1
|
von Gunten S, Schneider C, Imamovic L, Gorochov G. Antibody diversity in IVIG: Therapeutic opportunities for novel immunotherapeutic drugs. Front Immunol 2023; 14:1166821. [PMID: 37063852 PMCID: PMC10090664 DOI: 10.3389/fimmu.2023.1166821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Significant progress has been made in the elucidation of human antibody repertoires. Furthermore, non-canonical functions of antibodies have been identified that reach beyond classical functions linked to protection from pathogens. Polyclonal immunoglobulin preparations such as IVIG and SCIG represent the IgG repertoire of the donor population and will likely remain the cornerstone of antibody replacement therapy in immunodeficiencies. However, novel evidence suggests that pooled IgA might promote orthobiotic microbial colonization in gut dysbiosis linked to mucosal IgA immunodeficiency. Plasma-derived polyclonal IgG and IgA exhibit immunoregulatory effects by a diversity of different mechanisms, which have inspired the development of novel drugs. Here we highlight recent insights into IgG and IgA repertoires and discuss potential implications for polyclonal immunoglobulin therapy and inspired drugs.
Collapse
Affiliation(s)
- Stephan von Gunten
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- *Correspondence: Stephan von Gunten,
| | | | - Lejla Imamovic
- Sorbonne Université, Inserm, Assistance Publique Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, Paris, France
| | - Guy Gorochov
- Sorbonne Université, Inserm, Assistance Publique Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
2
|
Kaufmann T, Simon HU. Pharmacological Induction of Granulocyte Cell Death as Therapeutic Strategy. Annu Rev Pharmacol Toxicol 2023; 63:231-247. [PMID: 36028226 DOI: 10.1146/annurev-pharmtox-051921-115130] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Apoptosis is central for the maintenance of health. In the immune system, apoptosis guarantees proper development of immune cells and shutdown of immune reactions by the coordinated elimination of activated immune cells. Limitation of the life span of granulocytes is important, as overactivation of these cells is associated with chronic inflammation and collateral tissue damage. Consequently, targeted induction of granulocyte apoptosis may be beneficial in the course of respective immune disorders. Anti-inflammatory drugs such as glucocorticoids and monoclonal antibodies against IL-5Rα exert their function in part by triggering eosinophil apoptosis. Agonistic antibodies targeting Siglec-8 or death receptors are tested (pre)clinically. Moreover, a new class of inhibitors targeting antiapoptotic BCL-2 proteins shows great promise for anticancer treatments. Because of their specificity and tolerable side effects, these so-called BH3 mimetics may be worthwhile to evaluate in inflammatory disorders. Here, we review past and recent data on pharmacological apoptosis induction of granulocytes and highlight respective therapeutic potential.
Collapse
Affiliation(s)
- Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland; ,
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland; , .,Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia.,Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Brandenburg Medical School, Neuruppin, Germany
| |
Collapse
|
3
|
Innate Immunity in Calcinosis Cutis. IMMUNO 2022. [DOI: 10.3390/immuno2030027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Calcinosis cutis is the deposition of calcium salts in the skin and subcutaneous tissue, manifesting as variably shaped papules, nodules, and plaques that can substantially impair quality of life. The pathophysiology of calcinosis cutis involves dysregulation of proinflammatory cytokines, leukocytes, and other components of the innate immune system. In some conditions associated with calcinosis cutis, elevated serum calcium, phosphate, and vitamin D may also perturb innate immunity. The mechanisms by which these lead to cutaneous and subcutaneous calcification likely parallel those seen in vascular calcification. The role of aberrant innate immunity is further supported by the association between various autoantibodies with calcinosis cutis, such as anti-MDA5, anti-NXP2, anti-centromere, and anti-topoisomerase I. Treatments for calcinosis cutis remain limited and largely experimental, although mechanistically many therapies appear to focus on dampening innate immune responses. Further research is needed to better understand the innate immune pathophysiology and establish treatment options based on randomized-controlled trials.
Collapse
|
4
|
Olanlokun JO, Abiodun WO, Ebenezer O, Koorbanally NA, Olorunsogo OO. Curcumin modulates multiple cell death, matrix metalloproteinase activation and cardiac protein release in susceptible and resistant Plasmodium berghei-infected mice. Biomed Pharmacother 2021; 146:112454. [PMID: 34894518 DOI: 10.1016/j.biopha.2021.112454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 01/08/2023] Open
Abstract
Pro-inflammatory signaling, cell death, and metalloproteinases activation are events in Plasmodium infection. However, it is not known if treatment with mefloquine (MF), and curcumin (CM) supplementation, will modulate these conditions. Malaria was induced in two different studies using susceptible (NK 65, study 1) and resistant (ANKA, study 2) strains of mouse malaria parasites (Plasmodium berghei) in thirty male Swiss mice (n = 5) in each study. Following confirmation of parasitemia, mice received 10 mL/kg distilled water (infected control), MF (10 mg/kg), MF and CM (25 mg/kg), MF and CM (50 mg/kg), CM (25 mg/kg) and CM (50 mg/kg). Five mice (not infected) were used as control. After treatment, the animals were sacrificed, serum obtained and liver mitochondria were isolated. Serum Tumour Necrosis Factor alpha (TNF-α), C-reactive protein (CRP), Interleukins-1 beta (IL-1β) and Interleukins-6 (IL-6) as well as caspases-3, 9 (C3 and C9), p53, serum troponin I (TI) and creatine kinase (CK), were assayed using ELISA techniques. Mitochondrial membrane permeability transition (mPT) pore opening, mitochondrial F0F1 ATPase activity, and lipid peroxidation (mLPO) were determined spectrophotometrically. Matrix metalloproteinases 2 (MMP-2) and 9 (MMP-9) expressions were determined using electrophoresis. CM supplementation (25 mg/kg) significantly decreased serum p53, TNF-α, CRP and IL-6 compared with MF. In the resistant model, CM prevented mPT pore opening, significantly decreased F0F1 ATPase activity and mLPO. MF activated caspase-3 while supplementation with CM significantly decreased this effect. Furthermore, MMP-2 and MMP-9 were selectively expressed in the susceptible model. Malarial treatment with mefloquine elicits different cell death responses while supplementation with curcumin decreased TI level and CK activities.
