I protein (TFII-I) between the nucleus, where it is a transcriptional activator, and the cytoplasm, where it regulates trafficking of transient receptor potential cation channel, subfamily C, member 3 (TRPC3) subunits to the plasma membrane. Here, we demonstrate altered cellular localization of both TFII-I and TRPC3 in the Src mutants, suggesting that disruption of Src can phenocopy behavioral phenotypes observed in WBS through its regulation of TFII-I.
Collapse
|
42
|
7q11.23 dosage-dependent dysregulation in human pluripotent stem cells affects transcriptional programs in disease-relevant lineages. Nat Genet 2014; 47:132-41. [PMID: 25501393 DOI: 10.1038/ng.3169] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/24/2014] [Indexed: 12/12/2022]
Abstract
Cell reprogramming promises to make characterization of the impact of human genetic variation on health and disease experimentally tractable by enabling the bridging of genotypes to phenotypes in developmentally relevant human cell lineages. Here we apply this paradigm to two disorders caused by symmetrical copy number variations of 7q11.23, which display a striking combination of shared and symmetrically opposite phenotypes--Williams-Beuren syndrome and 7q-microduplication syndrome. Through analysis of transgene-free patient-derived induced pluripotent stem cells and their differentiated derivatives, we find that 7q11.23 dosage imbalance disrupts transcriptional circuits in disease-relevant pathways beginning in the pluripotent state. These alterations are then selectively amplified upon differentiation of the pluripotent cells into disease-relevant lineages. A considerable proportion of this transcriptional dysregulation is specifically caused by dosage imbalances in GTF2I, which encodes a key transcription factor at 7q11.23 that is associated with the LSD1 repressive chromatin complex and silences its dosage-sensitive targets.
Collapse
|
43
|
Crespi BJ, Hurd PL. Cognitive-behavioral phenotypes of Williams syndrome are associated with genetic variation in the GTF2I gene, in a healthy population. BMC Neurosci 2014; 15:127. [PMID: 25429715 PMCID: PMC4247780 DOI: 10.1186/s12868-014-0127-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/13/2014] [Indexed: 11/10/2022] Open
Abstract
Background Individuals with Williams syndrome, a neurogenetic condition caused by deletion of a set of genes at chromosomal location 7q11.23, exhibit a remarkable suite of traits including hypersociality with high, nonselective friendliness and low social anxiety, expressive language relatively well-developed but under-developed social-communication skills overall, and reduced visual-spatial abilities. Deletions and duplications of the Williams-syndrome region have also been associated with autism, and with schizophrenia, two disorders centrally involving social cognition. Several lines of evidence have linked the gene GTF2I (General Transcription Factor IIi) with the social phenotypes of Williams syndrome, but a role for this gene in sociality within healthy populations has yet to be investigated. Results We genotyped a large set of healthy individuals for two single-nucleotide polymorphisms in the GTF2I gene that have recently been significantly associated with autism, and thus apparently exhibit functional effects on autism-related social phenotypes. GTF2I genotypes for these SNPs showed highly significant association with low social anxiety combined with reduced social-communication abilities, which represents a metric of the Williams-syndrome cognitive profile as described from previous studies. Conclusions These findings implicate the GTF2I gene in the neurogenetic basis of social communication and social anxiety, both in Williams syndrome and among individuals in healthy populations.
Collapse
Affiliation(s)
- Bernard J Crespi
- Department of Biology, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, , BC, Canada.
| | | |
Collapse
|
44
|
Hammond P, McKee S, Suttie M, Allanson J, Cobben JM, Maas SM, Quarrell O, Smith ACM, Lewis S, Tassabehji M, Sisodiya S, Mattina T, Hennekam R. Opposite effects on facial morphology due to gene dosage sensitivity. Hum Genet 2014; 133:1117-25. [PMID: 24889830 PMCID: PMC4148161 DOI: 10.1007/s00439-014-1455-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/19/2014] [Indexed: 02/01/2023]
Abstract
Sequencing technology is increasingly demonstrating the impact of genomic copy number variation (CNV) on phenotypes. Opposing variation in growth, head size, cognition and behaviour is known to result from deletions and reciprocal duplications of some genomic regions. We propose normative inversion of face shape, opposing difference from a matched norm, as a basis for investigating the effects of gene dosage on craniofacial development. We use dense surface modelling techniques to match any face (or part of a face) to a facial norm of unaffected individuals of matched age, sex and ethnicity and then we reverse the individual’s face shape differences from the matched norm to produce the normative inversion. We demonstrate for five genomic regions, 4p16.3, 7q11.23, 11p15, 16p13.3 and 17p11.2, that such inversion for individuals with a duplication or (epi)-mutation produces facial forms remarkably similar to those associated with a deletion or opposite (epi-)mutation of the same region, and vice versa. The ability to visualise and quantify face shape effects of gene dosage is of major benefit for determining whether a CNV is the cause of the phenotype of an individual and for predicting reciprocal consequences. It enables face shape to be used as a relatively simple and inexpensive functional analysis of the gene(s) involved.