Collapse
Affiliation(s)
- John O Olanlokun
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, College of Medicine, University of Ibadan, Nigeria.
| | - Wisdom Oshireku Abiodun
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, College of Medicine, University of Ibadan, Nigeria
| | - Oluwakemi Ebenezer
- Faculty of Natural Science, Department of Chemistry, Mangosuthu University of Technology, 511 Mangosuthu Highway, Durban 4000, South Africa
| | - Neil A Koorbanally
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Olufunso Olabode Olorunsogo
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, College of Medicine, University of Ibadan, Nigeria
| |
Collapse
|
5
|
Mysore V, Cullere X, Mears J, Rosetti F, Okubo K, Liew PX, Zhang F, Madera-Salcedo I, Rosenbauer F, Stone RM, Aster JC, von Andrian UH, Lichtman AH, Raychaudhuri S, Mayadas TN. FcγR engagement reprograms neutrophils into antigen cross-presenting cells that elicit acquired anti-tumor immunity. Nat Commun 2021; 12:4791. [PMID: 34373452 PMCID: PMC8352912 DOI: 10.1038/s41467-021-24591-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
Classical dendritic cells (cDC) are professional antigen-presenting cells (APC) that regulate immunity and tolerance. Neutrophil-derived cells with properties of DCs (nAPC) are observed in human diseases and after culture of neutrophils with cytokines. Here we show that FcγR-mediated endocytosis of antibody-antigen complexes or an anti-FcγRIIIB-antigen conjugate converts neutrophils into nAPCs that, in contrast to those generated with cytokines alone, activate T cells to levels observed with cDCs and elicit CD8+ T cell-dependent anti-tumor immunity in mice. Single cell transcript analyses and validation studies implicate the transcription factor PU.1 in neutrophil to nAPC conversion. In humans, blood nAPC frequency in lupus patients correlates with disease. Moreover, anti-FcγRIIIB-antigen conjugate treatment induces nAPCs that can activate autologous T cells when using neutrophils from individuals with myeloid neoplasms that harbor neoantigens or those vaccinated against bacterial toxins. Thus, anti-FcγRIIIB-antigen conjugate-induced conversion of neutrophils to immunogenic nAPCs may represent a possible immunotherapy for cancer and infectious diseases.
Collapse
Affiliation(s)
- Vijayashree Mysore
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Xavier Cullere
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Joseph Mears
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Immunology, Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Florencia Rosetti
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Koshu Okubo
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Pei X Liew
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Fan Zhang
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Immunology, Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Iris Madera-Salcedo
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Frank Rosenbauer
- Institute of Molecular Tumor Biology, University of Muenster, Muenster, Germany
| | - Richard M Stone
- Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jon C Aster
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ulrich H von Andrian
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Andrew H Lichtman
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Immunology, Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
| | - Tanya N Mayadas
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Graeter S, Schneider C, Verschoor D, von Däniken S, Seibold F, Yawalkar N, Villiger P, Dimitrov JD, Smith DF, Cummings RD, Simon HU, Vassilev T, von Gunten S. Enhanced Pro-apoptotic Effects of Fe(II)-Modified IVIG on Human Neutrophils. Front Immunol 2020; 11:973. [PMID: 32508840 PMCID: PMC7248553 DOI: 10.3389/fimmu.2020.00973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/24/2020] [Indexed: 01/04/2023] Open
Abstract
Mild modification of intravenous immunoglobulin (IVIG) has been reported to result in enhanced polyspecificity and leveraged therapeutic effects in animal models of inflammation. Here, we observed that IVIG modification by ferrous ions, heme or low pH exposure, shifted the repertoires of specificities in different directions. Ferrous ions exposed Fe(II)-IVIG, but not heme or low pH exposed IVIG, showed increased pro-apoptotic effects on neutrophil granulocytes that relied on a FAS-dependent mechanism. These effects were also observed in human neutrophils primed by inflammatory mediators or rheumatoid arthritis joint fluid in vitro, or patient neutrophils ex vivo from acute Crohn's disease. These observations indicate that IVIG-mediated effects on cells can be enhanced by IVIG modification, yet specific modification conditions may be required to target specific molecular pathways and eventually to enhance the therapeutic potential.