Collapse
Affiliation(s)
- Peter Hammond
- Molecular Medicine Unit, UCL Institute of Child Health, 30 Guilford St, London, WC1N 1EH, UK,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Background Autism spectrum conditions (ASC) are a group of conditions characterized by difficulties in communication and social interaction, alongside unusually narrow interests and repetitive, stereotyped behaviour. Genetic association and expression studies have suggested an important role for the GABAergic circuits in ASC. Syntaxin 1A (STX1A) encodes a protein involved in regulation of serotonergic and GABAergic systems and its expression is altered in autism. Methods In this study, the association between three single nucleotide polymorphisms (SNPs) (rs4717806, rs941298 and rs6951030) in STX1A gene and Asperger syndrome (AS) were tested in 650 controls and 479 individuals with AS, all of Caucasian ancestry. Results rs4717806 (P = 0.00334) and rs941298 (P = 0.01741) showed a significant association with AS, replicating previous results. Both SNPs putatively alter transcription factor binding sites both directly and through other variants in high linkage disequilibrium. Conclusions The current study confirms the role of STX1A as an important candidate gene in ASC. The exact molecular mechanisms through which STX1A contributes to the etiology remain to be elucidated.
Collapse
|
46
|
Marcato L, Turolla L, Pompilii E, Dupont C, Gruchy N, De Toffol S, Bracalente G, Bacrot S, Troilo E, Tabet AC, Rossi S, Delezoïde AL, Baldo D, Leporrier N, Maggi F, Molin A, Pilu G, Simoni G, Vialard F, Grati FR. Prenatal phenotype of Williams-Beuren syndrome and of the reciprocal duplication syndrome. Clin Case Rep 2014; 2:25-32. [PMID: 25356238 PMCID: PMC4184624 DOI: 10.1002/ccr3.48] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 01/03/2014] [Indexed: 12/25/2022] Open
Abstract
Key Clinical Message Copy losses/gains of the Williams–Beuren syndrome (WBS) region cause neurodevelopmental disorders with variable expressivity. The WBS prenatal diagnosis cannot be easily performed by ultrasound because only few phenotypic features can be assessed. Three WBS and the first reciprocal duplication prenatal cases are described with a review of the literature.
Collapse
Affiliation(s)
- Livia Marcato
- Research and development, cytogenetics and molecular biology, TOMA Advanced Biomedical Assays Busto Arsizio, Varese, Italy
| | - Licia Turolla
- Unit of medical genetics, ULSS 9 Treviso Hospital Treviso, Italy
| | - Eva Pompilii
- Unit of medical genetics, St. Orsola Malpighi Hospital, University of Bologna Bologna, Italy ; Gynepro Medical Bologna, Italy
| | - Celine Dupont
- Department of Cytogenetics and Developmental Biology, Robert Debré Hospital, Paris and University Paris 7 Diderot Paris, France
| | - Nicolas Gruchy
- Deparment of Genetics, CHU Caen Côte de Nacre, UFR de Médecine Caen Caen, France
| | - Simona De Toffol
- Research and development, cytogenetics and molecular biology, TOMA Advanced Biomedical Assays Busto Arsizio, Varese, Italy
| | | | - Severine Bacrot
- Department of Cytogenetics and Developmental Biology, Robert Debré Hospital, Paris and University Paris 7 Diderot Paris, France
| | | | - Anne C Tabet
- Department of Cytogenetics and Developmental Biology, Robert Debré Hospital, Paris and University Paris 7 Diderot Paris, France
| | - Sabrina Rossi
- Unit of Anatomy pathology, histology, cytodiagnostics and cytogenetics, ULSS 9 Treviso Hospital Treviso, Italy
| | - Anne L Delezoïde
- Department of Cytogenetics and Developmental Biology, Robert Debré Hospital, Paris and University Paris 7 Diderot Paris, France
| | - Demetrio Baldo
- Unit of medical genetics, ULSS 9 Treviso Hospital Treviso, Italy
| | - Nathalie Leporrier
- Deparment of Genetics, CHU Caen Côte de Nacre, UFR de Médecine Caen Caen, France
| | - Federico Maggi
- Research and development, cytogenetics and molecular biology, TOMA Advanced Biomedical Assays Busto Arsizio, Varese, Italy
| | - Arnaud Molin
- Deparment of Genetics, CHU Caen Côte de Nacre, UFR de Médecine Caen Caen, France
| | - Gianluigi Pilu
- Gynepro Medical Bologna, Italy ; Department of Obstetrics and Gynecology, St. Orsola Malpighi Hospital, University of Bologna Bologna, Italy
| | - Giuseppe Simoni
- Research and development, cytogenetics and molecular biology, TOMA Advanced Biomedical Assays Busto Arsizio, Varese, Italy
| | - Francois Vialard
- Department of Cytogenetics, Fetopathology, Obstetrics and Gynaeacology, CHI Poissy St Germain Poissy, France
| | - Francesca R Grati
- Research and development, cytogenetics and molecular biology, TOMA Advanced Biomedical Assays Busto Arsizio, Varese, Italy
| |
Collapse
|
47
|
Campos R, Martínez-Castilla P, Sotillo M. Cognición social en el síndrome de Williams. INTERNATIONAL JOURNAL OF SOCIAL PSYCHOLOGY 2014. [DOI: 10.1174/021347413807719139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Järvinen A, Korenberg JR, Bellugi U. The social phenotype of Williams syndrome. Curr Opin Neurobiol 2013; 23:414-22. [PMID: 23332975 DOI: 10.1016/j.conb.2012.12.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/03/2012] [Accepted: 12/14/2012] [Indexed: 10/27/2022]
Abstract
Williams syndrome (WS) offers an exciting model for social neuroscience because its genetic basis is well-defined, and the unique phenotype reflects dimensions of prosocial behaviors. WS is associated with a strong drive to approach strangers, a gregarious personality, heightened social engagement yet difficult peer interactions, high nonsocial anxiety, unusual bias toward positive affect, and diminished sensitivity to fear. New neurobiological evidence points toward alterations in structure, function, and connectivity of the social brain (amygdala, fusiform face area, orbital-frontal regions). Recent genetic studies implicate gene networks in the WS region with the dysregulation of prosocial neuropeptides. The study of WS has implications for understanding human social development, and may provide insight for translating genetic and neuroendocrine evidence into treatments for disorders of social behavior.
Collapse
Affiliation(s)
- Anna Järvinen
- Laboratory for Cognitive Neuroscience, the Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | | |
Collapse
|
49
|
Dittwald P, Gambin T, Gonzaga-Jauregui C, Carvalho CM, Lupski JR, Stankiewicz P, Gambin A. Inverted low-copy repeats and genome instability--a genome-wide analysis. Hum Mutat 2013; 34:210-20. [PMID: 22965494 PMCID: PMC3738003 DOI: 10.1002/humu.22217] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 08/30/2012] [Indexed: 01/12/2023]
Abstract
Inverse paralogous low-copy repeats (IP-LCRs) can cause genome instability by nonallelic homologous recombination (NAHR)-mediated balanced inversions. When disrupting a dosage-sensitive gene(s), balanced inversions can lead to abnormal phenotypes. We delineated the genome-wide distribution of IP-LCRs >1 kB in size with >95% sequence identity and mapped the genes, potentially intersected by an inversion, that overlap at least one of the IP-LCRs. Remarkably, our results show that 12.0% of the human genome is potentially susceptible to such inversions and 942 genes, 99 of which are on the X chromosome, are predicted to be disrupted secondary to such an inversion! In addition, IP-LCRs larger than 800 bp with at least 98% sequence identity (duplication/triplication facilitating IP-LCRs, DTIP-LCRs) were recently implicated in the formation of complex genomic rearrangements with a duplication-inverted triplication-duplication (DUP-TRP/INV-DUP) structure by a replication-based mechanism involving a template switch between such inverted repeats. We identified 1,551 DTIP-LCRs that could facilitate DUP-TRP/INV-DUP formation. Remarkably, 1,445 disease-associated genes are at risk of undergoing copy-number gain as they map to genomic intervals susceptible to the formation of DUP-TRP/INV-DUP complex rearrangements. We implicate inverted LCRs as a human genome architectural feature that could potentially be responsible for genomic instability associated with many human disease traits.
Collapse
Affiliation(s)
- Piotr Dittwald
- Institute of Informatics, University of Warsaw, Warsaw, Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland
| | - Tomasz Gambin
- Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland
| | | | - Claudia M.B. Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Pediatrics, Baylor College of Medicine, Houston, Texas
- Texas Children’s Hospital, Houston, Texas
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Anna Gambin
- Institute of Informatics, University of Warsaw, Warsaw, Poland
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
50
|
Abstract
Three genes GTF2IRD1, GTF2I, and GTF2IRD2, which encode members of the GTF2I (or TFII-I) family of so-called general transcription factors, were discovered and studied during the last two decades. Chromosome location and similarity of exon-intron structures suggest that the family evolved by duplications. The initial duplication of ancestral proto-GTF2IRD1 gene likely occurred in early vertebrates prior to origin of cartilaginous fish and led to formation of GTF2I (>450 MYA), which was later lost in bony fish but successfully evolved in the land vertebrates. The second duplication event, which created GTF2IRD2, occurred prior to major radiation events of eutherian mammalian evolution (>100 MYA). During recent steps of primate evolution there was another duplication which led to formation of GTF2IRD2B (<4 MYA). Two latest duplications were coupled with inversions. Genes belonging to the family have several highly conservative repeats which are implicated in DNA binding. Phylogenetic analysis of the repeats revealed a pattern of intragenic duplications, deletions and substitutions which led to diversification of the genes and proteins. Distribution of statistically rare atypical substitutions (p ≤ 0.01) sheds some light on structural differentiation of repeats and hence evolution of the genes. The atypical substitutions are often located on secondary structures joining α-helices and affect 3D arrangement of the protein globule. Such substitutions are commonly traced at the early stages of evolution in Tetrapoda, Amniota, and Mammalia.
Collapse
|