Collapse
Affiliation(s)
- Stefanie Graeter
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | | | | | | | - Frank Seibold
- Crohn-Colitis Zentrum, Hochhaus Lindenhofspital, Bern, Switzerland
| | - Nikhil Yawalkar
- Departement für Dermatologie, Urologie, Rheumatologie, Nephrologie, Physiologie, Inselspital Bern, University Hospital, Bern, Switzerland
| | - Peter Villiger
- Universitätsklinik für Rheumatologie, Immunologie und Allergologie, Inselspital Bern, University Hospital, Bern, Switzerland
| | - Jordan D Dimitrov
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - David F Smith
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| | - Richard D Cummings
- Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, United States.,Emory Comprehensive Glycomics Core, Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland.,Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia
| | - Tchavdar Vassilev
- Department of Immunology, Stefan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria.,Institute of Biology and Biomedicine, N. I. Lobachevsky University, Nizhniy Novgorod, Russia
| | | |
Collapse
|
7
|
Graeter S, Simon HU, von Gunten S. Granulocyte death mediated by specific antibodies in intravenous immunoglobulin (IVIG). Pharmacol Res 2020; 154:104168. [DOI: 10.1016/j.phrs.2019.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 12/23/2022]
|
8
|
Quinti I, Mitrevski M. Modulatory Effects of Antibody Replacement Therapy to Innate and Adaptive Immune Cells. Front Immunol 2017; 8:697. [PMID: 28670314 PMCID: PMC5472665 DOI: 10.3389/fimmu.2017.00697] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/29/2017] [Indexed: 11/16/2022] Open
Abstract
Intravenous immunoglobulin administered at replacement dosages modulates innate and adaptive immune cells in primary antibody deficiencies (PAD) in a different manner to what observed when high dosages are used or when their effect is analyzed by in vitro experimental conditions. The effects seem to be beneficial on innate cells in that dendritic cells maturate, pro-inflammatory monocytes decrease, and neutrophil function is preserved. The effects are less clear on adaptive immune cells. IVIg induced a transient increase of Treg and a long-term increase of CD4 cells. More complex and less understood is the interplay of IVIg with defective B cells of PAD patients. The paucity of data underlies the need of more studies on patients with PAD before drawing conclusions on the in vivo mechanisms of action of IVIg based on in vitro investigations.
Collapse
Affiliation(s)
- Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Milica Mitrevski
- Department of Clinical Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
9
|
Schneider C, Wicki S, Graeter S, Timcheva TM, Keller CW, Quast I, Leontyev D, Djoumerska-Alexieva IK, Käsermann F, Jakob SM, Dimitrova PA, Branch DR, Cummings RD, Lünemann JD, Kaufmann T, Simon HU, von Gunten S. IVIG regulates the survival of human but not mouse neutrophils. Sci Rep 2017; 7:1296. [PMID: 28465620 PMCID: PMC5430961 DOI: 10.1038/s41598-017-01404-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 03/30/2017] [Indexed: 12/12/2022] Open
Abstract
Intravenous immunoglobulin (IVIG) are purified IgG preparations made from the pooled plasma from thousands of healthy donors and are being tested in preclinical mouse models. Inherent challenges, however, are the pluripotency of IVIG and its xenogeneicity in animals. IVIG can alter the viability of human neutrophils via agonistic antibodies to Fas and Siglec-9. In this study, we compared the effects of IVIG on human and mouse neutrophils using different death assays. Different commercial IVIG preparations similarly induced cytokine-dependent death in human neutrophils, whereas they had no effects on the survival of either peripheral blood or bone marrow neutrophils from C57BL/6 or BALB/c mice. F(ab’)2 but not Fc fragments of IVIG induced death of human neutrophils, whereas neither of these IVIG fragments, nor agonistic monoclonal antibodies to human Fas or Siglec-9 affected the viability of mouse neutrophils. Pooled mouse IgG, which exhibited a different immunoprofile compared to IVIG, also had no effect on mouse cells. Together, these observations demonstrate that effects of IVIG on neutrophil survival are not adequately reflected in current mouse models, despite the key role of these cells in human inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
| | - Simone Wicki
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Stefanie Graeter
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | | | - Christian W Keller
- Institute of Experimental Immunology, Laboratory of Neuroinflammation, University of Zurich, Zurich, Switzerland
| | - Isaak Quast
- Institute of Experimental Immunology, Laboratory of Neuroinflammation, University of Zurich, Zurich, Switzerland.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
| | - Danila Leontyev
- Department of Medicine, University of Toronto and Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada
| | - Iglika K Djoumerska-Alexieva
- Department of Immunology, Stefan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | - Stephan M Jakob
- Department of Intensive Care Medicine, University Hospital Bern (Inselspital), University of Bern, Bern, Switzerland
| | - Petya A Dimitrova
- Department of Immunology, Stefan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Donald R Branch
- Department of Medicine, University of Toronto and Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jan D Lünemann
- Institute of Experimental Immunology, Laboratory of Neuroinflammation, University of Zurich, Zurich, Switzerland
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | | |
Collapse
|
10
|
Schneider C, Illi M, Lötscher M, Wehrli M, von Gunten S. Isolation of Antibodies from Human Plasma, Saliva, Breast Milk, and Gastrointestinal Fluid. Methods Mol Biol 2017; 1643:23-31. [PMID: 28667527 DOI: 10.1007/978-1-4939-7180-0_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Different protocols are required for the collection and isolation of antibodies from various body sites. For the sample collection factors to be considered include anatomic or physiological particularities. Secretory fluids such as saliva, gastrointestinal fluid, or breast milk may contain degrading enzymes that potentially affect the integrity of isolated antibodies. While the isolation of IgG from plasma is a common and often-described procedure, here we focus on methodological approaches to isolate antibodies immunoglobulin A (IgA) or IgM from plasma or secretory fluids. These protocols shall facilitate research on natural and induced antibodies.
Collapse
Affiliation(s)
- Christoph Schneider
- Institute of Pharmacology, University of Bern, Friedbühlstrasse 49, CH-3010, Bern, Switzerland
| | - Marlies Illi
- Research and Development, CSL Behring AG, CH-3010, Bern, Switzerland
| | - Marius Lötscher
- Research and Development, CSL Behring AG, CH-3010, Bern, Switzerland
| | - Marc Wehrli
- Institute of Pharmacology, University of Bern, Friedbühlstrasse 49, CH-3010, Bern, Switzerland
| | - Stephan von Gunten
- Institute of Pharmacology, University of Bern, Friedbühlstrasse 49, CH-3010, Bern, Switzerland.
| |
Collapse
|
11
|
Späth PJ, Schneider C, von Gunten S. Clinical Use and Therapeutic Potential of IVIG/SCIG, Plasma-Derived IgA or IgM, and Other Alternative Immunoglobulin Preparations. Arch Immunol Ther Exp (Warsz) 2016; 65:215-231. [DOI: 10.1007/s00005-016-0422-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 08/31/2016] [Indexed: 12/22/2022]
|
12
|
Prezzo A, Cavaliere FM, Bilotta C, Iacobini M, Quinti I. Intravenous immunoglobulin replacement treatment does not alter polymorphonuclear leukocytes function and surface receptors expression in patients with common variable immunodeficiency. Cell Immunol 2016; 306-307:25-34. [PMID: 27264689 DOI: 10.1016/j.cellimm.2016.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/11/2016] [Accepted: 05/26/2016] [Indexed: 01/15/2023]
Abstract
The study of the expression of CD16, CD11b and Siglec 9 receptors and the oxidative burst provides insights on polymorphonuclear leukocytes (PMN) functionality in common variable immunodeficiency (CVID) and on the possible effects of intravenous immunoglobulin (IVIg) infusion. We evaluated in vivo before and soon after IVIg administration the CD16, CD11b and Siglec 9 expression on unstimulated and Escherichia coli-stimulated PMN and the oxidative burst induced by Escherichia coli and PMA. The E. coli stimulation up-regulated CD16 and Siglec 9 expression and it induced a strong CD11b up-regulation at baseline and soon after IVIg. The oxidative burst overlapped that observed in healthy donors when induced by Escherichia coli while it increased when induced by PMA. Soon after IVIg infusion, the oxidative burst decreased only when induced by PMA. Our results showed that the IVIg infusion in vivo had a minimal effect on CVID's PMN.
Collapse
Affiliation(s)
- Alessandro Prezzo
- Department of Molecular Medicine, Sapienza University of Rome, Italy
| | | | - Caterina Bilotta
- Department of Molecular Medicine, Sapienza University of Rome, Italy
| | | | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Italy.
| |
Collapse
|
13
|
Cavaliere FM, Prezzo A, Conti V, Bilotta C, Pulvirenti F, Iacobini M, Quinti I. Intravenous immunoglobulin replacement induces an in vivo reduction of inflammatory monocytes and retains the monocyte ability to respond to bacterial stimulation in patients with common variable immunodeficiencies. Int Immunopharmacol 2015; 28:596-603. [DOI: 10.1016/j.intimp.2015.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 07/13/2015] [Accepted: 07/14/2015] [Indexed: 12/17/2022]
|
14
|
Boligan KF, Mesa C, Fernandez LE, von Gunten S. Cancer intelligence acquired (CIA): tumor glycosylation and sialylation codes dismantling antitumor defense. Cell Mol Life Sci 2015; 72:1231-48. [PMID: 25487607 PMCID: PMC11113383 DOI: 10.1007/s00018-014-1799-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/27/2014] [Accepted: 12/01/2014] [Indexed: 01/28/2023]
Abstract
Aberrant glycosylation is a key feature of malignant transformation and reflects epigenetic and genetic anomalies among the multitude of molecules involved in glycan biosynthesis. Although glycan biosynthesis is not template bound, altered tumor glycosylation is not random, but associated with common glycosylation patterns. Evidence suggests that acquisition of distinct glycosylation patterns evolves from a 'microevolutionary' process conferring advantages in terms of tumor growth, tumor dissemination, and immune escape. Such glycosylation modifications also involve xeno- and hypersialylation. Xeno-autoantigens such as Neu5Gc-gangliosides provide potential targets for immunotherapy. Hypersialylation may display 'enhanced self' to escape immunosurveillance and involves several not mutually exclusive inhibitory pathways that all rely on protein-glycan interactions. A better understanding of tumor 'glycan codes' as deciphered by lectins, such as siglecs, selectins, C-type lectins and galectins, may lead to novel treatment strategies, not only in cancer, but also in autoimmune disease or transplantation.
Collapse
Affiliation(s)
- Kayluz Frias Boligan
- Institute of Pharmacology, University of Bern, Friedbühlstrasse 49, 3010, Bern, Switzerland,
| | | | | | | |
Collapse
|
15
|
von Gunten S. Protein-glycan interactions as targets of intravenous/subcutaneous immunoglobulin (IVIg/SCIg) preparations. Clin Exp Immunol 2015; 178 Suppl 1:151-2. [PMID: 25546801 DOI: 10.1111/cei.12550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- S von Gunten
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| |
Collapse
|
16
|
Sewell WAC, Kerr J, Behr-Gross ME, Peter HH. European consensus proposal for immunoglobulin therapies. Eur J Immunol 2014; 44:2207-14. [PMID: 24975475 DOI: 10.1002/eji.201444700] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 05/13/2014] [Accepted: 06/25/2014] [Indexed: 12/19/2022]
Abstract
The use of immunoglobulin (Ig) preparations (intravenous, IVIg, subcutaneous, SCIg) for replacement and immunomodulation therapy worldwide has tripled in the past 20 years and represents an ever-increasing cost factor for healthcare organizations. The limited access to the starting material of this essential medicinal product is currently the driving force for human plasma collection. Increasing awareness and improved diagnosis of human primary immunodeficiencies and a broadening of immunomodulatory indications are responsible for this development, and on a longer run might lead to plasma supply shortages. Consensus recommendations for the optimal use of Ig in clinical practice, including priority rankings for the most urgent indications, are therefore urgently needed. During a recent meeting in Kreuth, Germany, expert nominees from 36 Council of Europe states, together with colleagues from observer countries and regulatory agencies came up with this consensus statement.
Collapse
|
17
|
Wehrli M, Cortinas-Elizondo F, Hlushchuk R, Daudel F, Villiger PM, Miescher S, Zuercher AW, Djonov V, Simon HU, von Gunten S. Human IgA Fc Receptor FcαRI (CD89) Triggers Different Forms of Neutrophil Death Depending on the Inflammatory Microenvironment. THE JOURNAL OF IMMUNOLOGY 2014; 193:5649-59. [DOI: 10.4049/jimmunol.1400028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
von Gunten S, Shoenfeld Y, Blank M, Branch DR, Vassilev T, Käsermann F, Bayry J, Kaveri S, Simon HU. IVIG pluripotency and the concept of Fc-sialylation: challenges to the scientist. Nat Rev Immunol 2014; 14:349. [DOI: 10.1038/nri3401-c1] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Jandus C, Boligan KF, Chijioke O, Liu H, Dahlhaus M, Démoulins T, Schneider C, Wehrli M, Hunger RE, Baerlocher GM, Simon HU, Romero P, Münz C, von Gunten S. Interactions between Siglec-7/9 receptors and ligands influence NK cell-dependent tumor immunosurveillance. J Clin Invest 2014; 124:1810-20. [PMID: 24569453 DOI: 10.1172/jci65899] [Citation(s) in RCA: 329] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/19/2013] [Indexed: 12/15/2022] Open
Abstract
Alteration of the surface glycosylation pattern on malignant cells potentially affects tumor immunity by directly influencing interactions with glycan-binding proteins (lectins) on the surface of immunomodulatory cells. The sialic acid-binding Ig-like lectins Siglec-7 and -9 are MHC class I-independent inhibitory receptors on human NK cells that recognize sialic acid-containing carbohydrates. Here, we found that the presence of Siglec-9 defined a subset of cytotoxic NK cells with a mature phenotype and enhanced chemotactic potential. Interestingly, this Siglec-9+ NK cell population was reduced in the peripheral blood of cancer patients. Broad analysis of primary tumor samples revealed that ligands of Siglec-7 and -9 were expressed on human cancer cells of different histological types. Expression of Siglec-7 and -9 ligands was associated with susceptibility of NK cell-sensitive tumor cells and, unexpectedly, of presumably NK cell-resistant tumor cells to NK cell-mediated cytotoxicity. Together, these observations have direct implications for NK cell-based therapies and highlight the requirement to consider both MHC class I haplotype and tumor-specific glycosylation.
Collapse
MESH Headings
- Animals
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Tumor-Associated, Carbohydrate/metabolism
- Cell Line, Tumor
- Cytotoxicity, Immunologic
- Female
- Glycosylation
- HeLa Cells
- Humans
- Immunity, Innate
- K562 Cells
- Killer Cells, Natural/classification
- Killer Cells, Natural/immunology
- Lectins/metabolism
- Ligands
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Monitoring, Immunologic
- Neoplasms/immunology
- Sialic Acid Binding Immunoglobulin-like Lectins/metabolism
Collapse
|
20
|
von Gunten S, Cortinas-Elizondo F, Kollarik M, Beisswenger C, Lepper PM. Mechanisms and potential therapeutic targets in allergic inflammation: recent insights. Allergy 2013; 68:1487-98. [PMID: 24215555 DOI: 10.1111/all.12312] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2013] [Indexed: 12/16/2022]
Abstract
Deeper insight into pathogenetic pathways and into the biological effects of immunomodulatory agents will help to optimize or adopt therapeutic strategies for atopic disorders. In this article, we highlight selected findings of potential therapeutic relevance that emerged from recent mechanistic studies with focus on molecular and cellular aspects of allergic inflammation. Furthermore, the often complex mechanisms of action of pleiotropic immunomodulatory agents, such as glucocorticoids, vitamin D, or intravenous immunoglobulin (IVIG), are discussed, as their dissection might reveal targets for novel therapeutics or lead to a more rational use of these compounds. Besides reporting novel evidence, this article points to areas of current debate or uncertainty and aims at stimulating scientific discussion and experimental work.
Collapse
Affiliation(s)
- S. von Gunten
- Institute of Pharmacology; University of Bern; Bern Switzerland
| | | | - M. Kollarik
- Department of Medicine; The Johns Hopkins University School of Medicine; Baltimore MD USA
- Department of Pathophysiology; Jessenius Medical School; Martin Slovakia
| | - C. Beisswenger
- Department of Internal Medicine V; University Hospital of Saarland; Homburg Germany
| | - P. M. Lepper
- Department of Internal Medicine V; University Hospital of Saarland; Homburg Germany
| |
Collapse
|
21
|
von Gunten S, Wehrli M, Simon HU. Cell Death in Immune Thrombocytopenia: Novel Insights and Perspectives. Semin Hematol 2013; 50 Suppl 1:S109-15. [DOI: 10.1053/j.seminhematol.2013.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Shankar-Hari M, Spencer J, Sewell WA, Rowan KM, Singer M. Bench-to-bedside review: Immunoglobulin therapy for sepsis - biological plausibility from a critical care perspective. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:206. [PMID: 22424150 PMCID: PMC3584720 DOI: 10.1186/cc10597] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Sepsis represents a dysregulated host response to infection, the extent of which determines the severity of organ dysfunction and subsequent outcome. All trialled immunomodulatory strategies to date have resulted in either outright failure or inconsistent degrees of success. Intravenous immunoglobulin (IVIg) therapy falls into the latter category with opinion still divided as to its utility. This article provides a narrative review of the biological rationale for using IVIg in sepsis. A literature search was conducted using the PubMed database (1966 to February 2011). The strategy included the following text terms and combinations of these: IVIg, intravenous immune globulin, intravenous immunoglobulin, immunoglobulin, immunoglobulin therapy, pentaglobin, sepsis, inflammation, immune modulation, apoptosis. Preclinical and extrapolated clinical data of IVIg therapy in sepsis suggests improved bacterial clearance, inhibitory effects upon upstream mediators of the host response (for example, the nuclear factor kappa B (NF-κB) transcription factor), scavenging of downstream inflammatory mediators (for example, cytokines), direct anti-inflammatory effects mediated via Fcγ receptors, and a potential ability to attenuate lymphocyte apoptosis and thus sepsis-related immunosuppression. Characterizing the trajectory of change in immunoglobulin levels during sepsis, understanding mechanisms contributing to these changes, and undertaking IVIg dose-finding studies should be performed prior to further large-scale interventional trials to enhance the likelihood of a successful outcome.
Collapse
Affiliation(s)
- Manu Shankar-Hari
- Department of Critical Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK.
| | | | | | | | | |
Collapse
|
23
|
Ramos-Medina R, Corbí AL, Sánchez-Ramón S. [Intravenous immunoglobulin: immunomodulatory key of the immune system]. Med Clin (Barc) 2012; 139:112-7. [PMID: 22285062 DOI: 10.1016/j.medcli.2011.11.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 11/12/2011] [Accepted: 11/17/2011] [Indexed: 12/30/2022]
Abstract
The mechanisms of action of intravenous immunoglobulins (IVIG) are complex and mostly reproduce those of the natural immunoglobulin G (IgG) in our organism. The therapeutic doses used range from substitutive (200-400mg/kg of body weight) in immunodeficiencies to high doses (1-2g/kg of body weight) in autoimmune or inflammatory diseases. The paradoxical pro- or anti-inflammatory effects of IVIG are based on the modulation of the expression of activating versus inhibitory Fc receptors, the type and stage of maturation of the target cell. This huge diversity of actions may explain the extensive and varied range of clinical applications of IVIG nowadays (immunodeficiencies, autoimmune diseases, degenerative diseases such as Alzheimer's, and cancer). On the other hand, biological therapies with monoclonal antibodies mostly consist of IgG molecules with unique antigen specificity, and currently represent a therapeutic field expanding in various pathologies including cancer and diseases of immunological basis. The effects of IgG are added to their specific effects on molecules target.
Collapse
Affiliation(s)
- Rocío Ramos-Medina
- Unidad de Inmunología Clínica, Departamento de Inmunología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | | |
Collapse
|
24
|
Abstract
Sialic acids are a diverse family of monosaccharides widely expressed on all cell surfaces of vertebrates and so-called "higher" invertebrates, and on certain bacteria that interact with vertebrates. This overview surveys examples of biological roles of sialic acids in immunity, with emphasis on an evolutionary perspective. Given the breadth of the subject, the treatment of individual topics is brief. Subjects discussed include biophysical effects regulation of factor H; modulation of leukocyte trafficking via selectins; Siglecs in immune cell activation; sialic acids as ligands for microbes; impact of microbial and endogenous sialidases on immune cell responses; pathogen molecular mimicry of host sialic acids; Siglec recognition of sialylated pathogens; bacteriophage recognition of microbial sialic acids; polysialic acid modulation of immune cells; sialic acids as pathogen decoys or biological masks; modulation of immunity by sialic acid O-acetylation; sialic acids as antigens and xeno-autoantigens; antisialoglycan antibodies in reproductive incompatibility; and sialic-acid-based blood groups.
Collapse
Affiliation(s)
- Ajit Varki
- Glycobiology Research and Training Center, Department of Medicine, University of California at San Diego, La Jolla, 92093-0687, USA.
| | | |
Collapse
|
25
|
Tawfik DS, Cowan KR, Walsh AM, Hamilton WS, Goldman FD. Exogenous immunoglobulin downregulates T-cell receptor signaling and cytokine production. Pediatr Allergy Immunol 2012; 23:88-95. [PMID: 21265884 DOI: 10.1111/j.1399-3038.2010.01129.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intravenous immune globulin (IVIG), a polyvalent solution of pooled human immunoglobulin, is a potent immunomodulating agent. It is currently approved to treat autoimmune diseases, including idiopathic thrombocytopenia purpura, autoimmune hemolytic anemia, and Kawasaki disease. The basis of IVIG's immunomodulatory properties is not entirely understood. Proposed mechanisms include Fc receptor blockade, interference with cytokine network, and provision of anti-idiotypic antibodies. IVIG has also been shown to affect T-lymphocyte function, although a direct effect has been difficult to reconcile given the lack of immunoglobulin or Fc-receptors on T cells. Experiments were thus carried out to determine whether IVIG was acting on a specific T-cell subset and at the level of the T-cell receptor (TCR), and whether cytokine expression patterns were modulated. T lymphocytes obtained from adult peripheral blood and umbilical cord blood were cultured over a 1-wk time course in the presence of pharmacological IVIG concentrations (Gamunex(®) , 0-2.0 mg/ml). Cells were exposed to various stimulation conditions, and TCR signaling competence was assessed by quantifying activation-induced upregulation of CD25 and CD69, as well as production of specific T-cell cytokines. IVIG was found to significantly decrease T-lymphocyte proliferation, in a dose and time-dependent manner, in both cord and adult blood. IVIG markedly reduced phytohemagglutinin and anti-CD3-induced upregulation of CD25 and CD69 in both CD4 and CD8 T-cell subsets, although phorbol ester-induced responses were intact, suggesting a defect in the CD3/TCR signaling pathway. IVIG also inhibited anti-CD3-induced cytokine production of IL-10, IL-2, and IFN-γ in a dose-dependent manner. These data suggest that IVIG may have direct T-cell immunomodulatory properties by dampening TCR responses. Further studies are needed to more precisely define the molecular targets of IVIG.
Collapse
Affiliation(s)
- Daniel S Tawfik
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | | | | | | | | |
Collapse
|
26
|
von Gunten S, Simon HU. Granulocyte death regulation by naturally occurring autoantibodies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 750:157-72. [PMID: 22903673 DOI: 10.1007/978-1-4614-3461-0_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Programmed cell death (PCD) plays a central role in the regulation of granulocytes that are key effector cells of the innate immune system. Granulocytes are produced in high amounts in the bone marrow. A safe elimination of granulocytes by cell death (apoptosis) is essential to maintain the numbers of these cells balanced. In many acute and chronic inflammatory diseases, delayed apoptosis is one mechanism that contributes to accumulation of neutrophil and eosinophil granulocytes at the site of inflammation. On the other hand, a safe elimination of granulocytes by cell death is required to avoid unwanted tissue damage for instance by secretion of toxic products from these cells. Recent evidence shows that humans produce an array of naturally occurring autoantibodies (NAbs) with the capacity to regulate granulocyte death, including agonistic and antagonistic NAbs that bind to the receptors Fas, Siglec-8, and Siglec-9. Together with other factors, these various NAbs exhibit different properties in terms of the form of cell death they induce, the molecular signaling pathways they engage, as well as the efficacy or potency by which they induce cell death. Moreover, several regulatory mechanisms seem to exist that control their biological activity. Novel insights support the concept of granulocyte death regulation by NAbs, which might have important implications for our understanding of the pathogenesis and treatment of inflammatory diseases, including many autoimmune and allergic disorders.
Collapse
|
27
|
Casulli S, Topçu S, Fattoum L, von Gunten S, Simon HU, Teillaud JL, Bayry J, Kaveri SV, Elbim C. A differential concentration-dependent effect of IVIg on neutrophil functions: relevance for anti-microbial and anti-inflammatory mechanisms. PLoS One 2011; 6:e26469. [PMID: 22065996 PMCID: PMC3204983 DOI: 10.1371/journal.pone.0026469] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 09/27/2011] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Polymorphonuclear neutrophils (PMN) play a key role in host defences against invading microorganisms but can also potentiate detrimental inflammatory reactions in case of excessive or misdirected responses. Intravenous immunoglobulins (IVIg) are used to treat patients with immune deficiencies and, at higher doses, in autoimmune, allergic and systemic inflammatory disorders. METHODOLOGY/PRINCIPAL FINDINGS We used flow cytometry to examine the effects of IVIg on PMN functions and survival, using whole-blood conditions in order to avoid artifacts due to isolation procedures. IVIg at low concentrations induced PMN activation, as reflected by decreased L-selectin and increased CD11b expression at the PMN surface, oxidative burst enhancement, and prolonged cell survival. In contrast, IVIg at higher concentrations inhibited LPS-induced CD11b degranulation and oxidative burst priming, and counteracted LPS-induced PMN lifespan prolongation. CONCLUSIONS/SIGNIFICANCE IVIg appears to have differential, concentration-dependent effects on PMN, possibly supporting the use of IVIg as either an anti-microbial or an anti-inflammatory agent.
Collapse
Affiliation(s)
- Sarah Casulli
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie – Paris 6, UMR S 872, Paris, F-75006 France and Université Paris Descartes, UMR S 872, Paris, F-75006 France; INSERM, U872, Paris, F-75006, France
| | - Selma Topçu
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie – Paris 6, UMR S 872, Paris, F-75006 France and Université Paris Descartes, UMR S 872, Paris, F-75006 France; INSERM, U872, Paris, F-75006, France
| | - Lakhdar Fattoum
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie – Paris 6, UMR S 872, Paris, F-75006 France and Université Paris Descartes, UMR S 872, Paris, F-75006 France; INSERM, U872, Paris, F-75006, France
| | | | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Jean-Luc Teillaud
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie – Paris 6, UMR S 872, Paris, F-75006 France and Université Paris Descartes, UMR S 872, Paris, F-75006 France; INSERM, U872, Paris, F-75006, France
| | - Jagadeesh Bayry
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie – Paris 6, UMR S 872, Paris, F-75006 France and Université Paris Descartes, UMR S 872, Paris, F-75006 France; INSERM, U872, Paris, F-75006, France
| | - Srini V. Kaveri
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie – Paris 6, UMR S 872, Paris, F-75006 France and Université Paris Descartes, UMR S 872, Paris, F-75006 France; INSERM, U872, Paris, F-75006, France
- * E-mail: (SVK); (CE)
| | - Carole Elbim
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie – Paris 6, UMR S 872, Paris, F-75006 France and Université Paris Descartes, UMR S 872, Paris, F-75006 France; INSERM, U872, Paris, F-75006, France
- * E-mail: (SVK); (CE)
| |
Collapse
|
28
|
Schaub A, von Gunten S, Vogel M, Wymann S, Rüegsegger M, Stadler BM, Spycher M, Simon HU, Miescher S. Dimeric IVIG contains natural anti-Siglec-9 autoantibodies and their anti-idiotypes. Allergy 2011; 66:1030-7. [PMID: 21385183 DOI: 10.1111/j.1398-9995.2011.02579.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Intravenous immunoglobulin (IVIG) preparations are increasingly used for the treatment of autoimmune and chronic inflammatory diseases. Naturally occurring autoantibodies against Siglec-9 and Fas are thought to contribute to the anti-inflammatory effects of IVIG via cell death regulation of leukocytes and tissue cells. Dimeric IVIG fractions are suspected to contain idiotypic (Id)-anti-idiotypic complexes of antibodies, which might also include anti-Siglec-9 and anti-Fas autoantibodies. METHODS Dimeric IVIG fractions were separated from monomeric IVIG by size-exclusion chromatography and remonomerized by low pH treatment. Binding studies of total, monomeric, and dimeric IVIG were performed using surface plasmon resonance and flow cytometry on primary human neutrophils. RESULTS Anti-Siglec-9 and anti-Fas autoantibodies were contained in both monomeric and dimeric IVIG fractions, but anti-Siglec-9 antibodies were highly enriched in dimeric IVIG. The propensity to engage in dimer formation was paratope dependent. IVIG binding to Siglec-9 was specific and sialylation independent. Interestingly, we detected anti-idiotypic antibodies (anti-Ids) against anti-Siglec-9 autoantibodies in dimeric, but not in monomeric fractions of IVIG. CONCLUSIONS Our study supports the concept that idiotype-anti-idiotype (Id-anti-Id) interactions contribute to the dimer formation in IVIG preparations. To our knowledge, this is the first description of Id-anti-Id dimers of death receptor-specific antibodies in IVIG. Such Id-anti-Id interactions might determine the activity of immunomodulatory antibodies present both in IVIG and the patient.
Collapse
Affiliation(s)
- A Schaub
- University Institute of Immunology, Bern, Switzerland CSL Behring AG, Bern, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Targeting siglecs--a novel pharmacological strategy for immuno- and glycotherapy. Biochem Pharmacol 2011; 82:323-32. [PMID: 21658374 DOI: 10.1016/j.bcp.2011.05.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 05/17/2011] [Indexed: 01/13/2023]
Abstract
The immune system must be tightly held in check to avoid bystander tissue damage as well as autoreactivity caused by overwhelming immune reactions. A novel family of immunoregulatory, carbohydrate-binding receptors, the Siglecs (sialic acid binding immunoglobulin-like lectins), has received particular attention in light of their capacity to mediate cell death, anti-proliferative effects and to regulate a variety of cellular activities. Siglec receptors are mainly expressed on leukocytes in a cell type-specific and differentiation-dependent manner. Siglecs might potentially be exploited as targets of novel immune- and glycotherapeutics for cell-directed therapies in autoimmune and allergic diseases, as well as in haematologic malignancies. Here we present novel insights on structural and functional characteristics, expression patterns and evolutionary aspects of Siglecs and their ligands. Pharmacological strategies using Siglec agonistic cross-linking therapeutics, such as monoclonal or engineered antibodies, intravenous immunoglobulin (IVIG), or glycomimetics are discussed. Modulation of immune responses by targeting Siglecs using agonistic or antagonistic therapeutics may have important clinical implications and may pave the way for novel pharmacological avenues for the treatment of autoimmune and allergic diseases or for tumor immunotherapy.
Collapse
|